
I ,

Regular Mapping of Multi-Dimensional
Data on Parallel Processors

Peter Fletcher

May 1993

A thesis submitted for the degree of Doctor of Philosophy of
The Australian National University

I

I

I

I

i

I

I·

I

I

I'

Declaration

I hereby declare that except where otherwise explicitly stated , the work pre
sented in this thesis is my own original work.

Peter Fletcher

1

I

I

I

Acknowledgements

Firstly many thanks to my supervisor, Phil Robertson, who provided me an
opportunity to work in this area, convinced me of its importance, encouraged
me to experiment and provided me with substantial feedback from his tireless
reviewing of my drafts.

Special thanks to Guy Vezina, whose collaboration and friendship provided
me with a great deal of enjoyment and motivation for this work, and whose
software is responsible for many of the pretty pictures. Grateful thanks also
to Ken Tsui for carefully reviewing the penultimate draft, finding many errors
and omissions and assisting me in clarifying many dodgy areas.

Special thanks to people with whom I have had many valuable and stimulat
ing discussions: Dave Abel, Don Bone, Oscar Bosman, Lisa de Ferrari, David
Keightley, John Lilleyman, Scott Milton, Jonathon McCabe, Chris Moran,
Heinz Schmidt, Kevin Smith, Duncan Stevenson, Ken Tsui and Andrew Vin
cent .

Thanks also to Don Fraser and Reiko Schroeder who provided me with use
ful discussions and material at the start of my thesis; to John O'Callaghan who,
in conjunction with the CSIRO, partially supported my work; to the members
of my committee: Richard Brent, Iain Macleod and E. Krishnamurthy; to Tom
Blank, Jeff Fier, Christopher Glaeser, Larry Levine and Russ Tuck who have
helped me understand the MasPar; to Faye Baxendell who has helped me track
down many an item; to Mike Sharrot for his help in producing videos; and to
Peter Lamb who showed me how to produce postscript output anywhere.

Many people deserve thanks who have made my working environment a
rich and enjoyable one: Stephen Barass, Arch Brayshaw, Dave Campbell,
David Cook, Trish Devine, Kerry Doutch, Peter Fox, Neale Fulton, Matthew
Hutchins, Stuart Hungerford, Fei Jin, Steve Jones, Peter Milne, Kevin Moore,
Richard Neville, Peter Nikitser, Mike Sharrot, Dione Smith (for the Strepsils
too!), Roy Stockman, Paul Veldkamp, Kathy Visintin, Graham Williams and
Steve Woods.

Thanks to those who have shown me that there is a life outside the com
puter: Helen, Catherine, Ben, Graham, and the Boys, Sally Kneebone, Dennis,
Bruce, Kathy and Jamie, Chris and Nikki, Megan and Phil, Steve and Kirsty,
Verena and Alex, Guy and Nathalie, Lindsay and Rod, Markus and Karen,
Nicola and William, everyone at Aikido, and Chika, Sallie, Judy, Leigh, Gra
ham, Tim, Peter and Carl at Boyce street.

Finally, thanks to Marcia and Bronwen for their love and forbearance,
which gave me the freedom to work with enjoyment .

ll

Abstract

This thesis presents a generalized framework for the mapping and remapping
of large regularly-gridded multidimensional data sets on a parallel computer.
We address two problems that influence the efficiency with which parallel com
puters can be exploited in image processing, visualization and simulation ap
plications. The data mapping problem is the task of describing the layout of
multi-dimensional data set on a parallel array. This layout has a significant
effect on the choice and efficiency of processing algorithms. The data remap
ping problem is the task of moving data dynamically between data mappings
to provide portability between applications, libraries and external devices, and
allows the description of a class of data transformations of. use in a variety of
data processing algorithms.

We develop the k-Tile format, which provides a concise and flexible data
mapping description for multidimensional data arrays on multidimensional de
vices, and allows the specification of many commonly used parallel data map
pings, geometric transformations of these mappings, data replication and data
padding.

Using the k-Tile format we define Parallel mapping functions (PMFs),
which provide a general system for performing many remapping tasks. We
introduce efficient algorithms for performing a subset of PMFs on a crossbar
connected parallel processing array with indirect addressing, and demonstrate
an efficient implementation of these algorithms on a MasPar MP-1 computer.
We also explore the problems involved in producing a complete implementa
tion of PMFs on the MasPar, and suggest further work needed to produce such
a system.

We show examples of the use of the k-Tile format and PMFs for the data
mapping directives of High Performance Fortran, in image processing algo
rithms and in visualization applications.

ill

I
I

I

I

'

'

Contents

1 Introduction
1.1 Multidimensional data
1.2 Parallel Architectures .
1.3 A framework for data mapping

1.3.1 Storage and access requirements .
1.3.2 Algorithm requirements
1.3.3 Portability requirements
1.3.4 A framework for data mapping

1.4 The structure of this thesis
1.4.1 Current approaches to data mapping
1.4.2 The k-Tile format
1.4.3 Radix 2 remapping
1.4.4 Implementation of radix 2 PMFs
1.4.5 Mixed radix remapping .
1.4.6 The scope of PMFs

2 Multidimensional spaces, devices and data mapping techniques
2.1 Definitions

2.1.1 Multidimensional arrays .. .
2.1.2 Data and index mappings . .
2.1.3 Multidimensional data arrays
2.1.4 Multidimensional devices ...

2.2 Data mapping on one-dimensional devices
2.2.1 The Multidimensional Tile Format
2.2.2 Remapping algorithms and applications .
2.2.3 Hardware approaches to data mapping

2.3 Parallel architectures
2.3 .1 Properties of Parallel Architectures . .
2.3.2 Three SIMD architectures
2.3.3 The MasPar and parallel programming in MPL

2.4 Current data mapping systems .
2.4.1 Direct permutation .
2.4.2 Dimension mapping ...

lV

1
1
2
2
2
3
3
4
4
4
4
5
5
5
5

7
8
8

10
12
13
15
15
15
16
16
17
21
24
32

.

32 i

33
.

1!
Ii

11 ,,

I!

1,

CONTENTS

2.4.3 Data index computations .
2.4.4 Index bit maps
2.4.5 Index digit maps
2.4.6 Blip schemes . . .
2.4.7 Ad-hoc approaches
2.4.8 High Performance FORTRAN

2.5 Summary

3 The k-Tile format
3.1 The Basic k-Tile Format

3.1.1 The Data Type
3.1.2 The Data Space .
3.1.3 The Device Space .
3.1.4 The k-Tile Space
3.1.5 The k-Tile format, an overview
3.1.6 The k-Tile mapping
3.1. 7 Specifying a k-Tile mapping
3.1.8 The implicit k-Tile mapping
3.1.9 The inverse k-Tile mapping
3.1.10 The k-Tile format, a definition .
3 .1.11 A basic k-Tile summary
3.1.12 Example mappings

3.2 Extending the k-Tile format
3.2.1 "Empty" k-Tile dimensions
3.2.2 Sense indicator
3.2.3 Templates
3.2.4 Offsets
3.2.5 Extended k-Tile offsets
3.2.6 Summary of extended k-Tile format .

3.3 Parallel Mapping Functions
3.4 Summary

4 Radix 2 remapping
4.1 The index bit map

4.1.1 An overview of the index bit map
4.1.2 Definition of the index bit map
4.1.3 An index bit map notation .. .

4.2 Radix 2 remapping
4.2.1 Definition of radix 2 remapping
4.2.2 A radix 2 remapping notation

4.3 Remapping with atomic operations ..
4.3.1 Assumed architectural features
4.3.2 Atomic index bit operations ..

V

34
35
35
36
36
37
38

41
42
42
42
43
44
44
44
46
48
49
49
50
51
53
54
55
56
59
63
65
67
67

69
69
70
73
79
79
81
82
85
85
86

....

'

I

I

Vl
CONTENTS

4.3.3 Efficient use of atomic index bit operations . 87

4.4 Optimal radix 2 remapping 88

4.4.1 Assumed architectural features 88

4.4.2 Types of cycles 89

4.4.3 A recursive approach 90

4.4.4 (P*) cycles . 90

4.4.5 (m*) cycles 91

4.4.6 Simultaneous (m*) and (P*) cycles 95

4.4.7 Transforming mixed cycles into (mp*) cycles 95

4.4.8 Even-parity (mp*) cycles . 97

4.4.9 Identity cycles . 98

4.4.10 Remapping data while copying . 101

4.5 Summary 102

5 Implementation of Radix 2 PMFs 105

5.1 The 2k-Tile format . 105

5.1.1 Converting a 2k-Tile format to an index bit map . . 106

5.1.2 A canonical form of the 2k-Tile format . 107

5.2 Data types used by radix 2 PMFs . 108

5.3 Functions used to access PMFs . 110

5.3.1 k-Tile format manipulation . . 110

5.3.2 mtag manipulation . 110

5.3.3 Remapping . 111

5.3.4 Standard mappings . 112

5.3.5 Geometrical transformations . 113

5.4 Structure of the PMF system . 114

5.5 PMFs using atomic index bit operations . 114

5.6 PMFs using the optimal algorithm . 114

5.6.1 Assembler coding . 116

5.6.2 PE register usage . 116

5.6.3 Chunking to larger data objects . 116

5.6.4 Processor cluster optimizations . 117

5.6.5 Using the xnet for P / M transpositions . 119

5.7 Testing. . 119

5.7.1 Generation of random remappings . . 119

5.7.2 Checking performed remappings . 120

5.7.3 Results of testing . 120

5.7.4 A non-assembler library . 121

5.8 Results . . 121

5.8.1 Execution time of radix 2 remapping . 121

5.8.2 Hand coding vs. PMFs . 124

5.9 Summary . 127

I.I

...

CONTENTS

6 Mixed radix remapping
6.1 The index digit map

6.1.1 Mixed radix numbers
6.1.2 Indexing with a mixed radix number
6.1.3 Specifying an index digit map
6.1.4 Specifying a mixed radix remapping .

6.2 Aligned index digit remapping
6.2.1 Algorithm components
6.2.2 An algorithm for index digit permutation .

6.3 Non-aligned index digit remapping
6.3 .1 Re-signification of digits in an index digit map .
6.3.2 Re-signification within device dimensions
6.3.3 "Brute force" remapping
6.3.4 Re-signification across device dimensions
6.3.5 Brute-force P / M re-signification . . .
6.3.6 Brute force performance
6.3. 7 Restricting to relatively prime digits
6.3.8 Skewing initial memory addresses
6.3.9 Restricting stack size

6.4 Cluster contention removal
6.4.1 A cluster contention removal algorithm
6.4.2 Removing contention in mixed-radix remapping

6.5 A system for mixed radix remapping
6.6 Summary .

7 The scope of data mapping operations
7 .1 High Performance Fortran

7.1.1 ALIGN and REALIGN directives
7.1.2 HPF PROCESSORS directive ..
7.1.3 Processor VIEWs
7.1.4 DISTRIBUTE and REDISTRIBUTE directives
7.1.5 TEMPLATE directive
7.1.6 PMFs:::) HPF

7.2 KIPS
7.3 Sample applications

7.3.1 Scan-line algorithms
7.3.2 2d rotation
7.3.3 Perspective viewing .
7.3.4 2d scan-line virtualization
7.3.5 Volume rotation and rendering
7.3.6 The Fast Fourier Transform ..
7.3.7 Neighbourhood operations ...
7.3.8 Computing the Mandelbrot set

vii

133
. 133
. 133
. 134
. 135
. 138
. 141
. 141
. 146
. 147
. 147
. 148
. 150
. 153
. 156
. 157
. 159
. 159
. 163
. 166
. 167
. 167
. 171
. 172

175
. 175
. 175
. 179
. 180
. 180
. 180
. 181
. 181
. 182
. 182
. 182

I

. 185

. 185

. 188

. 193

. 194

. 196

... CONTENTS Vlll

7.4 Summary 197

8 Conclusions 201

8.1 The data mapping problem . 201

8.2 The data remapping problem . 202

8.2.1 Radix 2 PMFs . 202

8.2.2 Mixed radix remapping . . 203

8.3 Application of the approach . 203

8.4 Limitations of the approach, and future work. . 204

8.4.1 Data structures . 204

8.4.2 Data-dependent mappings and operations . 204

8.4.3 A general PMF system . 205

8.4.4 Human interaction with data mappings . 205

Bibliography 207

A Cluster contention removal 213

B Status of PMFs 221 .
B.l Introduction . 221

B.2 PMF system calls . 223

B.2.1 The k-Tile format . 223

B.2.2 The mtag . 225

B.2.3 The remap. . 227

B.2.4 Standard mappings . 229

B.2.5 Geometrical transformations . 231

B.3 Examples of Using PMFs . . 231

B.3.1 Performing a simple remap . . 231

B.3.2 Error reporting . 233

B.3.3 Fourier transform . 236

B.3.4 Mandelbrot set generator . . 240

B.4 Some header files . 244
B.4.1 gr.h . 244
B.4.2 Extract from gp2.h . 250

B.5 PMF Implementation notes . 252
B.6 Using the PMF workbench . 252

B.6.1 Declaring a k-Tile format . . 252
B.6.2 The kmap . 253

B.6.3 Declaring an mtag . 254

B.6.4 Declaring a pair . . 255

B.6.5 Data types attached to a pair . 256

B.6.6 Performing a remap . . 259
B.6.7 Timing . . 259

C Glossary of symbols 261

•

..

List of Figures

4.1 Representing a permutation in direct and cycle notation 74
4.2 An example index bit map 80
4.3 An example radix 2 remapping 83
4.4 Example remappings on index bits 85
4.5 Example atomic operations for a radix 2 remapping 87
4.6 A memory permutation as a linked list 92
4. 7 Transformation of mixed cycle into (m*) and (mp*) cycles 97
4.8 Parity masking to align (mp*) cycles 99

5.1 Partial structure of a PMF implementation . . 115
5.2 Base time for MasPar instructions . . 123
5.3 Execution time of radix 2 PMFs 124
5.4 Lower bound time of radix 2 PMFs . 125
5.5 PMFs vs. mpipl for 512 x 512 image . 129
5.6 PMFs vs. mpipl for 1024 x 1024 image . 130
5.7 PMFs vs. mpipl for 2048 x 2048 image . 131
5.8 PMFs vs. mpipl for 512 x 2048 image . . 132

6.1 Aligning two index digit maps .
6.2 Non-alignable index digit maps
6.3 P / M digit exchange

. 139

. 139

. 145
6.4 Re-signification within device dimensions . 149
6.5 Brute-force re-signification 158
6.6 Brute-force re-signification without common factors . 160
6. 7 Inverse re-signification 161
6.8 Inverse re-signification with address skewing 162
6.9 Re-signification stack high-water-mark 164
6.10 Re-signification execution time with bounded stack . 165
6.11 Router iterations required for random permutations . 168
6.12 Router iterations required for index digit swaps . . . 168
6.13 Contention removal time for random problems 169
6.14 Contention removal time for index digit swap problems . 169
6.15 Finding a contention-free ordering of a processor permutation . 170

lX

...

I

X

7.1
7.2
7.3
7.4
7.5
7.6
7.7

A.l
A.2

LIST OF FIGURES

Operatic.,ns to rotate an image 45° . . 184
Perspective images generated on the MasPar MP-1 . 186
Volume renderings of human head and strange attractor . 190
Volume remapping times for lK PE MasPar . 191
Volume remapping times for 8K PE MasPar . 192
Comparison of Mandelbrot set calculation times . 197
Test sections of the Mandelbrot set . 198

Finding a contention-free ordering of a processor permutation . 214
Execution time of scrambling contention removal . 219

Ill

Chapter 1

Introduction

With the profusion of data being gathered, generated and processed today,
more powerful computers and faster computational techniques are becoming
essential. Because of physical constraints on the speed of electronic devices,
significantly faster performance may only be obtained by pipelining or paral
lelizing computation.

Ultimately, this data must be presented in a form suitable for interpreta
tion by a person. Many stages of processing may be required to present this
data in a meaningful way, entailing the movement of data between and within
storage, display and computational devices to allow various transformations
to be applied.

The method used for assigning storage locations to data on any of these
devices can have a significant effect on the efficiency of large-scale operations
on data; we call this task the data mapping problem. Once storage locations
have been assigned to data, it may be necessary to re-order the data on the
device; we call this task the data remapping problem.

This thesis provides justification for exploring these two problems, and
presents a framework for specifying and manipulating mappings of large regu
larly gridded data sets on parallel processors.

1.1 Multidimensional data

Large data sets can be generated from a variety of sources: optical scanners,
remote satellite sensors, CT scanners, imaging spectrometers, video cameras
and simulations are but a few . As sensor technology and computational power
improve, the size of multidimensional data sets is growing rapidly.

Each type of data has associated with it some dimensionality. Spatial data
is usually two or three dimensional; two dimensional data sets are commonly
produced by remote sensing devices and optical scanners, and three dimen
sional data sets by CT scanners, MRJ or by stacking two dimensional sections.

1

2 CHAPTER 1. INTRODUCTION

Dimensionality may also be increased by including information sampled along
some other axis; for example, including spectral information at every data
point may multiply the size of a data set hundreds of times, and sampling the
data set temporally for an animation may multiply its size thousands of times
again.

Many large data sets are regularly-gridded and rectilinear. By applying
transformations to irregularly-gridded data, many data sets may be treated
as regularly gridded and rectilinear. This form of data is ideally suitable for
processing on a SIMD parallel processor.

1.2 Parallel Architectures

Although many of the techniques in this thesis are applicable to any class of
computer, the algorithms in this thesis have been developed for a particular
class of computer, a massively parallel distributed-memory SIMD computer.
Machines of this class share a number of features which allow efficient algo
rithms to be found for many problems involving regular operations on a large
dataset . These machines have many architectural variations which have a sig
nificant effect on the type of algorithms which can be implemented, and hence
their efficiency.

The algorithms developed in this thesis were imple_mented on the MasPar
MP-1. However, many of the ideas to be presented are also applicable to
other parallel processors, and the specification techniques are applicable to
any computer.

1.3 A framework for data mapping

When processing large multidimensional data sets, it is desirable that the
computer architecture and software tools used satisfy several requirements:
convenient storage and data access; appropriate positioning of the data to
allow algorithms to operate efficiently (or efficient algorithms to be used); and
portability of data and applications to other architectures with a minimum
of decoding or recoding. These three requirements can be met by a suitable
framework for data mapping.

1.3.1 Storage and access requirements

For fast processing and interaction with data we need to communicate data
quickly between and within data source, viewing, bulk storage and process
ing devices. Dedicated devices such as frame buffers and scanners are often
inflexible in their formats for accessing data, and standard data file formats
also impose limitations on the order of access of multidimensional data. Many

1.3. A FRAMEWORK FOR DATA MAPPING 3

processors, and massively parallel SIMD processors in particular, have specific
requirements for the format of data storage, both for internal representation
and access to data stored externally. Because these requirements are often
imposed by system software packages, they cannot be changed to suit an ap
plication program's requirements; indeed, if several packages are being used
together, their requirements can easily conflict.

To integrate all these devices in a data processing environment, and resolve
the possible differences in data access requirements , the data handling problem
may be consolidated into a generalized framework. This eases the task of
programming data handling and allows compatibility to be provided between
different programming efforts.

1.3.2 Algorithm requirements

When using a parallel processor to transform multidimensional data, the most
convenient mapping of the data onto the processor might not be the most
convenient mapping for actually performing the transformation, because dif
ferent algorithms need to see different parts of the data during their execution.
Two examples that illustrate this problem are neighbourhood filters and fast
Fourier transforms.

When reading data from disk into a parallel processor the data is often
stored simply in scan-line order, which makes it easiest to map scan-lines to
processors. Unfortunately, the most efficient way of mapping a two dimensional
data set to a processor array for the application of a neighbourhood filter is as
a matrix of two dimensional tiles, and for a two dimensional Fourier transform
the data may need to be index-digit reversed.

Rather than reading data from the disk in tiled or index-digit-reversed
order, either of which is likely to be both slow and complicated (unless the
data was originally stored in this order), it would seem more efficient to map
the data onto the parallel processor in its natural order, and then use the
parallel processor to remap the data using fast parallel techniques.

1.3.3 Portability requirements

Although most parallel computers have many features in common, there are
several programming languages, data mapping techniques and terminologies
for describing essentially the same data mappings.

To make life easier for the programmer, a consistent framework for describ
ing and manipulating multidimensional data is needed to make it possible to
both formally specify a convenient data mapping and provide a means to con
vert the specified mapping into any mapping used by other applications.

As both an aid to development and to enable software to be used on smaller
systems, this scheme should not only be available on different parallel archi-

I

4 CHAPTER 1. INTRODUCTION

tectures, but also for use with sequential machines. In practice, using parallel
techniques on sequential machines may have additional advantages, such as
locally limiting and regularizing data access to local regions of memory, sim
plifying algorithms and reducing memory paging [61].

1.3.4 A framework for data mapping

A general framework is needed for describing data mappings conveniently in
a way that is not constrained to a particular architecture. This framework
must be high-level enough that efficient implementations are not restricted to
a particular architecture or computing paradigm, and low-level enough that
application programmers can participate in choosing data mappings appropri
ate for their particular problems.

As compiler technology improves these issues will increasingly be hidden
from the programmer, but a good underlying model will still be necessary to
enable compilers to handle large multidimensional data sets efficiently.

1.4 The structure of this thesis

The following paragraphs outline the structure of this thesis and the major

focus for each chapter.

1.4.1 Current approaches to data mapping

The data mapping problem is not new; several systems for data mapping have
been used for more than a decade, and schemes for improving data access
efficiency on sequential computers and disk drives have been used for many
years before that. Chapter 2 surveys some computer architectures, defines
regular data structures more fully, and examines current approaches for data
mapping. Limitations of current approaches are described.

1.4.2 The k-Tile format

The k-Tile format provides a basis for solutions to the data mapping prob
lem which avoids many of the limitations associated with current approaches.
The basic form of the k-Tile format allows many useful data mappings to be
described, and extensions to the basic form allow even more flexibility.

Pairs of k-Tile formats may be used to define data remappings. We call this
system for specifying remappings parallel mapping functions (PMFs). Chap
ter 3 defines the k-Tile format and PMFs.

1.4. THE STRUCTURE OF THIS THESIS 5

1.4.3 Radix 2 remapping

Although the k-Tile format provides flexibility in specifying data mappings, it
does not prescribe any algorithms for performing data remappings using paral
lel mapping functions. Indeed, it should not; to provide maximum portability,
a variety of algorithms are necessary to suit the characteristics of different
machine architectures.

Chapter 4 examines algorithms for performing parallel mapping functions
based on k-Tile specifications with data-set dimensions restricted in length
to powers of two . These operations are performed using the idea of index
bit permutation (27, 28] , or radix 2 index digit permutation. A new set of
algorithms with optimal communication characteristics is introduced for the
MasPar MP-1

1.4.4 Implementation of radix 2 PMFs

Chapter 5 describes the implementation and interfacing of the algorithms de
scribed in chapter 4 for the MasPar MP-1. Architecture-dependent optimiza
tions have been used to improve the speed of the implementation. Testing and
timing results are shown and compared with other data remapping tools, show
ing that general data remapping algorithms compare favourably with purpose
built routines .

1.4.5 Mixed radix remapping

Although the radix 2 algorithms are efficient and regular, the restriction to
powers of two causes a loss of flexibility. Chapter 6 introduces more general
algorithms for performing index digit permutation and re-signification, again
suitable for the MasPar MP-1 , which may be used for performing remapping
operations for general PMFs.

Several problems remain to be addressed in mixed radix remapping, and a
mixed radix PMF system is outlined and suggested as future work.

1.4.6 The scope of PMFs

Chapter 7 explores the problems to be addressed by PMFs. The relationship
between PMFs and the data-mapping directives of High Performance Fortran
are examined. PMFs are demonstrated in a range of applications: scan-line
algorithms used for affine transformations, surface view generation and volume
visualization; neighbourhood operations such as filtering and mathematical
morphology; the fast Fourier Transform; and pixel-local operations such as
the generation of views of the Mandelbrot set.

I

I

6 CHAPTER 1. INTRODUCTION

Chapter 2

Multidimensional spaces,
devices and data mapping
techniques

As we have seen in the previous chapter, there is a good case for providing a
framework for defining data mappings and algorithms for performing remap
pings efficiently. There are already many systems and techniques for specifying
and manipulating the mapping of multidimensional data for both sequential
and parallel computers.

To restrict the scope of this thesis, we will only be dealing with rectangu
larly gridded multidimensional objects with a fixed number of elements along
each dimension. We will not examine irregularly shaped data sets or devices
which cannot be made to fit within objects of this type. We will also assume
that data mappings are data-value independent. These restrictions can increase
the data storage required for an arbitrary data set, which in turn can reduce the
efficiency of associated algorithms. However, the regularity obtained by these
restrictions has many advantages, especially when using parallel architectures.

We will examine two problems associated with multidimensional data sets.
When dealing with a multidimensional data set which must be stored in a
storage or computation device, some strategy must be used to map the data
elements onto the device. This is the data mapping problem referred to in
the previous chapter. Once the data has been mapped to the device, we may
wish to dynamically alter this mapping by permuting storage locations within
the device. This is the data remapping problem referred to in the previous
chapter.

7

I

8 CHAPTER 2. MULTIDIMENSIONAL SPACES AND DATA MAPPING

2 .1 Definitions

Before describing data mapping techniques, we describe a notation for multi

dimensional arrays and mappings.

2.1.1 Multidimensional arrays

A multidimensional array is a generalization of a 2d matrix. A matrix gener
ally contains numbers; a multidimensional array may contain any data type.
A matrix has only two dimensions, corresponding to rows and columns; a
multidimensional array may have any number of dimensions. The number of
elements in any row or column in a particular matrix is fixed ; this is also true
in a multidimensional array, in which the number of elements or length of each

dimension is fixed.
Before providing a more formal definition of a multidimensional array, we

must first define some related concepts:

• The data element type defines the elements within the array

• The shape defines dimensionality and the length of every dimension

• The index space defines the set of addresses of elements within an array

Data element type

A data element type 1[' is a space from which the elements of a multidimensional
array are chosen. Because we wish to represent multidimensional arrays on a
computer, 1[' will usually contain a finite number of elements allowing every
element of 1[' to be represented in a fixed number of bytes, which we will treat
as the smallest addressable unit of storage.

1[' may also contain an undefined element, denoted -1 . When a multidi
mensional array is represented on a computer, _.L need not be a special value
that may be distinguished from other data elements; it actually means that
the element's value is undefined.

Shapes

A shape is a vector containing natural numbers. Letting

q E N

a E Nq, a= (ao, ... , aq-1),

a is a shape with dimensionality q, and

dimensionality of a= (a) ~ q.

If q = 0, a is represented by the empty set, 0.

..

2.1. DEFINITIONS

Index space

Given a shape a with dimensionality q, the index space of a is defined:

index(a) ~ {(uo, ... , Uq-1) E Nq: 0 ~ ui < ai}.

If a = 0 or some element a i of a is 0, we define

Multidimensional array

Letting

index(a) g {0}.

q EN

a E Nq, a = (ao, ... , aq- 1)

'II' be a set,

9

a multidimensional array A of shape a with data element type 'II' is a function

A : index(a) U { J_} - 'II' U { 1-}.

A and a have the following properties:

dimensionality of A

shape of A

size of A

length of dimension i of A

index space of A

A(1-)

(A)~ q

[A]~ a

!Al g I index(a).j
6 [A]i = ai

index(A) ~ index(a)
6 J_

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

Note that in definition 2.3, unless q = 0 or an element ai of a is zero, the size
of A may be calculated

IAI = I index(a)I = ao x ... x aq-I ·

Multidimensional spaces

The set of all multidimensional arrays, the multidimensional array space, is
denoted M. Three subsets of M may be defined

arrays of shape a

arrays of type 'II'

arrays of shape a, type 11'

6
Ma = { A E M : [A) = a}

M'II'

(2.7)
(2.8)

6 {A EM: Vu E index([A]), A(u) E 11'}
6

Ma 'II' = Man M'II' (2.9)
'

·---

10 CHAPTER 2. MULTIDIMENSIONAL SPACES AND DATA MAPPING

For example, let
a= (2, 3)

A : index(a) U { ..L} --t IR U { ..L}

(03 41 A(r, c) = element (r, c) of the matrix

More simply, we can write

We can state the following properties of A:

A E :Ml, A E :M!JR, A E :Mia

(A)= 2

[A]= (2, 3)

[A]o = 2, [A]i = 3

~)

index(A) = {(O, 0)(0, 1)(0, 2)(1, 0)(1, 1)(1, 2)}

!Al= 2 X 3 = 6

A(l, 0) = 3

A(..L) =..L .

2.1.2 Data and index mappings

Using the above definitions, functions may be defined between multidimen
sional arrays. For example, this function adds one to every element in a mul
tidimensional array with shape a:

J(A)(u) = A(u) + 1 for all u E index(a).

i

2.1. DEFINITIONS 11

Data mappings

A data mapping is a function between two multidimensional arrays with fixed
(but not necessarily identical) sizes and of the same type 11' which copies ele
ments from the argument into the result.

Letting
p E N,a E NP

q E N, b E Nq,

we define a data mapping f:

f : Ma,'lru{J..} -+ Mb,'lru{.1..}

f(A)(v) = { Al..(u) for some u E index(a) } c ll ()
otherwise 1or a v E index b .

Index mappings

Some data mappings may be expressed by defining an index mapping from one
index space into another. Letting

pE N, aE NP

we define an index mapping g

g: index(b) U {l..}-+ index(a) U {l..}.

From the index mapping g we may define a data mapping f :

f : Ma,'lru{J..} -+ Mb,'lru{.1..}

J(A)(v) = A(g(v)) for all v E index(b) .

It is necessary to define the mapping g 'backwards ' to ensure that only
one element of A is mapped to each element of the result. A mapping that
may be defined in this way is data independent because the correspondence
between elements depends only on positions of data elements and not their
values. Conversely, any data independent mapping may be defined by an index
mapping. A data dependent mapping can map elements to different positions
depending on the contents of the array being mapped. Letting

a EN,

an example of a data dependent mapping is a function which sorts real vectors
of length a:

f:Ml[])-+Ml[])
a,i& a ,~

-

12 CHAPTER 2. MULTIDIMENSIONAL SPACES AND DATA MAPPING

Letting

J(A) = the elements of A in sorted order for all A E Ma,IR·

(ao,a1) EN

a=(ao,a1)

b = (a1, ao),

an example of a data independent mapping is an array transposition:

f : Ma,IR - Mb,IR

J(A)(u1, u0) = A(uo, u1) for all (u1, uo) E index(b).

Expressed using an index mapping, the transposition example may be written:

g: index(b) U {..L} -t index(a) U {..L}

g(u1,uo) = (uo,u1) for all (u1,uo) E index(b)

f : Ma,IR - Mb,IR

J(A)(u1 ,uo) = A(g(u1,uo)) = A(uo,u1) for all (u1,uo) E index(b).

To simplify this notation, ..L will often not be included in data and index
mappings; it may be assumed to be present unless stated otherwise.

2.1.3 Multidimensional data arrays

A multidimensional data array is a multidimensional array with some meaning
attached to each of the dimensions. Whether a dimension represents time,
spatial dimensions, temperature, frequency or any other quantity, it can be
treated identically when it is represented as a dimension of a multidimensional
array. Our description of a multidimensional data array is derived from the
description of a KIPS image [66]; thus, the term image will often be used
interchangeably with multidimensional data array.

A distinction can be made between implicit dimensions of the data, whose
values are implicitly defined by their positions in the multidimensional data
array, and explicit dimensions, whose values are explicitly specified as part of
the array data type [66].

The same data set may be represented in several ways depending on whether
each dimension is stored explicitly or implicitly. As an example, a data set
representing the elevations of a two-dimensional grid of points on a landscape
may be stored in several ways:

1. Two implicit dimensions representing spatial position (x, y) and one ex
plicit dimension representing height z

...

2.1. DEFINITIONS 13

11. Three implicit dimensions, two of which represent spatial (x, y) position
and one of which has a binary value representing the presence or absence
of earth

111. One implicit dimension, representing nothing physical , and three explicit
dimensions giving (x, y, z) values

Note that not all combinations may be used; it is usually not possible to
represent a data set with an implicit height dimension z and explicit spatial
dimensions (x, y) because of the requirement that each data element has the
same size.

The representation used will depend on the use to which the data is put;
representation (i) is the more usual, as the data is in a suitable form for
many common image processing and visualization operations. Representation
(ii) is necessary if the surface has any overhangs (i.e. the height field is not
single-valued), and representation (iii) might be used if the surface were to be
approximated by polygons.

The storage representation chosen also has an effect on quantization error,
storage requirements and algorithmic efficiency. Quantization error is intro
duced into both the explicit and implicit representations. Implicit dimensions
are quantized by the regular grid used to sample the data; this error may be
reduced by sampling to a finer grid with a proportional cost in storage re
quirements and processing time. Explicit dimensions are quantized by a finite
data type used to represent data elements; this error may be reduced by an
approximately logarithmic cost in storage requirements and processing time.
However, converting an implicit dimension to an explicit dimension may have
great costs in both the need to explicitly represent all data values, and the
greater algorithmic complexity in searching for particular data values.

2.1.4 Multidimensional devices

Devices may also be treated as multi-dimensional arrays.
We use the term storage device to refer to any device upon which data may

be written and retrieved. Thus, a disk drive, a sequential computer's memory,
machine readable display devices and distributed-memory parallel processing
arrays are all examples of storage devices. We will use the term memory
specifically for the fast random-access memory attached to processors.

Common examples of one-dimensional storage devices are disk files and a
sequential computer's memory, where the elements are addressable by a single
index.

Multi-dimensional devices are not yet so common. A distributed memory
parallel computer can be regarded as a two-dimensional array, where the mem
ory forms one dimension and the processor array one or more dimensions. A

-

-- -

14 CHAPTER 2. MULTIDIMENSIONAL SPACES AND DATA MAPPING

two-, or even three-, dimensional display can be regarded as multidimensional,
and striped disks may be regarded as a very long and thin two-dimensional
device, with a long axis being an address on disk and a short axis selecting the
disk drive.

Disk files and sequential computers' memories also have some characteris
tics which are similar to distributed computers' memories which can in some
circumstances make them behave as a two-dimensional storage device. Disk
files are usually written as a series of blocks, where a block is the smallest unit
of bytes that can be read or written at a time. Once a block has been read into
a buffer, access to data in that block is very fast. This can make it appear as if
the disk file has a two dimensional structure; access along the first dimension
(inside the block) is very fast, and access along the second dimension (between
blocks) is generally slower.

Similarly, most computers nowadays use virtual memory, which also seg
ments memory into blocks. Access to blocks in physical memory is very fast,
and access to blocks in secondary memory is slower. For computers with a fast
data cache, a third level of access is added.

Although disk files and virtual memories do share some characteristics with
multidimensional storage devices, there are many differences which limit the
usefulness of the analogy; it is easy to find situations which cause poor per
formance in disk file access or virtual memory usage, but using these systems
efficiently requires detailed knowledge about the underlying hardware and op
erating system.

The dimensionality of a distributed memory parallel processors is more ev
ident and, unless programming in a parallel language which hides such things
from the programmer, the dimensions are explicitly present in the program
ming language as memory references and communications operations.

In a multidimensional storage device, we will use the convention of num
bering the dimensions in order of increasing access time. Usually, this will
mean the memory dimension is device dimension zero. For the purposes of
this thesis a memory array on a parallel device will be treated as if it were a
data array, although there are physical restrictions which will affect the way
data elements are accessed.

If a data array A is larger than the device array D we wish to map it onto,
it will only be possible to map a subset of that data array onto the device.
Usually we will assume that JAi ~ JDI, unless specified otherwise.

As an example, the smallest MasPar computer, the MasPar MP-1201-A,
has 1024 processors, each with 16384 bytes of memory [4]. This could be
treated as a multidimensional storage device with two dimensions, with the
first dimension representing memory and containing 16384 elements, and the
second dimension representing the processors and containing 1024 elements,
giving a shape of [16384, 1024].

However, it is rarely possible or desirable to use all of a computer's memory

I-

11111

2.2. DATA MAPPING ON ONE-DIMENSIONAL DEVICES 15

for storage of a single object. Specifying a smaller memory dimension allows
many device arrays to be specified for the same physical device.

A MasPar can also be treated as a two-dimensional mesh computer. If our
data array was 256 k-bytes or smaller, we could specify a device array with
shape [256, 32, 32].

2.2 Data mapping on one-dimensional devices

When processing large multidimensional data sets on sequential computers and
one-dimensional storage devices, the data mapping chosen can be important to
the choice of algorithms and the efficiency of operations. Many data processing
operations on these devices also require data remapping in the course of their
execution. This section examines some current approaches to these issues.

2.2.1 The Multidimensional Tile Format

A method that allows flexibility in mapping multi-dimensional arrays onto a
one-dimensional storage device, such as a disk file, is Fraser's Multidimensional
Tile Format [29]. By hierarchically breaking down the image dimensions into
a higher-dimensional space the tile format can describe many existing image
storage formats, and allows scope for describing many more.

As well as providing flexibility in storage format specification, Fraser has
derived efficient algorithms for reading and writing arbitrary blocks from a
tile-format image file with only one pass over the file.

By streamlining the notation, adding some regularizing constructs, and
including support for multidimensional de ices, from the Multidimensional
Tile Format we derived the parallel k-Tile format. A full description of the
parallel k-Tile format is contained in section 3.1.

Some aspects of Fraser's work on the tile format have not been carried over
to the k-Tile format, notably the application of the format to the storage of
sparse data files.

2.2.2 Remapping algorithms and applications

When a data set is larger than the physical memory of a sequential computer,
it is sometimes necessary to re-order the elements of the data set in a disk file
to allow an image processing operation to be performed quickly. Even when
an image will fit into the available memory, the properties of the algorithm
may require the data to be remapped. Some examples of these operations
are: scan-line operations (9, 31, 33, 44, 58, 61, 62, 71, 72], which require two- or
three-dimensional images to be reflected and transposed about their axes; and
different forms of the Fast Fourier Transform [8, 11, 15, 32, 35], which require

- -

16 CHAPTER 2. MULTIDIMENSIONAL SPACES AND DATA MAPPING

multi-dimensional images to be transposed about their axes and their indices
bit-reversed (chapter 7 examines these problems in more detail).

Several efficient algorithms for performing these operations have been used
for many years, and all of them use, or are equivalent to, index-bit and index
digit permutation algorithms. Fraser uses index-bit reversal techniques to allow
images stored on disk or in an image display to be transposed or converted
into a tiled format using only a small memory buffer [27, 28, 70] . Van Heel
uses a mixed-radix perfect shuffle algorithm to perform transpositions of large
multidimensional data sets using only small internal buffers, with the efficiency
of the algorithm increasing with the size of the buffer [16, 30].

Many mapping and remapping techniques are data dependent, where the
manner in which a pixel is stored depends upon its own values and those of
its neighbours. Quad-trees and oct-trees [63], run-length encoding, numerical
sorting and any form of data compression fall into this category. As we have
limited the scope of this thesis to data-value independent mappings, we will
not consider these further.

2.2.3 Hardware approaches to data mapping

Several hardware approaches have been taken to allow mapping-related tasks

to be performed in hardware.
Lilleyman shows how the inclusion of a cross-bar switch between a micro

processor's address lines and its memory makes many implementations of the
FFT more efficient by allowing data re-ordering to be performed in hard ware
with no movement of data between memory cells [45, 46] .

Newman shows that with the use of a memory-management unit that pages
data by tiles of a two-dimensional data array, rather than by rows (or parts
of rows), the performance of many image-processing and graphics algorithms
performed in a small physical memory can be greatly improved. The tiling
is achieved by using the lowest-significant row- and column-bits within the
data addresses to access data within a page, instead of the lowest-significant
address bits. One example problem that began thrashing in 13 megabytes of
RAM without tiling could be performed in an acceptable time using only two
megabytes of tiled RAM [57].

Of course, either of these techniques could be simulated using software
index bit permutation, but at a much greater cost in execution time and pro
gramming complexity.

2.3 Parallel architectures

There are a large number of parallel architectures available today, many of
which have significantly varying characteristics. We outline some of these

2.3. PARALLEL ARCHITECTURES 17

characteristics and then examine one parallel machine, the MasPar MP-1, in
more detail. For the problems addressed in this thesis, the characteristics of
the MasPar MP-1 are ideal [4]. We will also mention properties of two other
parallel machines, Active Memory Technology's Distributed Array Processor
(AMT DAP 500) [59] and Connection Machines Connection Machine 2 (CM-2)
[37, 67]; except for the algorithms, which are specifically for computers with
characteristics similar to those of the MasPar, the specification techniques
outlined in this thesis could be used with any computer architecture.

2.3.1 Properties of Parallel Architectures

Instruction execution

Parallel machines may be divided into two classes, single instruction multiple
data (SIMD) and multiple instruction multiple data (MIMD). SIMD machines
contain many processors or processing elements (PEs), all executing the same
instructions simultaneously; conditional execution and looping must be per
formed by temporarily disabling and enabling groups of PEs. The processors
in MIMD machines are able to execute instructions independently, and each
processor is more similar to that of a sequential machine. MIMD machines are
sometimes used restrictively, with every processor executing the same program
independently; this class of machine has been dubbed single program multiple
data (SPMD).

In general a MIMD machine is at least as powerful as the corresponding
SIMD machine with the same number of processors and same processing power
within each processor, because the MIMD machine used in SPMD mode would
perform at least as well as the SIMD machine. However, in terms of financial
and physical cost, the SIMD concept has a number of advantages; because the
instruction stream need only be decoded once, more processors can be built in
a smaller space. Similarly, because the instruction stream need only be stored
in one place, many megabytes of memory are saved. Many operations such
as synchronization, memory operations and communication also benefit from
central control (50].

These properties enable SIMD machines to achieve very high performance
at a low cost for some classes of problems. Because of the regularity of the
problems we have chosen to address in this thesis, SIMD machines are ideal
for their solution.

Memory addressing

Parallel machines may be further divided into two other classes, shared memory
and distributed memory machines. In shared memory machines, every proces
sor has access to the same address space. Because of the technical difficulty

I

- -- -

-

-- -

18 CHAPTER 2. MULTIDIMENSIONAL SPACES AND DATA MAPPING

in allowing many processors to communicate with a single memory, parallel
shared memory machines have only been implemented with a few processors.
This in turn makes the MIMD paradigm more appropriate for shared memory
machines.

In distributed memory machines, every processor has access to an individ
ual memory space. This is technically easier to implement, but means that
some form of inter-processor communication must be included in the architec
ture to allow data stored in different memories to be integrated.

Memory addressing in SIMD architectures comes in two forms : direct ad
dressing and indirect addressing. With direct addressing, the address to be
accessed is part of the instruction stream and hence is the same for every pro
cessor. In indirect addressing, the address to be accessed is generated from
within each processor, and hence every processor may access data from a dif
ferent address in its local memory.

Direct addressing is technically easier to achieve, both because addresses
may be generated from outside the PEs and because the RAM hardware may
be used more efficiently. However, the use of indirect addressing offers a num
ber of advantages: Load-balancing may be improved by allowing each pro
cessor to proceed through a set of tasks in memory at a different rate [65];
parallel linked lists of different lengths and containing different elements may
be implemented; and blocks of data may be moved by different offsets in every
processor, which is very important in scan-line algorithms (see section 7.3.1).

Interprocessor communication

Some form of inter-processor communication is essential when dealing with
dist ributed memory computers. There are trade-offs to be made between com
munication speed and flexibility, and consequently there are many solutions
that have been used to solve the communications problem. We will mention
three mechanisms for inter-processor communication among N processors: the
2d mesh , the hypercube and the crossbar switch. A thorough exploration of
the properties of, and algorithms for, many communication networks is found
in Leighton 's book [43], and forms the basis for the following comments.

Mesh communication is a simple form of inter-processor communication, as
it only involves connections between neighbouring processors on a multidimen
sional grid. We will also assume that communication may only occur in one
direction at a time. ld and 2d meshes are the simplest to implement, because
the mesh may easily be laid out with physically short connections between
processors; 3d meshes could be implemented with a three-dimensional circuit
structure, but there must always be longer wires for four-dimensional meshes
and up.

Although ld meshes are simplest to implement, there is a significant cost
in communication when implementing any algorithms requiring inter-processor

2.3. PARALLEL ARCHITECTURES 19

communication beyond nearest-neighbour. Scan-line algorithms would appear
to be ideal (see section 7.3 .1), but require transposition of the image, which
can be performed in a minimum of N(N - 1)/2 steps.

The maximum distance between processors in 2d meshes is 2../N, which is
a great improvement over a maximum distance of Nin ld meshes. If diagonal
and toroidal wrap-around connections are allowed, as in the MasPar MP-1 ,
the maximum distance in a 2d mesh is reduced by a factor of fou r. However,
algorithms for arbitrary processor permutations on the mesh require a queue
of size at least O(log N) and 0(vN) steps, and are quite complex.

The hypercube is a special case of a multidimensional mesh: in a hypercube
with N processors, the processors are connected together in a log2 N dimen
sional mesh with each dimension having a side-length of two processors. In
addition, implementations of the hypercube usually have an important advan
tage over implementations of the mesh: different processors can communicate
along different axes simultaneously.

The hypercube has a number of desirable properties; by carefully enumer
ating processors and providing the network with the ability for different pro
cessors to communicate along different axes of the hypercube simultaneously,
lower-dimensional meshes whose dimensions are powers of two may be em
bedded within the hypercube. Thus, algorithms suitable for two-dimensional
meshes may be used directly on the hypercube.

The connectivity of the hypercube is also extremely suitable for one compo
nent of the radix 2 FFT [11]; all the communications required for the butterfly
communication component of the algorithm are between indices which differ
by a power of two, which are stored in neighbouring processors. However,
the bit-reversal component of the FFT using the simplest algorithm for hy
percube routing, the "greedy algorithm", requires 0(vN) steps, which is no
better than the performance of a 2d mesh. For average routing problems only
O(log N) steps are required, with very bad performance for the worst cases.
Algorithms for sorting can be used to construct routing algorithms that are
guaranteed to always perform well, but are quite complicated.

Although the hypercube is quite powerful, the number of connections to
each processor can grow large as the number of processors increases; each
processor would require 16 connections in a 65536-node hypercube. Some
variations of the hypercube architecture with bounded degree exist that have
similar computational properties.

The cross-bar switch provides a very simple communication model which
allows any routing problem to be performed efficiently; any processor may con
nect to any other processor, and as long as there is no contention for processors,
any communication operation may be performed in one step. The MasPar
MP-1 includes a global router which is very similar to a crossbar switch in its
operation, but has two important differences, mentioned in section 2.3.2.

I

20 CHAPTER 2. MULTIDIMENSIONAL SPACES AND DATA MAPPING

Mixing sequential with parallel processing

Very few problems are soluble only with parallel computation, and many par
allel computations require some form of data reduction from many values to
one in the course of their execution. While such sequential computation is oc
curring, it may not be possible for parallel computation to proceed and many
processors must be idle.

In order to ensure that this sequential time is minimized, sequential opera
tions must be made as fast as possible. There are three approaches that have
been used.

Firstly, in the case of MIMD machines, each processing node is approxi
mately as powerful as the processor in a microcomputer or workstation, and is
fast enough that sequential computation can be performed within a single pro
cessor (or redundantly in every processor) without causing a large bottleneck.
The processors in massively parallel SIMD machines, however, are individually
quite slow: execution of sequential code would be a large bottleneck.

A second approach is to perform all the sequential processing in the front
end processor, which is usually a workstation. This approach allows fast se
quential processing, but a bottleneck often remains in the relatively slow con
nection between the front end and the parallel processors. On a multi-user
machine, job swapping may also degrade the performance of the parallel pro
cessor by preventing instructions being sent to the parallel processors as quickly
as they could.

A third approach is to provide a dedicated sequential processor to control
the SIMD array. This allows sequential processing to be performed very quickly
and to be easily integrated with computations from the parallel processors.
Because the sequential processor must be capable of both performing general
sequential computation very quickly and controlling the parallel processing
array, a custom architecture will usually be necessary, perhaps increasing the
cost and complexity of the system.

Parallel register sets

For reasons of space, power co sumption and cost, the processors in massively
parallel SIMD machines are generally fabricated with many processors on a
single chip. There is no room on these chips for large quantities of RAM, so
that the bulk distributed memory must be kept off-chip. The number of pins
available on a processor chip for memory access are limited, so memory access
must either be performed with very narrow data paths or be multiplexed into
the processors. Thus, memory access on a massively parallel processor is slow.

It is possible to limit the memory accesses of a parallel processor by in
cluding a large set of processor registers, so that intermediate results of com
putations may be kept on-chip rather than being transferred back and forth

I

2.3. PARALLEL ARCHITECTURES 21

between bulk memory and the processors [10].

Error checking

Because of the large number of components in a massively parallel processor,
failure is more likely than in a smaller computer. Failure may also occur
silently, because a complete failure of a single processor may only affect a tiny
part of a large computation. Thus, designers of massively parallel processors
include extensive error checking hardware in their machines, such as parity
checking of memory and communications, error-correcting code in bulk storage
and master/slave processor arrangements to verify computation [50, 59, 67].
Ideally, these measures should be invisible to the user of such a machine, and
we will not examine them further.

2.3.2 Three SIMD architectures

The AMT DAP 500

The DAP 500 [59] is a massively-parallel SIMD architecture containing 1024
or 4096 PEs. The PEs are controlled by a master control unit (MCU), which
takes instructions from a code memory of between 512 k-bytes and 2 M-bytes,
interprets them and controls the PEs in the array.

The PEs are arranged in a square mesh of 32 x 32 or 64 x 64 elements.
A bus system also connects processors by rows and columns, providing rapid
broadcasting and fetching facilities.

Each processor in the DAP contains the following:

• between 32k-bits and IM-bits per PE of bit-addressable memory

• seven 1-bit registers

• a mesh connection to its four nearest neighbours, communication being
between either a register or a bit from its store

• fast connections to a row and a column bus

• a one-bit ALU

The DAP includes an I/0 interface allowing SOM-bytes/second to be trans
ferred over a fast data channel. Although this speed is substantially slower
than the I/0 speeds of the MasPar and the CM-2 presented in the following
paragraphs, this I/0 operation takes only 5% of the processor cycles.

I

I

~ -- -

22 CHAPTER 2. MULTIDIMENSIONAL SPACES AND DATA MAPPING

The Connection Machines CM-2

The CM-2 [37, 67) is a massively-parallel SIMD architecture containing be
tween 16384 and 65536 PEs. The PEs are controlled by nano-instructions
from an instruction sequencer, which contains 64K 96-bit words of microcode
storage, and is in turn controlled by instructions from a front end workstation.
Up to four sequencers may be present in the machine, allowing four separate
processes to be operating simultaneously on four banks of 16384 processors.

On the CM-1 there were two inter-processor communication networks: a
16-dimensional hypercube for global routing or a 2d mesh, dubbed NEWS. As
a simplification, the CM-2 has only the hypercube network, with the ability
in hardware to embed any multi-dimensional network within the hypercube
network, thus preserving the functionality of the NEWS network. The hy
percube router performs queueing, pipelining, routing decision-making, and
combination of messages destined for the same address in hardware.

Each processor in the CM-2 contains the following:

• 64k-bits of bit-addressable memory

• four 1-bit registers

• a NEWS-grid interface to support multi-dimensional meshes

• a connection to the hypercube global routing network

• a connection to a global-or network for data reduction

In addition, an optional floating-point unit is available for sharing between
each 32 processors. The CM-2 does not support indirect memory addressing
directly, but by the use of the floating-point hardware, indirect addressing can
be achieved with 16 processor sharing each indirect address.

The instruction sequencer also allows the CM-2 to be treated as a virtual
machine, containing many more processors than physically exist. By segment
ing the CM-2's memory into virtual processors, the machine may be treated
as if it had any number of processors, as long as they can fit within memory.

An I/0 interface from the CM-2 to an external group of disk drives, the
Data Vault, is capable of transferring data at a rate of 40 M-bytes per second.
By operating eight data vaults in parallel, speeds of 320 M-bytes per second
could be achieved.

The MasPar MP-1

The MasPar MP-1 [52) is a massively-parallel architecture containing between
1024 and 16384 PEs. The PEs are controlled by an Array Control Unit (ACU),
which is itself a 32-bit RJSC-style processor. A 2d toroidal mesh with diagonal

I

I

•

2.3. PARALLEL ARCHITECTURES 23

connections and a crossbar-like global router provide two mechanisms for inter
processor communication.

Each PE contains the following:

• A 32-bit accumulator for arithmetic and logical operations

• A 4-bit ALU

• 4-bit internal data paths

• A 32-bit status word, containing integer and floating point arithmetic ,
memory, execute enable, communication and error checking flags

• Forty 32-bit general-purpose registers

• An 8-bit wide connection by indirect or direct addressing to either 16K
bytes (MP-12:XXA) or 64K bytes (MP-12:XXB) of RAM

• A 1-bit wide connection to the 2d mesh xnet network

• Access to a 1-bit wide global router connection, shared with 15 other
processors

• A 4-bit wide connection to a global-or network, connected to the ACU

• A 4-bit wide connection to a global distribution network, allowing single
values from the ACU to be transferred to every PE

The parallel instructions in the instruction set hide the four-bit nature of
the PEs internal operations. Similarly, multiplication, division and floating
point operations are microcoded in the instruction set. A special M-machine
queues PE memory requests to allow parallel processing to continue while
memory operations are occurring; if a register involved in a memory access
is read or written, computation stalls until the associated memory access is
completed.

The global router is very similar to a crossbar switch connecting all pro
cessors, but there are two important differences. Firstly, each connection to
the global router is shared by a cluster of sixteen processors; in many cases,
this reduces performance by a constant factor of sixteen, as router links are
assigned sequentially to processors within the clusters. For many processor
permutations the performance is worse than this because the hardware can
not always assign router links to processors in an optimal order. Secondly,
when there are more than 1024 processors in the MasPar, not all cluster per
mutations are supported by the hardware. This means that some processor
permutations must take more than sixteen iterations to complete. Measure
ments of the properties of the global router and some partial solutions to these
problems can be found in section 6.4 and in Preschelt's paper [60] .

I.

I

24 CHAPTER 2. MULTIDIMENSIONAL SPACES AND DATA MAPPING

The ACU contains the following features:

• Thirty-two 32-bit general-purpose registers, with register O always re
turning a zero value

• Up to thirty-two special registers for status flags, timing, PE status flags
and front end communication registers

• A 32-bit ALU for integer arithmetic, comparison, boolean and shift op
erations

• Connection to 128K bytes of data memory

• Connection to 1 M-byte of physical instruction memory, demand-paged
in a 4G-byte address space

Because the ACU does not have any floating point capability, sequential
floating-point operations must be performed on the PE array. The ACU has
a R1SC-style instruction set, allowing many sequential instructions to execute
in one or two clock cycles. Because of the small data paths in the PEs, most
parallel instructions operate at a rate of 1, 2 or 4 bits per clock cycle, which
is 80nS.

Because there is only a single ACU, only one process may operate at a time
on the MasPar. However, by either segmenting PE memory or paging data to
disk, several processes may share the resources of the MasPar by time-slicing.

Communication between the MasPar and the front end processor is usually
via the VME bus through the ACU. However, the facility to perform I/0
directly with the PEs through the router links gives the prospect of extremely
fast I/0: a 16384 PE machine has 1024 router links, each capable of a peak
speed of one bit per clock, giving a peak data rate of more than a gigabyte per
second. However, as yet the only external device which can utilize this speed
is a RAM board, which may be used to simulate a fast disk-drive or to buffer
data between the PEs and the front end.

The MasPar MP-2 has now been released. The MP-2 has a 32-bit ALU,
32-bit data paths within the PEs, a 16-bit wide connection to memory and
hardware for faster arithmetic shifts and floating point operations. The clock
rate and inter-processor communications speeds are identical in the MP-2.

2.3.3 The MasPar and parallel programming in MPL

Much of the programming work described in this thesis was performed in the
AMPL programming language on a MasPar MP-1 computer [4, 48, 49]. Simi
larly, all the example algorithms are presented in AMPL. AMPL is based upon
both ANSI C and upon an earlier MasPar programming language, MPL, which

•

2.3. PARALLEL ARCHITECTURES 25

is closer to K&R C (34, 38, 48]. However, MPL is now regarded as obsolete, and
we will follow MasPar's convention and refer to the ANSI compiler as MPL.

Although any C program for a sequential machine may be compiled and
executed without modification for the MasPar using MPL (within the Mas
Par's memory limitations) , MPL is a low-level parallel language in the sense
that most of the language constructs map in a direct way to the underlying
architecture of the MasPar. Although there are no concepts of virtualization
ur variant processor topologies in MPL, some language operations that appear
to be 'atomic' actually require loops to be executed internally; these exceptions
will be noted in the following paragraphs.

Memory model

Data objects in MPL are of two types: singular and plural. Singular data
objects are stored in the data memory of the of the ACU. All the data objects
declared in a normal C program would be treated as singular by MPL. Plural
data objects are stored in the distributed memory of the PEs; a single plural
declaration will allocate one data object in every PE.

This example declares an array of ten integers in the singular memory of
the ACU:

int k[10];

This example declares as many integers as there are processors, one in each of
the distributed memories of the PEs:

plural int m;

This example declares as many arrays as there are processors, one in each of
the distributed memories of the PEs:

plural int p[10];

Thus, on a MasPar containing 1024 PEs, the previous example declares 10
integers per PE, or 10240 integers altogether.

As well as the singular ACU memory and the plural distributed PE memory,
the MasPar includes a third memory address space containing instructions to
be executed by the ACU and PEs. This address space is not readable (except
for the reading of instructions) or writable except by the front end host. Except
for disallowing the possibility of self-modifying code, this restriction has no
effect on normal C programs .

I

........

26 CHAPTER 2. MULTIDIMENSIONAL SPACES AND DATA MAPPING

Expressions

Singular expressions are computed in MPL just as they are in C. Purely plural
expressions are also computed in MPL just as in C, except they are performed
in parallel across all the active processors. Thus, using the previous declara
tions,

k[O] = k[1]+k[2];

would add the two values k [1] and k [2] and store the result in k[O].

m = p[O]+p[1];

would add the two values p[O] and p[l] and store the result in m in all active
processors. Singular and plural expressions may be mixed to produce a plural
result, as the singular expressions are simply 'pTOmoted' to the plural type; this
is analogous to the automatic promotion of integers to floating point values:

m = p[O]+p[1]*k[O];

The promotion of values from singular to plural type is vital; in the expression
just given, not only the value of k [OJ but the constants O and 1 and the address
of the plural array p are all singular values.

It is not possible to automatically cast plural values to singular values.
There are at least three reasons for this restriction:

• There is not a unique sensible way to combine multiple plural values into
a singular value

• Most ways of combining multiple plural values into a singular value are
quite slow, and an automatic conversion would hide this inefficiency from
the programmer

• Most attempts to use a plural value in a singular context are the result
of a programming error

However, the MPL language extension globalor uses the MasPar's global
or network to convert a plural value to a singular by or'ing all of its bits
together. Many library calls exist to find the singular minimum, maximum,
sum, product, and boolean and, or and exclusive-or of plural values. By use
of the proc keyword, a plural value may be extracted from a single processor.
This example assigns the singular value of the plural variable b in processor
100 to the singular variable a:

int a;
plural int b;

a= proc[100].b;

r,

I

2.3. PARALLEL ARCHITECTURES 27

When passing expressions on the stack for a function call, there are in
reality two stacks, one for plural values and one for singular values. In the older
MPL programming language, this caused many problems when attempting to
pass singular values to plural parameters and vice versa, because there was
no way for the language to automatically determine if the types matched;
again, this is similar to the problem in K&R C when an attempt is made to
pass an integer value into a floating point parameter, causing sometimes·silent
failures. However, as MPL is based upon ANSI C, function prototypes may be
used to cause parameter types to be checked and allow casting to occur where
appropriate. The use of prototypes also allows small data types such as chars
and shorts to be passed in appropriately sized spaces on the stack, saving both
space and time.

MPL also includes a number of predefined variables that contain useful
values relating to the architecture of the MasPar. The variables and their
meaning are as follows:

• nproc contains the number of PEs on the MasPar

• nxproc contains the number of PE columns

• nyproc contains the number of PE rows

• lnproc contains log2 nproc

• lnxproc contains log2 nxproc

• lnyproc contains log2 nyproc

• iproc is a plural value containing each PE,s index

• ixproc is a plural value containing each PE,s index within a row

• iyproc is a plural value containing each PE,s index within a column

Pointers

One of the most flexible aspects of the C language is its handling of pointers.
As we have seen, the MasPar contains two memories in which to store data
which are distinguished by the use of the plural keyword when declaring
variables. When dealing with pointers, the situation is complicated by the
fact that both the memory being pointed to and the pointer itself may be
singular or plural. There are four combinations of these possibilities, which
are specified as follows:

• Singular pointer pointing to singular memory

This situation is identical to a standard pointer declaration in C:

-·- ... -- ----------- -

28 CHAPTER 2. MULTIDIMENSIONAL SPACES AND DATA MAPPING

int *a;

• Singular pointer pointing to plural memory

This situation is identical to a standard pointer declaration in C, except
that the object being pointed to is plural:

plural int *a;

Because the address of the plural object pointed to by a singular pointer
is the same on all PEs, direct addressing is used to access values.

• Plural pointer to plural memory

To declare a plural pointer to a plural object, it is necessary to specify
that the pointer is plural as well as the appointed object:

plural int *plural a;

Because the address of the plural object may be different on every PE,
indirect addressing must be used to access the data values. Accessing
memory by indirect addressing takes three times as long as by direct
addressing, and if the plural address computation must be performed in
the PEs, may take even longer.

• Plural pointer to singular memory

A plural pointer to a singular object is specified thus:

int *plural a;

It would appear that this would allow a form of shared memory to be
used, as every processor may access values from the ACU's data address
space. Unfortunately, the MasPar's hardware does not support such an
operation directly, and any operation using a plural pointer to a singular
object is translated into an operation looping over every PE. However,
the machine code generated for these operations is more efficient than
could be programmed using MPL, making this kind of operation concise
and useful.

By declaring pointers to pointers, an unlimited number of combinations
may be achieved. Although this can easily cause confusion, the type-checking
C performs will usually produce warnings when a combination is used inap
propriately.

I

I

2.3. PARALLEL ARCHITECTURES 29

Conditional execution

The flow of control in an MPL program, or indeed in any parallel programming
language, is more complex than in standard C because when a branch-point is
reached in which a test is evaluated in parallel, some processors may succeed
and some may fail the test. In a MIMD or SPMD machine, this may result in
the processors executing different portions of the same program at the same
time. In a SIMD machine, because there is only one instruction stream, the
alternatives must be executed sequentially. It is possible to create an illusion
of conditional execution by disabling processors that fail conditional tests .
However, the ACU continues executing all statements inside plural conditionals
unless all processors have failed a conditional test.

The current set of enabled processors is the active set. Only enabled pro
cessors participate in memory accesses, computation and communication.

There are plural equivalents for all of the C conditional execution state
ments: if, while, do, case and for. There is also an additional statement,
all, which enables all PEs in the following statement or block. There are also
plural equivalents of the break and continue statements. The ? : operator is
similar to an if statement, except that it returns a value to an expression.

This example of a plural if statement decrements a plural variable iff it is
positive and increments it iff it is negative:

·plural int a·
' int b;

if (a>O) {

a--;
b++;

} else if (a<O) {

a++;
b--·

' }

If the value of a is negative in some PEs and positive in others, both clauses
of the if statement will be executed, resulting in b being first incremented
and then decremented. This can sometimes cause confusion, as in sequential
versions of C only one clause in an if statement is ever executed.

The operation of the other conditional execution statements is similar to
that of the if statement; if the conditional expression is plural, per-PE condi
tional execution is simulated by the manipulation of the active set. The ACU
will still execute all singular code inside plural conditional blocks unless the
active set is empty, in which case the block may be skipped.

- -·

......

30 CHAPTER 2. MULTIDIMENSIONAL SPACES AND DATA MAPPING

Inter-processor communication

Inter-processor communication on the MasPar MP-1 may be performed by the
xnet, a two-dimensional mesh; or by the router, a crossbar-like connection.
Both mechanisms may be used on either the left- or right-hand side of an as
signment statement. If the xnet or router expression is an r-value (i.e. is a
non-assigning expression or appears on the right-hand side of an assignment
statement), the plural expression is evaluated in the source processor, commu
nicated by the xnet or the router and returned to every active processor. If
the xnet or router expression is an I-value (i.e. an expression that is assigned
to), the assigned values are computed in the active processors, sent to the
destination processors where the I-value is computed and set to the received
value.

An xnet expression contains three parts: a direction, a distance and a plural
expression. Because the MasPar incorporates diagonal connections between
processors, there are eight simple xnet expressions corresponding to the eight
compass directions. The distance is a singular integer value indicating how far
the message will be communicated.

This example shows how the xnet may be used for all active PEs to fetch
the value of a from their eastern neighbours and assign this value to their own
variable a:

a= xnetE[1] .a;

This example shows how the xnet may be used for all active PEs to store their
value of a into their eastern neighbours:

xnetE[1] .a= a;

Variants of the xnet expression exist for fast copying and pipelining between
processors, but these facilities are not used in this thesis.

A router expression contains a plural processor index and a plural expres
sion. The semantics of the router expression are identical to those of the
xnet expression, except that the connected processor is specified explicitly as
a processor index instead of in a relative way with a direction and a distance.

This example shows how the router may be used for all active PEs to fetch
the value of a from the processor at the same position in a transposed mesh
and assign this value to their own variable a:

a= router[iyproc+ixproc*nyproc] .a;

If several processors attempt to fetch data from a single processor, the oper
ation will succeed but may take longer. This example shows how the router
may be used for all active PEs to store their value of a into a scattered set of
processors :

2.3. PARALLEL ARCHITECTURES 31

router[(iproc*273)%nproc] .a= a;

If several processors attempt to send data to a single processor, only one will
succeed. The successful processor is deterministic but not defined. It is not
possible for a sending processor to detect if other processors are attempting
to send data to the same address, which means that each processor sending
data to the same address must make the connection in turn and only the last
will be recorded. However, it is possible to accumulate multiple sends in many
different ways through library calls.

Because the router is implemented in hardware as a crossbar-like switch
connecting clusters of sixteen processors, the router expression is translated
into a loop in which every processor repeatedly attempts to obtain a router link,
sends or fetches data and closes the link until every processor has successfully
transferred data. If only a small number of processors are active , only one
iteration may be required. If all processors are active, a minimum of sixteen
iterations is required; for many common processor permutations, this minimum
is achieved. If many processors attempt to connect to a smaller subset of
processors, many more iterations may be required; if all processors attempt to
connect to the same processor, nproc iterations may be required.

Front end vs. back end

It is possible to perform nearly all of one's MasPar programming in MPL, as
there are interfaces to input/output, file-systems and indeed many system calls
available on the front end workstation. All the examples and utilities used in
and produced for this thesis were written in MPL for the DPU, or back end.
However, to avoid the limited ACU data memory or to communicate with
other processors on the front end, it is possible to pass control back and forth
between the back end and the front end using the callRequest library call.

Data may be passed between the back end and the front end in many
ways. The simplest is to pass information as arguments in the callRequest
call. Data may be transferred between memory in the front end and either
ACU or PE memory using copyin, copyOut, blockin and blockOut calls.
Because the Unix file-system is visible to the MasPar through system calls,
data may also be transferred between the Unix file-system and the back end
though data files.

Summary

Because MPL is based on a common programming language, ANSI C, many
programs may be ported to the MasPar simply by compilation. However,
no automatic parallelization is performed, and use of the language extensions
must be used to take advantage of any data parallelism in the program. The
extensions fall into three broad classes: a memory model which includes plural

......

32 CHAPTER 2. MULTIDIMENSIONAL SPACES AND DATA MAPPING

data objects, storer! in a distributed fashion in every PE; a different model
for conditional execution using the concept of active sets to allow conditions
and looping to be performed on a SIMD machine; and several inter-processor
communication expressions to allow data to be transferred both between PEs
and between PEs and the ACU.

The extensions to the language are highly dependent on the MasPar's ar
chitecture, and map very closely to it. Although this can make programming
a complex task, there can be substantial advantages to efficiency because it is
always easy to see where a program is likely to perform slowly.

Because MPL has been based upon the GNU C compiler, a C++ compiler
for the MasPar is a possibility in the future. The additional flexibility of C++
may allow virtualization and higher-level language constructs to be built into
the language.

2.4 Current data mapping systems

In order to map a data array onto a parallel device, we must find a flexible
way of specifying this mapping. Several techniques will be examined, and we
will attempt to pull the most useful concepts together under one format. We
will make the following assumptions about the mapping:

• All of the data in the data array is mapped to the device

• The mapping is independent of the data contained in the data array, and
thus can be expressed as an index mapping

• The data array and the storage device may be treated as multidimen
sional arrays, which we will refer to as A and D respectively, with shapes
a and d, as defined in section 2.1.

Because it is often more convenient to express data-independent mappings
as index mappings, we will often define mappings in terms of the index spaces
of A and D:

A= index(A)

D = index(D)

2.4.1 Direct permutation

The most general way of mapping a data array onto a parallel device is to map
each data element individually to a different location on the device:

D(uo, ... , u(D) - i) = A(g(uo, ... , u(D)-1))

2.4. CURRENT DATA MAPPING SYSTEMS

where g is an arbitrary index map:

g:D-+A

33

This allows any data-independent mapping to be expressed from a data
array to a device, but unfortunately the mapping specification g may require
as much or more storage than the data array, as the number of fu nctions g is
large:

l{g : (g : D - A)}I ~ IAI!
Clearly a less general approach that does not compromise flexibility too much
is required.

2.4.2 Dimension mapping

Rather than mapping data elements directly onto a device, the implicit struc
turing of regularly gridded data allows the mapping of the dimensions of the
data array onto the parallel device.

If both the data set and the storage device are one-dimensional, a straight
forward index mapping g from D to A sequentially assigns addresses in D to
addresses in A:

g:D-+A

{
u for u EA

g(u) = ..L otherwise

If both the data set and the storage device have the same dimensionality
and every dimension of A fits within a dimension of D, the corresponding
dimensions of A may be mapped to D. For example:

Alternatively, some permutation of the dimensions can be mapped. For exam
ple:

g(u1,u2,uo) = (uo,u1,u2) for (uo,u1,u2) E A,..L otherwise

If the product of the length of several data dimensions is no greater than
the length of a device dimension, two or more data dimensions may be mapped
into a single device dimension. This is a generalization of the common practice
of mapping a multidimensional array into a one-dimensional memory.

For example, a two-dimensional data array can be assigned to a one
dimensional device in two ways, in a row-major ordering:

g(u0 + [a]o.u1) = (uo, u1) for (uo + [a]o.u1) ED, ..L otherwise

or a column major ordering:

g(u1 + [a]i.u0) = g(uo, u1) for (u1 + [a]i.uo) ED, ..L otherwise

34 CHAPTER 2. MULTIDIMENSIONAL SPACES AND DATA MAPPING

Similar schemes can be used for mapping multidimensional arrays to mul
tidimensional devices, both of arbitrary dimensionality.

Dimension mapping provides some flexibility, but if there are too many
data array dimensions, or a data array dimension is too large for one of the
device dimensions, this mapping scheme fails. A different problem occurs if
the data dimensions fit within the device dimensions with wasted space; many
processors may not be allocated data from the array, and so cannot be utilized
in any computation with the data.

The idea of dimension mapping is an important component of the k-Tile
format, described in chapter 3.

2.4.3 Data index computations

A scheme which offers more flexibility than dimension mapping and can require
less specification than direct permutation is data index computation. This
method allows device indices to be computed as functions of the data indices.

As an example, assume we wish to map a 256 x 256 data array onto a
two dimensional parallel device with 1024 processors. If we were to use di
mension mapping, three quarters of the processors in the parallel device would
be wasted. However, we could specify several different mappings which would
use more processors in the processor array, and allow us to specify mappings
containing differently shaped pieces in the array too.

One simple mapping (corresponding to one-dimensional hierarchical in Mas
par's terminology) treats the data as a one-dimensional array and assigns an
equal-sized portion of the array to each processor:

Let d = (64, 1024), a= (256,256)

g: index(d) - index(a)

g(Vo, vi) = (vo + (v1 mod 4), l vi/ 4 J) for all (vo, vi) E D

Another simple mapping splits the input array into 8 x 8 tiles (corresponding
to two-dimensional hierarchical in Mas par's terminology) and assigns them to
individual processors thus:

g(vo,v1) = (vo mod 8+8 x (v1 mod 8), lvo/8J +8 x lvi/8J) for all (v0,v1) ED

Simple expressions could be used to reverse, shift, transpose, permute and
otherwise rearrange the data indices to specify a mapping onto a device.

This method is very flexible, and a small expression interpreter could be

I

used to move data onto a parallel device as specified. Unfortunately, there 1

is no real limit to the complexity of expressions that could be represented,
and the many different ways of representing similar mappings would limit the

Ii

2.4. CURRENT DATA MAPPING SYSTEMS 35

possibility of implementing efficient approaches to taking advantage of any
parallelism inherent in the mappings.

Another problem with this representation is that it is moderately difficult
for a human to interpret the mapping actually represented by the expressions,
and the length of the expressions are likely to grow very large.

2.4.4 Index bit maps

One successful technique for mapping a data array onto a parallel device is the
index bit map, which, in a slightly modified form, forms the basis for Parallel
Data Transforms [l, 20, 21]. This technique treats the data indices and the
device indices as two one-dimensional vectors of bits, and uses a combination
of bit permutations and inversions to define a mapping between the data array
and the parallel device.

Once a data array has been mapped to a device, the data may be remapped
by the use of index bit permutation [l, 13, 14, 20, 21, 27, 28, 56, 70].

Optimal algorithms for single elements stored on mesh-connected proces
sors have been found [56], and these algorithms have been implemented with
extensions and optimizations by Flanders for the AMT DAP (59] and Cruz for
the Reconfigurable Processor Array (RPA) [13, 14]. A fuller description of the
index bit map, index bit permutations and associated algorithms for the Mas
Par is given in chapter 4. Fier mentions that he has derived similar algorithms
for the MasPar independently [17, 18], but has not published an account of
these results. ·

There are several disadvantages to the index bit map. Because all opera
tions are specified in terms of operations on bits, the dimensions of both the
data array and the device are limited to powers of two. The specification
method also requires all remapping operations to be specified as permutations
of bits.

2.4.5 Index digit maps

A natural extension of index bit maps is mixed-radix index digit maps. This
technique treats both the data indices and the device indices as mixed radix
numbers, and uses operations on the digits of these numbers to define a map
ping between the data array and the parallel device. A fuller description of
the index digit map and associated algorithms is given in chapter 6.

Index digit maps have more flexibility than index bit maps, as the dimen
sions of the data array and parallel device are not limited to powers of two.
However, the specification of mappings is more complex than using the index
bit map.

.

--

36 CHAPTER 2. MULTIDIMENSIONAL SPACES AND DATA MAPPING

2.4.6 Blip schemes

Boppana and Raghavendra have described a scheme for storing multidimen
sional arrays with powers-of-two dimensions in the memories of a distributed
memory parallel processor [6]. The emphasis of their paper is for computers
with some form of connection network between the processor and the memo
ries, in which it is desirable to be able to access templates of the data arrays
without network contention. A template T of an N x N matrix is a set of
N element positions including the element at position (0,0). Important tem
plates are row, column, diagonal and block templates. An affine template is a
set of N element positions where each position is the exclusive-or of a template
position with some constant .

By storing data elements in a way defined by a blip scheme it is possible
to access various templates of a data array without network contention with
a variety of interconnection networks. An element (i, j) stored according to a
blip scheme is stored in location i of a memory unit with index i EB 1r(j), where
each bit of 1r(j) is the exclusive-or of some selection of bits of j.

This may be contrasted with index bit permutation (see chapter 4), where
each element i of a one-dimensional, or unwrapped, array is stored in location d
of a parallel device (d incorporates both processor index and memory address)
where d = 1r(i) EB k, where 1r(i) is a permutation of the bits of i and k is a
constant.

When applied for use with a distributed-memory SIMD computer with
an interconnection network connecting processors, the blip scheme may be
used to transform between mappings in which certain templates are accessible
without contention. The blip schemes appear to have much in common with
index bit permutation schemes, and may be able to describe a richer class
of mappings. However, they are limited to square arrays with power-of-two
dimensions, and Boppana and Raghavendra state that further work would be
required to systematically obtain the linear permutation schemes (1r(j)) for the
templates of interest; as with index bit and index digit maps, the specification
technique for an arbitrary remapping is complex.

2.4. 7 Ad-hoc approaches

A simple way of describing data mappings is to describe a few mappings ex
plicitly and to give them descriptive names. This approach has been used with
some success with the DAP (for mappings with names like sheet and crinkle),
and the MasPar. The MasPar naming scheme illustrates this approach [51]:

One-dimensional hierarchical

The data array is treated as a one-dimensional object and broken into P
approximately equal pieces in order to be mapped onto P processors.

I

I

2.4. CURRENT DATA MAPPING SYSTEMS 37

One-dimensional cut'n'stack

The data array is treated as a one-dimensional object and data elements
are assigned separately to each processor. When all P processors have
been assigned one data element, the process is repeated until the data
array is distributed fully.

Two-dimensional hierarchical

The data array is broken into a set of P two-dimensional tiles each of
which is assigned to a different processor. This corresponds to the DAP
crinkle mapping.

Two-dimensional cut 'n 'stack

The data array is broken into two-dimensional tiles where each tile is the
same size as the processor array, and the tiles are placed to cover the
processor array. This corresponds to the DAP sheet mapping.

One problem with this method is the lack of flexibility that is offered.
The four mappings described here are sufficient for many algorithms on two
dimensional images, but they do not address the greater complexity of data
arrays containing three or more dimensions.

If all the different types of mappings are allowed, many distinct library
calls for inter-converting between the mappings are required. The practical
solution to this problem has been to restrict allowable remapping operations
to only a subset of the possible operations. For example, in the MasPar image
processing library [51}, all the data remapping routines are to and from the
two-dimensional hierarchical format.

These mappings do not allow the specification of any more geometrically
oriented remappings, such as transposition of axes or axis reversals, so library
calls must also be included to perform these operations also.

2.4.8 High Performance FORTRAN

In an attempt to give the programmer more power in specifying and redis
tributing data on a parallel processor array, the specification of High Perfor
mance Fortran (HPF) gives a powerful set of compiler directives designed to
allow many different mappings to be specified. The approach is similar to the
ad-hoc approaches in that descriptive names such as block, and cyclic are
used to specify different types of mappings, but it has more flexibility because
these modifiers may be applied to individual dimensions of a multidimensional
array.

Although the mechanism for mapping specification appears quite different
from the k-Tile format, the set of mappings that can be specified is similar.
The k-Tile format is capable of specifying all the possible regular mapping

:

......

38 CHAPTER 2. MULTIDIMENSIONAL SPACES AND DATA MAPPING

relationships between data arrays that HPF is capable of, and in many respects
the k-Tile format is more powerful. A more complete comparison of the two
schemes and a description of methods for their inter-conversion is contained in
section 7 .1.

However, the most significant limitation on HPF is that it is an integral
part of just one programming language, and it remains to be seen how well
these concepts will transplant to other languages such as C.

2.5 Summary

To provide a context in which to work in the rest of this thesis, this chapter
defines multidimensional data arrays and the problem of mapping these ar
rays to one- or multidimensional storage devices. We show how the mapping
problem has relevance to the efficiency of data access both within and between
devices, the efficiency of algorithms and the portability of applications between
different architectures. It is suggested that current approaches have shortcom
ings in portability, flexibility and ease of use. Thus, a consistent framework
for data mapping would both provide a useful tool for programmers on a wide
variety of architectures and for a large class of problems, and also provide a
powerful framework on which to build tools which would allow the data map
ping problem to be hidden from the programmer, such as compilers and data
processing libraries.

Parallel architectures are very suitable for processing large multidimen
sional data sets, and much of the work in this thesis is based on development
for the MasPar MP-1. In this chapter gave a broad overview of the properties
of parallel architectures and outlines the structure of three massively parallel
SIMD architectures: the AMT DAP 500 [59], the CM-2 [37, 67] and the Mas
Par MP-1 and MP-2 [4, 50] . Particular emphasis is given to the MasPar MP-1,
and the MPL programming language is summarised to provide a vehicle for
parallel algorithm descriptions in later chapters.

We also examine three broad classes of current data mapping systems; soft
ware techniques for both sequential and parallel architectures, and hardware
techniques. Central to all of these systems is index digit permutation. Many
data mapping systems are related to this approach:

• Lilleyman's crossbar switch to allow arbitrary index bit permutations for
the Fast Fourier Transform in fast hardware

• Newman's tiling memory-management unit

• Nassimi and Sahni's optimal routing algorithm for mesh-connected com
puters using index-bit permutation

I

1

!

I

1

2.5. SUMMARY 39

• Flander's substantial extensions to Nassimi and Sahni's work in Parallel
Data Transforms for the AMT DAP

• Cruz' implementation of PDTs for the RPA [13, 14]

• Boppana and Raghavendra's Blip schemes [6]

• the data mapping directives of high-performance Fortran [36]

• Fraser's index-bit permutation techniques for scan-line algorithms and
the Fast Fourier Transform [27, 28, 30, 31]

• Van Heel's transposition method for large images on disk

• Fraser's Multidimensional Tile format.

The value of being able to describe all these techniques within a single
framework is emphasized.

40 CHAPTER 2. MULTIDIMENSIONAL SPACES AND DATA MAPPING

I

I

-

I

I

'

Chapter 3

The k-Tile format

In the last chapter we examined many techniques currently being used for
mapping multidimensional data sets to parallel computers, and showed the
need for a flexible format for specifying these data mappings.

Specifying data mappings is not a trivial task. To simplify the writing of
programs to access data, it is common to use the simplest data mapping strate
gies, which usually correspond to the structure of a disk file or of a particular
computation. When dealing with large data sets , the use of an inappropriate
mapping may greatly increase data communication costs , whether between
devices or between processors ·within a device.

When trying to use one or more data mappings for a problem, there are
several possible sources of inefficiency or unnecessary effort. When writing
code for different problems with similar data mapping requirements there is
the potential for duplication of effort , while attempting to integrate problems
with different data mapping requirements may entail complex programming
tasks.

A general framework for describing and manipulating data mappings would
alleviate these problems by providing a consistent mechanism for specifying
data mappings. Such a mechanism could be integrated with a system for
performing data remapping using general but efficient algorithms.

Many of the mapping specification methods outlined in the previous chap
ter suffer from both a lack of flexibility in specification and a separation of the
mapping method from the intuitive ideas of data and device dimensions.

In this chapter we describe the k-Tile format, which is a general framework
for describing the mapping of multidimensional data arrays to a variety of
storage devices. The k-Tile format addresses the mapping problem of chapter 1
for multidimensional arrays on parallel devices.

Two k-Tile formats implicitly specify a data remapping, and thus the k
Tile format also provides a means of specifying data remappings. Because
this method is descriptive and does not specify how a data remapping is to
be performed, algorithms must be developed for this task. This means of

41

-

42 CHAPTER 3. THE K-TILE FORMAT

specifying and performing data remappings is called Parallel Mapping Func
tions (PMFs), and later chapters show how the k-Tile format and PMFs
may be implemented and used for data mapping and remapping applications.
[7, 22, 25, 29, 55, 64, 66].

3.1 The Basic k-Tile Format

The k-Tile format defines a mapping between three multidimensional array
spaces (see section 2.1) : the data space, the device space and the k-Tile space.
Each array space has the same element data type. The k in the name em
phasizes the multi-dimensional nature of the tiles mapped through the k-Tile
space.

The data space is a multidimensional space containing the data array. The
device space contains the mapping of the image data to a physical storage
device, the device array. The k-Tile space is an abstract space linking the
image space and the device space.

3.1.1 The Data Type

Because the device array must be represented on a physical storage device, we
assume that the data array data type contains a finite number of elements.
Similarly, to allow computation of physical addresses from array indices, each
element of the data type is represented in a fixed number of bytes. Thus, the
data type of any multidimensional array may be treated as another dimension
of the array with length the size of the data type in bytes.

In future we will assume that the data type of all multidimensional arrays
is byte and treat the true data type as the first dimension in the array. This
allows us to ignore the actual data type of an array and define mappings
between any multidimensional array spaces.

3.1.2 The Data Space

The data space represents a physical or synthetic coordinate system in which
the data was sampled or generated, and the dimensions of the data space
represent the intrinsic dimensions and dimensionality of the data.

The dimensions in the data space generally offer some physical meaning;
examples include regular samples from a map grid, three-dimensional samples
from a CT scan at millimeter spacings or two spatial dimensions of a scanned
photograph. Different dimensions will often have quite different physical inter
pretations; a single image may contain one dimension along which to store the
pixel data type, three spatial dimensions, a temporal dimension and a spectral
dimension to represent colour. As discussed in section 2.1.3, data dimensions

I,

3.1. TI-IE BASIC K-TILE FORMAT 43

may be stored either implicitly or explicitly; for the purposes of remapping,
we manipulate only the implicit dimensions of the data space and treat the
elements as uninterpreted objects.

Because the data type of the data space is always treated as byte, the data
space is completely specified by its shape, a. A few examples illustrate some
data spaces:

• A single-channel 512 x 1024 byte image: [512, 1024]

• A three-channel 512 x 1024 image of 32-bit integers: [4,512, 1024, 3]

• A 512 x 512 slice from a 3-dimensional image: [512, 1, 512]

3.1.3 The Device Space

The device space represents a part of the storage component of a device the
data space will be mapped to. In a distributed memory parallel processor,
dimension O corresponds to the computer's memory and subsequent dimensions
to dimensions in the processor array. In a display device, dimension O may
correspond to the x-axis of the display. In general, communication speed along
device axes decreases with increasing device dimension number; the index of
the highest device dimension may select different physical devices.

It is not necessary to specify or fill all the physical dimensions in the device,
and it may be possible to combine certain dimensions in order to treat the
device as a lower-dimensional device with longer dimensions.

The maximum dimensionality of the device space is determined by the
architecture of the device: a serial computer or disk file has a device space
containing at most one dimension; a "striped" disk file may have two dimen
sions; a 2d mesh machine a device space of at most three dimensions; and
hypercube architectures such as the CM-2 [67] may have many more.

In some cases, the ability to treat a processor array as lower-dimensional
allows the architecture to be optimized for the device space; as an example,
when dealing with dimensions which are powers of two, by using a Gray-code
indexing scheme the CM-2 may be configured to have local connectivity for
any number of dimensions up to the dimensionality of its hypercube.

A few examples illustrate the some device spaces:

• A 1 megabyte file on disk: [1048576]

• A 67 byte array stored on each processor in the 128 x 128 mesh of a
MasPar MP-1: [67,128,128]

• A 64 byte array stored on a CM-2 configured as a four-dimensional 16 x
16 x 16 x 16 processor array: [64, 16, 16, 16, 16]

-

44 CHAPTER 3. THE K-TILE FORMAT

• A 7 byte array stored on the first 7 processor along the Y-axis of a mesh:
(7, 1, 7)

3.1.4 The k-Tile Space

In section 2.4.2 it was shown how to define a data-to-device mappmg by
mapping data dimensions directly to device dimensions. The k-Tile format
is based on a similar idea, but gains more flexibility than the dimension map
ping method by the use of an intermediate higher-dimensional k-Tile space. A
dimension mapping is used to map the k-Tile space onto both the data and the
device spaces, thus defining a mapping from the data space to the device space.
As with the data and device spaces, the k-Tile space is completely specified by
its shape, k.

3.1.5 The k-Tile format, an overview

A k-Tile format !K is a data mapping between a data space, with shape a,
and a device space, with shaped. Using the notation in section 2.1:

The mapping !K is data-independent, and may thus be defined by an index
map gK between the index spaces of d and a:

gK: index(d)-+ index(a)

!K(A)(v) = A(gK(v)) for all A E Mia and v E index(d)

In turn, gK is defined as two index mappings, gKA and gDK, passing through
the k-Tile index space, with shape k:

gDK : index(d) -+ index(k)

gKA: index(k) -+ index(a)

gK = gKA O gDK

The index mapping gDK is one-to-one and onto, thus we may define gDK in
terms of its inverse, 9KD· Both gKD and gKA are defined ask-Tile mappings.

3.1.6 The k-Tile mapping

A k-Tile mapping from a k-Tile index space K with shape k and another index
space Z with shape z is specified by mapping at least one k-Tile dimension
into each dimension in Z. A group of k-Tile dimensions are mapped into a
single Z dimension as if the k-Tile dimensions were a multidimensional array

,..

I

3.1. THE BASIC K-TILE FORMAT 45

mapped into a one-dimensional memory. A kr Tile mapping is also identical to
the dimension mapping described in section 2.4.2.

Before defining this fully, we show some examples of k-Tile mappings.
Firstly we show the two ways a 2d k-Tile index space K can be mapped to a
ld index space Z. These two examples map the dimensions of K into Z in
column and row major order respectively. Letting

k = (3, 4), K = index(k)

z = (12), Z = index(z)

an example of a k-Tile mapping m from K to Z is

g:K-tZ

g(ao, a1) = (a1 + k1 .ao) = (a1 + 4.ao).

Another example of a k-Tile mapping for the same K and Z is

g:K-+Z

g(ao, a1) = (ao + ko.a1) = (ao + 3.a1).

The data mapping associated with the second example is

f(A)(ao, a1) = A(g(ao, a1)) = A(ao + 3.a1).

For the mapping to be one-to-one and onto, the product of the lengths of each
group of k-Tile dimensions must be identical to the length of the associated
dimensions of Z.

We do not restrict the assignment of k-Tile dimensions to dimensions of
Z to be either row or column major ordering. Thus, in a 3d k-Tile space K
mapped to a ld space Z, there are six possible k-Tile mappings. Letting

k = (k0 , k1, k2), K = index(k)

z = (z), Z = index(z),

the six possible k-Tile mappings from K to Z are:

91(ao, a1, a2) = ao + ko.(a1 + k1.a2) g4(ao, a1, a2) = ao + ko.(a2 + k2 .a1)
92(ao, a1, a2) = a1 + k1.(ao + ko .a2) g5(ao, a1, a2) = a1 + k1 .(a2 + k2.ao)
g3(ao, a1, a2) = a2 + k2.(ao + ko.a1) g5(ao, a1, a2) = a2 + k2.(a1 + k1.ao).

Thus, when specifying a k-Tile mapping we must provide a means to express
any valid permutation of k-Tile dimensions to be assigned to each dimension
of Z.

Some examples of possible kr Tile mappings to 2d spaces are:

!

--

46 CHAPTER 3. THE K-TILE FORMAT

• A mapping from a 12 x 12 k-Tile space to a 12 x 12 destination space

k = (12, 12), K = index(k)

z = (12, 12), Z = index(z)

g:K-+Z

g(ao, ai) = (a1, ao)

• A mapping from a 3 x 3 x 4 x 4 k-Tile space to a 12 x 12 destination
space. k-Tile dimensions O and 2 are mapped to dimension O of Z, and
k-Tile dimensions 3 and 1 are mapped to dimension 1 of Z

k = (3, 3, 4, 4), K = index(k)

z = (12, 12), Z = index(z)

g:K-+Z

g(ao, a1, a2 , a3) = (ao + a2.ko, a3 + a1 .k3)

• A mapping from a 3 x 12 x 4 k-Tile space to a 12 x 12 destination space.
k-Tile dimensions O and 2 are mapped to dimension O of Z, and k-Tile
dimension 1 is mapped to dimension 1 of Z

k = (3, 12, 4), K = index(k)

z = (12, 12), Z = index(z)

g:K-+Z

g(ao, a1, a2) = (ao + a2.ko, a1)

3.1. 7 Specifying a k,..Tile mapping

The assignment of dimensions of a k-Tile index space to dimensions of an
arbitrary index space Z can be achieved by specifying a vector m of length (K)
which assigns k-Tile dimensions to dimensions of Z , from the lowest significant
position in dimension O of Z upwards.

~r(K} _ () m E 1'1 , m - m 0, ... , m(K}-1

To provide a valid specification for a k-Tile mapping, m must satisfy two
conditions

• No dimension of K appears more than once in m; in other words, m
is a permutation of [O, ... , ((K) - 1)] . This ensures that every k-Tile
dimension is only mapped once into the dimensions of Z. Equivalently,
every kr Tile dimension appears exactly once.

3.1. THE BASIC K-TILE FORMAT 47

• The product of the length of every group of k-Tile dimensions assigned
to a dimension of Z must be equal to the length of that dimension.

To check the second condition we may calculate a vector c which sequen
tially assigns sections of the mapping vector m to dimensions of Z. m is a
valid mapping vector for the k-Tile index space K and the index space Z iff

:::i ~1(Z)+l () .:::ic E 1~ ,c = c0 , ••• ,c(z)

such that for all i, 0 ~ i < (Z)

Ci+l > C· i

C(i+l)-1

Z· II km · i
J

j=c;

C(z) (K)

(3.1)

(3.2)

(3.3)

Equation 3.1 ensures that the elements of the mapping vector m are used
only once to map the dimensions of K into Z. Equation 3.2 ensures that the
assigned k-Tile dimensions fit snugly within the associated dimensions of Z.
Equation 3.3 ensures that all the k-Tile dimensions are assigned to dimensions
of Z.

These conditions ensure that the k-Tile mapping provides a map from K
to every element of Z, and that every element of K maps to an element of Z .

From the three vectors k, z and m, we may define a k-Tile mapping g from
K to Z. Letting

p E N, z E NP, Z = index(z), z = (zo, . . . , zp-1)

q EN, k E N\ K = index(k), k = (ko, . .. , k9_ 1)

m E N9 , m =(mo, ... , m9-1)

If m satisfies the conditions stated in section 3.1. 7, a vector c may be derived
as described in section 3.1.7,

CE W+l

and the k-Tile mapping may be defined

I:,.
kmap(k,z,m) = g: K -t Z

g(wo, ... , w9-1) = (uo, ... , up-1)

c(,+1)-l 1-1

where Ui = L Wz. II kmj

l=c; j=c;

48 CHAPTER 3. THE K-TILE FORMAT

For example, the following selection of values for the vectors k, z and m,
and a derived value for c, define a valid k-Tile mapping:

z

C

m

k

(128,64)
(0,3,5)
(2,3,0,1,4)
(2,2,8,8 , 32)

3.1.8 The implicit k-Tile mapping

The k-Tile format is based on two k-Tile mappings from the same k-Tile index
space to the data and device index spaces. Because the k-Tile space is internal
to the k-Tile format and any valid permutations of k-Tile dimensions may be
assigned to the dimensions of the data and device spaces, the numbering of

I

the k-Tile dimensions is arbitrary. i
To simplify the specification of the k-Tile format and to limit the number

of k-Tile formats specifying identical mappings, we define the implicit k-Tile 1

mapping. The implicit k-Tile mapping differs from the k-Tile mapping in that
k-Tile dimensions are assigned implicitly to the dimensions of the destination
space in sequential order, thus a mapping vector m is not required. If one
k-Tile mapping in the k-Tile format is implicit, arbitrary assignment of the k-
Tile dimensions to the the data and device index spaces may still be achieved
by renumbering the k-Tile dimensions.

Given a k-Tile index space with shape k and an index space Z with shape
z,

p E N, z E NP, Z = index(z), z = (z0 , .•. , zp_i)

q EN, k EN\ K = index(k), k = (k0 , ... , kq_ 1)

and assuming that a vector c exists assigning k-Tile dimensions to dimensions
of Z

::J w(K)+l () :JC E l'l ,c = ca, ... ,C(K)

such that for all i, 0 ::; i < (K)

Ci+l > C· 1

C(i+l)-1

Zi II k · J
j=c;

C(z) (K)

the implicit k:,.. Tile mapping may be defined

ikmap(k, z)

g(wo, ... , wq-1)

g:K--+Z

(Uo, . .. , Uq - 1)

(3.4)

(3.5)

(3.6)

I

'

I

3.1. THE BASIC K-TILE FORMAT 49

C(i+1)- l /-1

where u i = L W1. IT kj
l= ci j=c;

Alternatively, the implicit k-Tile mapping may also be defined

ikmap(k, z)
6

kmap(k, z, (0 , ... , (k) - 1))

For example, the following selection of values for the vectors k and z, and
a derived value for c, define a valid implicit k-Tile mapping:

z (128, 64)
C (0,3,5)
k (8, 8, 2,2, 32)

3.1.9 The inverse k-Tile mapping

Letting

g = kmap(k, z, m) : index(k) - index(z)

We define the inverse k-Tile mapping

kmap- 1(k, z, m)

g(w)

6
g- 1

: index(z) - index(k), where

u => g-1(u) = w for all w E index(k)

Because the k-Tile mapping is one-to-one and onto, g-1 is uniquely defined
everywhere in index(z).

3.1.10 The Ar-Tile format, a definition

The k-Tile format is defined by an inverse k-Tile map from the device index
space D to the k-Tile index space Kand an implicit k-Tile map from the k-Tile
index space K to the data index space A.

p E N,a E W,A = index(a)

q E N,k E N\K = index(k)

r E N,d E N\D = index(d)

Assuming a, k, m and d satisfy the conditions specified in section 3.1.7 to
define k-Tile mappings from K to A and D respectively, we may define a

I

50 CHAPTER 3. THE K-TILE FORMAT

k-Tile index format from D to A

ktileindex(a, k, m, d) 9K : D - A, where

9K 9KA O 9DK

9nK n- K

9DK kmap- 1(k, d, m)

9KA K-A

9KA ikmap(k, a)

The k-Tile format is the corresponding data mapping defined by the index
mappmg 9K

ktile(a, k, m, d)

fK(A)(v)
fK: Mia - M[d
A(gK(v)) for all A E Mia, v E index(d)

3.1.11 A basic k-Tile summary

A k-Tile format is described by four vectors, a, k, m and d.
a The shape of the data index space
k The shape of the k-Tile index space
m The mapping between the k-Tile and device spaces
d The shape of the device space

These vectors provide a specification for two index mappings 9DK and 9KA·

9DK is an inverse k-Tile mapping between D and K, with the assignment
of k-Tile dimensions to device dimensions specified by the vector m. g KA is an
implicit k-Tile mapping between Kand A.

9DK kmap- 1(k, d, m)
9KA ikmap(k, d, m)

Composing these two mappings defines an index mapping 9K between D and
A,

9K = 9KA O 9DK

I D 9D K 9K A I

9K may be directly transformed into a data mapping !K from Mia to Mid

3.1. THE BASIC K-TILE FORMAT 51

3.1.12 Example mappings

To clarify the above description we show several mappings specified using the
k-Tile format. The numbers shown in the two spaces represent data elements
mapped from the data to the device space. A column-major ordering of these
numbers has been used throughout for consistency of description; a row-major
ordering could have been used instead. The specifications for a , k, m and
d are linear arrays, but for clarity ';' is used between elements where the
dimension changes in an associated space. In k, a semicolon indicates an
increment in data dimension, and in m a semicolon indicates an increment in
device dimension. Semicolons are used between all dimensions in a and d.

Simple ld mapping

This k-Tile format defines a simple mapping between a one-dimensional image
containing seven pixels and a one-dimensional storage device containing seven
storage locations:

k-Tile A D
a [7]
k [7]

0 1 2 3 4 5 6
11

0 1 2 3 4 5 6 m [OJ
d [7]

Column-major ordering

This k-Tile format defines a column-major mapping between a 2 x 3 image and
a one-dimensional storage device:

k-Tile A D
a [3; 2] +- o-
k [3; 2] T [I] 0 1 2 3 4 5 m [O, 1] 1
d [6] l 5

Row-major ordering

This k-Tile format defines a row-major mapping between a 2 x 3 image and a
one-dimensional storage device:

k-Tile A D
a [3; 2]
k [3; 2]
m [1, OJ 0 3 1 4 2 5

d [6]

'

52 CHAPTER 3. THE K-TILE FORMAT

Simple 2d mapping

This k-Tile format defines a scan mapping between a 2 x 3 image and a two
dimensional storage device:

k-Tile A D
a (3; 2]
k (3; 2]
m [O; 1]
d [3; 2]

Transposed 2d mapping

This k-Tile format maps the image in the previous mapping transposed to the
device.

k-Tile A

a [3; 2]
k [3; 2]
m [1;0]
d [2;3]

Tiled mapping to ld device

This k-Tile format maps a 4 x 4 image to a one-dimensional device as a 2 x 2
group of 2 x 2 tiles.

Iv-Tile A

-o-a [4; 4]
0 1 2 3 k [2, 2; 2, 2] T 4 5 6 7 m [O, 2, 1, 3] 1 8 9 d [16] l 10 11
12 13 14 15

D
0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15

:

!

3.2. EXTENDING THE K-TILE FORMAT 53

Tiled mapping to 2d device (2d hierarchical or crinkle mapping)

This k-Tile format maps a 4 x 4 image to a two-dimensional device as a 2 x 2
group of 2 x 2 tiles.

k-Tile A D
-o- -o-a [4;4]

0 1 2 3 0 1 4 5 k [2, 2; 2, 2] i 4 5 6 7 i 2 3 6 7 m [O, 2; 1, 3] 1 8 9 10 11 1 8 9 12 13 d [4; 4] l
12 13 14 15

l
10 11 14 15

Tiled mapping to 2d device (2d cut'n'stack or sheet mapping)

This k-Tile format maps a 4 x 4 image to a one-dimensional device with a 2 x 2
group of 2 x 2 tiles stacked along the memory dimension .

k-Tile A D

-o- -o-a [4;4]
0 1 2 3 0 2 8 10 k [2,2;2,2] i 4 5 6 7 i 1 3 9 11 m [1, 3; 0, 2] 1 8 9 10 11 1 4 6 12 14 d [4;4] l
12 13 14 15

l
5 7 13 15

Index-bit-reversed mapping to ld device

This k-Tile format maps a 16 element image to a one-dimensional device in
index-bit-reversed order, suitable for the application of a radix 2 FFT [11].

k-Tile A

a [16] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

k [2, 2, 2, 2]
m [3, 2, 1, OJ D
d [16] 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

3.2 Extending the k-Tile format

The basic k-Tile format is a flexible and intuitive data mapping specification
technique. However, there are many regular mappings it cannot specify. By
adding extra concepts the basic k-Tile format may be extended to allow a
wider range of useful mappings to be specified:

• empty k-Tile dimensions allow the declaration of empty storage locations
on the device

I

54 CHAPTER 3. THE K-TILE FORMAT

• sense indicators allow the storage order of the k-Tile dimensions to be
reversed

• templates allow the image, k-Tile and device spaces to be padded into
larger spaces

• offsets allow dimensions to be translated

3.2.1 "Empty" k-Tile dimensions

As defined in section 3.1, a k-Tile index format defines a mapping from D to
A that is one-to-one and onto. Similarly, the two component k-Tile mappings
are also defined to be one-to-one and onto.

By modifying the definition of the implicit k-Tile mapping in section 3.1.8,
it is possible to define an index mapping from a proper subset of K to an index
space Z. This allows elements of the device array to be declared as undefined.

Removing the restriction imposed by equation 3.6 allows a subset of the
k-Tile dimensions to be used to cover Z:

:::i ~r(Z)+l _ () :1C E 1,;;i , C - co, ... , C(z)

such that for all i, 0 :::; i < (Z)

ci+1 > Ci

C(i+l)-1

Zi II k · J
j=c;

C(z) < (K)

(3.7)

(3.8)

(3.9)

Equation 3.9 redefines c to allow only the first C(z) dimensions of K to
determine the k-Tile mapping. However, this is not sufficient to provide the
desired index mapping from K to Z, as every k-Tile index in K is still mapped
into the index space Z. We must redefine the implicit k-Tile map to only define
the mapping for k-Tile indices whose "empty" k-Tile dimensions are zero:

ikmap(k,z) ~ g: K - Z U {j_}

()
_ { J_ if wi > 0 for some i >= c(z)

gwo, ... ,wq-1 - () .
uo, ... , Uq-1 otherwise

C(i+l)-1 /-1

where ui = L w1. II ki
l=c; j=c;

The following example defines a k-Tile format between a 4 x 4 image and
a two-dimensional storage device, with the k-Tile space larger than the data

3.2. EXTENDING THE K-TILE FORMAT 55

space to allow empty space to be included between elements stored on the
device . ..l represents undefined, or empty, storage locations on the device:

k-Tile A D
- 0 --t - 0 --t a (4 ; 4]

0 1 2 3 0 2 k (4; 4; 2] l. 1 l. l. 3 l.
i 4 5 6 7 i 4 l. 5 ..l 6 l. 7 l. m [2 , O; 1] 1 8 9 10 11 1 8 l. 9 10 d [8;4] l l ..l l. 11 l.

12 13 14 15 12 ..l 13 1. 14 l. 15 l.

3.2.2 Sense indicator

A "+" or "-" sense indicator for each k-Tile dimension may be used to reverse
the order of storage of that k-Tile dimension on the device. This is useful for
specifying geometrical transformations such as rotations by multiples of 90°
and reflections about the coordinate system axes.

An extended definition for the k-Tile map takes account of the sense indi
cator. Letting

p EN, z E _NP, Z = index(z)

q EN, k E Nq, K = index(k)

m E Nq and satisfying the properties for a k-Tile map

c E _NP+ l as described in section 3.1.7

s E {+,-}q,s = (so,·· · ,sq- 1)

The k-Tile mapping g with sense may be defined

6
skmap(k, z, m, s) = g: K--+ Z

g(wo, ... , Wq-1) = (uo, . . . , up- 1)

C(i+l)-1 { .f _ } /-1

L Wj 1 Sj - + IT k
Ui = · · m · k . - w . - 1 1f s . = - .]

l= c; J J 1 J =c;

Because inverting the sense of a data or device dimension is equivalent to
inverting the sense of the associated k-Tile dimensions , sense indicators for the
data and device dimensions are not required.

The k-Tile mapping with sense indication is included in the k-Tile format
by adding an extra field, s, and replacing the inverse k-Tile mapping from D
to K with an inverse k-Tile mapping from D to K incorporating sense. The
following examples using the sense indicator shows four rotations of a 4 x 4
image. The k-Tile sense indicator is labelled s. A top left origin is assumed:

56

0° rotation:

a

k
s

m
d

k-Tile

[4;4]
[4;4]
[+,+]
[O; 1]
[4;4]

T
1
l

go 0 clockwise rotation:

a
k
s
m
d

k-Tile

[4; 4]
[4; 4]
[+, -]
[1; OJ
[4; 4]

180° rotation:

a
k
s

m
d

k-Tile

[4;4]
[4; 4]
[-, -]
[O; 1]
[4; 4)

T
1
l

T
1
l

CHAPTER 3. THE K-TILE FORMAT

A
+- 0--+

0 1
4 5
8 g
12 13

2 3
6 7
10 11
14 15

0 1 2 3
4 5 6 7
8 g 10 11
12 13 14 15

0 1 2 3
4 5 6 7
8 g 10 11
12 13 14 15

T
1
l

T
1
l

T
1
l

0 1 2 3
4 5 6 7
8 g 10 11
12 13 14 15

12 8 4 0
13 g 5 1
14 10 6 2
15 11 7 3

15 14 13 12
11 10 g 8
7 6 5 4
3 2 1 0

go0 counter-clockwise rotation:

k-Tile

a [4;4]
k [4;4]
s [- , +]
m [l;O]
d [4; 4]

3.2.3 Templates

T
1
l

0 1 2 3
4 5 6 7
8 g 10 11
12 13 14 15

T
1
l

3 7 11 15
2 6 10 14
1 5 g 13
0 4 8 12

One limitation of the k-Tile format is the lack of flexibility allowed in specifying
where data is not stored; when processing large data sets it is often useful to
include empty padding around the data.

i
.

:

3.2. EXTENDING THE K-TILE FORMAT 57

Firstly, if the length of a data dimension is a prime number or has unsuitable
factors, it may be impossible to split the dimension into regular tiles of a
convenient size.

Secondly, it may be useful to include some empty space around the data to
allow for working storage; one example would be to include a border around
tiles when performing neighbourhood operations to allow inter-processor com
munication to be separated from computation (more details of this approach
may be found in section 7.3. 7).

One solution to both of these problems is to pad the data array by increas
ing the length of some dimensions at the expense of some wasted memory or
processors. However, this approach is undesirable for several reasons:

• the actual shape of the data array is not preserved, which has the po
tential to cause confusion

• a different padding may be required for different mappings of the same
data array, which could make it impossible to map between different
k-Tile descriptions for the same data array

• it is not possible to optimize data movement by ignoring empty storage
locations if they are not explicitly defined.

A solution to the padding problem is to allow each of the data, k-Tile and
device spaces to be mapped into their own template space, which is effectively
a padded image.

Given an index space Z,

p EN, z E NP, Z = index(z), z = (zo, ... , Zp-1),

a template space for Z is an index space T

q EN, t E Nq, T = index(t), t =(to, ... , tp_1),

where

p q and

ti >= Zi for all i, 0 :::; i < p.

Elements of Z are mapped into T using a template mapping:

!:::.
template(t, z) = g : T-+ Z

g(u) = { ~ if u ~ index(z) } ~ all T
"f . d () 1or u E . 1 uEm exz

I

58 CHAPTER 3. THE K-TILE FORMAT

The inclusion of template spaces in the k-Tile format adds three additional
index spaces, Tv, TK, and TA with respective shapes tv, tK, and tA, and three
template mappings 9TD, 9TK and 9TA· Because the template spaces may be
a different size from the data spaces the k-Tile mappings 9DK and 9K A are
replaced by mappings to the appropriate template spaces, 9DT and 9KT ·

I Tv 9TD D 9DT TK 9T K 9KT TA 9TA A J

The template spaces for the data, k-Tile and device spaces can be used
in quite different ways. The following sections give examples of the use of
template spaces for three different purposes.

Data space template

When an image has dimensions which are not convenient for factorization into
tiles, the data space may first be mapped into the data template space. Two
example mappings of a 7 element image on two devices are shown:

• 7-element image into 4 x 2 device

This mapping pads a 7-element input image to 8 elements and maps the
resulting space to a 4 x 2 device.

k-Tile A
a [7]
tA [8]
k [4,2] 0 1 2 3 4 5 6
m [O; 1]
d [4,2]

• 7-element image into 3 x 3 device

T
1
l

D

-o-
0 1 2 3
4 5 6 ..L

This mapping pads the 7-element input image to 9 elements and maps
the resulting space to a 3 x 3 device.

k-Tile
a [7]
tA [9]
k [3, 3]
m [O; 1]
d [3,3]

A

0 1 2 3 4 5 6 T
1
l

D

0 1 2
3 4 5
6 ..L ..L

I

I

I

I

I

I

I

I

I

I

3.2. EXTENDING THE K-TILE FORMAT 59

k-Tile space template

When performing neighbourhood operations on the data elements in an image
it may be useful to separate the inter-processor communication component
of the operation from the computation component (see section 7.3.7). To
avoid this communication, 'overlapping' tiles may be specified by using a k
Tile template space which allows empty work-space to be included around the
edge of each tile. Before the commencement of computation data elements
from each processor's neighbours may be copied into the empty edges of the
tile, allowing computation to be performed in exactly the same way for every
data element. This k-Tile mapping defines a 16 x 16 image arranged as 4 x 4
tiles on 4 x 4 processors with extra space around the edge of each tile:

a

k
tK
m
d

k-Tile

[16; 16)
[4, 4; 4, 4)
[5, 4; 5, 4)
[O, 2; 1; 3]
[25;4;4)

i
2
l

Device space template

D
+-1-t

.L

.L

. . . • .L

.L
.L .L .L .L .L

.L

.L

.L

. • . . .L
.L .L .L .L .L

.L

.L

.L

.L
.L .L .L .L .L

. .L

. .L

. .L

. .L
.L .L .L .L .L

.L

.L

.L

.L
.L .L .L .L .L

. • . . .L

.L

.L

.L
.L .L .L .L .L

.LL

.LL

. . . • .LL

. . . • .LL
.L .L .L .L .L .L .L .L .L .L

. . .L

. . .L

. . .L

. . .L
.L .L .L .L .L

.L

.L

.L

.L
.L .L .L .L .L

.L

.L

.L

.L
.L .L .L .L .L

.L

.L

.L

.L
.L .L .L .L .L

.L

.L
•L
.L

.L .L .L .L .L

.L

. • . . .L

.L

.L
.L .L .L .L .L

.L

.L

.L

.L
.L .L .L .L .L

.L

.L

.L

.L
.L .L .L .L .L

Besides declaring storage space on the parallel device, the dimensions of the
device space may have a role in setting up the connection configuration of
the processor array (see section 3.1.3). It may be convenient to set up the
processor array differently by allocating more space on the device than that
represented by the k-Tile space by declaring a template device space.

3.2.4 Offsets

A geometrical transformation that is often used in image processing is the
translation of spaces. Translation may be specified within the k-Tile format
using an offset for each dimension of each space, including template spaces.

Data elements that are translated beyond the end of a non-template di
mension are wrapped around, ensuring that no data is lost. Data elements
may not be translated beyond the end of a template dimension. Because the

60 CHAPTER 3. THE K-TILE FORMAT

use of offsets does not change the shape of the associated index spaces, offsets
may be incorporated within the existing template mappings 9rD, 9rK and 9rA
by redefining the template mapping as follows. Given an index space Z and a
template space for Z, T,

p E N, z E f::!P, z = (z0, ... , Zp-i), Z = index(z)

t E f::!P, t =(to, ... , tp_1), T = index(t)

and two vectors or and Oz, which contain the offsets within T and Z respec
tively,

or E f::!P,or

Oz E f::!P,oz

(Oro, ... , or p-1), 0 ~ or i ~ (ti - Zi)

(ozo, ... , Ozp-1), 0 ~ Ozi < zi

we define the template/offset mapping from T to Z:

6.
otemplate(t,z,or,oz) = g: T---t Z

{

J_

g(a) = 1-
(bo, ... , bq-1)

if ai < or i for any i, 0 ~ i < q }
if ai ~ ori + Zi for any i, 0 ~ i < q for a E T

otherwise

where bi= (ai - Ori+ Zi - Ozi) mod zi for O ~ i < p

If or and Oz contain only zeros, the template mapping with offsets is equivalent
to the original template mapping.

Three template/offset mappings may be specified in the k-Tile format to
replace the template mappings: one each for the data, k-Tile and device spaces.
Unlike the sense indicator, offsets within the data and device spaces cannot
always be specified by giving an offset in the k-Tile space. This is because
the wrap-around within a single k-Tile dimension is independent of any other
k-Tile dimensions associated with a particular data or device dimension. Two
examples show the difference between offsets in the data space and the k-Tile
space. The first example shows a k-Tile format with an offset of one position
in the first k-Tile dimension:

k-Tile A D
a [6]
k [3, 2]

11
OK [1, OJ 0 1 2 3 4 5 2 0 1 5 3 4
m [O, 1]
d [6]

The second example shows a k-Tile format with an offset of one position
in the data dimension:

I

1

I

I

I

I

I

I

I

'

:

3.2. EXTENDING THE K-TILE FORMAT 61

k-Tile A D
a (6]
0A (1]
k (3 , 2]
m (0,1]

Jo12345IJ501234 I

d [6]

A carry generated in the first k-Tile dimension must be propagated to the
second k-Tile dimension to allow an offset in the data dimension.

Offsets may be used for many purposes:

• translation of the image origin

• aligning a padded rotated image with the device origin

• assigning constant values to empty k-Tile dimensions, which can be used
for storing multiple images using the same memory addresses on different
processors

• aligning tiles within a template space.

The following examples show the use of k-Tile offsets for specifying useful
mappings.

Translating the image origin

The image origin may be translated for several reasons:

• when viewing an (N, M] image, such as a 2d Fourier Transform, which
has the origin at position (0,0), it is usual to translate the image so that
the origin appears at the centre of the image, [1, ~l

• when extracting a region of interest from an image, it may be more
convenient to align a corner of the region with the device origin.

This example shows an image offset by one element along the first data
dimension:

k-Tile A D
a (4; 4) f-0 -+ -O-+

0A (1, OJ 0 1 2 3 3 0 7 4
k (2, 2; 2, 2] T 4 5 6 7 T 1 2 5 6

(0, 2; 1, 3] 1 8 g 10 11 1 11 8 15 12 m l l
d (4; 4] 12 13 14 15 g 10 13 14

-

62 CHAPTER 3. THE K-TILE FORMAT

Aligning rotated images with the device origin

An image can be rotated by inverting the sense of, and permuting, k-Tile
dimensions. If the image does not fill the data template space fully, before
the image is rotated empty space will be present between the ends of the
image dimensions and the edges of the template dimensions. After this image
is rotated , this empty space will appear at the start of one or more data
dimensions. Having the image data appearing in different positions on the
device depending on its rotation state is generally not desirable. To ensure
that a corner of a rotated image always appears at the device origin, a data
offset can be used.

The following three example mappings show a 3 x 3 image mapped to a
4 x 4 device, the same image rotated 180°, and the rotated image shifted to
the device origin:

3 x 3 image mapped to a 4 x 4 device

k-Tile A D
a [3; 3]

t-- 0 - t-- 0 -
tA [4; 4] 0 1 2 ..L

0 1 2 k [4; 4] T T 3 4 5 ..L
[O; 1] 1 3 4 5 1 6 7 8 ..L m l 6 7 8 l d [4;4] ..L ..L J_ J_

180° rotation

k-Tile A D
a [3; 3]

t-- 0 -
tA [4;4] t-- 0 -
k [4; 4] 0 1 2

J_ J_ J_ J_

T T J_ 8 7 6 s [-,-] 1 3 4 5 1
[O; 1] l 6 7 8 l

J_ 5 4 3 m
d [4; 4]

J_ 2 1 0

I

I
I

I

I

I

I

3.2. EXTENDING THE K-TILE FORMAT 63

180° rotation translated to device origin

k-Tile A D
a [3; 3]
tA [4;4] -o- -o -
OTA [1; 1]

0 1 2
8 7 6 ..L

k (4; 4] i i 5 4 3 J_

[-,-] 1 3 4 5 1 2 1 0 J_ s
1 6 7 8 1 m [O; 1] ..L ..L J_ ..L

d [4; 4]

3.2.5 Extended k-Tile offsets

By assigning special meanings to offsets in empty k-Tile dimensions , extra
functionality may be obtained.

Assigning constant values to empty k-Tile dimensions

Some k-Tile mappings, such as scan-line mappings, use only a subset of the
available processors and potentially waste limited storage space. By setting
an unused k-Tile dimension to a constant value, which is equivalent to adding
an offset to the value of that dimension, two images may be stored on differ
ent processors using the same memory locations. The definition of template
mappings with offsets is already consistent with this usage of offsets.

These two images could be stored using the same memory array:

k-Tile A D
-o-

0 1 2 3
a [4; 4] -o- 4 5 6 7

8 9 10 11
i 12 13 14 15
1 ..L ..L ..L ..L 1

J_ ..L ..L ..L

k [4; 4; 2] 0 1 2 3
OK [O; O; OJ i 4 5 6 7

[O; 1, 2] 1 8 9 10 11 m 1
d (4; 8] 12 13 14 15

..L ..L J_ J_

..L J_ J_ J_

...

64 CHAPTER 3. THE K-TILE FORMAT

k-Tile A D
-o-

..l ..l ..l ..l

a [4; 4] -o- ..L ..l ..l ..L
..l ..l ..l ..L

T ..l ..L ..l ..L
1 0 1 2 3 l

4 5 6 7

k [4;4;2] 0 1 2 3
OK [O; O; 1] T 4 5 6 7

[O; 1, 2] 1 8 9 10 11 m l
d [4; 8] 12 13 14 15

8 9 10 11
12 13 14 15

By using a device offset, this mapping may be specified another way:

k-Tile A D

-o-
..l ..l ..l .l

a [4;4] t-0--t ..l ..l ..l .l
k [4; 4; 2] 0 1 2 3 ..l ..l ..l ..L
m [O; 1, 2] T 4 5 6 7 T ..l ..l ..l ..l
d [4; 8] 1 8 9 10 11 1 0 1 2 3 l l
OD [O; 4] 12 13 14 15 4 5 6 7

8 9 10 11
12 13 14 15

Replication of data

The special 'star' offset, *, may be specified for an empty k-Tile dimension
to replicate a data array across a device. If a *-k-Tile dimension i is part
of a k-Tile mapping, the same data is indexed for every value of i. This is
intuitively consistent with the semantics of the k-Tile offset, and is a practical
way to include useful functionality. It may also be used to match the replica
tion functionality of High Performance Fortran; see chapter 7.1 and the HPF
specification [36].

A *-offset may be incorporated into a template mapping thus; Given an
index space Kand a template space for K, T,

p E N, k E NP, k = (ko, ... , kp_1), K = index(k)

t E NP, t =(to, ... , tp- 1), T = index(t)

and two vectors OT and oK, which contain the offsets within T and K respec-
tively, ,

OT EN\ OT= (oTo, ... 'OTq-1), 0 ~ 0Ti ~ (ti - ki)

:

I

I
I

I

'

3.2. EXTENDING THE K-TILE FORMAT 65

OK E (N U {*})q , oz = (oKo, .. . , oKq- 1),0::; DK i < ki, or ki = *

A template/offset mapping including data replication may be defined thus:

6
otemplate*(t, k, oT , OK) = g: T -+ K

g(a) = {
..L if :li, ai < DT i for any i, 0 ::; i < q
..L if :li, ai ~ oT i + ki for any i, 0 ::; i < q

(bo , .. . , b(K)- i) otherwise.

h b {
Q if DK i = *

w ere i = ()
ai - oT i + ki - Oz i mod ki otherwise

Use of the *-offset is not allowable in a non-empty k-Tile dimension.
This example mapping shows how a look-up table could be stored locally

on every processor in a processor array:

k-Tile A D
a (6] +-- 0 -
k r6·4] l ,

OK (O; *]
m (O; 1]
d [6; 4]

0 1 2 3 4 5
T 0 1 2 3 4 5
1 0 1 2 3 4 5 l

0 1 2 3 4 5

0 1 2 3 4 5

3.2.6 Summary of extended k-Tile format

The k-Tile format is a flexible data mapping between a data space Mia and
a device space Md , and is in turn specified as a composite index mapping
between a device index space D and a data index space A.

Two types of index mappings are used to specify a k-Tile format: k-Tile
mappings and template mappings. k-Tile mappings allow a lower-dimensional
space to be mapped into a higher-dimensional space to allow dimensions to be
tiled. Template mappings allow spaces to be translated and empty space to
be declared around mapped data.

Two variations on the basic k-Tile mapping are used in the k-Tile format .
The index mapping between the k-Tile index space and the data index space

is an implicit k-Tile mapping allowing empty k-Tile dimensions for declaring
empty space.

The index mapping between the device index space and the k-Tile index
space is an inverse k-Tile mapping including a sense indicator.

Three template mappings are used in the k-Tile format , one each for the
device, k-Tile and data index spaces.

A variation on the basic template mapping allows k-Tile dimensions to be
replicated across the device.

66 CHAPTER 3. THE K-TILE FORMAT

The mappings and spaces defined in a k-Tile format are summarized in
this diagram showing the index spaces and index mappings included in a k
Tile index format:

' TD 9rD D 9Dr TK gr K 9K TA 9rA A I

where

1. TD is the device template space, containing the indices of an array in the
physical memory of some storage device. TD is optionally specified by
its shape, tD, and defaults to the shape of D.

11. D is the devi ce index space. D must be specified by its shape, d.

111. 9rD is a template mapping. grD is optionally specified by tD, d and two
offset vectors o D and or0 • If either o D or or0 are not specified, they
default to vectors containing zeroes.

1v. TK is the k-Ti le template space. TK is optionally specified by its shape,
tK, and defaults to the shape of K .

v. 9Dr is a an inverse k-Tile mapping with sense indication. gDr must be
specified by d, t K and by a mapping vector m .

vi. K is the k-Tile i ndex space. K must be specified by its shape, k.

vu. 9rK is a template mapping. grK is optionally specified by tK, k and two
offset vectors o K and orK. If either o K or orK are not specified, they

I

I

default to vectors containing zeroes. 9r K may be used to replicate data I
using the special *-offset in o K.

vm. TA is the data template space. TA is optionally specified by its shape, tA,
and defaults to the shape of A.

IX. 9Kr is an implicit k-Tile mapping, specified by k and tA .

x. A is the data index space, representing the data array to be mapped to
the device. A must be specified by its shape, a .

xi. 9TA is a template mapping. 9TA is optionally specified by tA, a and two
offset vectors OA and oTA. If either oA or or A are not specified, they
default to vectors containing zeroes.

j

I

I
I

i

I

.

I

•

I

3.3. PARALLEL MAPPING FUNCTIONS

9K may be written as the composition of several index maps:

9K Tn--+ A

9K otemplate(tA, a, oTA, o A) o

ikmap(k, tA) o

otemplate*(tK,k, oTK, oK) o

skmap- 1(tK , d, m, s) o

otemplate(tn, d , oTD , on)

67

The smallest subset of the k-Tile format, specified by a, k, m and d is
sufficient for specifying a large number of useful data mappings. Each of the
additional k-Tile format fields defined here has been shown to have a useful
role in defining data mappings, although only a small selection will usually be
needed for any particular problem.

3.3 Parallel Mapping Functions

Just as the k-Tile format may be used for specifying a wide range of regular
data mappings, it may also be used as the basis of a technique for specifying
a large class of data movement operations.

Specifying two k-Tile formats for the same data space implicitly defines a
remapping from one storage mapping to another; by specifying the current and
desired mappings for a data array to a device, a mapping is defined between
storage locations on the device through the data index space. The mapping be
tween two device addresses defined by two k-Tile formats is a parallel mapping
function.

Although the k-Tile format provides a way of specifying remappings, it is
also necessary to have a system of algorithms to perform the remapping by
taking the two k-Tile formats and performing the appropriate permutation of
the data stored on the device. Chapters 4 and 6 describe systems for perform
ing a subset of these k-Tile remappings using lower-level mapping specification
techniques. Chapter 5 describes a system that has been implemented on the
Ma.spar MP-1 for performing parallel mapping functions using a subset of the
k-Tile format restricted to spaces with dimensions with powers-of-two lengths,
and shows how these restricted parallel mapping functions may be converted
into lower-level operations.

3.4 Summary

This thesis is intended to address two problems in computation with large
multi-dimensional data sets: the mapping problem, or specifying the layout

-

68 CHAPTER 3. THE K-TILE FORMAT

of data on a storage or computational device, and the remapping problem, or
dynamically rearranging data on a device from one mapping to another. This
chapter demonstrates the k-Tile format, which is a flexible way of specifying
the layout of multidimensional data arrays on parallel or sequential storage or
computational devices, and hence is one solution to the mapping problem.

Fraser's tile format, which is a mechanism for specifying the layout of a
multidimensional image on a one-dimensional device, forms the basis for the
definition of the k-Tile format.

The k-Tile format is defined by a composition of index mappings between
multidimensional array spaces, the data space, the device space, and the k-Tile
space. The data and device spaces are representations of the data array and
the storage device. The structure of the k-Tile format is device-independent,
and may be used for any parallel architecture, or even sequential architectures.
Many data mappings can be specified with the k-Tile format:

• common ld and 2d storage mappings

• geometrical transformations such as rotations by multiples of 90°, reflec
tions and transpositions

• a variety of 3d volume mappings

• arbitrary translations and rotations within the data and device coordi-
nate systems

• index bit reversals for the Fast Fourier Transform

• data tiles bordered by empty space

• replication of data across many processors.

Specifying two k-Tile formats for the same data array implicitly defines
a remapping from one storage mapping to another; this forms the basis for
Parallel Mapping Functions, which use the flexibility of the k-Tile format to
describe a class of data movement operations.

I

I
I

I

I

I

I

I

I

I

I

I

I
I

I

Chapter 4

Radix 2 remapping

The mapping of multidimensional data onto a processor array can have a
significant effect on the selection, efficiency and programming complexity of
algorithms used to solve many problems. Where a combination of several algo
rithms, input and output operations are required to solve a problem, it is useful
to be able to alter the mapping of data on a processor array dynamically. This
chapter describes methods for both mapping and remapping multidimensional
arrays whose dimensions have lengths which are powers of two.

The index bit map is a flexible method of specifying a data mapping of such
an array to a processor array.

A pair of index bit maps may be used to specify a data remapping. This
remapping can be expressed as an index bit permutation and an index bit
inversion [1, 13, 14, 20, 21, 27, 28, 56, 70].

Algorithms have already been developed for index bit permutation and
inversion on mesh-connected processors, but by using a model of a more flexible
architecture we introduce more efficient algorithms.

4.1 The index bit map

Using the definitions in section 2.1, the index bit map defines a data-independent
data mapping from a multidimensional array space representing a data array
to a multidimensional array space representing a device array. The data map
ping is defined using an index mapping from the device array index space to
the data array index space. The index mapping is defined by a mapping be
tween bits of elements in the device array index space to the data array index
space.

Many commonly used data mappings may be specified by the index bit
map. Some examples are n-dimensional hierarchical, cut-and-stack, and scan
line mappings. Some geometrical transformations of these mappings may also
be described, such as n-dimensional transpositions, reverses and rotations by

69

I

-
70 CHAPTER 4. RADIX 2 REMAPPING

multiples of 90°. In the next chapter we will show that the index bit map is
equivalent to a restricted form of the k-Tile format.

4.1.1 An overview of the index bit map

The index bit map is similar to the k-Tile format in that it defines a data
mapping from a data array to a device array. However, there are two important
differences between the index bit map and the k-Tile format: firstly, we assume
that the size of the data and device arrays is a power of two; secondly, we
assume that the data and device arrays are one dimensional. We show that
the second restriction can be avoided by 'wrapping' multidimensional arrays
into one-dimensional arrays.

The data and device array spaces

The data and device spaces we use to define the index bit map are identical to
the data and device spaces used when defining the k-Tile format in chapter 3.
We repeat some of the properties of these spaces:

• All arrays have data type byte. Data types requiring multiple bytes can
be incorporated into an array by using the first dimension of the array
to represent the data type.

• Distributed memory parallel processors are treated as multidimensional
arrays, with the first dimension representing memory and subsequent
dimensions representing dimensions in the processor array

• The dimensionality and shape of the device array need not be fixed,
but both the dimensionality and the lengths of each dimension will be
bounded by the constraints on the physical device. By treating devices
as having lower dimensionality than they actually possesses, some may
be optimized for a chosen shape.

In addition, in this chapter we assume that the size of any multidimensional
array A is a power of two. With this restriction, it is often more convenient
to treat sizes in terms of log2 of their absolute size. Using the definitions in
section 2.1, we define

log size of A = IIAJI ~ log2 JAi

Similarly, we may define the log size of a set A,

log size of A = IIAII ~ log2 jAj

I

I

!

'

•

I

I

I

i

;

i

:

'

I

I

4.1. THE INDEX BIT MAP 71

Wrapping the data and device array spaces

For convenience we assume in this chapter that both the data and device
arrays are one dimensional. Although this restriction seems harsh, by defining
a mapping between a multidimensional array and a one dimensional array, we
may use one dimensional mapping techniques for multidimensional arrays.

Given an index space A with shape a,

p EN, a E NP, a= (ao, ... , ap_ 1), A= index(a)

and a one-dimensional destination index space z,

z = IAI, Z = index(z)

we define the index wrapping mapping from A to Z

6
wrap(a) = 9w : A -+ Z, where

9w(uo, ... , Up-1) = (v), for all (uo, . .. , Up-1) EA, where

p-1 i-1

v =Lui.IT ai
i=O j=O

The mapping is one to one and onto, and thus may be inverted directly

wrap-1(a)
6

g~1
: Z-+ A, where

9w(uo, ... , Up-1) = v => g~1
(v) = (uo, ... , Up-1) for all (uo, ... , Up-1) EA

Given two multidimensional spaces of shape a and d and a one dimensional
index map g,

p EN, a E W, a= (a0 , ••• , ap_ 1), A= index(a)

r EN, d E Nr, d =(do, ... , dr-1), D = index(d)

g : index(IDI) -+ index(jAI)

we may define a multidimensional index map from D to A:

9DA: D-+ A

9DA = wrap-1(a) o go wrap(d)

Thus, given a data mapping for a one-dimensional data array and a one
dimensional device array, we may define a data mapping for multi-dimensional
data and device arrays of the same size.

-

I

-

72 CHAPTER 4. RADIX 2 REMAPPING

Binary index notation

The basis of the index bit map is the manipulation of the binary digits, or
bits, used to represent data and device array indices. Following the notation
in Nassimi (56), we may refer to an index a in the index space A of a one
dimensional data array by representing it in binary form:

IIAll-1
a = allAll-1 ... ao = L ai.i

i=O
This notation should not confuse a with the shape of A; the arrays we are
dealing with in this chapter are one-dimensional and thus we shall not need to
refer to the shape of A separately from its size, because [A] = IA!.

Similarly, we refer to an index d in the index space D of the device array
in binary form also: ·

IIDll-1
d E D,d = dllDII-I·· .do= L di.i

i=O
Because the wrapped device index incorporates both memory indices and

processor indices, we sometimes refer to an index d while distinguishing be
tween the memory index bits and the processor index bits. Because the mem
ory dimension is dimension zero in the device index space, the memory index
bits form the lowest significant bits of the device index and the processor in
dex bits the most significant bits. To distinguish between the memory index
bits and the device index bits, we define two index spaces, P and M, which
respectively contain indices for the processor and memory components of the
device array. Given a multidimensional device shape b and a wrapped device
index space D we define P and M:

r E N, b E Nr, b = (bo, ... , br-1)

D = index(! index(b) I)

we define the memory index space

M = index(bo)

and the processor index space

P = index((b1, ... , br-1))

The number of processors is 2IIPII and the number of memory locations per
processor is 2IIMII.

We may now write an index d in the index space of the device array in
binary form, using mi for memory index bits and Pi for processor index bits:

IIMll-1 IIPll-1
d E D, d = PIIPII-I · . . PomllMIJ-1 · .. mo= L mi.i + 2IIMII. L Pi·2i

i=O i=O

:

'
'

I
I
I

I

I
I !

'

I

I

I

i

I

I
I

I

I

I

I
I

'

4.1. THE INDEX BIT MAP 73

Mapping device index bits to data index bits

An index bit map between the device index space and the data index space is
defined by an index bit permutation followed by an index bit inversion. The
index bit permutation defines a mapping between the device index bits and
the data index bits, and the index bit inversion causes a fixed set of index bits
to be inverted .

When a device index contains more bits than a data index, not all the
device index bits can be assigned to data index bits. Any device index bit
which is assigned a data index bit is said to be enabled. Any device index bit
not assigned a data index bit is said to be disabled and is instead assigned to
be either zero or one. A disabled index bit is said to be inverted if it is assigned
to one.

Any device indices which are mapped into the data array by the index bit
map are said to be enabled, and device addresses mapped to 1- are said to be
disabled.

An enabled processor contains mapped data and a disabled processor con
tains none, and an enabled memory address contains mapped data on an en
abled processor and a disabled memory address contains no mapped data on
enabled processors.

4.1.2 Definition of the index bit map

Permutations

A permutation is an operation changing the order of a vector's elements [39].
Given a vector a of length q,

'II' is a set

q EN

a E 'Jrl, a= (ao, ... , aq-1)

we define a permutation using a mapping P:

P : {O, ... , q - l} -+ {O, ... , q - l}

P(i) = P(j) only if i = j
From P we define a permutation 1r:

1r(a) = b, for all a E 'Jrl, where

a= (ao, ... , aq-1)

b = (bo, ... , bq-1)

-

-
74 CHAPTER 4. RADIX 2 REMAPPING

G 1 2 3 4 D 3 4 1 5 (0) (13) (245)

0 1 2 3 4 5

l ~
0 1 2 3 4 5

0 3 5 1 2 4 ~

(a) Direct notation (b) Cycle notation

Figure 4.1 : Two representations of an example permutation

bP(i) = ai for all i,O :s:; i < q

A permutation is usually represented in one of two ways, in direct notation or
in cycle notation, as shown in figure 4.1.

The direct notation gives the destination position of each element written
below its original position, for example

(
0 1 2 3 4 5)

7r= 0 3 4 1 5 2 .

Because in binary index notation bit zero appears at the right, it is sometimes
more convenient to represent a permutation in direct notation with the original
positions presented in decreasing order, for example

(
5 4 3 2 1 0)

7r= 2 5 1 4 3 0 .

The cycle notation shows the permutation as cycles. A cycle is a list of
element positions where each position is followed by its destination position.
Because listing the elements in this way must always return to the first element
in the list, the list is terminated by the last element in the cycle. Two cycles are
said to be disjoint if they have no element positions in common. A permutation
may be represented as a list of disjoint cycles,

1r = (0)(13)(245)

A single element cycle is called an identity cycle, and need not be included in
the cycle notation if its presence is clear by context. The identity permutation,
in which no element changes position, is represented I. Because each cycle

'

I
I

I

'

'

i
I

'

4.1. THE INDEX BIT MAP 75

represents a closed loop, it does not matter which element begins the cycle.
Usually each cycle will be represented with the element with the smallest index
first, and the cycles will be listed with the first elements in increasing order.

A permutation can also be represented as a permutation matrix, and the
permutation performed by multiplying the vector by the permutation matrix.
Using the same example again,

/ 1 0 0 0 0 0 '
0 0 0 1 0 0

7r(a) = a.
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0

Permutations thus may be composed by multiplication and are associative,
but not commutative. For example:

(21).(01) (012)

(01).(21) (021)

(012345).(02) (01)(2345)

(0123).(01).(12).(23) I

(012345) .(01) (12345)

(012).(345).(03) (012345)

(012345).(543210) I

(012345) . (012345) (024)(135)

Every permutation P has an inverse, p-1, such that

Po p-1 = I

Index bit permutations

An index bit permutation P is an operation changing the order of q bits in an
integer. Let

q EN

P: {O, ... , q - 1} - {O, ... , q - 1}

P(i) = P(j) only if i = j

Using the permutation map P, which specifies q destination positions of q bits,
we define an index bit permutation P:

ibp(q,P) 6 P: {O, ... ,2q -1}- {0, ... ,2q -1}

.....

I

-

76 CHAPTER 4. RADIX 2 REMAPPING

P(u) = v for all u, v E {O, ... 2q - 1}, where

q-1 q-1

u = L 2i.ui, v = L 2P(i).ui
i=O i=O

For example, let P be the permutation:

P = (O l
2

) = (012) = 0 0 (0 1~ 0)
1 2 0 l O

from P we can define an index bit permutation P:

P(a)
P(O)
P(l)
P(2)
P(3)
P(4)
P(5)
P(6)
P(7)

P = ibp(3, P)

P(a2a1ao)
P(0002)
P(OOl2)
P(Ol02)
P(Oll2)
P(l002)
P(l0l2)
P(ll02)
P(lll2)

a1aoa2
0002
0102
1002
1102
0012
0112
1012
1112

0
2
4
6
1
3
5
7

An index bit permutation is one to one and onto, therefore an inverse function
exists. This inverse is

ibp-1(q, P) ~ p-1
: {O, ... , 2q - 1}-+ {O, ... , 2q - 1}

p-1 = ibp(q,P- 1)

Index bit inversions

An index bit inversion S is an operation inverting a selection of q bits in an
integer. This can be performed by the use of the bitwise exclusive-or operator,
EB. This operator performs the logical exclusive-or operation on corresponding
bits in two integers to yield an integer result. Let

q EN

s E N, 0 :S: s < 2q

Using the integer s, which specifies a fixed set of bits to invert, we define an
index bit inversion S:

inv(q,s) ~ S: {O, ... ,2q -1}-+ {O, ... ,2q -1}

I

I

I

I

:

I

I

i

:
I
I

I

I

Ii

4.1. THE INDEX BIT MAP

S(u)=uEBs

In binary notation, the effect of this operation is clearer:

S = Sq-1 ... So

S(u) = v, where

U = Uq-1 · .. Uo

V = Vq-1 ... Vo

Vi = ui EB Si, for all i, 0 :::; i < q

77

Two properties of index bit permutation and index bit inversion are used in
the following sections: S is its own inverse:

S(S(u)) = s EB (s EB u) = (s EB s) EB u = 0 EB u = u;

and index bit permutation is distributive over index bit inversion

Index bit map

The index bit map is defined using an index bit permutation and an index bit
inversion. Letting

r, q EN, r 2: q

A = index(2q)

D = index(2r)

s EN, 0:::; s < 2q

P: {O, ... , r - 1} - {O, ... , r - 1}

P(i) = P(j) only if i = j
we can define an index mapping gx:

gx = inv(r, s) o ibp(r, P)

The function gx almost defines a mapping from device indices to data indices.
However, if the device array index contains more bits than the data array
index, some device index bits are mapped to bit positions not present in the
data index. Thus, we must define data addresses as undefined where device
addresses are mapped outside the data index space. Device index bits that are
mapped to bit positions not present in the data index are said to be disabled,

I

-
78 CHAPTER 4. RADIX 2 REMAPPING

and those that are mapped are said to be enabled. Correcting this deficiency
in 9x, we define the index bit map g:

ibm(r,q,P,s) ~ g: D -Au {..l}

(d) = {
inv(r, s) o ibp(r, P)(d) if inv(r., s) o ibp(r, P)(d) EA }

g for all d E D ..l otherW1se

From g we may directly define a data mapping, f

f(A)(d) = A(g(d)) for all d ED

When there are two or more disabled device bits, the choice of P and S is
not unique, because disabled device index bits can be assigned to non-existent
data index bits in any order.

An inversion of the index bit index map, g-1 , from data indices to enabled
device indices may be derived as follows. Letting

E = { d E D : g(d) E A},

E is the set of enabled device addresses. g is one to one and onto from E to
A, therefore an inverse function of g exists. Letting

P = ibp(q, P)

s' EN, s' = p - 1(s)

g-1 : A- E

g- 1(g(d)) = d for all d EE

The inverse index bit map g-1 from A to E may be derived as follows:

a

p-l(a)
p - l(a)

p - 1 (s) EB p - 1(a)
inv(r, s') o ibp(r, p - 1)(a)

ibm(r,q,P,s)(d) for all d EE

inv(r s) o ibp(r, P)(g- 1(a)) for all a EA

s EB P(g- 1(a))
p- 1(s EB P(g- 1(a)))
p-1(s) EB p- 1(P(g- 1 (a))
g- 1(a)
g- 1(a)

Thus, the inverse index bit mapping from A to a subset of D has the same
form as the index bit map.

I

I

I

'

I

I

I

:

I
I

4.2. RADIX 2 REMAPPING 79

4.1.3 An index bit map notation

An index bit permutation and index bit inversion may be represented in a
simple notation, providing a way to directly specify any index bit map.

• The permutation P , which directly assigns device index bits to data
index bits, is specified by showing the destination data index bit for each
device index bit position. The data index is represented by the binary
number allAll-1 ... ao, with zeroes assumed to be in bit positions more
significant than IIAII - 1. For example,

p =

p

(; ~ ~)
(~ ~ ~)

P = (; ~ ! ~) = (0)(132) =} ibm(4, 3, P, 0) - a2a1 Oao

• The sense is specified by putting an overbar over enabled inverted device
bits, and using 1 instead of O for disabled inverted device bits.

For example,

P= (;
1 ~) = (0)(1){2) } 1

s = 210 = 0102

p-(2 ; n = {012) } - 0

s = 210 = 0102

p = (32 21 31 00) = (0)(132) }
=} ibm(4, 3, P, s) - a2a1 lao

s = 310 = 00112

An example mapping from a data array to a device is shown in Figure 4.2.

4.2 Radix 2 remapping

Once we have a data array mapped onto a device in one index bit map, we
may wish to re-order the data on the device to correspond to another index

.....

....

-
80 CHAPTER 4. RADIX 2 REMAPPING

Data array Index bit map
A (a2 ao 1 a1) - /\ -

000 pbits mbits
001
010 , ,
011

Device array D
100

mOO mOl mlO mll
101

pOO XXX XXX 001 011
110 pOl XXX XXX 000 010
111 plO XXX XXX 101 111

pll XXX XXX 100 110

Figure 4.2: Example index bit map of a data array onto a parallel device

bit map. Such a remapping is specified given the current source index bit map
and the desired destination index bit map.

Where two mappings may be specified by an index bit map, data mapped
to the array in one mapping may be remapped to the other using the technique
of index-bit permutation and index bit inversion. Index bit permutation is a
special case of index-digit permutation [27, 28, 70], which is itself related to
general parallel mapping functions.

Efficient algorithms have been designed to perform operations similar to
radix 2 remapping on SIMD mesh-connected computers by sequences and com
binations of inversions of single bits and swaps of pairs of bits. The difference
between radix 2 remapping and the previous work is the inclusion of dis
abled device index bits in radix 2 remapping. An optimal mesh algorithm for
processor-only index bit permutation and inversion is described by Nassimi
[56], and a system for processor/memory index bit permutation and inversion,
Parallel Data Transforms, has been created for the AMT DAP [1, 20, 21, 59].
Algorithms for radix 2 remapping are efficient on a mesh connected processor,
but require multiple communication steps and multiple passes over data stored
in the processor array.

In this chapter we develop generalizations of these earlier methods. In
section 4.3 we show how radix 2 remapping may be performed using a set of
atomic index bit operations. In section 4.4 we develop an optimal algorithm for

I

'

I

I

'

I

'

!

'

4.2. RADIX 2 REMAPPING 81

radix 2 remapping for an indirect addressing machine with a crossbar switch.

4.2.1 Definition of radix 2 remapping

Usually when defining index mappings we define a mapping from destination
indices to source indices to allow data to be replicated in several locations on a
device. In a radix 2 remapping all data is mapped and data replication is not
allowed, ensuring that a mapping we define for remapping between enabled
source addresses and enabled destination addresses is one to one and onto.
Thus, we may define a radix 2 remapping as a mapping from source device
indices to destination device indices.

This mapping is defined by using the two index bit maps defining the
radix 2 remapping. Using the source index bit map we map the source device
index into a data index. The data index can then be mapped to the desired
destination address using the inverse of the destination index bit map.

Assume we have two index bit maps g., and 9d for a data array with index
space A to a device array with index space D. Using the definitions in sec
tion 4.1.2 we can derive a mapping from source device addresses to destination
device addresses. Letting

q, r EN, q :Sr

P.,: {O, ... ,r -1} --t {O, ... ,r-1},P(i) = P(j) =} i =j

Pd: {O, ... , r - 1} --t {O, .. . , r - 1}, P(i) = P(j) =} i = j

P., = ibp(r, P.,), Pd = ibp(r, Pd)

s., E N, 0 :S S < 2"', sd E N, 0 :S S < 2r

g.,: D --t AU {.l},g., = ibm(q,r,P.,,s.,)

9d: D --t AU {.l}, 9d = ibm(q, r, Pd, sd)

E.,={dED:g.,(d)EA}

Ed = { d E D : gd(d) E A}

we define the radix 2 remapping from the source mapping to the destination
mapping

t::,.
remap(q, r, P.,, s.,, Pd, sd) = g: E., --t Ed

g(d.,) = g"i1(g.,(d.,)) for all d., EE.,

I

I

'

-
82 CHAPTER 4. RADIX 2 REMAPPING

Using a similar derivation to that of the inverse index bit map, the radix 2
remap can be derived:

g(ds) gi 1(gs(ds)) for all ds E Es
ibm-1(r, Pd, sd)(ibm(r, Ps, ss)(ds))
ibm- 1(r, Pd, sd)(ss EB Ps(ds))

Pi1(sd) EB Pi1(ss EB Ps(ds))
Pi1(sd) EB Pi1(ss) EB Pi1(Ps(ds))
Pi1(sd EB ss) EB Pi1

o Ps(ds)
s' EB P'(ds)

Thus, the transformation from source to destination address consists of an
index bit permutation and bit inversions. We will refer to this form of device
index mapping as a radix 2 remapping.

Although the transformation need only be applied to enabled source device
addresses to define an index remapping, because the component mappings are
one to one and onto in the whole of D , the domain of the mapping can be
extended over the whole of D. An example of using index bit maps to define
a radix 2 remapping is shown in figure 4.3.

4.2.2 A radix 2 remapping notation

The form of the radix 2 remapping is identical to the index bit mapping, and a
similar notation could have been used. However, we have chosen to represent
radix 2 remappings with an extended form of cycle notation. This notation
is convenient when examining the operation of the parallel algorithms to be
presented in section 4.4.

An index bit permutation is represented as a list of cycles to be performed
from left to right . Unlisted device bits are assumed to be disabled in both the
source and destination index bit maps, unless they can be seen to be enabled
from their context, in which case they may be omitted for brevity.

As an example, given a source index bit mapping:

and a destination index bit mapping:

the resulting radix two remapping can be specified in cycle notation as:

I

I

I

I

I

I

'

'

4.2. RADIX 2 REMAPPING

Source index bit map: (a2 a0 1 a1)

gg(d3d2d1do) = d1d3d0d2 EB 1001 = d1d3dod2
-1 -gs (Oa2a1 a0) = a2aoOa1 EB 0110 = a2a01a1

Destination index bit map: (a2 a1a0 1)

gct(d3d2d1do) = dod3d2d1 EB (1111)

gct-1(0a2a1 a0) = a2a1 aoO EB (1111)

Map from source to destination
gct-1(gg(d3d2d1d0)) = gct-1cd1d3d0d2 EB 1001)

= d3dod2d1 EB 0011 EB 1111

= d3dod2d1

= (mo Po m1-)(p1) (cycle notation)

Device data permutation (IMl=2, IPl=2)

mOO mOl mlO mll

pOO XXX XXX 011

pOl XXX XXX

plO XXX XXX

pll XXX XXX 110

Figure 4.3: Two index bit maps define a radix 2 remapping

83

-
84 CHAPTER 4. RADIX 2 REMAPPING

Inversion of device index bits

Inversion of a device index bit is indicated by an over bar, for example d.0 . Inver
sions are performed after the enclosing permutation cycle has been performed;
thus, {do , di, d.2) is equivalent to both (do, di, d2){d.2) and {d.i){do, di, d2).

Disabled device index bits and index bit chains

A bit which is disabled in the source mapping is indicated by a trailing . or ,.....,
on the bit if it is set to zero or one respectively. Device index bits which are
disabled in both the source and the destination map are indicated (di-) if di is
set to zero, or (di ,.....,) if di is set to one.

A disabled bit may be inverted in the remapping; {di.) indicates di is set to
zero in the source map and one in the destination map, and (di ,.....,) indicates
di is set to one in the source map and zero in the destination map.

A remapping may include some bits which are disabled in the source map
ping and enabled in the destination mapping. The remapping may still be
represented in cycle notation, because the defining index bit permutation can
be used to write the cycles. When there is more than one disabled device bit,
the defining index permutation is not unique. However, there is exactly one
description of the remapping in which there is at most one disabled device bit
in each index bit cycle, and we always choose this permutation to represent
the remapping.

The disabled bit is moved by the index bit permutation just as the enabled
bits are, thus the disabled bit in the source mapping is moved to a disabled bit
in the destination mapping. We always represent a cycle containing a disabled
bit in cycle notation with the pre-disabled bit at the end of the cycle, and
the post-disabled bit at the start of the cycle. We call this form of cycle a
chain because it can be regarded as a cycle which does not close in on itself
because of the disabled bit. However, for many operations there is no need to
distinguish between cycles and chains.

Before inversions have occurred, the disabled bit in the destination mapping
will be set to the value of the corresponding disabled bit in the source mapping.
For example, in the remapping { d3 , d2, di, d0 ,.....,), d0 is disabled with value 1 in
the source mapping, and d3 will be disabled with value 1 in the destination
mapping; data stored at location a2aia0 1 will be moved to la2aia0 .

Disabled bit operations have not been included in previous expositions of
radix 2 remapping. A table showing a selection of the 36 possible remappings
that can be specified with two index bits are shown in Figure 4.4.

Index bit cycles vs. Data cycles

It is important to distinguish between index bit cycles, which are cycles in
the conceptual movement of index bits, versus data cycles, which are cycles

'

I

I

'

I

I

4.3. REMAPPING WITH ATOMIC OPERATIONS

Operation

(mo,m1)

(mo,m1)

(mo,m1-)

(m1,mo.)

(mo)(m1 .)

(mo.)(m1 .)

Address:

Effect

~I bcJ(b@J => ~~CfJ@J
~

~=>[£]~@]Cf]____..,'--.../

~=>C£JD@J0
~

I aJI=:J~D=>C£J~DD
~

~CfJDD=>DDCfJ~
~

~DDD=>~DDD
00 01 10 11 00 01 10 11

85

Figure 4.4: Some remappings on two index bits. a, b, c, d are data items stored
in memory; blanks indicate disabled addresses

in the movement of data elements on the device. Similarly, it is important to
distinguish between index bit chains in the remapping and data chains in the
actual movement of data values.

4.3 Remapping with atomic operations

A set of four atomic operations may be used to perform the data movement
specified by a radix 2 remapping. This method of performing the transfor
mation is not optimal, but requires only relatively simple algorithms and can
be performed on simple processor architectures such as mesh connected archi
tectures with direct memory addressing. The atomic operations have many
similarities to the methods used by both Flanders and Nassimi et al. [20, 56],
but differ both in the inclusion of operations for dealing with disabled index
bits and in the lack of consideration for efficiency.

4.3.1 Assumed architectural features

The operations outlined in the following sections may be performed on a pro
cessor architecture with the following features:

• A tightly coupled uni-processor to control the SIMD array to allow re
cursion and global data broadcasting

.......

86 CHAPTER 4. RADIX 2 REMAPPING

• A local memory for each array processor accessible by direct addressing
(that is, each processor is able to read the same address in its local
memory simultaneously)

• A mesh connection network of one or more dimensions; more dimensions
will allow more efficient communication

• A linear ordering of processors from O .. . 2IIPII - 1, and a means for every
processor to access its own index, iproc.

These are a subset of the features available on the MasPar MP-1 computer,
on which these operations have been implemented.

4.3.2 Atomic index bit operations

Any permutation may be performed by a series of element exchanges, and
similarly, an index bit permutation may be performed as series of index bit
exchanges. Thus, a radix 2 remapping may be performed as a series of index
bit exchanges followed by a sequence of single index bit inversions.

The four atomic operations used to perform the radix 2 remapping are:

swap Swaps two enabled index bits di and df

Dd.,t swap(D.,rc, i,j)

invert Inverts an enabled index bit di:

invert(Dsrc, i)

D .,rc(dll Dll- 1 . . . di . .. do)

move Swaps an enabled index bit di with a disabled (and therefore constant)
index bit df

Dd.,t move(D .,re, i, j)

D.,rc (d ll Dll- 1 · ,.di, . . dj ... do)

After this operation, di will be disabled with the pre-operation value of
di and di enabled.

I

I

I

I

I

4.3. REMAPPING WITH ATOMIC OPERATIONS

Original :
swap(do,d2) :
move(d5,d6) :
swap(do,d3) :

swap(d1 ,d2) :
invert(d1) :

flip(d7) :
invert(d6) :

(do, di, d2, da)(ds, d6 rv)(d7-) (da)
(d1, d2)(do, da)(ds, d6 rv)(d7.) (da)
(d1, d2)(do, da)(d6)(d7.) (ds "")(da)
(d1, d2)(d6)(d1.) (do)(da)(ds rv)(da)
(d1) (d6)(d1.) (do) (d2) (da)(d5 rv)(da)
(d6)(d7.) (do)(d1)(d2)(da)(ds "")(da)
(d6) (do)(d1)(d2)(da)(d5 rv)(d1 rv)(da)

(do)(d1)(d2)(da)(d5 rv)(d6)(d1 rv)(da)

87

Figure 4.5: A sequence of atomic index bit operations to perform a radix 2
remapping. The original radix 2 remapping problem is shown on the top line.
As each atomic operation is performed, the remaining remapping problem is
shown with identity index bits shown on the right.

flip Inverts a disabled (and therefore constant) index bit di:

Dd.,t flip(D.,rc, i)

Although each operation to be described is only mentioned in terms of
one or two index bits, it must be remembered that the actual data movement
operation to be performed also depends on which device index bits are enabled
at the time of the operation .

Note that swap could be used instead of move, and invert used instead
of flip to perform these operations, but this would e tail unnecessarily moving
data from disabled addresses; although swap and invert are sufficient for
performing arbitrary radix 2 remapping operations, they are not by themselves
atomic because move and flip cannot be defined in terms of swap and invert.
Figure 4.5 shows an example sequence of atomic operations used to simplify a
radix 2 remapping.

4.3.3 Efficient use of atomic index bit operations

Because many radix 2 remappings may be performed by more than one se
quence of atomic operations, there is great scope for finding efficient sequences
of atomic operations for performing them. Improvements may also be achieved
by combining sequences of atomic operations into more efficient compound
operations. Ideally, all the data movement in a remapping should occur in
a single step per memory address, and the algorithms to be presented in the

88 CHAPTER 4. RADIX 2 REMAPPING

next section achieve this goal in many cases. For simpler architectures, how
ever, more steps are required; Nassimi and Sahni's algorithm is optimal on
a multidimensional mesh connected computer, but only handles processor in
dex bit permutations and inversions [56]. In the implementation of Parallel
Data Transforms on the AMT-DAP, many operations are combined to improve
efficiency [1, 20, 21].

With the handling of disabled index bits, specifically the move operation,
finding an optimal sequence of operations becomes much more difficult. After
a move operation the data access requirements change; for example, after
moving a memory index bit to a processor index bit any subsequent operations
will require half the number of memory accesses. Another complicating factor
is that in a real implementation of atomic bit operations, the time taken by
the various operations is dependent on the enabled bits in the mapping and
quite a complicated quantity to calculate.

However, good descriptions of atomic index bit permutation algorithms can
be found in the work of Flanders and Nassimi et al. [20, 56], and they will not
be considered further here. A description of an implementation of atomic radix
2 remapping operations can be found in chapter 5.

4.4 Optimal radix 2 remapping

Parallel memory accesses and communication operations in a massively-parallel
distributed memory computer are often a large cost compared to simple intra
processor or uni-processor operations. As long as the computational overhead
is modest, the most effective way to ensure that radix 2 remapping can be
performed quickly is to limit the number of memory accesses and uses of the
communication network. Ideally, all the processors containing data should
be operating continuously, and each data item should be read from memory,
passed through the communication network, and written to memory exactly
once. We develop algorithms which are optimal in usage of the communica
tions network, as each data element is passed through the network at most
once. The use of memory may be sub-optimal, because data elements may
sometimes be read from, and written to, memory more than once. Algorithms
for in-place remapping are developed first, and it is shown how they may be
modified for remapping by copying from one array to another.

4.4.1 Assumed architectural features

The optimal algorithms described in the following sections require the following
architectural features:

• A tightly coupled uni-processor to control the SIMD array to allow re
cursion

I,

,,

Ii

I ,

11

I:
1,

Ii

4.4. OPTIMAL RADIX 2 REMAPPING 89

• A fast mechanism for broadcasting data from the uni-processor to the
SIMD array

• A fast mechanism for transferring data from a single SIMD processor to
the uniprocessor to allow distributed storage of large lists

• An indirect addressing capability, allowing each processor in the array
to access a different address

• A flexible interconnection network, such as a cross-bar switch, to allow
processors to be connected in arbitrary permutations

• A large set of fast parallel registers to minimize processor array memory
accesses to often-used data; each PE on the MasPar MP-1 has 48 registers
of 32 bits each, of which 40 registers are available to programmers.

• A linear ordering of processors from O ... 2II PII _ 1, and a means for every
processor to access its own index, iproc .

These are a subset of the features available on the MasPar MP-1 com
puter, on which the algorithms were developed. On the MasPar, each crossbar
connection may be shared by a cluster of several processors. This limitation
will only increase communication time by a constant factor, as is shown in
chapter 5.

4.4.2 Types of cycles

When examining lists of cycles used to specify a radix 2 remapping, it will be
useful to distinguish between various types of index bit permutation cycle.

• (m) represents a memory index bit (m-bit) identity cycle

• (p) represents a processor index bit (p-bit) identity cycle

• (m*) represents a cycle containing only m-bit permutations and/ or in
versions

• (P*) represents a cycle containing only p-bit permutations and/or inver
s10ns

• (mp*) represents a cycle containing exactly one m-bit and multiple p-bits

• mixed cycles contain a mixture of m-bits and p-bits and do not fall into
any of the other categories.

It will also be useful to distinguish between even-parity (mp*) cycles, con
taining an even number (including zero) of index bit inversions, and odd-parity
(mp*) cycles.

' I

I

--

90 CHAPTER 4. RADIX 2 REMAPPING

4.4.3 A recursive approach

By working up recursively from components designed to handle simpler types
of permutation cycle, we will show how efficient radix 2 remapping algorithms
can be built.

The components in the remapping algorithm, in approximately bottom-up
order, are as follows:

• Processor bit cycles (P*), including single processor bit inversions (p)

• Memory bit cycles (m*), including single memory bit inversions (m)

• Combined (P*) and (m*) cycles

• Conversion of mixed cycles to (m*) and (mp*) cycles

• Single memory bit/multiple processor bit cycles (mp*)

• Identity cycles (m) and (p)

4.4.4 (P*) cycles

(P*) cycles are easy to perform using a computer with a crossbar switch con
necting all the processors. Because no m-bits participate in the permutation,
only one byte per processor will be affected. To perform the permutation, every
pre-enabled processor reads a single byte from memory and sends it through
the communications network to its destination processor; every post-enabled
processor then writes the received byte back to memory.

A function to perform (P*) cycles, permute _p, is shown in function 4.1.
Global variables are used in all routines to to make it clear that all variables
are stored in processor registers, and to ensure that no parameter stack is
necessary. A stack is necessary for storing return addresses to enable recursion
to take place, but these stack operations can be performed wholly within the
fast uniprocessor.

In order to accommodate the offset corresponding to the constant values
associated with disabled memory bits, and to allow the integration of other
types of cycle, an offset, moff set, may be passed to access bytes from the
memory array other than the first.

The pre-enabled flag svalid can be pre-computed by calculating proces
sors containing enabled addresses in E.,rc, as defined in section 4.2.1. When
moff set contains only enabled addresses, it is sufficient to limit the calculation
of svalid and dvalid to calculate enabled processors only.

The destination processor, dproc, may be computed by permuting and
inverting the bits of iproc as defined by the remapping. As with the valid
flags, dproc may be computed once before performing the permutation.

.

I

I

4.4. OPTIMAL RADIX 2 REMAPPING 91

Function 4.1 (P*) permutations

plural char *m;
plural int moffset;
plural int dproc;
plural int svalid;
plural int dvalid;
plural char z;

permute_p()

{
if (svalid) {

I * Base address of m emory array *I
I* Offset for flipped memory bits etc. * /

I * Destination processor * /
I * 1 if proc is enabled in source map * /

I* 1 if proc is enabled in de stination map * /
I* Temporary data storage * /

z = *(m+moffset);
router f dprocj.z = z;

}

if (dvalid) {
* (m+moffset) = z;

}
}

4.4.5 (m*) cycles

When performing memory index permutations, every data element to be moved
must be part of either a data cycle or a data chain, so we may perform a
memory permutation with at most one read/write per memory address in the
data array by traversing a linked list containing lists of permutation cycles and
chains, as shown in figure 4.6. A function to perform memory permutations is
shown in function 4.2, permute...m. The code for chains is not shown; moving
data in a chain is performed in the same way as moving data in a cycle, except
a read at the start of the chain and a write at the end of the chain are not
necessary.

The function permute_m uses the processor array as a linear array to store a
linked list of data permutation cycles in the plural variables off set , next_off
and next_cyc . Because processor bits are not being permuted, the values of
the variables svalid and dvalid are actually the same.

In order to compute the linked list representing the data permutation cy
cles, a mapping is first defined between data storage locations and individual
processors by assigning m-bits participating in the permutation to processor
index bits (not to be confused with the p-bits involved in the remapping). All
processors thus mapped now contain a source offset into the memory array,

I

--
92 CHAPTER 4. RADIX 2 REMAPPING i

.

I Bit cycle: mm* cycle (m0,m1,m2)

Data cycle: (O,l,3,7,6,4)(2,5)
I

~ I I + • •
I ooo I oo 1 o 1 o I o 11 11 oo 11 o 1 111 o 1111 l

t t l + l Tt=J
I I

Permutation as linked list:

4 ~ 6 ~ 7 ~ 3 ~ 1 ~ 0

i ,.::....__ _ _____________ ____J

5 f---. 2 .__

'
Figure 4.6: A memory permutation as a linked list

I

4.4. OPTIMAL RADIX 2 REMAPPING 93

Function 4.2 (m*) permutations

plural char *m;
plural int moffset;
plural int svalid;
plural int dvalid;
plural char zO;
plural char zl;
plural int oO;
plural int ol;
plural int offset;
plural int nexLoff;
plural int nexLcyc;
int cycles_start;

I* Base address of memory array * /
I* Offset for flipped memory bits etc. * /
I* 1 if proc is enabled in source map * /

I* 1 if proc is enabled in destination map * /
I* Storage J or data bytes * /

int chains_start;

I* Storage for data offsets * /

I* All offsets used in memory permutation * /
I* proc with next offset in cycle or chain *I

I* proc with next cycle or chain * /
I* proc with first cycle * /
I* proc with first chain * /

permute_m()

{

}

int cycles_current = cycles_start;

while (cycles_current =/ -1) {
int elLcurrent = cycles_current;

oO = proc[elLcurrentJ.offset;

/* Start of data cycle * /

I* Get first elt in cycle * /

}

if (svalid} zO = * (m+moffset+oO};
elLcurrent = proc[elLcurrentj. next_off;

while (elLcurrent =/ cycles_current) {

}

ol = oO;
oO = proc[elt_currentj. offset;

if (svalid} zl = *(m+moffset+oO};
if (dvalid} *(m+moffset+ol} = zl;
elLcurrent = proc[elLcurrentj. nexLoff;

if (dvalid} *(m+moffset+oO} = zO;

cycles_current = proc[cycles_current}.nexLcyc;

/* Code for chains here * /

I* Make space * /
/* Next elt *I

...

94 CHAPTER 4. RADIX 2 REMAPPING

off set. The destination offset may be computed from the source offset by
applying to it the (m*) index bit permutations. Every processor can compute
the index of the processor containing the destination location corresponding
to its source offset by mapping the bits of the computed destination offset
back to processor bits, every processor. As the direction of each linked list
representing a cycle is from destination offset to source offset, this pointer can
be reversed and stored in next_of f, which can be accomplished in one router
step .

All the cycles and chains have now been generated a.s cyclic linked lists. To
apply them it is necessary to make a list of them by finding the first element
in each.

It does not matter which element of a cycle is regarded a.s the first. For
simplicity, we will regard the processor with the minimum value of iproc a.s
being the first element in a cycle.

For each chain, however, the first element is always a disabled source offset
and the final element will contain the corresponding disabled destination offset.

The first element in every cycle and chain can be propagated to every pro
cessor in a maximum of JJ PII steps by the use of a recursive doubling algorithm,
where at each step the head of the list is propagated to a doubling number
of processors. The longest data cycle occurring in an index bit permutation
containing JJPJJ bits is 2JJPJJ (corresponding to (mo, m1 .. . mllPll-1)), thus the
number of doubles required is at most flog2 2JIPIJ1.

Once we have a group of processors that can identify themselves as the head
of a cycle or chain, a further recursive doubling can be used to form a linked
list of chains and cycles in at most JJPJJ steps, which is stored in next_cyc.

The communication required for this recursive doubling may be performed
using the crossbar switch.

The first element in either the lists of cycles or chains can be found by
determining the minimum value of iproc containing the head of a cycle or
chain list , and stored in cycles_start and chains_start.

If the number of m-bits appearing in (m*) permutations is k, the number of
data memory locations to be permuted can be no greater than 2k. If k > JIPJJ,
it is necessary to break the memory permutation into several parts.

There are two ways to do this . The easiest is to break the index bit per
mutation into several parts to be performed separately, each with IIPIJ m-bits
or fewer. As an example, if JJPJJ = 10 the (m*) permutation

could be performed by application of the two (m*) permutations

An alternative method, instead of splitting the index bit cycles, splits the
data cycles into several data permutations. This method ha.s the advantage

I

I

I

4.4. OPTIMAL RADIX 2 REMAPPING 95

that only part of the data array need be permuted at each step. Unfortunately,
it also has the disadvantage that the number of data permutations increases
substantially; in the example given, instead of two data permutations being
computed and possibly retained, thirty-two are required.

4.4.6 Simultaneous (m*) and (P*) cycles

Memory and processor permutations may be combined into one function,
permute-1np, by sending each data element to its destination processor while
performing the memory permutation.

4.4. 7 Transforming mixed cycles into (mp*) cycles

The algorithms we have presented for performing (m*) and (P*) are optimal,
in that they may be performed using a minimum of memory accesses and uses
of the communications network. An optimal algorithm for performing mixed
cycles would also be desirable. Given enough registers for storage of temporary
values and data destinations, such algorithms do exist (see section 6.4). Given
only a small number of processor registers, these algorithms cannot be used.

However, by converting any mixed cycle into an (m*) cycle followed by a
combination of (m*) and even-parity (mp*) cycles optimal performance can
be achieved in the use of the communications network, if not in the use of
memory. The following steps show how this transformation may be effected.

Isolating memory bits

Assume we have several mixed cycles. Each cycle which contains groups of at
least two adjacent memory bits can be modified to contain isolated memory
bits as follows:

• Write the cycle so that it begins with a group of memory bits and ends
with a processor bit, i.e. as

(ma, mb ... me,Pd .. ·Pe)

where the bits between ma and me are memory bits and the bits between
Pd and Pe are arbitrary.

• Split the cycle into three; if any bit is inverted in the original cycle and is
factored into several cycles, it should only be inverted in the final cycle.

1. (ma, me)

11. (ma,Pd···Pe)

m. (mb ... me)

......

96 CHAPTER 4. RADIX 2 REMAPPING

• Repeat the above on cycle (ii) until it contains only isolated memory bits

Now we have an index bit permutation consisting of several memory per
mutations and several mixed permutations containing isolated memory bits.
All the type (i) cycles appear in front of the type (ii) cycles, and can be
performed in a separate step. Type (iii) memory cycles contain no bits in
common with the mixed cycles, and so may be performed independently of,
and simultaneously with, them.

Splitting into (mp*) and (m*) cycles

The mixed cycles which contain more than one isolated memory bit can be
modified to contain exactly one memory bit as follows:

• Write the cycle so that it begins with a single memory bit, i.e. as

where the bits between Pc and Pd are processor bits and the bits between
Pe and Pt are arbitrary

• Split the cycle into three, handling inverted bits as before:

i. (rria, mb)

ll. (mb,Pc ·· ·Pd)

ill. (ma,Pe ···Pt)

• Repeat the above until the cycle (iii) has been split into isolated (mp*)
cycles

Now we have an index permutation consisting of several (m*) cycles and
several (mp*) cycles. As with the conversion from mixed cycles to mixed cycles
with one isolated memory bit, type (i) memory permutations can be moved to
the front of the (mp*) cycles and performed in a separate step.

Converting to even-parity (mp*) cycles

Finally, if an (mp*) cycle does not contain an even number of inversions, it
can be modified as follows:

• Write the cycle so that it begins with its single memory bit, i.e. as

where the bits between Pb and Pc are processor bits.

'

I

I

I

I

I

4.4. OPTIMAL RADIX 2 REMAPPING

Original mixed cycle:

(mo,m1,m2,Po,P1,P2,m3,m4,p3,p4,p5 ,m5)

Isolate m-bits:

Rewrite: (ms, mo, m1, m2, Po, Pi, p2, m3, m4, p3,]54, Ps)
Split: (ms, m2)

(ms,Po,P1,P2,m3,m4,p3,p4,ps)(mo,m1,m2)
Rewrite: (ms, m2)

(m3,m4,p3,p4 ,Ps,ms,Po,P1,P2)(mo,m1,m2)
Split: (ms, m2)(ma, m4)

(m3, Pa, P4, Ps, ms, Po, P1 , P2)(m4)(mo, m1, m2)

Convert to (mp*) and (m*) cycles:

Split: (ms, m2)(m3, m4)(ma, ms)
(ms, P3, P4, Ps) (m3, Po, P1, P2)(m4) (mo, m1, m2)

Set to preserve parity:

Split: (ms, m2)(m3, m4)(ma, ms)(ms)(ma)
(ms, Pa, P4, Ps) (m3, Po, P1, P2)(m4) (mo, m1, m2)

Simplify: (m2, ma, m4, ms)
(ms, p3,p4, Ps)(ma, Po, PI, P2)(mo, m1, m2)

97

Figure 4. 7: Transformation of mixed cycle into (m*) and (mp*) cycles (with
identity cycles omitted for brevity)

• Split the cycle into two cycles:

1. (ma)

11. (ma, Pb· · · Pc)

As before, each memory bit may be inverted with all the other memory
permutations in a pre-processing step. An example of splitting a mixed cycle
into (m*) and (mp*) cycles is shown in figure 4. 7.

4.4.8 Even-parity (mp*) cycles

An even-parity (mp*) cycle has several desirable properties. Because only one
memory bit is present in the cycle, only two memory elements in each processor
are affected by the permutation. Because the cycle contains an even number of
bit inversions, the parity of the permuted bits is preserved by the permutation.
This allows us to split the data permutation into two disjoint permutations,

--

98 CHAPTER 4. RADIX 2 REMAPPING

corresponding to permuted device bits of odd and even parity. Because the
parity of a device address can be changed by the inversion of a single index
bit , each processor involved in the data permutation contains one data element
offset from permutations of each parity, corresponding to the two values of the
m-bit of the (mp*) cycle.

By using indirect addressing, the data permutation can be performed on
device addresses of either parity as a pure processor permutation, with each
processor's m-bit set to the parity of the participating p-bits for the even parity
permutations, and its inverse for odd parity permutations.

If we have a processor permutation suitable for the even parity addresses,
we can modify it for the odd parity addresses simply by inverting the processor
bit which is the source for the single memory bit. Similarly, if the initial
memory offset ensures that the processor permutation affects only the even
parity addresses, we can switch to the odd parity addresses simply by inverting
a memory bit in the memory offset.

As long as they are independent, multiple (mp*) cycles may be performed
recursively: because parity is preserved in each cycle independently we still
have a pure processor permutation. Figure 4.8 shows how an example set of
two (mp*) permutations may be performed using pure processor processor per
mutations by exclusive-or'ing the memory offsets with a parity mask generated
from the parities of the appropriate device address bits.

Assuming we have the processor permutations and memory offsets set up,
function 4.3, permute_x, will perform (mp*) permutations.

In order for this algorithm to operate, moff set and dproc must be pre
computed. moff set is set so that all memory locations initially read are part
of the even parity offsets of (mp*) cycles. To perform the even parity processor
permutation first, we need to set each bit in moff set that corresponds to a
memory bit in an (mp*) cycle to the parity of the processor bits in that cycle.

The calculation of dproc will include (P*) cycles, as described for the func
tion permute_p, supplemented with (mp*) cycles. The bits in dproc partic
ipating in (mp*) cycles are calculated exactly as for (P*) cycles, except that
the value of the processor bit appearing after the memory bit in the (mp*)
cycle is determined by the value of that memory bit, which is initially just the
parity of the processor bits in the cycle.

4.4.9 Identity cycles

Identity cycles may be included with the (m*) and (P*) cycles, and this is the
approach taken with identity processor bits.

A different approach is taken with identity memory bits; by keeping the
number of memory bits in the memory cycles small, it may be possible to ensure
that the length of the list of offsets in the memory permutation is smaller than
the number of processors. Function 4.4, permute_i, will recursively call the

j

!

I

I

4.4. OPTIMAL RADIX 2 REMAPPING

POOO
POOl
POlO
POll
PlOO
PlOl
PllO
Plll

POOO
POOl
POlO
POll
PlOO
PlOl
PllO
Plll

MOO

MOO
0000

c:;;00101

01010
c:;;01111

[10001
1010

[11011
11110

MOl MIO

MOl MIO

~0001 001
0100

~1011
1110

~10000
10101 1011

~11010
11111 1110

Mll

Mll Parity Mask
0011 00

01

10

01100~
11

10010 01
10111 00
11000 11
11101 10

Figure 4.8: Parity masking to align the (mp*) cycles (mo,Po,P2)(m1,P1)

99

-
100 CHAPTER 4. RADIX 2 REMAPPING

Function 4.3 (mp*) permutations

plural char *m;
plural int moffset;
plural int dproc;
plural int svalid;
plural int dvalid;

I* Base address of memory array * /
I* Offset for flipped memory bits etc. * /

I* Destination processor * /
/* 1 if proc is enabled in source map * /

I* 1 if proc is enabled in destination map * /

int num_mp; I* Number of mp* cycles *I
I* Memory bits to be flipped in mp* cycles * /

I* Processor bits to be flipped in mp* cycles * /
I* Mask to modify svalid for mbits *I
I* Mask to modify dvalid for mbits * /

int mp_mbits[};
int mp_pbits[};
plural int mp_svalid;
plural int mp_dvalid;

permute_x()

{

}

if (num_mp > OJ {
num_mp = num_mp - 1;

I* Perform even parity processor permutation * /
permute_x();

I* Perform odd parity processor permutation * /
moffset = moffset EB (l«mp_mbits[num_mp});
dproc = dproc EB {l«mp_pbits[num_mp});
permute_x();

I* Restore state of variables * /
moffset = moffset EB {l«mp_mbits[num_mp});
dproc = dproc EB {l«mp_pbits[num_mp});

num_mp = num_mp + 1;
} else {

permute_mp();
}

I

I

I

I

I

I

I

I

•

4.4. OPTIMAL RADIX 2 REMAPPING 101

Function 4.4 Identity cycles

plural char *m;
plural int moffset;

I* Base address of memory array *I
I* Offset for flipped memory bits etc. * /

int num_id; I* Number of memory identity cycles * /
I* Identity bit numbers *I int id_mbits[};

permute_i()

{

}

if {num_id > OJ {
num_id = num_id - 1;

I* Perform permutation with mbit = 0 *I
permute_i();

I* Perform permutation with mbit = 1 * /
moffset = moffset EB id_mbits[num_id};
permute_i();

I* Restore state of variables * /
moffset = moffset EB id_mbits[num_id};

num_id = num_id + 1;
} else {

permute_x();
}

other permutation functions while holding an identity memory bit at a value
of zero and then one.

4.4.10 Remapping data while copying

With a set of algorithms to remap an array in-place on a device, it is possible
to perform a remap copying one array to another by reading the data from the
source array and writing it into the destination array.

In some situations, care must be taken to ensure that intermediate states in
the remapping process do not overflow the bounds of the memory array. As an
example, when remapping a data array that is stored in a long memory array
in only a few processors to a short memory array stored in a large number of
processors, it may be necessary to perform an in-place remapping to a short-

I

--1

102 CHAPTER 4. RADIX 2 REMAPPING

representation in the long array with many processors before copying the data
into the short memory array and remapping the data back again.

A similar problem occurs if trying to obtain speed-ups by remapping a sub
set of an array while wishing to preserve data in disabled storage locations; the
nature of the transformations for mixed cycles do not guarantee that disabled
storage locations will remain untouched during the intermediate stages of data
remapping.

4.5 Summary

This thesis is intended to address two problems in computation with large
multi-dimensional data sets: the mapping problem, or specifying the layout
of data on a storage or computational device, and the remapping problem, or
dynamically rearranging data on a device from one mapping to another. This
chapter introduces efficient algorithms for performing data remapping on a
restricted set of multidimensional data arrays.

The index bit map provides a method for specifying data mappings for data
arrays, the length of whose dimensions are powers of two, to multidimensional
devices whose dimensions are similarly constrained. This mapping technique
is similar to the mapping vectors of Flanders' PDTs, except that the index bit
map allows the inclusion of disabled device index bits. It is shown that the data
movement required to remap a data array between two index bit maps may be
performed using the technique of index bit permutation, including index bit
inversion. Methods for performing this technique on mesh-connected parallel
processors have been substantially explored by Nassimi and Sahni, Flanders,
and Cruz. Using similar algorithms, we describe Atomic index bit operations
which could be used to perform a remapping between two index bit maps using
the mesh connections and direct memory addressing capabilities of a parallel
processor.

The MasPar has some architectural features that differ from earlier SIMD
machines, and we introduce an optimal algorithm for index bit permutation on
a parallel computer with indirect memory addressing and a fixed-time global
router network. The algorithm operates by breaking an arbitrary index bit
permutation into six types of index bit permutation cycle, all of which may be
performed simultaneously by a structure of nested recursive routines perform
ing a different type of index bit permutation cycle:

• identity memory index bits (m) may be performed in two separate parts
corresponding to a bit value of O or 1

• identity processor bits (p) require no overhead whatsoever

• memory index bit permutations (m*) may be performed using a dis
tributed linked list

I

I

I

I

I

I

,,

I

I

1,

I

I
I

I

!

I

;

i

4.5. SUMMARY 103

• processor index bit permutations (P*) may be performed directly using
the global router network

• single m-bit, multiple p-bit permutations (mp*) may be performed using
the global router and indirect memory addressing, using a base memory
address modified by the parity of the device index bits included in the
permutation cycle.

Some index bit permutations may need to be performed as a memory per
mutation followed by an index bit permutation consisting of cycles of these
five types. The algorithm is equally applicable to in-place or copying remaps.

...

'

...

104 CHAPTER 4. RADIX 2 REMAPPING

I

I

I

I

I

!

I

i

I

I

I

I

:

I

Chapter 5

Implementation of Radix 2
PMFs

By combining the remapping algorithms described in chapter 4 with a simpli
fied form of the k-Tile format and PMFs described in chapter 3, an efficient
and useful tool can be implemented. This chapter describes an implementa
tion of radix 2 PMFs for the MasPar MP-1 computer, and gives some related
testing and performance results.

5.1 The 2k-Tile format

The form of the k-Tile format to be used for radix 2 parallel mapping functions ,
the radix 2 ktile or 2k-Tile format, is restricted in several ways to allow the
algorithms of chapter 4 to be used. All dimensions must have lengths which are
powers of two, and only the following k-Tile fields are included in the 2k-Tile
format :

a - The shape of the image space

k - The shape of the k-Tile space

s - The k-Tile sense indicator

m - The mapping between the k-Tile and device spaces

d - The shape of the device space

The 2k-Tile format is equivalent to the index bit map of chapter 4. This
may be shown by describing how to convert a 2k-Tile format into an index bit
map.

105

I

106 CHAPTER 5. IMPLEMENTATION OF RADIX 2 PMFS

We have earlier described how to use two index bit maps to define a radix
2 remapping. This allows us to use 2k-Ti1e formats to describe radix 2 remap
pings. With the use of the algorithms described in chapter 4, we can create a
complete radix 2 PMF system.

5.1.1 Converting a 2k-Tile format to an index bit map

A 2k-Tile format may be converted to an index bit map using the following
steps:

• Check the 2k-Ti1e format for internal consistency

• Re-write the 2k-Ti1e dimensions as k-Tile index bits

• Re-write the data and device dimensions using the k-Tile index bits

• Re-write the 2k-Ti1e sense indicator as an inverting bit mask

• Pass the data index bits through the corresponding 2k-Tile index bits to
form a map from data index bits to device index bits

• Invert the device index bits corresponding to inverted 2k-Tile index bits

As an example, the 2k-Tiie format:

a [256; 256)
k [16, 16, 16, 16)
s [+, +, -, -]
m (0, 2, 1, 3)
d [256; 256)

may be written in index bits as:

a [k1k5k5k4k3k2k1ko, k15k14k1ak12k11k10k9ks]
k [kak2k1ko, k1k5k5k4, k11k10k9ks, k15k14k13k12)
s [++++, ++++, ----, ----]
m (0, 2, 1, 3]
d [kak2k1ko, k11k10k9ks, k1k5k5k4 , k15k14k1ak12]

Note that the assignment of 2k-Tiie index bits of lower significance to the
first dimensions in the data and 2k-Tiie spaces is arbitrary, and a mapping that
gives 2k-Tile index bits of higher significance ·to the first dimensions would be
equally valid. However, this arrangement has been chosen because the first
device dimensions are of lowest significance in the device index.

From this form of the 2k-Ti1e mapping, an index bit map may be derived:

I

'

I

'

5.1. THE 2K-TILE FORMAT 107

'a15'a14'a13'a12a1a6asa4'a11 'a1oagaaa3a2a1 ao

Any empty 2k-Tile dimensions simply correspond to disabled device index
bits, and the sense indicators of empty 2k-Tile dimensions correspond to the
sense of the disabled index bits.

5.1.2 A canonical form of the 2k-Tile format

Although the 2k-Tile format was intended to be as compact as possible, it is
still possible that many 2k-Tile formats may describe exactly the same map
ping from the image space to the device space. This can make it difficult to
determine if two 2k-Tile formats are in fact identical. This can occur in the
following situations:

1. Empty 2k-Tile dimensions occurring in the most significant positions in
the device dimensions. For example:

a [128; 128] a [128; 128]
k [128; 128; 8, 8) k [128; 128)
s [+,+,+,+] - s [+,+]
m [O, 2; 1, 3) m [O; 1]
d [1024; 1024] d [128; 128]

11. Data dimensions needlessly split. For example:

a [128; 128] a [128; 128]
k [16, 8; 16, 8] k [128; 128]
s [+,+,+, +] - s [+,+]
m [O, 1; 2, 3] m [O; 1]
d [128,128] d [128; 128]

111. Empty dimensions listed in varying order. For example:

a [128; 128] a [128; 128]
k [128; 128; 2, 2] k [128; 128; 2, 2]
s [+, +,+,+] - s [+,+,+,+]
m [2, O; 3, 1] m [3, O; 2, 1]
d [256,256] d [256,256]

lV. A three or more dimensional device treated as sub-dimensional. For
example, on a 32 x 32 processor array:

a [128; 128] a [128; 128]
k [32, 4; 32, 4] k [32, 4; 32, 4]
s [+,+,+,+] - s [+,+,+,+]
m [1, 3; O; 2] m [1, 3; 0, 2]
d [16, 32, 32] d [16; 1024]

I

....

108 CHAPTER 5. IMPLEMENTATION OF RADIX 2 PMFS

However, in some implementations the processor array may behave dif
ferently when configured as a two-dimensional 32 x 32 processor array
as opposed to a linear array of 1024 elements, so this situation must be
treated with care.

A 2k-Tile format is called canonical only if it has the following properties:

• No empty k-Tile dimension appears in the most significant part of a
device space dimension

• No adjacent k-Tile dimensions appear in increasing order within the same
device dimension and the same data dimension

• Empty k-Tile dimensions are referenced in increasing order m the k
Tile/ device map, m

• Where appropriate, a device of three or more dimensions can be treated
as a device of lower dimension.

Rather than applying multiple transformations to an existing 2k-Tile for
mat to convert it into canonical form, it is simpler to convert the 2k-Tile format
into an index bit map, and then back-convert this into canonical form. We
have not undertaken to prove that the above four properties are sufficient for
defining a canonical form of the 2k-Tile format. As the representation of an
index bit map is unique, the canonical form of a 2k-Tile format may be defined
as the 2k-Tile format generated by converting the original 2k-Tile format into
an index bit map and then back-converting into a unique 2k-Tile format.

5.2 Data types used by radix 2 PMFs

In order to represent 2k-Tile formats, index bit maps, radix 2 remaps and
algorithm-specific information for performing the remap, several data types
are used within the radix 2 PMF system:

kt-Tile format

The Ar Tile format data structure 'kt ile' contains four arrays to represent a, k,
m and d, and a bit vector to represent s. Because the lengths of the dimensions
of the three spaces are powers of two, they may be stored as log

2
of their actual

value. This reduces storage space for the array and allows many computations
on the dimensions to be performed using addition and subtraction instead of
the slower multiplication and division.

.

'

I
:
:

I

'
I

I

'

I

111 I 1

5.2. DATA TYPES USED BY RADIX 2 PMFS 109

Memory tag

The memory tag data structure 'mtag' represents a block of memory stored on
the processor array: the size of the array, the address of the block of memory,
and the k-Tile format currently associated with the memory.

Index bit map

The index bit map data structure 'kmap' represents an index bit map: two
arrays define a bidirectional map between data index bits and device index
bits, and two bit vectors represent device bit sense and device bit enable.

Radix 2 remap

The radix 2 remap data structure 'gmap' represents a radix 2 remap: two
arrays define a bidirectional map betwee·n source and destination device index
bits, and three bit vectors define pre-enabled, post-enabled , and post-inverted
device index bits.

Radix 2 remap in cycle notation

The cycle notation data structure 'eye' represents the same information as the
gmap with supplementary information to define the index bit cycles: arrays list
the start of each bit permutation cycle of each type ((PP*), (mm*) and (mp*)),
and three bit vectors indicate identity device bits, device bits involved in simple
permutations (m-bit-only and p-bit-only), and device bits involved in (mp*)
permutations.

Atomic remap operations

The atomic operations data structure 'rop' contains a list of atomic index bit
operations for performing a radix 2 remapping. Because the implementation
can use the optimal radix 2 algorithms, atomic remap operations are no longer
required.

Remapping implementation

The remapping implementation data structure 'remap' contains all the infor
mation needed to perform an optimal radix 2 remapping operation. Because
this operation can have multiple components, this structure is more complex
than the other data structures. Information which is local to a single processor
and linked lists are stored in distributed memory.

I

110 CHAPTER 5. IMPLEMENTATION OF RADIX 2 PMFS

5.3 Functions used to access PMFs

To use the PMF system, several functions are provided for specifying k-Tile
formats, declaring data memory, initializing data remaps and remapping data
in-place or by copying.

Other useful functions are provided for generating k-Tile formats represent
ing some standard mappings and for performing some useful transformations
on existing k-Tile formats.

The following functions are a subset of those available in our MasPar MP-1
implementation of radix 2 PMFs.

5.3.1 k-Tile format manipulation

Declaring le-Tile format - new_ktile(in ktile, out kid)

This function takes a k-Tile format as an argument, which it checks and con
verts to a canonical form. If the format has already been specified, a usage
count is incremented and no memory storage is required. If valid, a k-Tile
identifier is output, otherwise a descriptive error message is printed and an
error indicator returned.

Inquiring le-Tile format - inquire_ktile(in kid, out ktile)

This function takes a k-Tile identifier as an argument. If the identifier is valid,
the appropriate k-Tile format is output. If invalid, a descriptive error message
is printed and an error indicator returned.

Freeing k-Tile format - free_ktile(in kid)

This function takes a k-Tile identifier as an argument. If the identifier is invalid
or if the k-Tile identifier is referred to by an mtag or a pair, a descriptive error
message is printed and an error indicator returned. Otherwise, the usage count
of the kid is decremented. If the usage count reaches zero the storage for the
k-Tile is freed.

5.3.2 mtag manipulation

Declaring an mtag - new_mtag(in mem, in size, out mid)

This function takes a memory address and its size as arguments. If the memory
defined is valid and does not overlap other declared mtags, an mtag id is
output. Otherwise, a descriptive error message is printed and an error indicator
returned.

I

I
11 :

11

I

I

i

I

'

I

5.3. FUNCTIONS USED TO ACCESS PMFS 111

Freeing an mtag - free_mtag(in mid)

This function takes an mtag identifier as an argument. If the identifier is valid,
the mtag is freed. Otherwise, a descriptive error message is printed and an
error indicator returned.

Inquiring an mtag - inquire_mtag(in mid, out mtag)

This function takes an mtag identifier as an argument. If the identifier is valid,
the mtag is output. Otherwise, a descriptive error message is printed and an
error indicator returned.

Associating a mapping with an mtag - set_mtag_kid(in mid, in kid)

This function takes an mtag identifier and a k-Tile identifier as an argument .
A null k-Tile identifier may be passed to indicate that no mapping is attached
to the specified memory. If either identifier is invalid or the mtag is too small
for the mapping described by kid, a descriptive error message is printed and
an error indicator returned. Otherwise, the ktile identifier is associated with
the mtag identifier.

5.3.3 Remapping

Initializing a remap - init_remap(in kidl, in kid2)

This function takes as arguments two k-Tile identifiers. If the two identifiers
describe valid mappings between arrays of the same shape and enough memory
is available to represent the remapping, a mapping is generated to remap data
from format kidl to format kid2 (but not vice-versa). Otherwise, a descriptive
error message is printed and an error indicator returned. If an attempt is made
to initialize a remapping more than once, only one copy of the remapping is
kept and an internal usage count ensures that the remapping is retained while
it is needed.

Freeing a remap - free_remap(in kidl, in kid2)

This function takes as arguments two k-Tile identifiers. If either identifier is
invalid or if the map between the k-Tile identifiers has not been initialized, a
descriptive error message is printed and an error indicator returned. Otherwise,
the usage count of the remap is decremented. If the usage count reaches zero
the storage for the remap is freed.

'
I

112 CHAPTER 5. IMPLEMENTATION OF RADIX 2 PMFS

Performing an in-place remap - remap{in mid, in kid)

This function takes as arguments an mtag identifier and a k-Tile identifier. If
either identifier is invalid or if the k-Tile identifier is too large for the mtag
memory, a descriptive error message is printed and an error indicator returned.
Otherwise, the data stored at the address referred to by the mtag is remapped
in place and the mtag's kid is updated to reflect the new mapping. Note
that if a remap has previously been initialized for the two k-Tile formats, the
operation will require no pre-initialization and will occur much faster.

Performing a copy remap - copy(in midi, in mid2, in kid)

This function takes as arguments two mtag identifiers and a k-Tile identifier.
If any identifier is invalid or if the k-Tile identifier is too large for the mtag
memory, a descriptive error message is printed and an error indicator returned.
Otherwise, the data stored at the address referred to by mtagl is simultane
ously remapped and copied to the memory referred to by mtag2, and mtag2's
kid is updated to reflect the new mapping. Note that if a remap has previ
ously been initialized for the two k-Tile formats, the operation will require no
pre-initialization and will be faster.

5.3.4 Standard mappings

To ease the burden of programmers creating their own k-Tile formats, several
functions have been provided to generate k-Tile descriptions of some standard
mappmgs.

2d cut'n'stack mapping - make_2dcs{in size, in x, in y, out ktile)

This function takes as arguments the shape of a 2d image and a k-Tile struc
ture. If the shape is valid, a 2d cut'n'stack k-Tile format is generated and
output. ~f the shape is invalid, a descriptive error message is printed and an
error indicator returned.

2d hierarchical mapping - make_2dh{in size, in x, in y, out ktile)

This function takes as arguments the shape of a 2d image and a k-Tile struc
ture. If the shape is valid, a 2d hierarchical k-Tile format is generated and
output. If the shape is invalid, a descriptive error message is printed and an
error indicator returned.

ld cut'n'stack mapping - make_Jdcs{in size, in x, in y, out ktile)

This function takes as arguments the shape of a 2d image and a k-Tile struc
ture. If the shape is valid, a ld cut'n'stack le-Tile format is generated and

5.3. FUNCTIONS USED TO ACCESS PMFS 113

output. If the shape is invalid, a descriptive error message is printed and an
error indicator returned.

ld hierarchical mapping - make_J dh(in size, in x, in y, out ktile)

This function takes as arguments the shape of a 2d image and a k-Tile struc
ture. If the shape is valid, a ld hierarchical k-Tile format is generated and
output. If the shape is invalid, a descriptive error message is printed and an
error indicator returned.

ld scan mapping - make_Jdscan(in size, in x, in y, out ktile)

This function takes as arguments the shape of a ld image and a k-Tile struc
ture. If y is smaller than or equal to nproc, a ld scan mapping, else a ld
hierarchical mapping, is generated and output. If the shape is invalid, a de
scriptive error message is printed and an error indicator returned.

5.3.5 Geometrical transformations

Once a k-Tile format has been generated, it is possible to perform several
geometric transformations on the dimensions within the k-Tile format. Note
that these functions will work on any valid k-Tile formats, not just those
generated with the make_ ... functions. The operations may also be composed,
but it must be remembered that because the operations are performed on the
image dimensions rather than the device dimensions, they will appear to act
as pre-operations rather than post-operations.

Transposition of axes - xpose(in diml, in dim2, inout ktile)

This function will transpose two image dimensions in a k-Tile format. Because
there are several possible ways of transposing rectangular mappings, the two
dimensions to be transposed must be the same length.

Reversal of axis - reverse(in dim, inout ktile)

This function will reverse an image dimension in the k-Tile format.

Index bit reversal of axis - bitrev(in dim, inout ktile)

This function will bit-reverse the index bits of an image dimension in the k-Tile
format . This function is useful for the remapping prior to a radix 2 FFT.

-

--

•

A

114 CHA PTER 5. IMPLEMENTATION OF R ADIX 2 PMFS

[!]: r. ..
~ .. I ..; - . s:: - -- r • .. , '

- - ...
- - -

-

. (
- - I

-
......- -- , ...

J ... -..
Q.

= - . C: ,- '---
-

r -aJ'
-- -

,ti - -... -- r ~- ..
' :§

-

l -
- -

~ t t t
....

'--- -
,.......- -c .. :g :g C: "' :g ... -.0 QJ 0.. C)I) ...

:::l - ... il "' "' i;.. @
....

~
.I<: 6 ... cu p.. ,, ! - • -

otttttt - 1· .. II -1
QI

a.i ~ a.i a.i a.i a.i a.i - il • 3 ... E E
... ... - j: ... B £ £ B "O u u u u 0

E ::l E ::l ::l ::l .

~ l:: l:: l:: ... -....
i;.. "' "' "' "' "' "'
~

QJ 0.. 0.. u 0.. C)I) QI
il "' "' e- "' "' il >.. p..] ~

6 " QJ .lO:
QJ 6 - ~ ... ~ ...

'----' J
Figure 5.1: The partial structure of a radix 2 PMF implementation on the
MasPar MP-1

Ill --

Ill

II

5.4. STRUCTURE OF THE PMF SYSTEM 115

5.4 Structure of the PMF system

Figure 5.1 shows the structure of the radix 2 PMF system. The passing and
transformation of data types between the modules shows how a data array
may be remapped by declaring k-Tile formats, mtags, and data remappings.

5.5 PMFs using atomic index bit operations

In chapter 4 it was shown that it is possible to perform a radix 2 remapping
using the four atomic index bit operations swap, move, invert and flip. An
implementation of these four operations allowed the concept of radix 2 PMFs
to be tested before implementation of the optimal algorithms.

Heuristics to use the atomic operations efficiently were developed, although
a more complete analysis could determine how to perform some remappings
at less expense. The atomic operations are performed in the following order:

1. move chains are performed by a series of move operations; a move oper
ation requires half the data movement of the equivalent swap operation

u. p-bits are moved into their correct positions using swap operations, from
most significant to least significant; operations involving higher signifi
cant p-bits are generally slower than lower significant p-bits

m. m-bits are moved into their correct positions using swap operations; as
all p-bits have been move to their correct positions, moving the m-bits
will only involve memory operations

1v. post-inversions are performed with invert and flip .

Because this system was implemented as a prototype for testing implemen
tation ideas, timing information was not recorded.

5.6 PMFs using the optimal algorithm

An implementation of the optimal algorithms described in chapter 4 has been
completed for the MasPar MP-1, and many optimization strategies have been
used. Because of the recursive nature of the algorithms the implementation
needed some care. Several architectural features peculiar to the MasPar can
give greater improvements in performance.

I

......

116 CHAPTER 5. IMPLEMENTATION OF RADIX 2 PMFS

5.6.1 Assembler coding

In many computer languages such as C, recursive algorithms are expensive
because of the need to pass parameters and save machine registers on a data
stack. On the MasPar, recursion can be especially expensive; the memory
attached to the processors is relatively slow, and 40 32-bit registers are available
to the programmer.

To avoid these difficulties, the data remapping functions were hand-coded
in assembler with parameters passed in machine registers. This avoids the
need to use a stack within the processing elements at all, and greatly limits
the use of the ACU stack with its much faster memory.

Coding in assembler also allowed more flexibility in taking advantage of
some special machine instructions, instruction scheduling to allow memory
operations to occur in the background, and more efficient use of the router
links.

At the time the PMF system was first implemented no optimizing compiler
was available for the MasPar and hand-coded assembler was more efficient than
compiler-generated code. An optimizing MPL compiler based on the GNU C ,
compiler has now been introduced, making the gains available by the use of
hand-coded assembler less marked; the reasons given here for hand-coding are
still applicable, however [47, 48].

5.6.2 PE register usage

Every processing element in the MasPar contains 48 data registers of 32 bits
each, of which 40 are available to the assembly language programmer. This is
more than sufficient to store all the distributed information required to perform
a remapping; except in the initialization stages, the slow parallel memories
need only be accessed for the data to be remapped.

The ACU has fewer registers the the PEs but, because the overhead in
accessing its own memory is so small (two clocks to access memory instead of
one clock to access an internal register), keeping remapping information in its
memory does not significantly affect performance.

5.6.3 Chunking to larger data objects

Most large sequential machines nowadays have a wide data path between the
processor and its memory which is 32 or even 64 bits wide. This affects the
performance of the processor when dealing with different data types; many
operations take an identical time whether for a single byte or for a 32- or
64-bit integer.

For this reason, when moving large amounts of data on a sequential ma
chine, it is most efficient to move the data in chunks of the largest available

1111

5.6. PMFS USING THE OPTIMAL ALGORITHM 117

data type.

In a massively parallel processor array, the data path between a processing
element and its memory is typically not so large; the MasPar MP-1 has an
eight-bit data path between processors and memory, and some machines have
only a one-bit data path. Although data transfers are limited by hardware
to a certain width, the MasPar instruction set includes instructions for data
types of up to 64 bits.

Although PE/memory communication is limited to an eight-bit data path,
there are several good reasons for chunking the data movement to larger data
types:

• Using larger data types allows the use of fewer instructions, reducing
instruction startup time and decreasing the number of times a loop needs
to be executed.

• Treating the index bit permutation as an operation on 16, 32 or 64-bit
integers instead of 8-bit integers allows 1, 2 or 3 memory index bits to
be ignored

• When using the global router to send a single byte, 88% of the time is
spent opening and closing the router connection and only 12% of the
time is used for actual data communication. When transferring a 64
bit object, only 48% of the time is used for opening and closing the
communication and 52% of the time can be used for sending data (see
figure 5.2).

The last point is the most significant; for this reason, it is faster to perform
extra memory permutations before and after the router remapping step to
allow router communications to be performed using as large a data type as
possible.

5.6.4 Processor cluster optimizations

The processors in the MasPar are not individually connected to a crossbar
switch, but in clusters of sixteen processors per router connection. Clusters
correspond to processing element chips, each of which contain two clusters.
Similarly, each block of 32 x 32 processors correspond to a single board on the
MasPar. These hardware details change the view of processor index bits from
a contiguous sequence of bits to a more complex address with different bits
selecting board, cluster and processor within the cluster. Viewed in this light,
the 14-bit address of a processor in a 16384 element MasPar would look like
this:

b b C C C i i b b C C C i i
i pro c =P1JP12P11PioP9PsP7 P5PsP .JJzP2P1Po,

.......

118 CHAPTER 5. IMPLEMENTATION OF RADIX 2 PMFS

with "b" representing board-selection bits, "c" representing cluster-selection
bits and "i" representing intra-cluster processor selection bits [5].

Opening a router connection does not connect individual processors, but
individual clusters of sixteen processors. To give the appearance of a link
to every processor, the communication must be iterated until every processor
has obtained a link and sent its data. This iteration often has the effect of
decreasing router performance by a factor of sixteen, but in many situations
different numbers of iterations are required. If only a few processors in each
cluster are attempting to communicate, fewer than sixteen iterations may be
required. When performing complex processor permutations, the hardware
may not be able to find an optimal connection order for processors within each
cluster, resulting in more than sixteen iterations being required; section 6.4
describes a software method for obtaining an optimal connection order.

On a single board MasPar with 1024 processing elements, the connection
network associated with the router may be treated as a crossbar switch, as
it is capable of connecting clusters in any permutation. However, on a multi
board MasPar, some cluster permutations involving processor bit permutations
between cluster and board bits cannot be connected in a single step. It is not
known how to predict when this will occur, so that it is necessary to check
which processors succeed in a router communication and repeat it if some fail
[17].

Once a router connection is open it is possible for any processor in that
cluster to send data through the opened connection to any processor in the
connected cluster.

If the data remapping to be performed contains a p-bit permutation in
which intra-cluster index bits are only permuted with intra-cluster index bits,
sixteen data transfers may be performed using only one router open/close.
Similarly, if the data remapping contains a p-bit permutation involving three
intra-cluster index bits, eight data transfers may be performed using a single
router open/close.

An example of such an operation is the transposition of a 128 x 128 ar
ray stored on a 128 x 128 processor array; the complete remapping may be
performed with the opening of only one router connection per cluster:

Source k,. Tile Destination k-Tile Radix 2 remapping
a [128; 128] a [128; 128]

ii ii cc cc
k [128; 128] k [128; 128] (Po, P1)(P1, Ps)(P2, Pg)(P2, P10)
m [O; 1] m [1; OJ C C b b b b

(P4, P11)(Ps, P12)(P6, Pi3)
d [1; 128; 128] d [1; 128; 128]

Because it is necessary to synchronize the sending with the receiving proces
sors, it is more complex to perform this cluster optimization if any intra-cluster
bits take part in an (mp*) cycle, so this is not performed.

i
I

I

I

I

I

I

..

I

'
•

5. 7. TESTING 119

5.6.5 Using the xnet for P/M transpositions

As well as a router network, the architecture of the MasPar includes a toroidal
mesh network, the xnet. This network allows every processor in the array to
communicate simultaneously in the same direction, so it is at least sixteen
times faster than the router for nearest-neighbour communication (figure 5.2).

When performing a radix 2 remapping using the algorithms and optimiza
tions previously described, remapping can be performed faster using the router
than using the xnet because communication can be performed in one step per
data element, whereas the xnet often requires several steps with time propor
tional to distance.

However, in some special cases the remapping to be performed is especially
suitable for the xnet . One special case is detected by the PMF system to be
performed using the xnet: the exchange of a sequential set of pairs of m-bits
and p-bits.

The algorithm for performing this operation is similar to Kuszmaul's, and
is described in section 6.2.1 [42].

As with the chunking optimization, it is possible to convert many remap
pings to use the xnet transposition algorithm by performing memory permu
tations before and after the xnet algorithm.

5. 7 Testing

Because the complete radix 2 remapping system is moderately large and con
tains a quantity of hard-to-check assembler code, we took the approach of
generating a large number of random problems for checking the system.

5.7.1 Generation of random remappings

In order to generate a representative sample of remappings, several considera
tions were taken into account. When generating random bit-fields of length n,
the simplest strategy would be to take the binary representation of a binary
number x, O :S x < 2n. However, this would give an undesirable distribu
tion, with all bits or no bits appearing with the quite small probability 1/2n.
Similarly, bit-fields with n/2 bits would be more common than the other dis
tributions.

Similar problems arise in providing fair distributions for testing the differ
ent algorithms, which are divided into mixtures of the groupings: (m*), (P*),
(mp*), identity, in-place/copy and 8/16/32/64 bits. An approach which pro
vides a good coverage of all these groupings was obtained by generating a pair
of random kmaps (described in section 5.2) with the following properties:

120 CHAPTER 5. IMPLEMENTATION OF RADIX 2 PMFS

• Keep 0, 1, 2 or 3 initial memory bits as identity bits to exercise routines
for the four data types evenly

• Randomly generate the number of m-bits, p-bits, pre- and post-inverted
m-bits, and pre- and post-inverted p-bits

• Randomly enable and invert the appropriate number of bits in the first
kmap

• Because remaps including bit flips are performed with a copy remap,
allow flips to occur only with approximately a 50% probability

• Set the second kmap to be a random permutation of the bits in the first
kmap

Once each pair of kmaps is generated, a remap may be generated and
tested. If an error occurs (and several did) , the kmaps may be back-converted
to k-Tile formats in canonical form and printed with the generated remap for
manual inspection.

5.7.2 Checking performed remappings

Once a random remap has been generated, it must be tested on a sample
data set to ensure that it is performing the required data movement. If the
data type to be remapped is large enough (i.e., the lowest significant memory
bits are identity cycles), it is possible to assign a different value to every data
element; a simple value to test is the data array index of the element.

This strategy tests the algorithms but does not exercise all the functions, as
the 8- and 16-bit remapping functions will never be called. When testing these
it is not possible to ensure that every enabled data address contains a different
data value, so we must choose data values that are unlikely to appear correct
after a failed remapping. The strategy used is to set each data value to the
exclusive-or of all the bytes in the source address; most errors are manifested
as missing data elements or incorrect index bit permutations, and this strategy
will detect such errors because only the correct index-bit permutation can give
the correct ordering of data elements.

5.7.3 Results of testing

These random mappings were used extensively for uncovering several errors
in the early implementations. This testing also uncovered the problem with
cluster permutations on multi-board machines (see section 5.6.4), which occurs
rarely with application-oriented remappings.

In the later stages of development, error-rates were reduced to one error
in several hundred random remappings. The system has now been passed

.

i I

I

,,

I

l

I

i

I ,,

I

I

;

I

1

I I

I

i

'

I

I

'

I I

I
I
I

i

I
I

1

I

I

5.8. RESULTS 121

through 15000 remappings of O to 15 m-bits and O to 14 p-bits with no errors
detected and is considered sufficiently stable.

5. 7 .4 A non-assembler library

One unfortunate aspect of a relatively new architecture, such as the MasPar
MP-1, is that details of both the assembly language and its interface to higher
level language code may change. If such a change were to occur, it might be
very difficult to re-create a working version of the radix 2 PMF library.

To alleviate any problems if this were to occur, an MPL language version
of the radix 2 PMF library was created, containing MPL-language versions of
all the functions in the assembler implementation. If the assembler language
version ceased working due to a change in the MasPar's instruction set or the
assembler/MPL language interface, the MPL language version could be used
in its place. When generating a new assembler version, the operation of the
new version could be also be compared against the MPL version.

The MPL language version has been subjected to the same testing as the
assembler version, and executes at approximately half the speed of the assem
bler version.

5.8 Results

The results given in this section compare the actual times required for per
forming several remapping operations on the MasPar MP-1 against a lower
bound for the times based only on the speed of memory and communication
operations on the MasPar.

The speed of this implementation is also compared against several remap
ping routines supplied by MasPar for performing a small set of remapping
operations in MasPar's image processing library. Because these routines were
individually written by MasPar, presumably with efficiency in mind , they
should provide a comparison of the speed of the general PMF system with
handwritten code. However, it should be noted that the MasPar routines are
not limited to data sets with power-of-two dimensions.

More performance measurements for the use of PMFs in actual applications
are given in chapter 7.

5.8.1 Execution time of radix 2 remapping

Several remapping problems were chosen to exercise the different algorithms
used in the PMF implementation:

• memory bit cycles (m*)

I

I

I

i

-

122 CHAPTER 5. IMPLEMENTATION OF RADIX 2 PMFS

• processor bit cycles (P*)

• combined memory/processor bit cycles (mp*)

• mixed bit cycles.

Several variations of these problems were also chosen to show the effect of
the architecture-dependent optimizations:

• chunking to larger data objects

• processor cluster optimizations

• xnet usage for transposition

Figure 5.2 shows the base timings for memory and communication oper
ations on the MasPar MP-1 computer [47]. These timings can be used to
determine a lower bound on the running time of any algorithms for radix 2
PMFs implemented using the MasPar's router.

Algorithms using the xnet may in some cases be faster; however, this would
require a more detailed analysis of possible xnet algorithms, and this has not
been undertaken. Because the use of the router requires a similar time to a
single xnet transmission over a distance of 16 processors, it is to be expected
that only highly regular remappings or those involving the lowest-significance
processor grid bits could be performed with a substantial increase in efficiency.
In any case, remappings involving transpositions between contiguous pairs of
processor and memory bits are performed with a more efficient xnet algorithm.

The MasPar architecture is capable of performing register/memory oper
ations in parallel with any other operations which do not conflict with the
affected processor registers. This effect has not been taken into account in
the lower bound; it would be possible to unroll some of the loops to ensure
that multiple memory reads and writes were interlaced with communication
operations to allow both to proceed in parallel.

It is not possible to perform (mp*) remap pings in a single pass without
some recourse to indirect addressing, so its use is assumed for (mp*) and
mixed remappings.

The timings for operations on data types of different sizes can vary widely
but, because many operations may be rearranged to use the largest possible
data type, remappings involving inter-processor communication are assumed to
be performed using the largest chunk possible of 8 bytes, except in cases where
every chunk is sent to a different processor. Similarly, because of the possibility
for cluster optimizations, it is assumed that a router connection need only be
opened once per data chunk per cluster unless all communications from within
each cluster occur to different clusters.

I

5.8. RESULTS 123

Instruction Time (ticks) Time (nS)
Open router connection, ropen 42 3360
Send data through router, rsend8 25 2000

rsend16 33 2640
rsend32 49 3920
rsend64 81 6480

XNET transmission, xnet8 13 + d X 10 1040 + d X 800
xnet16 15 + d X 18 1200 + d X 1440
xnet32 19 + d X 34 1520 + d X 2720
xnet64 27 + d X 66 2160 + d X 5280

Direct load from memory, ld8 20 1600
ld16 38 3040
ld32 74 5920
ld64 146 11680

Indirect load from memory, ld8* 55 4400
ld16* 103 8240
ld32* 199 15920
ld64* 391 31280

Figure 5.2: Base time for MasPar MP-1 memory and communication instruc
tions; 1 tick = 80nS. Memory store instructions take a similar time to memory
load instructions. An ropen and an rsend may be performed simultaneously
for a saving in time approximately equal to the cost of an rclose

These assumptions give a lower bound on runtime that in some cases may
be lower than any possible implementation, but give an indication of where
overheads could be reduced or a more efficient algorithm used .

Figure 5.3 shows the execution time for several in-place radix 2 remappings.
Figure 5.4 shows a computed lower bound for the same problems. Some remap
pings come close to achieving 100% of the lower bound/actual time ratio, but
several are substantially slower. The overheads are lowest for the largest data
types, which is to be expected as the parallel execution of memory operations
is able to hide non-memory and non-communication costs.

The (mp*) remappings perform most poorly, but the simple (mp*) remap
ping may be performed more efficiently using the xnet algorithm; comparing
the actual xnet execution time with the router lower bound shows the xnet
algorithm to be superior in this case.

Cumulatively, the lower bound on execution time is 64% of the time achieved
without using the xnet, and 77% of the time achieved with. Thus, a 30%-50%
average performance increase could be obtained using an improved implemen
tation or superior algorithms. Improvements in implementation could be ob
tained in at least three ways: by unrolling the memory permutation loops to

124 CHAPTER 5. IMPLEMENTATION OF RADIX 2 PMFS

Permutation
Time (µS)

8 bit 16 bit 32 bit 64 bit

Identity cycle
166 - - -

(mo)
Short (m*) cycles 6222 6536 12232 23797
(mo,m1)(m2,m3)(m4,ms)(m6,m1)(ma,m9)
Long (m*) cycle

5251 6660 12629 24572 (mo,m1,m2,m3,m4,ms,m6,m1,ma,m9)
(P*) cycles (clusters preserved)

59228 79916 122262 141475
(m1) ... (m1o)(po, pi) (p2,p3)(p4, pg)(Ps, P6)(p1, Pa)
(P*) cycles (no clusters preserved)

82565 102551 145199 187339
(m1) ... (m1o)(po,p3,p2,P1,P4,P9,Ps, P1 ,P6, PB)
Simple (mp*)

119756 133103 163282 232268 (mo,Po)(m1,P1)(m2,P2) ... (m9,p9)
Simple (mp*) using xnet

35837 45470 71465 131340 (mo,Po)(m1,P1)(m2,P2) ... (m9,p9)
Long mixed cycle
(ma,m6,m4,mo,P6,P4,m1,Ps,P1,P3 38116 68529 127576 253146
,m1,Po,p9,m3, ps ,m9,p1,P2,m2,ms)

Figure 5.3: Actual in-place execution time of radix 2 PMFs on a variety of
problems. 16-, 32-, and 64-bit problems have identity lower-significant m-bits
with permuted m-bits moved up to make room

allow memory reads and writes to be back-grounded, by calculating multiple
cluster permutation synchronizations for (mp*) permutations, and only open
ing a router connection once for a complete remap where there is only one
cluster permutation. As the data is only passed through the global router
once, algorithmic improvements using the router could only reduce the num
ber of memory operations. Any actual gains obtainable may be even smaller
considering the conservative nature of the lower bound estimate. There is still
much scope for improved algorithms using the xnet, however.

5.8.2 Hand coding vs. PMFs

Another test of the relevance of a general system for performing remapping, as
opposed to purpose-built routines, is to measure the performance of the general
system against routines written for the same task. MasPar have included a set
of data remapping routines in their image processing library, mpipl [51], which
provides a large set of routines against which to test; section 2.4. 7 outlines the
advantages and shortcomings of MasPar's approach.

Figures 5.5-5.8 compare the execution times of version 2.1 of the mpipl
remapping routines against the equivalent PMF operations for four image
shapes. Version 3.1 of the MasPar operating system has been installed since
these timings were taken, but very similar results were obtained with the newer
version. The PMF operations have the advantage of allowing a remapping to

I

5.8. RESULTS 125

Permutation Size Lower bound low o/c
actual O

Identity cycle any 0%

8bit 992(T1da+Tsts) 50%
I I

Short 16bit 992(T1d16 +Tst1s) 91%
(m*) cycles 32bit 992(T1d32+Tst32) 95% l

64bit 992(Tld64 +Tst64) 97%
I

I 8bit 1024(T1d8 + Tsta) 61%

' Long 16bit 1024(Tld16 +Tst16) 92%
(m*) cycle 32bit 1024(T1d32+Tst32) 95%

64bit 1024(T1d64 + Tst64) 97%
I

8bit 1024(T1da+Tsta)+Tropen + 128.16Trsend64) 28%
(P*) cycles 16bit 1024(Tld16 + Tst16) + Tropen + 256.16Trsend64) 41%
(clusters I

preserved) 32bit 1024(Tld32 + Tst32) + Tr open +512.16Trsend64) 53% I

'
64bit 1024(Tld64 + Tst64) + Tropen + 1024.16Trsend64) 92%

8bit 1024(T1d8 +Tsta)+ 16.128(Tropen +Trsend64) 28%

(P*) cycles 16bit 1024(Tld16 +Tst16) +16.256(Tropen +Trsend64) 45%
(no clusters
preserved) 32bit 1024(Tld32 + Tst32) + 16.512(Tropen + Trsend64) 64%

I 64bit 1024(Tld64 + Tst64) + 16.1024(Tropen + Trsend64) 99%

I 8bit 1024(T1da. + Tsta.) + 128Tropen + 16.1024Trsend8 35%

16bit 1024(Tld16. +Tst16.)+256Tropen + 16.1024Trsend16 46%
Simple (mp*)

32bit 1024(Tld32. +Tst32.)+512Tropen + 16.1024Trsend32 60%

64bit 1024(Tld64• + Tst64.) + 1024Tropen + 16.1024Trsend64 75%
I

8bit (117%)

Simple (mp*) 16bit (134%)

using xnet 32bit (138%)

64bit (132%)
I

I 8bit 1024(T1d8• + Tst8.) + 128(Tropen + 16Trsend64) 59%

Long 16bit 1024(Tld16. +Tst1s.)+256(Tropen + 16Trsend64) 64%

mixed cycle 32bit 1024(Tld32• + Tst32•) + 512(Tropen + 16Trsend64) 68%

64bit 1024(Tld64. + Tst64.) + 1024(Tropen + 16Trsend64) 69%

Figure 5.4: A lower bound on the execution times of problems in figure 5.3,
compared with actual execution times. The xnet percentages are actually
compared with the router lower bound

--

126 CHAPTER 5. IMPLEMENTATION OF RADIX 2 PMFS

be pre-initialized, but this is still a reasonable comparison; if a remapping is to
be performed only once, small differences in execution time are inconsequen
tial, and if a remapping is to be performed many times a small initialization
time is insignificant. The slowest remapping initialization took approximately
.12 seconds, and the average time was .06 seconds; these times are similar to
the time required for a single remapping.

The mpipl routines do handle non power-of-two image dimensions, giving
them an increased generality over the PMF routines, but this need not cause
them to execute more slowly. There is evidence that the MasPar routines are
optimized for powers of two in any case; many remapping routines require a
large working storage for non power-of-two remappings which is not required
for power-of-two remappings.

The mpipl routines do not perform in-place remapping, which halves the
size of image that may be processed within memory; in these tests, PMFs are
also used to perform remapping by copying, but could be used for in-place
remapping with little difference in execution time.

The cumulative difference in timings,

E P MF timings

E mpipl timings

is 36%, showing that the general PMF routines are almost three times faster
than the image processing library routines. Almost all remappings are per
formed faster by PMFs; examination of a router counter internal to the MasPar
indicates that the exceptions are remappings in which mpipl uses the xnet.

Fier has hand-coded a single index bit permutation problem partially in
assembler, a perfect shuffie of 128 32-bit data values in a 16384 processor
MasPar [18]:

He reports a timing of 0.037441 seconds to perform this mapping as a copy.
The same problem was tried using radix 2 PMFs as both an in-place and a copy
remapping with timings of 0.026299 and 0.026883 seconds respectively. The
timing difference is not simply due to a difference in coding and algorithms,
however; PMFs automatically transformed the problem to require half the
number of router connections to be made. The original mixed remapping was
converted into an (m*) remapping followed by an (m*) + (mp*) remapping, of
which the (mp*) remapping could use 64-bit router transfers:

(mo)(m1)(m2)(m3, m4, ms, m5, m1)(ms, Po, Pi, ... P13)
(mo)(m1)(m2, m3, ms)(m4)(ms)(m5)(m1)(po)(P1) ... (p13)

.

i
'
1.

:

'

, ;

' I
'

I

i
I

'

I:

I

i

5.9. SUMMARY 127

5.9 Summary

This chapter shows the relationship between the k-Tile format of chapter 3
and the index bit map and algorithms of chapter 4: a restricted form of the
k-Tile format, the 2k-Tile format, is shown to be equivalent to the index bit
map. This allows the use of the optimal radix 2 algorithms for implementation
of a radix 2 PMF system.

The implementation of a radix 2 PMF system requires many data types,
including the 2k-Tile format, the index bit map, a memory tag and a remap
structure for representing the algorithm generated by the methods in chapter 4.
Several intermediate data structures are also required. A number of functions
in an application/program interface is also required to allow the functionality
of PMFs to be accessible to an application programmer; functionality is also
included to allow the 2k-Tile formats for many common data mappings and
transformations to be generated automatically.

Two versions of the radix 2 PMF system were implemented. The first
was based on the atomic index bit permutation operations. This version was
really only for proof-of-concept, and although it was correct, it did not take
full advantage of the MasPar's architectural features and was relatively slow.

The second version was based on the optimal algorithms introduced in
chapter 4. To achieve the greatest efficiency, many aspects of the MasPar
architecture were used:

• all the data movement code was hand-written in MasPar assembler

• the large register file within the PEs was used to avoid all unnecessary
memory accesses

• data movements were chunked into 8-bit, 16-bit, 32-bit or 64 bit transfers
to optimized memory and, far more importantly, communications speeds

• openings of the global router network were reduced by taking note of the
clusterings of sixteen processors to each router link

• the mesh network was used for a common class of processor/memory
transpositions. A non-assembler version of the data movement code was
also written to safeguard against any change_s in the MasPar assembler
language or the C / assembler interface.

Because of the quantity of assembler code in the system, care was taken in
the generation of test cases for the system. A system for generating and testing
a set of random remappings was used which give all the components in the
system approximately the same workout. Once the 'last' bug was found, 15000
separate remappings of data arrays up to the maximum size of the system were
tested without error.

--

;

-

I

I

I

I

I

I

I

128 CHAPTER 5. IMPLEMENTATION OF RADIX 2 PMFS

Several sample remapping problems that exercised different components of
the radix 2 PMF system were timed and compared with a lower-bound on
router-based remapping algorithms. The cumulative time of the lower bound
on these problems was 77% of the time used by the PMF system, indicating
that little can be done to improve the performance of router-based approaches.
No computation of a lower-bound on xnet algorithms was attempted, but
reasons are given for the expectation that only a small class of remappings
would benefit from further xnet usage.

Several comparisons were made between the execution time of the radix
2 PMF system with hand-coded remapping operations. In a comparison of
the PMF system with a set of remappings in the MasPar image-processing
library (mpipl), PMFs executed the remappings in a cumulative 36% of the
time required for the mpipl routines. In a comparison of PMF times against
a single perfect-shuffie problem hand-coded by Fier in assembler, PMFs were
30% faster, even when an in-place instead of a copy remapping were performed.

The major shortcoming of radix 2 PMFs is the restriction of image dimen
sions to powers of two; to offer more flexibility, the ability to perform arbitrary
k-Tile remappings is desirable. Chapter 6 explores mixed radix remapping,
which is a step towards this goal.

I ,
I

I,

I

I

,i

:

I

, [

I
i

'

'

I I
5.9. SUMMARY 129

I

I
I

I
I

I

Image shape: (512 x 512)

Src Dst
Time (µS) ~°le ipl O Time (µS) ~°le ipl O Time (µS) ~°le ipl O

I

8bit 16bit 32bit

ldcs 2dh
pmf 9773

20%
17355

28%
33333

47% ipl 49728 62229 71385 i

I pmf 9258 17251 33228 i I ldh 2dh ipl 30281 31% 12583 137% 23804 140%
I pmf 38540 41922 50885

2dcs 2dh ipl 82035 47% 83317 50% 85634 59%

2dh ldcs
pmf 9985

16%
17364

28%
33282

47% ipl 61527 61970 71264

2dh ldh
pmf 9258

37%
17249

93%
33229

112%
r

ipl 24703 18529 29761

2dh
pmf 32641

40%
36099

44%
45100

53% 2dcs ipl 82366 82392 85100

e/w
pmf 7691

25%
12568

30%
22452

35% 2dh ipl 30389 41354 63424

2dh n/s
pmf 5410

15%
9827

23%
18667

29%
I ipl 37068 42114 63605
I pmf 7421 12053 22313

2dh xpos
ipl 21669 34% 8819 137% 17577 127%

i
Figure 5.5: A comparison of the execution times of PMFs versus the MasPar
image processing library, mpipl, for a 512 x 512 image

I

!

130 CHAPTER 5. IMPLEMENTATION OF RADIX 2 PMFS

Image shape: (1024 x 1024)

Src Dst
Time (µS) ~o/c i pl O Time (µS) ~ o/c ipl O Time (µS) ~o/c ipl O

8bit 16bit 32bit
pmf 36258

26%
65576

40%
129312

69% ldcs 2dh ipl 142158 163251 187398
pmf 22759

92%
26232

56%
51408

56% ldh 2dh ipl 24627 47258 92139
pmf 44199

19%
46194

18%
79679

27% 2dcs 2dh ipl 235689 259824 294528
pmf 36234

25%
65638

40%
129346

69% 2dh ldcs ipl 142132 163249 187402
pmf 13635

56%
26224

56%
51410

56% 2dh ldh ipl 24555 47030 91727

2dh 2dcs
pmf 36552

16%
46189

18%
72205

25% ipl 235604 258231 292507

2dh e/w pmf 26760
22%

46230
28%

85775
34% ipl 121120 164830 253516

2dh n/s
pmf 18661

15%
36328

22%
71662

28% ipl 123395 167900 253891

2dh xpos pmf 25385
144%

43968
125%

84996
121% ipl 17614 35127 70194

Figure 5.6: A comparison of the execution times of PMFs versus the MasPar
image processing library, mpipl, for a 1024 x 1024 image

5.9. SUMMARY 131

Image shape: (2048 x 2048)

Src Dst
Time (µS) ~°le ipl O Time (µS) ~°le ipl O Time (µS) ~°le i pl O

8bit 16bit 32bit

ldcs 2dh
pmf 179449

24%
309952

37%
587974

60% ipl 739126 833273 978107

ldh 2dh
pmf 62919

67%
124548

68%
247776

68% ipl 94011 183784 363318

2dcs 2dh
pmf 119816

13%
204752

20%
398300

34% ipl 949087 1041304 1177369

2dh ldcs
prof 180264

24%
313280

38%
590532

61% ipl 739123 833278 970864

2dh ldh
pmf 62937

67%
124535

68%
247747

68% ipl 93440 183029 361810
pmf 123616

13%
210469

20%
410004

35% 2dh 2dcs ipl 942775 1038580 1177572

2dh e/w
pmf 102752

21%
180604

27%
338798

33% ipl 483491 658599 1013891

n/s
pmf 71632

15%
142274

21%
283544

28% 2dh ipl 493119 670670 1014647
pmf 96902

138%
171356

122%
335409

120% 2dh xpos
ipl 70235 140359 280660

Figure 5.7: A comparison of the execution times of PMFs versus the MasPar
image processing library, mpipl, for a 2048 x 2048 image

132 CHAPTER 5. IMPLEMENTATION OF RADIX 2 PMFS

Image shape: (512 x 2048)

Src Dst
Time (µS) I!!!!l. °le ipl O Time (µS) I!!!!l. °le ipl O Time (µS) I!!!!l. °le ipl O

8bit 16bit 32bit
pmf 35454

18%
65674

29%
129652

50% ldcs 2dh ipl 197952 223600 259817
pmf 16714

57%
32112

65%
62912

67% ldh 2dh ipl 29133 49210 94026
pmf 80427

34%
96158

37%
136496

46% 2dcs 2dh ipl 236228 260187 294614

2dh ldcs
pmf 36234

18%
65638

29%
129341

50% ipl 197820 223599 259821

2dh ldh
pmf 16727

58%
32132

66%
62930

67% ipl 28757 48981 93641

2dh 2dcs
pmf 80490

34%
96254

37%
136583

46% ipl 235775 259879 294599

2dh e/w pmf 27047
22%

46513
28%

86055
34% ipl 121403 165248 253520

2dh n/s
pmf 18651

15%
36312

22%
71633

28% ipl 123320 167711 253706

2dh xpos pmf 25147
143%

43714
124%

85160
121% ipl 17611 35128 70186

Figure 5.8: A comparison of the execution times of PMFs versus the MasPar
image processing library, mpipl, for a 512 x 2048 image

I

:

I

l
I
I

I
.

I
I

Chapter 6

Mixed radix remapping

Although it is possible to perform multidimensional data processing operations
on data sets whose dimensions are powers of two, being required to do so causes
a great loss of flexibility. Real-world data sets rarely have such dimensions,
forcing the programmer to pad data sets at the expense of both memory and
processing time or, if memory is insufficient, at the expense of resolution.

As dimensionality increases, the wastage of memory increases markedly;
scaling a one dimensional data set whose linear dimensions are 25% smaller
than a power of two up to higher dimensions wastes 44% of memory in a two
dimensional data set, 58% in three dimensions and 68% in four.

We have demonstrated in earlier chapters a class of data remapping algo
rithms for powers-of-two dimensions that are fast and flexible. In this chapter
will show that it is possible to perform similar operations for mixed-radix di
mensions, albeit with some performance losses.

6.1 The index digit map

An index digit map between a data array and a parallel device may be defined
in a similar way to an index bit map. Instead of describing a mapping as a
permutation of index bits, we use a permutation of mixed-radix digits. Because
of the added complication of mixed radices, the notation used for index bit
maps will be extended.

6.1.1 Mixed radix numbers

A mixed radix number is a representation of a number a using a vector contain
ing k digits (a0 , ... ak-i), each with an associated base, (bo, .. . , bk-i), where

133

I

I

I
I
I

I

1,

134 CHAPTER 6. MIXED RADIX REMAPPING

and
k-1 i-1

a= Lai II bi .
i=O j = O

Indices represented as binary numbers are easily specified as a concatena
tion of bits, for example

a7a6a5a4a3a2a1ao.

When specifying indices as a mixed-radix number, it is necessary to indicate
the base associated with every digit. Normally with fixed radix numbers, the
usual place for this specification is as a subscript at the end of the digits, for
example

1538 = 10710.

However, as with bits it is useful to number digits in their order of significance
in the indices of the initial array, which conventionally also uses the subscripts.

To separate the two numbering schemes for base and significance, we have
chosen to indicate the base of each digit in a mixed-radix number by specifying
it in base 10 above the digit , and the significance of each digit by a subscript .
Thus,

2 7 3 10 10
142= 2 + 3 X (4 + 7 X (1 + 2 X 0)) =3 5= 35

In a fixed radix number, every digit has a place, which indicates the weight
that would be assigned to a 1 in that digit; for example, in the number

888
752

2 is in the one's place, 5 is in the eight 's place and 7 is in the sixty-four's
place. For any number represented with a fixed radix b, the place associated
with each digit of significance i is fixed with value bi. Similarly, we can define
a place for every digit in a mixed radix number. The place of digit i in the
mixed radix number

bk-1 bo
a k-1 . . . ao

is
i -1

II bj.
j = O

Thus, the place of any digit in a mixed radix number depends on the bases of
all digits of lower significance.

6.1.Q Indexing with a mixed radix number

The purpose of representing an array index as a mixed radix number is to
provide a flexible way of splitting the data in the array. As an example, if we
have a one dimensional data array A of shape (b0 , b1) mapped in column-major

:

I

'
I

I

II

'

'

I

6.1. THE INDEX DIGIT MAP 135

ordering, we can represent a one dimensional index into that array with the
mixed radix number

where the values of the digits a0 and a1 represent the row and column number
respectively in the original two dimensional array.

The mixed-radix representation is very useful for mapping a one-dimensional
data array A onto a multidimensional parallel device, represented as a one di
mensional device array D .

6.1.3 Specifying an index digit map

The index digit map is specified analagously to the index bit map; the digits
of the data array index, a, are rearranged to provide a representation of the
device index, d, which directly specifies the data index associated with every
enabled device address.

Because the base and significance of every digit in the factorization of a
is present in the index digit map, it is not necessary to explicitly state the
factorization of a being used. Sometimes the map from the device address, d,
to the data array index, a, may be many-to-one to allow the data array to be
replicated across the device.

The digits used in the factorization of a data index a into a mixed radix
number will also be used as digits in the mixed radix representation of the de
vice address d. It will therefore sometimes be necessary to distinguish between
the data index place and the device index place of a digit, and also the data
index significance and device index significance of a digit.

However, ai is alwa s used to represent a data index digit of significance i
in the current factorization.

Digit permutation

In its simplest form, an index digit map is simply a permutation of the digits
in a data index. The only restriction placed on such a map is that no digit
may be placed across the boundary between two device dimensions to limit
the complexity of the mapping. An example shows a simple index digit map
from a data array to a one-dimensional device:

The box on the right hand side represents a one-dimensional device, with
nested boxes around data array indices showing the arrangement of the device
index digits.

I

I

I
L

I

' --

I

136 CHAPTER 6. MIXED RADIX REMAPPING

Constant or Disabled digits

By specifying a constant digit in an index digit map, disabled digits may be
included in the device map analogously to disabled bits in an index Qit map.
For example,

Replicating digits

By specifying a 'star' digit (*-digit) in an index digit map, the data array may
be replicated across the device. Given a valid device address, any value for the
*-digit will contain the same data item. For example,

Compound digits

Because we are dealing with mixed radices, it is possible that the number of
elements stored along either the processor or memory axes will not exactly
divide into their actual length. Thus it is not always possible to define empty
space by inserting disabled digits. One solution is to treat the device1s memory
or processor array as if it were smaller, which means that the actual lengths
of the device dimensions must be specified where they are not clear from the
context. The lengths of the device dimensions may be stated explicitly by
bracketing multiple digits together into a larger digit. For example,

1024 256 ,.....,.__,,.....,.__,
31 33 18 14
a3aoa1a2

In this example, a1 and a2 take up 18 x 14 = 252 bytes in the memory array,
which has an actual size of 256 bytes. a3 and a0 take up 31 x 33 processors
in the processor array, which actually contains 1024 processors. A simpler
example mapping shows how a 3 x 3 data array may be mapped onto a 4 x 4
device:

PO Pl P2 P3
MO 0 1 2 X
Ml 3 4 5 X
M2 6 7 8 X
M3 X X X X

In a similar way to Flander1s notation, where the size of a device dimension
is clear from the context or does not matter a bar may be placed in the index

i

I

I
I

l
I

I

I

II

!

!

i
I

i

6.1. THE INDEX DIGIT MAP 137

digit map showing breaks between device dimensions. For example, m the
mappmg

7 3 5
a 1 I a2a0

the device is treated as containing 5 x 3 = 15 memory elements and 7 processing
elements.

In order to align digits between P and M, in some situations it is useful to
be able to group several digits into a larger compound digit within other digits
in an index digit mapping. In the mapping

the compound digit containing a3 and a0 and the compound digit containing
a5 and a 2 are of the same size, making it a simpler task to exchange them.

Digit sense

The idea of bit sense in index bit maps may be generalized for index digit maps
in several ways. The sense in an index bit map may be interpreted as either
a reversal of storage order for that bit or a rotation by one position; which of
these interpretations is placed on bit sense does not make any difference. For
index digits, however, the two interpretations are not the same.

The idea of sense as a reversing operation has been retained for index digit
maps for two reasons. Firstly, it is more consistent with the usual reversal
interpretation of bit sense, and secondly, the functionality implied by the ro
tation interpretation can still be obtained with an implementation of k-Tile
offsetting.

As with index bit maps, an inverted digit is indicated by an overbar, for
example:

Compact mappings

Because there may be many factorizations of IAI, there may be many ways of
specifying the same index digit map. For example, the index digit map

can be simplified to
b; ioob~ b~

I 65 I I a 2 a oa 1

I

I

I
I

' -

-
138

where
b' 0

b' 1
b' 2

CHAPTER 6. MIXED RADIX REMAPPING

b0 .b1.b2
b3.b4.b5
b5.b7

a' 0

a' 1
a' 2

ao + bo .(a1 + b1 .a2)
a3 + b3.(a4 + b4.a5)
a5 + b5.a7

A representation of a mapping is defined to be compact if it contains the
smallest number of digits.

Aligned index digit maps

Two index digit maps are said to be aligned if the factorization of the data
array index, a, is the same in both mappings. For example, the two mappings

are aligned because they both use the factorization

Even if the factorization of the data index in two mappings differs, it may be
possible to align the two mappings by re-factorizing the data index. Figure 6.1
shows how this may be performed for two example mappings.

However, it is not always possible to align two mappings; the two mappings
shown in figure 6.2 cannot be aligned because the bases of digit O in the two
mappings are relatively prime.

6.1.4 Specifying a mixed radix remapping

Once we have a mixed-radix data array mapped onto a device in one index
digit map, we may wish to permute the data on the device to correspond to
another. As an index digit map is a generalization of index bit map, and two
index bit maps may be inter-converted by index bit permutation, it would be
convenient if it were possible to convert one index digit mapping into another
by index digit permutation.

Unfortunately, there are several complicating factors of mixed radix opera
tions over radix 2 operations. Some are technology driven and may disappear
in future computer architectures, but others are more troublesome and far
reaching in their effects.

Processor array size

As the binary number system pervades all common computer architectures, it
makes sense to build parallel processor arrays in meshes whose dimensions are
powers of two, which allows data sets with power-of-two dimensions to both fit
snugly within the array and allows communications along the processor mesh

I

I

I

i

.

'

I

It

I!
1,

:

11

1:
1,

I:

II
11

I

i

I

I I

I

:
!

I

I:

I :

i

I I

I

Ii

'

'

11

1:
Ii'

1,

1,

' 6.1. THE INDEX DIGIT MAP

Map #1:

!!All = IIDII = 2592

Re-factorisation of data index:

6 3 6 2 2 3 2
Aligned data index: a6asa4a3a2a1ao

22362631 2236632 Map #1: aoa2a1a4a3a6a5 Map #2: a3a2a5a4a6a 1a0

Figure 6.1: Aligning two index digit maps by factorizing data index

MO Ml MO Ml
3 2 PO 0 1 3 2 PO 0 3
a 1 I ao=}

Pl 2 3
ao I a1=}

Pl 1 4
P2 4 5 P2 2 5

Figure 6.2: Two index digit maps that cannot be aligned

139

I

I

:
I

I

'

140 CHAPTER 6. MIXED RADIX REMAPPING

axes to correspond with the axes of the data set. Even where there is the
appearance of more flexibility, such as the crossbar switch on the Maspar MP-
1, there are often hidden costs associated with the communications resulting
from mixed-radix permutations. Two such problems are the greater incidence
of contention for router links, and the difficulty of performing any cluster
optimizations. However, these problems may not occur on other architectures
with more homogeneous communication between processors.

There will always be a problem with data sets with dimensions that are not
exact multiples of the associated dimensions of the processor array. To cope
with this problem, a choice (whether by the programmer or the computer)
must always be made between padding the data set up to the first multiple
to fit exactly within the dimensions, or distributing different sized pieces of a
data set to different processors in the processor array.

Mixed radix arithmetic

When dealing with operations involving binary digits, it is straightforward to
extract, shift, test, mask and combine them using fast bitwise logical operations
and shifts. However, to perform the equivalent operations with mixed radix
numbers requires many fixed-point modulus and division operations, which
are often the slowest operations in any computer's instruction set, if they are
present at all.

No independence of digits

When exchanging index bits in an index bit permutation, because the device
index place of every bit is fixed, every bit whose position does not change
during the permutation creates two identical independent sets of cycles in the
corresponding data permutation. However, in index digit permutation, even if
the positions of most digits do not change during the permutation, the device
index places of all digits can change, creating complicated data permutations.

As an example, assume we have the two mappings:

When exchanging digits O and 2, the device index place of digit ~1 changes
from 2 to 3. Although the value of this digit remains constant through the
permutation, the address offset associated with that digit will change. For
example, the source address

will be mapped to

322
010= 2

223
010= 3

:
I

I

I

I

I

I

I

I
I i

'

I

: 1,

I

I

I i

I

I

i

I

I
I
I

i

I

I

I

I
I

:
I
:

I

;

I Ii

I

1,

Ir

' I,
1:

'
I

6.2. ALIGNED INDEX DIGIT REMA PPING 141

Thus, representing the index digit permutation by cycle notation unfortunately
does not clarify the corresponding data permutation operations , because the
data permutation cycles specified by independent digit cycles are not separable
in a useful way.

Non-aligned mappings

The most difficult problem associated with using index digit maps to specify
a data remapping occurs when the two index digit maps are not aligned, as
permuting the order of device digits cannot change the factorization of the
data index (although in some cases it is possible to re-factorize the data index
in an index digit map simply by relabelling the digits).

In many cases, compounding groups of digits or performing operations
along the device dimensions can allow non-aligned data remappings to be per
formed with no more difficulty than aligned mappings, which can be performed
as an index digit permutation.

However, there are many non-aligned mappings which cannot be performed
as easily as an index digit permutation; an example is shown in figure 6.2 . The
problem of remapping between non-aligned mappings will be treated separately
from aligned mappings.

6.2 Aligned index digit remapping

Many useful data remappings can be described by aligned index digit maps,
so we first examine techniques to perform them.

Because the same factorization of the data index is used for the pair of
maps we are converting between, remapping between aligned maps can be
performed by index digit permutation.

As with the radix 2 algorithm, any algorithm for performing regular data
remapping should aim to keep the number of memory accesses and uses of
the communications network to a minimum. However, we must also take into
account the problems we have mentioned previously, and try to minimize the
use of multiplication, division and modulus operations.

6.2.1 Algorithm components

We first show how to perform an arbitrary index digit permutation with two
different remapping operations, an arbitrary memory /processor permutation
and a single digit exchange between processor and memory.

I

I

i
I

J

..._

142 CHAPTER 6. MIXED RADIX REMAPPING

Memory permutation

The algorithm used in the radix 2 case for (m*) permutations can be used
unchanged for performing arbitrary memory permutations, unless the number
of memory elements to be permuted is larger than the number of processors
in the processor array.

If this is the case, either the index digit permutation or the memory data
permutation may be split into several parts to be performed sequentially. In
both cases, function 4.2, permute..1I1, may be used unchanged to perform the
memory index digit permutation.

An example of a memory index digit permutation would be to convert the
mapping

to

Processor permutation

The algorithm used in the radix 2 case for (P*) permutations (function 4.1,
permute_p) can be used unchanged for performing arbitrary processor permu
tations.

An example of a processor index digit permutation would be to convert the
mappmg

to
5 2 3 2
a2a3 I a1ao

However, on a MasPar MP-1, each router link is shared between sixteen
processors in a cluster. This will cause router link contention when perform
ing mixed radix operations of this type if the router hardware is unable to
distribute router links to processors to form a cluster permutation. Meth
ods for pre-computing a contention-free allocation order of processors within
clusters to router links is described in section 6.4.

Simultaneous memory and processor permutation

The algorithm described in section 4.4.6, permute..1I1p, can be used unchanged
for performing arbitrary combined processor and memory permutations.

An example of a processor index digit permutation would be to convert the
mapprng

to

'

11

1,

I

:

I

i

I

i

I

I ,

I
I

I

I

I

I

:

I

I

l
I

I

i

!

I

I I

'

·•
'

!

I

6.2. ALIGNED INDEX DIGIT REMAPPING 143

Exchanging a pair of digits between P and M

Exchanging a pair of base b index digits between P and M is equivalent to
performing a transpose of ab x b square matrix, repeated several times to move
over the identity memory digits and over several clusters of processors for the
identity processor digits.

An example of an exchange of a pair of index digits between P and M
would be to convert the mapping

to

As there are b-1 data elements to be moved per processor, the most efficient
algorithm would perform the permutation in b - l read/communicate/write
steps. Function 6.1, exchange_dig, performs the permutation using the opti
mal number of steps. This algorithm is similar to an algorithm of Kuszmaul 's
(42) for transposition of a square array the size of the processor array, and op
erates by exchanging elements around the main diagonal with a wrap-around
to ensure that all the processors are operating continuously. As shown, the
algorithm works only if the digits to be exchanged are in the lea.st significant
digits of the device dimensions, but it is straightforward to modify it to allow
a pair of P / M digits in any position to be exchanged. Figure 6.3 shows the
data movement of the algorithm for an exchange of base 6 digits.

Data replication

When a *-digit appears in a source or destination index digit map, data may
be ignored or replicated respectively. If a *-digit appears in the source index
digit map and not in the destination map, data values may be ignored and
convenient values of the *-digit be used. If a *-digit appears only in the
destination index digit map, data values must be replicated; one method could
use recursive doubling to create k copies of the data in flog2 kl steps.

Resizing/ compounding index digits

In order to make space for an exchange of index digits between P and M we
may wish to group together neighbouring digits in the device index into a larger
compound digit. This operation opens up space along either the memory or
processor dimensions. As the operation only affects the places of either the
processor indices or the memory indices, it can be performed with either a
memory or a processor permutation.

I

I

I

-
144 CHAPTER 6. MIXED RADIX REMAPPING

Function 6.1 Exchanging a pair of digits between P and M

int base; /* Base of digits being exchanged * /
I* Digit value of processor digit * /

/* Base address of memory array * /
I* Temps used for reading, writing data * /

I* Offsets to lhs and rhs of diagonal * /

plural int digit;
plural char *m;
plural char zO, zl;
plural int moffO, moffl;

int i;

exchange_dig ()

{
moffO = digit;
moffl = digit;

I* Begin with offsets on diagonal * /

}

for {i=1; i<{digit-1)/2; i++)
{

moffO++; moffl--;

if {moffO ~ base) moffO = O;
if {moffl < 0) moffl = base-1;

I* M ave away from diagonal * /

I* Wrap around off rhs * /
I* Wrap around off lhs *I

zO = *{m+moffO); zl = *{m+moffl);
router[moffO}.zO = zO; routerfmoffl}.zl = zl;
*{m+moffO) = zl; *{m+moffl) = zO;

I* Read data * /
/* Send data *I

I* Write data * /
}

if {{digit & 1) == 0)
{

}

moffO++;

if {moffO ~ base) moffO = O;

zO = *{m+moffO);
router fmoffO}.zO = zO;
*{m+moffO) = zO;

I* Cope with even width case * /

I* Wrap around * /

I

I

i

i

I

I

I

'

'

II
1:
I i

I i
I,
I i

Ii

i

I'

6.2. ALIGNED INDEX DIGIT REMAPPING 145

mo ml m2 m3 m4 m5 mO ml m2 m3 m4 m5
pO pO
pl pl
p2 p2
p3 p3
p4 p4
p5 p5

(i) (ii)

mO ml m2 m3 m4 m5
pO
pl
p2
p3
p4
p5

(iii)

Figure 6.3: Data movement in base 6 P / M digit exchange

-
146 CHAPTER 6. MIXED RADIX REMAPPING

Of course, there must be enough space along the device dimension to per
form the compounding operation. However, if digits are to be exchanged be
tween two device dimensions, both dimensions will have enough space to hold
the larger.

An example of a compounding of a group of index digits would be to convert
the mapping

to
16 ,,....,._

16 16 5 3
a 3 I a 2 a1a0

To perform the inverse of this operation, a larger compound digit is con
verted back to a smaller group of neighbouring index digits by closing in the
space opened by the compounding operation .

6.2.2 An algorithm for index digit permutation

Using the components described above, we may perform an arbitrary mixed
radix index digit permutation using the following steps:

1. Determine all the device digits to be moved between processor and mem
ory indices, and move them into the least significant memory and pro
cessor index digit positions.

11. Resize the smaller group of digits to be exchanged between P and M
into a compound digit the same size as the other group. As the composi
tion of two processor/memory permutations is still a processor/memory
transformation, this step can be performed at the same time as step (i).

ill. Treating both groups of digits to be exchanged as two compound digits
of the same size, exchange the pair of digits between P and M .

1v. Resize the compound digit produced in step (ii) to its original size.

v. All the digits are now stored on the appropriate device dimensions, so a
combined processor/memory remapping will complete the operation.

Steps (i) and (ii) both involve only processor/memory permutations, so can
be composed and performed with one application of the function permute....mp
described in section 4.4.6, with the usual restrictions and fixes if the number
of elements to be permuted is greater than the number of processors.

Step (iii) can be performed using the function exchange_dig.
Steps (iv) and (v) can be composed in the same way as steps (i) and (ii) .
Although this algorithm is not optimal, it is only three times slower than

the radix 2 algorithm.

!

Ir

r

I Ir

I

I
,,

Ii

I!
r,

Ir

i
'

I

r,

'

!

I

I

I

I!

11

' !

!

,,

I,

Ir

I ,

: I

I
I [,

I

i

6.3. NON-ALIGNED INDEX DIGIT REMAPPING 147

6.3 Non-aligned index digit remapping

The problem of remapping between two non-aligned maps cannot be performed
using index digit permutation, thus we cannot use the remapping algorithm
outlined in section 6.2.2. Three alternative approaches have been examined,
but all approaches have undesirable characteristics and their analysis has been
largely empirical. However, by trading off execution time with memory re
quirements, at least these operations can be performed.

A new operation on index digit maps, re-signification, expresses a way of
altering an index digit map to bring it closer to another non-aligned index
digit map.

6.3.1 Re-signification of digits in an index digit map

Re-signification alters the factorization of the data index into a mixed-radix
number, thus providing a way to transform one index digit map into another
non-aligned index digit map.

Instead of exchanging the digits in an index digit map, re-signification
exchanges the significance of two digits. An example of a re-signification op
eration can be shown with the two maps shown in figure 6.2. Although these
maps are not inter-convertible by index digit permutation, a remapping could
be performed if there was a way to exchange the significance of the digits in
the first mapping.

In a mapping containing only two digits on a one-dimensional device, re
signification of the mapping

is equivalent to performing an in-place rectangular transpose on a b0 x b1

matrix. Performing this operation efficiently on a sequential machine is quite
difficult, and involves a trade-off between execution time and memory usage
(69]. Finding any regular parallelism in this operation is also very hard.

It is worth noting that for a fixed-radix factorization of the data index,
permuting the index digits and permuting their significance are identical op
erations, so that re-signification is a natural generalization from fixed radix
index digit permutation to mixed radix operations.

Re-signification of two digits ai and ai of differing bases changes the data
index places of all digits with s~gnificance between i and j. This problem is
harder to resolve than the change of device index place that occurs when two
digits of differing bases are exchanged within the same device dimension. When
digits are exchanged within the same device dimension, the places of the device
index only change in digits within that device dimension, requiring memory
only or processor-only remapping operations. However, when significance is

I

I

I

'

148 CHAPTER 6. MIXED RADIX REMAPPING

exchanged between two digits mapped to the same device dimension, the places
of intervening digits mapped to any other device dimensions will also change,
entailing a more complicated data permutation. For example, inter-converting
between the two maps shown here cannot be performed by a memory-only or
processor-only remapping operation , or even a composition of the two:

MO Ml M2 M3 M4 M5
2 2 3
a 1 J a2ao=} PO 0 1 2 6 7 8

Pl 3 4 5 9 10 11

MO Ml M2 M3 M4 M5
2 2 3
a 1 J a0a2=} PO 0 4 8 1 5 9

Pl 2 6 10 3 7 11

However, this is not a problem if either the two digits are adjacent in
the data index or all the intervening digits are mapped to the same device
dimension.

6.3.2 Re-signification within device dimensions

If the memory array is large enough or there are sufficient unused processors on
the device, it is often possible to perform re-signification by using a combina
tion of index digit permutation operations and processor/memory operations.
Depending on the amount of memory available, different numbers of opera
tions may be required. Figure 6.4 shows a possible sequence of operations to
transform the mapping

32 32 31 31 32 32 31 31
a 3 a 2 J a 1 a 0 to a 1 a 0 J a 3 a 2

This is a conversion from two-dimensional hierarchical to two-dimensional
cut'n'stack. The original index digit map uses 31 x 31 = 961 bytes per pro
cessing element, but some intermediate stages require 31 x 32 = 992 bytes per
processing element.

We have not developed heuristics to perform this type of operation in a
small number of steps, nor established how to decide if a given remapping
is possible in the available memory and number of processors. However, it
is clearly less efficient to perform some unaligned data remappings by this
method than general index digit permutations. Unfortunately, some mappings
cannot be interconverted by this method, such as

1024 11023 t 1024 , 1023
a1 a0 o a0 a1

This remapping would require 1024 x 1023 = 104 7552 bytes in a single
processor to be performed in memory, which is not only unrealistic but would
take a long time.

I

I'

1,

ii

I Ii
I

' u,
11

I

I

'

I'

II

:
I

1,

11

'

I

:,

1,

6.3. NON-ALIGNED INDEX DIGIT REMAPPING 149

i
32 32 31 31 I

' a3a2 I a1ao
I 1 permute-1Il
I 32 ,....,.-.,

32 32
I

31 31
a3a2 a1 ao

l exchange_dig
32 I ,....,.-.,

32 31
I

31 32
I a3 ao a1a2
I i l permute_m

32 • ,....,.-., J

32 31
I

31 32 I a3 ao a2a1
1 ex change _dig

32 ,....,.-.,
32 31

I
31 32

I i a1 ao a2a3
1 permute-1Ilp

II 32 31
I

31 32
aoa1 a3a2

1 exchange_dig
32 31

I
31 32

aoa3 a1a2

1 permute...mp
32

: ,....,.-.,
31 32

I
32 31

a3 ao a1a2

1 exchange_dig
32 ,....,.-.,

I, 32 32 31 31
11 a1ao I a3 a2

1 permute-1Il
32 32

I
31 31

a1ao a3a2
II:
II

!1

Ii Figure 6.4: Example re-signification within device dimensions

11

150 CHAPTER 6. MIXED RADIX REMAPPING

To summarize, the advantages of this technique are:

• It uses the same efficient algorithms as general index digit permutation

• Some remappings may be performed with little memory overhead

• Some remappings may be performed in only a few steps

The disadvantages are:

• No heuristics have been developed for finding a good sequence of opera
tions to perform any arbitrary remapping

• Some remappings require an unrealistic amount of working memory stor
age

• It appears that some remappings will require a large number of steps

6.3.3 "Brute force" remapping

The "brute force" method is general enough to perform any regular data
remapping with a simple algorithm. Every processor calculates a destina
tion processor and destination memory address for each byte in its data array
and sends the destination address and data byte to the destination processor.
Processors which receive this data write the data into the appropriate memory
location.

There are a number of factors affecting the efficiency of this technique, and
there is a large difference in complexity between using brute force remapping
for copying and in-place remapping. Several authors have investigated the
performance of the MasPar router u·nder similar circumstances (18, 54, 60].

Brute force copy remapping

Function 6.2, brute_copy, is an algorithm for brute force copy remapping.
This function cannot be used for in-place remaps, because a destination

processor cannot write a received byte into a memory location still containing
untransmitted data. If an in-place remap is desired and a temporary buffer is
used, the memory overhead is the size of the data array.

Because there may be a great deal of regularity in the data permutation
being performed, there is the possibility that a large amount of contention
could occur when a large number of processors attempt to talk to only a few.
A pathological case occurs when using the brute force method to transpose a
square IPI X IPI array, with one dimension stored along the memory axis and
one along the processor axis. In the first step, all processors attempt to send
their data to processor 0, and only one can succeed. Because so much time

I

I
I

1

I

11

,i
'

Ii
I

i

'

'

'

•

'
I

i

I

I:

1,

Ii
I ,

I:

i

'

'

i! ,,

Ii

I,

1,

I

6.3. NON-ALIGNED INDEX DIGIT REMAPPING 151

Function 6.2 Brute force copying

I* Returns dest offset for byte stored at proc b, address offset m *I
extern plural int desLoffs{plural int p,plural int m);
I* Returns dest processor for byte stored at proc b, address offset m *I
extern plural int desLproc(plural int p,plural int m);

plural char *m_src;
plural char *m_dst;
plural int offsO;
plural int procO;
plural int offsl;
plural int procl;
plural int sent;
plural char zO;
plural char zl;
plural int i;

/* Base address of source memory array *I
I* Base address of destination memory array * /

I* Destination offset to send * /
I* Processor to send to * /

I* Received offset * /
I* Sending processor *I

int nbytes;

brute_copy{)

{

}

sent= O;
i = O;

while {i < nbytes) {
offsO = dest_offs(iproc, i);
procO = desLproc{iproc, i);
sent= O;

zO = * (m_src+i);
all procl = -1;
router[procO).procl = iproc;

all if (procl ~ 0) {

}

router[procl).sent = 1;
offsl = router[procl).offsO;
zl = router[proclj.zO;
*(m_dst+offsl) = zl;

if {sent) {
i++;

}
}

I* Set if send successful *I
/* Data to send * /
I* Received data * /
/* Loop variable * /

I* Number of bytes to copy * /

I

I

I

I

j

-

--

152 CHAPTER 6. MIXED RADIX REMAPPING

is wasted sending data which is overwritten, the brute force algorithm in this
case is worse than a sequential algorithm reading and writing one data item
at a time.

One approach which can greatly improve the efficiency of a brute-force
copy is to skew the initial addresses read by every processor in an attempt to
evenly distribute the destination processors. One very simple skewing scheme
is to set the initial memory offset to the value of iproc. In the case of our
square transposition example, this would distribute the communications load
perfectly. Its effectiveness in more complex situations is unclear, and a random
skewing method has been used with some success. However, in well-controlled
problems skewing can be extremely effective, as will be shown in the next
section.

The efficiency of the brute-force remap could also be substantially affected
by the cost of computing the destination address and processor for each byte
read from memory. If a moderately complicated remap is being performed,
several dozen multiplication/division/modulus operations may need to be per
formed between each communication step, and these may take a substantial
fraction of the execution time of the algorithm.

Brute force in-place remapping

An algorithm for brute force in-place remapping requires more careful attention
than a copy remapping. Because received bytes must be stored in the same
memory array as they are sent from, each processor must be careful not to
overwrite data that have not yet been sent, which means that each processor
must keep track of the memory locations that have been freed.

A flag array, T, may be used to mark freed memory locations and would
require an overhead of IAl/8 bytes.

Because several processors may attempt to send data to a single processor
simultaneously, it is necessary for each processor to maintain a stack of items
to be written to memory; it is not possible to clear the items immediately as
they are received, because clearing an item usually involves sending another.
It is also not easy to disallow sends to processors whose stacks are full, because
deadlock situations arise.

It is also not easy to ensure that the amount of stack required will always
be substantially smaller than the number of bytes in the array being sent, but
a method is shown in the next section to perform a brute-force remapping with
a stack of fixed size.

As with copy remapping, any regularity in the data permutation being
performed may cause a large amount of contention for a small number of
processors. The problem of maintaining a data stack compounds this problem,
as distributed data cannot be handled immediately, and may accumulate in
small sets of processors at a time.

I

I

I

I

I

I
I

I

I

I

I

I

I

I

I

I

I
I 1,

•

11
'
I

'

II
I

1 ,

I

I

I

i

I

I

I
I

i

I,

' 1:

1,
I I I

I

l
I

l
I
I

I

I

I

;

6.3. NON-ALIGNED INDEX DIGIT REMAPPING 153

6.3.4 Re-signification across device dimensions

Instead of using the brute force method to I?erform a complete data remapping,
it can be used to perform a smaller part of the problem: the re-signification
of a pair of digits adjacent in the data index and mapped to different device
dimensions. An example of such an operation would be to change the mapping

Re-signifying a pair of index digits by this method has a number of advan
tages which make the brute-force method appear more attractive.

Computing the data permutation

Computing the destination address for a data element during an arbitrary
mixed index digit remapping may require dozens of multiply, divide and mod
ulus operations, which may be a much greater overhead than memory-access
and communication times. However, computing the data permutation of a
significance exchange costs significantly less.

As has been mentioned previously, exchanging the significance of a pair

of digits ~ 1 and ~o is equivalent to performing a rectangular transpose of a
b1 x bo array. When performing the data permutation within a single device
dimension, a one-dimensional destination address can be computed from a
source address by the expression:

An apparently more simple expression is given by Knuth [39]:

Unfortunately, the intermediate values in this expression are often too large to
be represented in a machine-address sized word-length, causing overflows.

When a pair of digits is stored across two dimensions, the device address is
more conveniently manipulated as two components, a memory offset m and a
processor index p, where (neglecting any other digits, and assuming JMI = bo):

d.,rc = m + bo.p

The destination address can be found as two destination components by com
bining the source components into a one-dimensional device address and ex
tracting the destination components:

b b b1 bo
For the remap d1 I &o=;-a' o I a'i

I
I

I

I

J

-

1,

154

Letting:

Now:

CHAPTER 6. MIXED RADIX REMAPPING

a
b b bo b1

I O / /
a 1 a0=a 1a o

bo.a1 + ao = b1.a~ + a~
b1 bo
a 1 I ao= bo.a1 + ao
b1 bo

d I ' I b I I ci.,t a o a 1 = O·ao + a1

P$TC d$rc/bo

m$rc d$rc mod bo

Pci.,t dci.,tf bo

dcL.,t mod bo

b I I o.a0 + a1

bo.(d$TC mod b1) + (d$TC/b1)

dci.,t/bo

(bo.(d$rc mod b1) + (d$rc/b1))/bo

d$rc mod b1

(bo.a1 + ao) mod b1

(bo·P$rc + m$rc) mod b1

dd$t mod bo

(bo.(d$rc mod b1) + (dnc/b1)) mod bo

d$TC/b1

(bo.a1 + ao)/b1

(bo•P$rC + m$rc)/b1

Although this derivation is shown for a0 and a1 , it could be used for any
re-signification of two adjacent data digits where the data digit of smaller
significance was initially stored on the memory array. When the situation is
reversed, the following derivation is obtained:

b1 bo b b
For the inverse a' o I a' 1 =} d1 I &o

(bo .mcL.,t + Pd$t)/b1

(bo.mci.,t + Pci.,t) mod bo

Thus, computing the destination address for each data element requires a
multiply, a division and a modulus. Unless there is plenty of memory to spare,

I

' I '

i

I

I

I

I

I
I

I

I

I

'

I

I

.:

ll

II

I

I

i

I

I

I

I

I

I

J,

'

I

'

I

I I

Ii
11

:

6.3. NON-ALIGNED INDEX DIGIT REMAPPING 155

it is not realistic to pre-compute these values (except the value of b0.p3rc), and
there is no obvious way to perform strength reduction. If the digits being
exchanged are not the least-significant digits in the device dimensions, one or
two more multiplies may be required to put the digit in its correct place.

Smaller memory overhead

Because the size of the memory array being permuted is the size of the mem
ory digit being re-signified rather than that of the whole array, the memory
overhead will usually be much smaller, unless the digit represents the whole
memory array.

Common factors

If the two digits to be re-signified have any common factors, the re-signification
can be combined with an index digit permutation to reduce the size of the
memory digit and hence the memory overhead. This also has the effect of
linearizing the cost of a re-signification, as will be shown later. Initially let us
assume we have a function to perform a re-signification of adjacent data digits
across device dimensions, resig...mp.

As an example, assume we wish to perform a re-signification

with both c0 and c1 divisible by b0 . Letting

the re-signification may be performed with the following steps:

ci

I
co

a1 ao
l relabel

bo b2
I

b1 bo
a3a2 a1ao

l resig...mp
bo b2

I
b1 bo

a3a1 a2ao
l exchange_dig

bo b2
I

b1 bo
aoa1 a2a3

l permute...mp
b2 bo

I
bo b1

a1ao a3a2
l relabel

ci

I
co

ao a1

I

',
l

I

I

156 CHAPTER 6. MIXED RADIX REMAPPING

6.3.5 Brute-force P / M re-signification

Because the behaviour of the brute-force algorithm is hard to analyse in a
formal way, we have performed empirical tests to examine its behaviour on
the re-signification problem. These tests show that in the absence of a more
clever technique, the brute-force algorithm performs reasonably well in terms
of both number of communication steps and size of working memory storage,
and performs best in those situations least amenable to application of the other
remapping techniques.

Execution time versus memory size

Because the programs used for these experiments were written as experimen
tal algorithms without optimization and with the inclusion of debugging and
profiling information, the timing information should be viewed in a relative
way; by tuning the code, it would be possible to obtain speed-ups of a factor
of at least two.

If the algorithm is well parallelized, the execution time should be directly
proportional to memory size, and the size of the processor digit should not
greatly affect the execution time.

However, on the MasPar MP-1, performing remappings with small proces
sor digits would lower the execution time unrealistically, because only a subset
of processors in a cluster would need to communicate. To make the execution
times more realistic, a fixed processor digit that rounds up the size of the prob
lem as closely as possible to the processor array size is added to ensure that
most processors are active. For example, in a 1024-element processor array,
instead of performing the remapping

27 I 673 27 I 673
a1 ao=>ao a1

the mapping

would be performed.

Memory over head

In an ideal remapping algorithm, there should be no memory overhead and all
temporary storage and scratch values should be carried in processor registers
and computed quickly as needed. The radix 2 algorithms are almost ideal,
requiring only a small fixed amount of memory per processor to guide their
operations, which can be performed with all intermediate storage in processor
registers.

I

I

I

I

I

I

'
I

I

I

I

I
I

I

I

'

I

'

'

'

I

I
I

I

:

'

I

I
I

I

I
;

'

'

6.3. NON-ALIGNED INDEX DIGIT REMAPPING 157

The brute-force method is greatly inferior, as it requires a large amount of
memory storage which in some cases may be larger than the data array being
remapped.

There are two components to memory use: a tag array, indicating which
bytes have been sent to their destinations leaving their sources safe to write
into, and a stack, which contains data items awaiting a write to memory.

The size of the tag array is determined solely by the number of elements
to be transferred, and can be implemented with one bit per element.

Each data element transferred requires at least two bytes for the stack:
at least one byte for the data element and at least one byte for the memory
offset. The size of the stack required is much harder to predict; if its size is not
restricted in any way, the actual size required is almost always very reasonable
but occasionally can be as large as the memory array.

6.3.6 Brute force performance

Test problems

Because of the lack of formal analytical methods, we have analysed the brute
force algorithm with brute-force analysis, which consists of generating many
random remappings and measuring the time and space needed to perform
them.

Execution time

Figure 6.5 shows the execution time of brute-force forward re-signification over
2000 random re-signification problems. It can be seen that performance is very
nearly linearly related to memory digit size, which means the behaviour of the
algorithm is reasonably predictable.

However, there are several timings far above the line which are much worse
than would be expected for their memory size. Upon closer examination, most
of these timings are associated with processor/memory digits with common
factors. This behaviour may be caused by the increased regularity introduced
into the problem because of the common factors, as discussed earlier.

If two digits have common factors, re-signification can be performed with
an index digit permutation and a smaller re-signification of digits with no
common factors. Because the digits in the smaller problem have no common
factors, its execution time should be closer to linear. Of course, the extra
memory digit will mean that the re-signification will need to be performed
multiple times, but the total execution time will be smaller.

There are also several timings which lie far below the line which are much
better than would be expected for their memory size. These timings are as
sociated with very small processor digits, in which there can only be a small

I

I

:

158

20

15

Time

10

5

1000

CHAPTER 6. MIXED RADIX REMAPPING

2000 3000
Memory size

4000 5000 6000

Figure 6.5: Brute force re-signification on 2000 random problems. Times are
in seconds, memory size in bytes. A single data point at (2502, 98.7) has been
removed to preserve the graph's aspect ratio

! i

I

i
I
I

I

'

I

'

'

I!

I fl

Ii

I!
I,

1,

' 1,
I.

l '

'

I !

I

I

i

6.3. NON-ALIGNED INDEX DIGIT REMAPPING 159

number of processors attempting to send to another, and hence a very small
amount of processor contention.

6.3. 7 Restricting to relatively prime digits

Figure 6.6 shows the execution time of brute-force forward re-signification over
2000 random re-signification problems which have been selected to ensure that
no common factors are present between the digits involved.

This table shows that there are many fewer remapping problems in this
set which cause unpredictably poor performance. However, there is still one
remapping problem which takes much longer than would be predicted; it is
not known why it causes such poor performance.

6.3.8 Skewing initial memory addresses

Figure 6. 7 shows the execution time of brute-force reverse re-signification us
ing the first hundred digits of those used for in figure 6.6. These timings are
clearly much worse than for the forward case: The different form for the for
ward and inverse re-signification has a significant effect on the effectiveness
of the brute-force approach. If JMJ > JPJ, the first step in the forward re
signification involves communication to several different processors. However,
in the reverse re-signification, the first step involves every processor attempting
to communicate with processor 0, resulting in very poor performance. This
problem can be cured with a skewing scheme.

To prevent every processor attempting to send to a small set of processors
in the first step of the algorithm, the processors should be given an initial set
of addresses to read whose destination processors are well distributed over the
array.

If JMJ > JPJ, for all processors p the processor's array element

[y.(JMJ - 1)/(JPJ - l)J

is sent to a different processor, with the array indices well spread over the
array.

If IMJ < IPJ, it is harder to distribute the array entries to ensure that their
destinations are distributed across every processor. However, every processor
p using a skew factor of

p mod JMJ

gives good results.
Figure 6.8 shows the execution time of brute-force reverse re-signification

using these skewing strategies, and can be seen to give results very similar to
the forward re-signification times.

'

I

I
I

1

160 CHAPTER 6. MIXED RADIX REMAPPING

20

15

Time

..
10

5

1000 2000 3000 4000 5000 6000
Memory size

Figure 6.6: Re-signification with no common factors

I I

I
I

1 I:

I!
1:
11

i

:,

Ii

I

,,

Ii

6.3. NON-ALIGNED INDEX DIGIT REMAPPING

250 ,_

200 ,_

Time 150 -

100 -

. ..
.

50 -
.

...
•

I ..
L• . 1• • I I I 0

0 1000 2000 3000 4000
Memory size

Figure 6. 7: Inverse re-signification

161

I

I - I

I

I

I

I

. .
-. .

. .
I

5000 6000

162

Time

20

15

10

5

1000

CHAPTER 6. MIXED RADIX REMAPPING

2000 3000
Memory size

4000 5000 6000

Figure 6.8: Inverse re-signification with address skewing

I

I

I ;
I

I

I

I

I

I

I

I

I

I
I

:
I
I

I
I
I

I

I

I

l
I

I

i

6.3. NON-ALIGNED INDEX DIGIT REMAPPING 163

6.3.9 Restricting stack size

Figure 6.9 shows the high-water-mark stack usage for the forward remapping
problems shown in figure 6.6. The stack usage for most problems with increas
ing memory digits is sub-linear, which is a very good result , as it allows a stack
much smaller than the data array to be used in most cases. For up to 6000
memory elements, most problems use fewer than 300 stack elements, and it
would appear that the required stack size would grow very slowly or not at all
for larger problems.

Unfortunately about 2% of problems use far more stack elements, some
times nearly as many as the size of the data array. There is no obvious way of
predicting stack usage in advance, so some way must be found either to bound
the size of the stack (probably with some performance penalty), or analyse
the problem more deeply to find a traversal. order which guarantees a bett er
distribution of load and hence the stack usage.

Writing an effective brute-force algorithm with a bound on stack size takes
some care. One obvious strategy is to disallow sends to processors with full
stacks until their stacks clear. Unfortunately this approach is prone to deadlock
if two or more processors with full stacks attempt to send data to each other.

A more successful strategy is to allow the stack of only one processor at
a time to fill, and to guarantee that it is able to send its data on to another
processor. Thus, it reduces its own stack by one element , perhaps filling the
stack of another processor. This removes the possibility of deadlock because
at least one processor is always able to send data, and if there are n > 0
almost-full processors and a full one, one of them will be guaranteed to be able
to send data until it is no longer full, leaving n-1 almost-full processors.

This approach allows a remapping to be completed with a minimum of three
stack elements per processor; one stack element for th~ majority of processors,
one stack element for the full processor, and one more stack element for the
case where the full processor sends data to itself.

Unfortunately using this method, even with a sizable stack, incurs a sig
nificant performance penalty. When the stacks of several processors fill up,
the algorithm begins to perform more like a sequential algorithm with the
almost-full processors passing around a single data element at a time.

In an attempt to keep the sizes of the stacks small, another test was added
to give sending precedence to processors with fuller data stacks. Using this
method, remappings can be performed with stacks of only 20 elements, usually
with little performance degradation; for some problems, performance actually
improves because less time is required to empty the processor's stacks. How
ever, there are several problems which show a significant performance penalty.

Figure 6.10 shows the execution time of brute-force forward re-signification
with a limit of 50 stack entries.

I

I

i
I

I

I

.

164

2500 ,_

2000 -

Stack 1500 ,_

1000 ,_

500 -

.
., - " . . ·--~··· . -

0 ~ ..
0 1000

CHAPTER 6. MIXED RADIX REMAPPING

. .

. -. ,.
••••• ·:· ... • : ... ~ ... ·.~-" ~: i.1r.... ·~ ·-l'- ~
- .

I

2000

- - - -.,J-·. ··~-= _ _..._,. __ . -·
• I I I •

3000
Memory size

4000 5000

-

-

6000

Figure 6.9: Stack high-water-mark with re-signification (stack is measured in
number of entries)

I

I

I

I

I

I

I

I

I

I

I

;

I'

I

I

6.3. NON-ALIGNED INDEX DIGIT REMAPPING

Time

20

15

10

5

OIC-----'---~'----~--~---~--~
0 1000 2000 3000

Memory size
4000 5000 6000

Figure 6.10: Execution time with stack limited to 50 elements

165

166 CHAPTER 6. MIXED RADIX REMAPPING

6.4 Cluster contention removal

When performing an arbitrary data permutation between all the processors on
the MasPar MP-1, the router hardware must attempt to assign router links
to as many processors in the array as possible {Section 5.6.4 describes this
problem in more detail). On a MasPar MP-1 with 1024 PEs, there are 64
router links connecting clusters of 16 processors.

For many regular processor permutations, such as a constant offset and
some index-bit permutations, the hardware will distribute the router links in
such a way as to allow the permutation to be performed with the minimum
number of sixteen iterations. However, when performing permutations that are
less regular, the hardware may assign router links to processors sub-optimally,
resulting in increased communication times. Figure 6.11 shows the number
of iterations required per processor permutation over 10000 random problems,
and shows that at least twice as many iterations are used as would be optimal.

A proof that such a permutation is possible is Theorem 1.17, Hall's Match
ing Theorem, in Leighton's book [43). He applies the proof to the problem of
determining an off-line algorithm for performing a processor permutation on a
mesh , but the same result can be used for cluster contention removal. There
are two components to his algorithm. The first stage generates the permu
tations for the second stage, which proceeds in three passes. The first pass
permutes the packets to be sent within each column so that every packet in a
row has a different column destination. The second pass permutes the packets
within the rows so that each packet appears in its correct column. The third
pass permutes the packets within the columns again with each packet at its
correct destination.

An equivalent algorithm may be used for contention removal on the Mas
Par: the problem of permuting the packets within each column so that every
packet in each row has a different column destination is equivalent to finding a
transmission order of processors within a cluster so that at each transmission
step every processor is transmitting to a different cluster. The second stage
of the algorithm is different on the MasPar: each cluster permutation may
be performed in a single step with packets able to be sent from their source
processors to the correct destination processors, but the communication must
be performed sequentially for each processor in the cluster.

When performing remapping operations, the same processor permutation
may be applied thousands of times .in a single operation. With compound
remapping operations and iterative applications, a small set of processor per
mutations may be applied millions of times. In these situations the increase in
speed obtained by using a contention-free processor permutation could more
than balance the cost of computing it, even if this required several seconds; if
a contention-free ordering takes one second to compute, the break-even point
occurs with approximately 8000 applications of a processor permutation.

I
I

I

I

I
I

I

I

;

I

I

I

I

I

I

•

'

:

I

I

I

I

:

' I!
I,

I

I

I

6.4. CLUSTER CONTENTION REMOVAL 167

Another justification for performing a large amount of work for modest
gains is in applications where human interaction or animation is desired. Such
applications require maximum speed in the central body of the program, and
set-up time is not as important a consideration.

If clusters were processors and processors were memory locations, the con
tention removal problem is also identical to the arbitrary remapping problem,
where a permutation is desired of C processors each with K data elements .
Similar algorithms for solving the contention removal problem could be used
to find an optimal usage of the memory and communication network. Unfortu
nately, except for the smallest permutations, there would be two problems with
this approach. The algorithms for finding an optimal solution would be far too
slow for problems of this size, and there would be great memory overheads in
representing and implementing any solution.

6.4.1 A cluster contention removal algorithm

Function A.l, uncontend1, is an algorithm for finding a contention-free or
dering. It operates by first attempting to connect one processor from each
cluster to its destination, and then applying a series of transformations to
clear deadlock situations until all clusters can make a connection. It was de
rived independently of knowledge of Hall's Matching Theorem, but is very
similar [43].

As an example, figure 6.15 shows the operation of the algorithm for a
processor permutation with K = 3 and C = 7. Clusters are labelled a through
to g, sending processors are indicated ~ and deadlocked processors as-fr. A
histogram of the execution time of this algorithm for 10000 random processor
permutation problems is shown in figure 6.13.

This algorithm has only been tested on a MasPar MP-1 with 1024 proces
sors. The problem is complicated on machines with more processors, because
the router hardware is not capable of performing all cluster permutations.
However, with more access to a larger machine and a better understanding of
the situations in which deadlock occurs in cluster permutations, this approach
would still have benefits; cluster permutations are generally performed faster
than arbitrary permutations on multi-board machines [18].

6.4.2 Removing contention in mixed-radix remapping

The results obtained using random problems to examine the behaviour of the
Maspar's router hardware and to test the contention removal algorithm may
not be applicable for index digit permutation problems. For this reason a
different group of tests using all the possible exchanges of digits on a 1024
processor MasPar was used to test both the Maspar's router hardware and
to test the performance of the contention removal algorithm. As with the

I

'

:
I
I

I

168

2500 r

2000 -

1500 -

Count
1000

_

500 -

0 -

10 20 30

CHAPTER 6. MIXED RADIX REMAPPING

-,

40 50 60 70 80
Router iterations

Figure 6.11: Number of router iterations required over 1000 random processor
permutations

500 r -,

400 -

300 -

Counts
200

_

100 -

0 - I • " •• • I ' I ii I I 11111, ii I 1 , " • , 1 . , •• , .

10 20 30 40 50
Router iterations

60 70 80

Figure 6.12: Number of router iterations required over 5216 digit swaps

I

I

11

'
'
I

,,
I

'

I'
1:

I,

I ,,

Ii
:

,,

!

6.4. CLUSTER CONTENTION REMOVAL

Counts

I

500 -

400 -

300 -

200 -

100 -

0 -

0

11111111111111111111111o1 ,

0.05 0.1 0.15 0.2
Time (seconds)

169

0.25 0.3

Figure 6.13: Execution time of contention removal algorithm uncontend1 over
10000 random problems

250 f--

200 -

150 -

Counts
100 -

50 - I
0 '- .. J. . ,,ii I .,1l,,iil11ill

0 0.05

11l/11111/l11111,,11,,.11,,., ' ' ' ...

0.1 0.15 0.2 0.25 0.3
Time (seconds)

Figure 6.14: Execution time of contention removal algorithm uncontend1 over
all 5216 index digit swap problems

170 CHAPTER 6. MIXED RADIX REMAPPING

i. Desired processor permutation

v. Done. Next problem:
f 9 b b a a a
d e 9 9 C e f f b a a
b d C d C e f e 9 9 C

ii. One processor from each cluster at
b d d C e f

tempts to send; clusters c, d, e, f, 9 are vi. Clusters J and 9 are deadlocked
deadlocked

[ZJ
d
b

II] -b- -b- -tr

e 9 9 C

d C d C

e f
e f

[Z]

b
0
d

9 00
d C e f

vii. Create free space for cluster f by
111. Un-deadlock clusters c and f, also moving cluster b, also freeing cluster
freeing cluster d cluster 9

[ZJ II] b w -tr a -tr [Z] w a 0 d e 9 9 C 0 f e 9 II] 0 b d 0 d C e f b ~ d 0 f C

iv. Create free space for cluster 9 by ... D F" 1 t t· d
v111. one. ma permu a 10n or er: moving cluster a , also freeing cluster e

f II] b w 0 h 91 b2 b1 a1 a3 a2 a a
d1 e3 93 92 c2 e1 Ji ~ e 9 9 C 0 [ZJ b3 d2 c1 d3 C3 e2 fa

b d 0 d C e f

Figure 6.15: Finding a contention-fr e ordering of a processor permutation

6.5. A SYSTEM FOR MIXED RADIX REMAPPING 171

re-signification tests, an identity digit was included to ensure that as many
processors as possible were communicating.

Figure 6.12 shows the number of router iterations used for the 5216 possi
ble digit exchanges with 1024 processors. This set of problems shows a much
greater range of iterations than the random group of problems; in some prob
lems the router is more than four times slower than it would be without con
tention.

The contention removal algorithm was also run with the index digit swap
problems to ensure that the regulaTity of the problems did not adversely affect
performance. A histogram of the execution time of the algorithm uncontend1
in figure 6.14 shows that similar performance is attained, whereas the clus
ter contention algorithm examined in appendix A has a much wider range of
performance.

Although no claim is made that the algorithm uncontend1 is optimal, its
execution time is such that in many cases where data remapping is required it
could be used for an overall gain in performance is many processor permuta
tions were required, or for a speed-up in a core program section in cases where
animation or interactive rates are desirable.

6.5 A system for mixed radix remapping

Using the components we have introduced in this chapter, it would be possible
to implement a complete system for inter-converting between arbitrary index
digit maps. The mixed radix techniques are not optimal, but are generally
predictable and realistic. Further work is necessary or desirable in several
areas:

• integrating the data movement techniques into a coherent unit

• providing a means to specify data translation within the index digit map

• developing algorithms for data translation

• developing algorithms for performing data replication and using repli
cated data in remapping

• developing heuristics for choosing an efficient sequence of operations for
performing any given remapping

• integrating index digit maps with the k-Tile format

• integrating radix 2 techniques where appropriate

172 CHAPTER 6. MIXED RADIX REMAPPING

• analysing the brute-force approaches in more depth, using both empirical
and mathematical techniques, to extract further performance improve
ments

• using more sophisticated analysis to determine non-brute-force algorithms
for re-signification problems

• examining the cluster contention removal problem with machines with
more than 1024 processors

• optimizing any resulting source code to obtain further speed and size
improvements

6.6 Summary

In this chapter we go some way beyond the work of chapters 4 and 5, which ex
amine data mapping on arrays and devices where the lengths of the dimensions
are powers of two. We introduce the index digit map, which is a generalization
of the index bit map.

The most important difference between the index bit map and the index
digit map is that the index digit map may contain index digits of any mixed
radices, thus allowing any length of array dimensions to be represented. A con
sequence of this is that by factorizing the length of the data array dimensions
in different ways, many different ways exist of representing the same mapping.

Two other additions to the ideas in the index bit map provide further
flexibility: by specifying compound digits, empty space may be included around
digits; by the use of a *-digit, data may be replicated.

The problem of remapping data between index digit maps is not straight
forward. If two index digit maps are aligned, the remapping may be performed
by re-factorizing their mixed-radix number representations and performing in
dex digit permutations, for which a straightforward algorithm using similar
techniques to the radix 2 case may be used.

However, if the two index digit maps are non-aligned, the data movement
can be more complex. Some non-aligned remappings may be performed using
a series of index-digit re-significations within the device dimensions. However,
unless a more clever technique is found, remappings that are not amenable to
these approaches must be remapped using a "brute-force" approach, where all
processors attempt to send their data to their destination processors. Prob
lems with this approach include as expensive computation, router network con
tention and data queues filling up, but we have found ways for most remappings
to be performed with linear performance and moderate memory requirements.

One other aspect of mixed radix remapping on the MasPar is the problem of
contention for router links when performing arbitrary processor permutations.

I

I
I

I

i

I I

I

'

'

i

I

I

6.6. SUMMARY 173

It is possible on a 1024 PE MasPar to perform every processor permutation
in 16 router iterations, yet the hardware often takes many more. By choosing
an appropriate transmission order, the minimum of 16 iterations can always
be achieved. An algorithm for performing this task, based on Halls Matching
Theorem, is described by Leighton [43]. We have implemented a similar al
gorithm which makes it possible to perform arbitrary router permutations a
factor of up to five times faster than the unadvised hardware, although there
is a set-up cost.

The techniques for mixed radix remapping have a very close relationship
to the problem of performing arbitrary PMF remappings. However, there are
problems remaining to be solved associated with these two systems, and we
suggest many areas of possibly fruitful future study.

174 CHAPTER 6. MIXED RADIX REMAPPING

I

'

I '
I

i

1 I;

1:
:,

'

"
I

I ,

I

Chapter 7

The scope of data mapping
operations

The previous chapters have examined the problems of specification and imple
mentation of data mapping and remapping in some detail. However, except
for general statements of requirements, no concrete examples have yet been
offered to justify the construction of a data mapping framework.

This chapter provides several concrete examples, showing how the k-Tile
format and PMFs can be used in a variety of contexts.

7.1 High Performance Fortran

In section 2.4.8 it was suggested that the k-Tile format has a number of simi
larities to the data mapping directives of High Performance Fortran (HPF). In
this section the capabilities of both the k-Tile format for mapping specification
and PMFs for remapping are compared directly with the HPF regular data
alignment and distribution directives to show that a complete PMF system
could be used to implement the HPF directives. It is assumed that the reader
is familiar with chapter 3 of the High Performance Fortran Language Specifi
cation (36), which in turn is based on Fortran 90 (2, 53] and on Fortran D [26].
Some examples of HPF are taken from the draft specification [36]1.

7.1.1 ALIGN and REALIGN directives

The ALIGN directive provides a way to specify a correspondence between the
mappings of pairs of data objects (data arrays) so that values in separate data

1The High Performance Fortran Language Specification is @1992 Rice University, Hous
ton Texas, and permission to copy without fee all or part of this material is granted, provided
the Rice University copyright notice and the title of this document appear, and notice is
given that copying is by permission of Rice University

175

...

176 CHAPTER 7. THE SCOPE OF DATA MAPPING OPERATIONS

arrays that are used in the same computations may be kept close together in
the same or neighbouring processors.

The REALIGN directive is used to remap a data array dynamically to align
it with another.

As well as allowing a direct correspondence between like elements in data
arrays of the same shape, the ALIGN directive allows elements in different
positions and elements in arrays of differing shapes to be aligned.

In terms of k-Tile mappings and PMFs, one data array, B (the alignee), may
be aligned to another, A, by taking the k-Tile mapping of A, KA, performing
the appropriate alignment transformations on K as specified by the ALIGN
directive, and using the transformed k-Tile mapping, Ks, to specify a mapping
for B. If a complete PMF system were implemented on the target machine,
the k-Tile mappings could be used to specify the data movement required for
the REALIGN directive.

We will examine each of the mapping transformations that can be specified
by the ALIGN directive, and show how they may be duplicated by k-Tile
mapping transformations.

Simple ALIGN directives

The simplest form of the ALIGN directive allows two data arrays of the same
shape to be assigned the same data mapping. For example, if a mapping has
been specified for the two-dimensional data array A, another data array B of
the same shape as A may be assigned an identical mapping by the declaration:

!HPF$ ALIGN B(:,:) WITH A(:,:)

The colons (:) indicate anonymous dummy variables assigned left-to-right;
the same declaration could be written:

!HPF$ ALIGN B(i,j) WITH A(i,j)

The same semantics would be obtained with PMFs by using A's k-Tile
mapping for B:

A k-Tile B k-Tile
a [X;Y] a [X;Y]
k [Kxo, · · ·; Kyo, · · .] k [Kx0 , ••• ; Ky0 , •• •]

[Mo, . ..]
=}

[Mo, ...] m m
d [Do; . ..] d [Do; ...]

I

I

i

'

I ,

I,

Ii
I;

I:

I

I
I

' I

It

1,

7.1. HIGH PERFORMANCE FORTRAN 177

Data dimension permutations

By permuting the dummy variables on the left-hand-side of the WITH in the
ALIGN directive, the data dimensions of B array may be transposed with
respect to A . The following example assigns B a mapping with the first two
dimensions transposed with respect to A:

!HPF$ ALIGN B(i,j,k) WITH A(j,i,k)

The same semantics would be obtained with PMFs by taking the k-Tile
mapping for A, transposing the data and k-Tile dimensions of B, and modifying
the k-Tile mapping appropriately:

A k-Tile B k-Tile
a [X;Y; Z] a [Y;X;Z]
k [Kxo, · · ·; Kyo, · · ·; Kzo, · · .] k [KYo, · · ·; Kxo, · · ·; Kzo, · · .] => m [Mo, ...] I1l [M~, -- .]
d [Do; ...] d [Do; ...]

For example, performing the same alignment with A representing a 2-
dimensional hierarchical mapping of a 128 x 256 x 256 volume yields the fol
lowing mapping for B:

a
k
m
d

Index arithmetic

A k-Tile
[128; 256; 256)
[4, 32; 8, 32; 256)
[O, 2, 4; 1; 3)
[8192; 32; 32]

a
k
m
d

B k-Tile
[256; 128; 256)
[8, 32; 4, 32; 256)
[2, 0, 4; 3; 1)
[8192; 32; 32)

By using arithmetic expressions involving index variables on the right-hand
side of the WITH in the ALIGN directive, more complicated relationships may
be declared between the aligned arrays. Three combinations of operators may
be used to express these relationships: addition, multiplication and negation.

Index addition

A constant offset may be added to each of the dimensions of the alignee. The
following example aligns position (0, 0) of the array B with position (1, 1) of
array A:

!HPF$ ALIGN B(I,J) WITH A(I+1,J+1)

178 CHAPTER 7. THE SCOPE OF DATA MAPPING OPERATIONS

Note that there must be conditions on the dimensions of B relative to A
to avoid indices being out of range. The same relationship could be expressed
by PMFs by taking the k-Tile mapping for A, altering the data dimensions
appropriately, supplying a data dimension offset, and using the transformed
mapping for B:

A k-Tile B k-Tile
a [R- 1; C - 1]

[R; C] tA [R;C] a
[1; 1] k [KRo, ... ; Ke0 , •• •]

OTA

=> k [KRo, . . . ; Ke0 , •• •] m [Mo, ...]
[O; *] d [Do; ...] OK

m [Mo, .. .]
d [Do; . . .]

Index negation

Indices may be negated to reverse the axes of an aligned array. The following
example aligns the array B with A rotated by 180°:

!HPF$ ALIGN B(I,J) WITH A(R-I+1,C-J+1)

The same relationship could be expressed by PMFs by setting the k-Tile
sense indicator:

A k-Tile Bk-Tile

[R; CJ a [R;C] a
k [KRo, . .. ; Ke0 , •• •] k [KRo, ... ; Ke0 , •• •]

[Mo, ...] => s [-,-, ... ,-] m
[Mo, ...] d [Do; ...] m

d [Do; . ..]

Index multiplication

Indices may be multiplied by a constant factor to leave storage gaps between
elements. The following example aligns the elements of an array B, which is
a quarter of the size of A, over the same storage as A:

!HPF$ ALIGN B(I,J) WITH A(I*2,J*2)

The same relationship could be expressed by PMFs by using empty k-Tile
dimensions to spread the values of B:

I

:
I

!

I ,

'

;

7.1. HIGH PERFORMANCE FORTRAN 179

A k-Tile B k-Tile
a [R;C] a [R/2; C/2]
k [KR-O, ... ; Ke0 , •• •] k [Kko, ... ; Kb

0
•• • ; 2, 2] => m [Mo, ...] m [M~, ...]

d [Do; . . .] d [Db; . . .]

As a concrete example, performing the same alignment with A representing
a scan-line mapping of a 256 x 256 image yields the following mapping for B:

A k-Tile Bk-Tile
a [256; 256] a [128; 128]
k [256; 256] k [128; 128; 2, 2]

[O; 1] =>
[2, O; 3, 1] m m

d [256; 256) d [256; 256)

Replicated arrays

Specifying '*' in an align-subscript indicates a replicated representation, in
which a data array B may be aligned with every index in one or more dimen
sions of A. This is useful for maintaining a look-up table in every processor.

For example, the following alignment declares that a copy of B is to be
kept with every column of A:

!HPF$ ALIGN B(:) WITH A(:,*)

The same relationship could be expressed with PMFs by taking the k-Tile
mapping of A, converting the k-Tile dimensions corresponding to A's column
dimension to empty, replicating k-Tile dimensions and using the transformed
mapping for B:

A k-Tile Bk-Tile

[R; CJ a [R] a
k [Kll-0, ... ; Ke0 •••] k [KR-O, ... ; Ke0 , •• •]

[Mo, ...) => OK [O; *] m
[Mo, ...) d [Do; ...] m

d [Do; . ..]

7.1.2 HPF PROCESSORS directive

The PROCESSORS directive declares rectilinear processor arrangements. It
is equivalent to dimensions one and above in the k-Tile device space. Unlike
HPF, the k-Tile format cannot represent processors with dimensionality above

180 CHAPTER 7. THE SCOPE OF DATA MAPPING OPERATIONS

that of the physical device, but these may be moved to memory by a specified
distribution.

The k-Tile format always refers to the processors on a physical device with
no concept of virtualization, and HPF refers to 'abstract' processors. How
ever, it is permissable for an HPF compiler to reject processor arrangements
with more processors than are available. In any case, the concept of virtual
processors may not be a useful one for low-level implementation of algorithms
[10].

7.1.3 Processor VIEWs

The HPF VIEW attribute allows a mapping to be defined between different
arrangements of processors defined with the PROCESSORS directive by per
mutation of the processor dimensions. This may be duplicated in the k-Tile
format by appropriate permutation of the device space and k-Tile dimensions.

7.1.4 DISTRIBUTE and REDISTRIBUTE directives

The DISTRIBUTE directive specifies a mapping of data objects to abstract
processors in a processor arrangement. The REDISTRIBUTE directive speci
fies a dynamic remapping of data objects to another mapping.

It is possible to declare for each dimension in the array appearing in the
DISTRIBUTE directive the mapping of that dimensions as BLOCK, CYCLIC
or *· BLOCK distributes data in a dimension as ld hierarchical, CYCLIC
distributes the data as ld cut 'n'stack and * stores the dimension in memory.

For example, the following HPF fragment declares a processor array and
declares a three-dimensional array A whose dimensions are mapped BLOCK,
CYCLIC and *:

INT A(256,256,256)
!HPF$ PROCESSORS P(32,32)
!HPF$ DISTRIBUTE A(BLOCK, CYCLIC, *) ONTO P

The same mapping may be expressed with PMFs:

a (256; 256; 256]
k (8, 32; 32, 8; 256]
m (0, 3, 4; 1; 2]
d [16384; 32; 32]

7.1.5 TEMPLATE directive

The TEMPLATE directive is useful for declaring distributions and alignments
with respect to an object which does not exist but has a well-defined mapping.

I

I

I

I

I

I

I

I

:

I i

7.2. KIPS 181

If PMFs were used as the basis for the other mapping directives, the template
directive could easily be incorporated.

7.1.6 PMFs:) HPF

By giving examples of the use of the HPF mapping directives , we have shown
that the k-Tile format is capable of representing all the regular mapping re
lationships that can be specified within by HPF. There are, moreover , many
mappings that can be specified by PMFs that cannot be represented within
HPF.

Memory usage

HPF does not allow the programmer to specify the arrangement of array di
mensions in memory. This may cause some problems in generating optimized
code, as index address calculations can involve expensive multiplications that
can sometimes be avoided. The lack of specification also makes it difficult to
export the array from the HPF program: when calling a routine from another
language, the arrangement of data is implementation-dependent and hence
non-portable; when performing input/output, it is not possible to define the
mapping to arrange memory to match the format of a file on disk, or some
other device.

Hierarchical tiles

By use of the BLOCK and CYCLIC directives, an array dimension is only split
into two sub-dimensions. With the k-Tile format , dimensions may be split into
as many sub-dimensions as there are prime factors in that dimension. Extreme
but useful examples include a bit-reversed mapping for the FFT, or pyramidal
storage order in which dimension bits are interleaved.

7.2 KIPS

The CSIRO Division of Information Technology progressively developed a li
brary for image processing, called the Kernel Image Processing Software (or
KIPS) [7, 55, 66]. The aim of this system is to make many common tasks as
sociated with image processing easy to perform, such as storage, display and
computation on external devices. The storage model for KIPS will be based
around the multidimensional tile format [28, 29]. Because the tile format is a
subset of the k-Tile format, a PMF system will provide much of the required
specification and code for implementing the KIPS storage model. As the com
putational framework for KIPS is expanded, PMFs will be ideal for bridging

--

182 CHAPTER 7. THE SCOPE OF DATA MAPPING OPERATIONS

the gap between specification of storage formats for sequential devices and the
specification of mappings for parallel devices.

This thesis has addressed the algorithms associated with remapping data
on a parallel computer similar to the MasPar MP-1. However, there are many
other problems associated with the k-Tile format which will need to be ad
dressed for a full implementation of KIPS . One such problem, the accessing of
rectilinear blocks from an image stored according to a k-Tile format, has been
solved by Fraser [29]. The problems of remapping data stored on sequential
devices and moving blocks of data between devices while altering their k-Tile
mappings must still be addressed .

7.3 Sample applications

The following examples show the benefits of remapping using PMFs for per
forming various internal data movement operations [12, 22, 72] .

7.3.1 Scan-line algorithms

A significant cost in parallel computation is interprocessor communication, be
cause providing a fast connection network capable of providing a large class of
processor permutations is very expensive. A compromise is usually found be
tween expense, flexibility and speed: mesh networks provide fast communica
tion between neighbouring processors, but are inflexible and slow for irregular
or long-distance communication; crossbar switches provide more flexibility, but
generally provide a low bandwidth because of th~ high cost. Many other rout
ing schemes have been created, but all are slow compared to intra-processor
communication.

In order to minimize communication costs, scan-line algorithms perform
their computation on local neighbourhoods of an image, such as a scan-line
(i.e. scan-row or scan-column), with inter-processor communication confined
to a set of regular remappings which are designed to use the communication
network as efficiently as possible.

The resulting algorithms are designed to keep all processors busy at close to
full capacity and, because of their simple structure, may easily be optimized.
This simplicity also makes their performance predictable and consistent.

7.3.2 2d rotation

Rotation of a two dimensional image may be converted into a scan-line op
eration by separating the rotation matrix into 'skew' operations which are
performed only along either the x-axis or the y-axis. Two formulations have
been used; Paeth [58] uses three skew operations with no scaling, and both

!

I

;

I

'

'

7.3. SAMPLE APPLICATIONS 183

Fraser and O'Brien [31) and Catmull and Smith [9] use two skew operations
with scaling.

Firstly we will present Paeth 's method. Because of storage requirements
and a singularity at 180°, 8 should only range from -45° to 45°:

- ~n8 ~ n 8 (
cosB sinB) (1 co~B-1)(1 o)(l co~B-1)

- sin 8 cos 8 - 0 1 - sin 8 1 0 1

By performing transpositions between each of the three skew operations,
the complete rotation may be performed with three 'skew' operations and two
array transpositions:

(co~ e sine) = (1 c:~!91
) (O 1) (1 - sine) (O 1) (1 c~::;1

)
- sm e cos e o 1 1 o o 1 1 o o 1

For angles other than -45° < 8 < 45°, the rotation may be performed by
a pre- or post-rotation by some multiple of 90°. This example PMF remap
ping describes a scan-line transposition for a 1024 x 1024 image on a 1024-PE
machine:

a
k
m
d

[1024; 1024]
[1024; 1024)
[O; 1]
[1024; 1024]

=>

a
k
m
d

[1024; 1024]
[1024; 1024]
[1; OJ
[1024; 1024)

Similarly, by the use of the sense indicator a 90° rotation may be specified:

[1024; 1024)
a [1024; 1024) a
k [1024; 1024] k [1024; 1024]

[O; 1] => s [- ,+] m
[1 ; OJ d [1024; 1024] m

d [1024; 1024]

Figure 7.1 shows the operation of Paeth's algorithm on a 600 x 600 test
image, aspens. Linear interpolation was used in the skewing operations.

An alternative separation of the rotation matrix is proposed both by Fraser,
and by Catmull and Smith:

(
cos e sin e) = (cos e + s:;:: tan e) (~ o)

- sin 8 COS 8 Q 1 - Sill 8 COS 8

As with Paeth's algorithm, this may be performed with skews only along
the x-axis by performing transpositions between the stages:

(
cos e. sine) = (cos e + s:;:: tan e) (o 1) (cos e - sine) (o 1)

- sin 8 cos 8 0 1 1 0 0 1 1 0

184 CHAPTER 7. THE SCOPE OF DATA MAPPING OPERATIONS

(a) Original image (b) First skew

(c) Transposed (d) Second skew

(e) Transposed (f) Final skew

Figure 7.1: Skewing and transposition operations used to rotate aspens 45°

7.3. SAMPLE APPLICATIONS
185

7.3.3 Perspective viewing

Viewing a height field in perspective may also be performed using scan-line
operations, as explained by Robertson [61]. Even on sequential architectures
the scan-line approach is a fast solution for perspective viewing because of
its regularity. Robertson's perspective algorithm proceeds in several passes
alternating between scan-line skews/scales and transpositions/90° rotations:

1. If the image has not been textured, it may be textured by a shading or
shadowing algorithm. Shading is a neighbourhood operation (see sec
tion 7.3. 7), and shadowing is performed in a similar way to the perspec
tive algorithm[62J. Alternatively, the elevation image may be used alone
for a fast simple texture. The pixels of the texture image remain with
the corresponding pixels in the elevation image.

11. If required, a scan-line algorithm may be used to rotate the image to the
desired frontal view.

111. A scan-line squeeze aligns all the surface points that can mutually oc
clude.

1v. Transposition or rotation by a multiple of 90° allows operation along the
columns.

v. A scan-line operation performs vertical perspective projection with hid
den surface removal by overwriting pixels from back to front.

v1. Transposition or rotation by a multiple of 90° returns the image to its
correct orientation.

VIL A scan-line horizontal perspective projection compensates for the com
pression applied in stage (iii)

Vezina has implemented scan-line rotation and perspective viewing algo
rithms on the MasPar, with transposition performed by the PMF algorithms
[72, 73]. Figure 7.2 shows an example perspective view generated on the Mas
Par MP-1.

7.3.4 2d scan-line virtualization

The scan-line approach to many image processing tasks is ideal if the number
of scan-lines to be processed equals the number of processors. If the number of
scan-lines is greater than the number of processors, several scan-lines may be
distributed to each processor and processed sequentially. If the time to process
each scan-line is constant and some inter-scan-line communication is required,

186 CHAPTER 7. THE SCOPE OF DATA MAPPING OPERATIONS

(a) Fractal height data (b) Shaded

(c) Shaded and rotated

(d) Perspective view

Figure 7.2: Four stages in the generation of a perspective view of fractal height
data, generated and processed on the MasPar MP-1

I

7.3. SAMPLE APPLICATIONS 187

a hierarchical mapping of scan-lines to processors would be appropriate. If the
time to process each scan-line is spatially dependent, a cut'n'stack mapping
will give each processor a widely-spaced selection of scan-lines from the image.

These two k-Tile formats describe a hierarchical mapping of a 4096 x 4096
image to a 1024-PE processor,

a [4096; 4096]
k [4096; 4, 1024]
m [0,1;2]
d [16384; 1024]

and a cut'n'stack mapping of the same image:

a [4096; 4096]
k [4096; 1024, 4]
m [0,2;1]
d [16384; 1024]

If the number of scan-lines in the image to be processed is significantly
smaller than the number of processors, mapping a single scan-line to each
processor will leave processors underutilized. In scan-line operations where
the data access is highly regular, such as rotation, it is possible to split each
scan-line between several processors.

This k-Tile format shows a 512 x 512 image mapped with half a scan-line
per PE in a 1024-PE device:

a [512; 512]
k [256, 2; 512)
m [O; 1,2]
d [256; 1024]

The resultant increase in coding complexity and inter-processor communica
tion requirements may negate gains due to load redistribution. In scan-line
operations where the data access within scan-lines is both non-regular and
non-local, such as vertical perspective projection, splitting scan-lines may of
fer no advantages.

Another approach to making better use of available processors for images
with a small number of scan-lines is to generate several images simultaneously.
This method can increase interaction speeds and allow animation sequences to
be generated more quickly.

This k-Tile format declares space for 32 512 x 512 images on a 16384-PE
device, with the third image dimension selecting the image number and each
image stored in a block of 512 processors:

a [512; 512; 32]
k [512; 512; 32]
m [0;1,2]
d [512; 16384)

I

i
I

'

I

-

188 CHAPTER 7. THE SCOPE OF DATA MAPPING OPERATIONS

7.3.5 Volume rotation and rendering

Three-dimensional scan-line algorithms can be used for the visualization of
three-dimensional volume data. Three dimensional rotations can be expressed
as an alternating sequence of skews through the processors' memory axis and
transpositions/rotations by multiples of goo [33, 44, 71].

Vezina has implemented a volume visualization system for the MasPar that
uses scan-line algorithms for performing both rotation [33] and for perspective
and iso-surface calculations [71], and uses radix 2 PMFs for inter-processor
data movement operations. Figure 7.3 shows output from Vezina's system
using two data sets, an MRI image of a human head 2 and a three-dimensional
phase space diagram of a strange attractor [3].

Three dimensional rotations require many more remappings than those re
quired for two. For two dimensional rotation only eight states are obtained
from combinations of go 0 rotations/transpositions: four rotations x two trans
positions. For three dimensions 48 states are obtained from these operations:
one of six planes can face forward, each of which may be in four orientations,
and may also reflected by transposition, yielding 6 x 4 x 2 = 48 states. In a
later implementation of Vezina's rendering system [71], operations consisting
of multiple transpositions and rotations by multiples of goo are concatenated.
This requires only one remapping operation to be performed between non
remapping processing steps, and allows the data movement to be optimized;
inverse operations appearing in two compound operations need not be per
formed.

Except for the smallest images to be processed, the larger quantity of data
processed in volume visualization requires some form of scan-line virtualization
to be used. There are many more choices for virtualization of three dimensional
images than for two because any 2d mapping may be used for any two of the
volume dimensions and the third dimension may be mapped in several ways
also. Vezina chose to map the viewing coordinate system with Z-scan-lines
along the processors' memories with the X and Y axes in a 2d hierarchical
mapping. This allows for fast access along the Z-axis of the data for scan-line
operations and keeps many pixel neighbourhoods in memory for fast gradient
calculations.

This example shows the k-Tile mapping for a 256 x 256 x 256 image on a
1024-PE MasPar:

a [256; 256; 256]
k [8, 32; 8, 32; 256]
m [4, 0, 2; 1; 3]
d [16384; 32; 32]

Because the processor array in an 81g2-PE MasPar is rectangular, rectangular

2Data taken on the Siemens Magnetom and provided courtesy of Siemens Medical Sys
tems, Inc., Iselin, NJ ., and obtained from the University of North Carolina

I

I

I

i

I

11

1:

7.3. SAMPLE APPLICATIONS 189

tiles must be stored to represent a cubical volume, as this example shows:

a [256; 256; 256]
k [2,128;4,64;256]
rn [4,0,2;1;3]
d [2048; 128; 64]

The other k-Tile mappings are defined similarly.
Figures 7.4 and 7.5 shows the execution time required for performing the 48

volume remappings for different image sizes on processor arrays of different size.
Transpositions are around the indicated axis, e.g. X means 'transpose Y and Z
axes', whereas reverses indicate the actual axis reversed. An XY transposition
is an X transposition followed by a Y transposition. An XY transposition is
equivalent to a Y Z or ZX transposition, and an X Z transposition is equivalent
to a ZY or Y X transposition.

The timings for the volume remapping operations are similar on two pro
cessor arrays of different size with the same number of data elements per
processor, thus the time taken for the data movement for volume rendering is
very nearly linearly related to the number of processors. For example, an X Z
transposition and an XY Z reverse takes 597 mS on a 256 x 256 x 256 volume
on a 1024-PE machine, and the same problem on a 512 x 512 x 512 image on
an 8192-PE machine takes 564 mS. Both these problems involve the movement
of 16384 bytes in every processor.

Given a full crossbar switch connecting the processors and the algorithms
presented in chapter 4, this would be expected. Strictly speaking the Mas
Par does not have a full crossbar switch (see section 5.6.4), yet equivalent
performance is obtained because the implementation of PMFs prevents router
contention from occurring.

Aside from manipulations on the volume data set, PMFs are also used
when displaying the two-dimensional result of the volume rendering. Because
of the mapping chosen for the three-dimensional volume, the two-dimensional
rendering is generated in 2d hierarchical mapping. In order to transfer this
image back to the front end workstation for display, a scan-line mapping is
more convenient. If the image is to be displayed on a workstation with an 8-
bit frame-buffer, direct colour quantization and dithering is performed [68], for
which a scan-line mapping is also more convenient. This example shows the k
Tile mapping for the 2d hierarchical and 2d scan-line mapping of a 256x256x4
generated colour volume image. A 256 x 256 x 3 colour image would be more
desirable, but remapping of this image could not be performed using radix 2
PMFs:

a
k
rn
d

[4; 256; 256]
[4; 8, 32; 8, 32]
[O, 1, 3; 2, 4]
[256; 1024]

a : _ [4; 256; 256]
k [4; 256; 256]
rn [O, 1; 2]
d [1024; 256]

I

1

I

190 CHAPTER , . THE SCOPE OF DATA MAPPING OPERATIONS

(a) (b)

(c) (cl)

(e) (f)

Figure 7.3: Example volume renderings of: (a, b, c) : a human head and (cl , e,
f): a three-dimensional view of the phase space of a damped pendulum with
a. sinusoidal driving force.

7.3. SAMPLE APPLICATIONS 191

Volume operation times on 1024 PE MasPar MP-1
32 X 32 X 32 64 X 64 X 64 128 X 128 X 128 256 X 256 X 256

transposes reverses 32 bytes/PE 256 bytes/PE 2048 bytes/PE 16384 bytes/PE
Time (mS) Time (mS) Time (mS) Time 1mS)

1.0 1.0 1.0 1.0
X 1.6 5.7 36.9 284.3 y 1.6 5.6 36.8 284.0

XY 1.6 5.6 36.3 282.0 z 1.3 2.7 13.6 100.3 xz 2.1 7.7 52.1 406.8
YZ 2.2 7.7 52.1 406.8

XYZ 2.2 7.7 52.1 455.6
X 2.0 7.5 39.2 288.7
X X 4.9 11.1 77.1 545.4
X y 2.5 7.3 39.3 337.6
X XY 5.3 11.0 76.0 595.4 I

X z 2.5 7.3 39.3 337.6
X xz 5.3 11.6 83.0 592.7

I X YZ 2.9 6.8 50.l 387.6
X XYZ 4.9 11. 7 82.6 544.5 y 2.0 7.8 39.5 289.0 ' y X 2.5 7.3 39.2 338.0 y y 4.9 11.1 73.1 545.8

I

y XY 5.3 11.0 75.4 595.9 y z 2.5 7.3 39.2 338.0 y xz 2.9 6.8 50.5 381.8 y YZ 5.3 11.6 80.6 593.0 y XYZ 4.9 11.7 82.1 546.3 z 1.6 5.7 36.9 283.7 z X 1.6 5.6 36.4 282.1 z y 1.6 5.6 36.4 282.1 z XY 1.6 5.7 36.9 283.8 z z 2.2 7.7 52.1 455.6 z xz 2.2 7.7 52.1 455.6 z yz 2.2 7.7 52.1 455.6 z XYZ 2.2 7.7 52.1 455.6
XY 4.9 11.0 74.9 546.9
XY X 5.3 11.0 76.4 595.6
XY y 5.3 11.0 76.1 600.0

I XY XY 4.9 11.1 76.2 546.9
XY z 5.3 11.6 82.3 595.3

I XY xz 4.9 11.7 83.0 542.4
XY YZ 4.9 11.7 84.1 542.0
XY XYZ 5.3 11.8 82.0 596.5 xz 4.9 11.0 74.9 546.6 xz X 5.3 11.0 76.4 600.5 xz y 5.3 11.0 76.2 596.3
xz XY 4.9 11.1 76.2 546.6 xz z 5.3 11.6 82.3 595.6
xz xz 4.9 11.7 83.0 542.4
xz YZ 4.9 11.7 84.1 542.0
xz XYZ 5.3 11.8 82.0 597.1

i Figure 7.4: Execution times in milliseconds of all 48 volume remapping oper-I
I ations on a 1024 PE MasPar MP-1.

i

__.

192 CHAPTER 7. THE SCOPE OF DATA MAPPING OPERATIONS

Volume operation times on 8192 PE MasPar MP-1
128 X 128 X 128 256 X 256 X 256 512 X 512 X 512

transposes reverses 256 bytes/PE 2048 bytes/PE 16384 bytes/PE
Time (mS) Time (mS) Time (mS)

- - 1.1 1.1 1.1 .
- X 5.6 37.6 287.0
- y 5.7 36.8 284.1
- XY 5.7 36.6 282.4
- z 3.0 15.8 117.4
- xz 8.1 54.3 424.0
- YZ 8.0 54.3 424.0
- XYZ 8.0 54.3 424.0
X - 9.1 51.6 389.0
X X 14.5 79.4 562.6
X y 8.9 52.0 387.7
X XY 20.7 78.1 561.5
X z 8.9 52.0 387.7
X xz 15.3 87.2 570.5
X YZ 8.7 55.4 488.4
X XYZ 22.2 86.7 561.3 y - 13.3 86.8 580.1 y X 15.4 84.4 582.0 y y 22.6 79.3 584.0 y XY 21.9 78.4 604.4 y z 15.4 84.4 582.0 y xz 13.4 76.7 663.2 y YZ 21.9 84.9 659.5 y XYZ 22.6 86.0 671.5
z - 8.3 59.5 460.1
z X 9.4 64.8 506.2
z y 9.4 64.8 506.2
z XY 8.3 59.5 460.1
z z 10.8 75.8 595.9
z xz 10.6 74.5 585.7
z yz 10.6 74.5 585.7
z XYZ 10.8 75.8 595.9

XY - 19.9 79.6 565.2
XY X 19.7 79.9 561.1
XY y 19.7 79.6 564.1
XY XY 19.9 80.6 564.0
XY z 19.7 86.5 561.1
XY xz 19.9 87.5 565.3
XY YZ 19.9 88.8 564.0
XY XYZ 19.7 86.2 564.1
xz - 19.9 76.2 565.2
xz X 19.7 78.4 561.1
xz y 19.7 75.1 561.1
xz XY 19.9 78.8 565.3
xz z 19.7 88.1 564.1
xz xz 19.9 87.8 564.3
xz YZ 19.9 89.1 564.3
xz XYZ 19.7 86.2 564.1

Figure 7.5: Execution times in milliseconds of all 48 volume remapping oper
ations on an 8192 PE MasPar MP-1.

I

I

I

'

7.3. SAMPLE APPLICATIONS 193

7.3.6 The Fast Fourier Transform

The Fourier Transform of a two-dimensional image may be viewed as a scan
line algorithm, as it may be performed by transforming the rows, transposing,
and transforming the columns [8, 11, 32]. However, there are several other
aspects of the FFT which allow it to benefit by the use of PMFs for other
components of the algorithm.

For the radix 2 FFT [11], the data array must be a power of two in length
and is re-ordered so that each data element is moved to another position whose
index is the bit-reversal of its own, whether before or after the FFT compu
tation. This reordering may be specified by the k-Tile format; this example
shows the PMF transformations that could be used for a 1024 x 1024 FFT. A
complex number is assumed to consist of eight bytes:

• Bit-reversal prior to row FFT:

a
k
m
d

[8; 1024; 1024] a
(8; 1024; 1024] => k
[0,1;2] m
(8192; 1024] d

[8; 1024; 1024]
[8;2,2,2,2,2,2,2, 2,2,2;1024]
[O, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1; 11]
[8192; 1024]

(mo)(m1)(m2)
Radix 2 remapping: (m3, m12)(m4, m11)(ms, m10)(m6, mg)(m1, ms)

~0)~1)~2)~3)~4)~s)~6)~1)~s)~g)

• Transposition and bit-reversal prior to column FFT:

a
k
m
d

(8; 1024; 1024] a
[8; 1024; 1024] => k
(0,1;2] m

[8; 1024; 1024]
[8;1024;2,2,2,2,2,2,2,2,2,2]
(0, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2; 1]
[8192; 1024] (8192; 1024] d

Radix 2 remapping:

(mo)(m1)(m2)
(m3,po, m12,pg)(m4, P1, m11,Ps)
(ms, P2, m10, P1)(m6, p3, mg, P6)

(m1,P4, ms,Ps)

• Transposition and offset of origin to center for viewing:

a
k
m
d

[8; 1024; 1024]
[8; 1024; 1024] =>
[O, 1; 2]
[8192; 1024]

m
d

(8; 1024; 1024]
[O, 512,512]
[8; 1024; 1024]
(0, 2; 1]
(8192; 1024]

I

I

I
I

I

!

I

.......

194 CHAPTER 7. THE SCOPE OF DATA MAPPING OPERATIONS

Variations of the FFT have been developed for arrays with dimensions
which are not powers of two and require mixed-radix index digit permutation.
The vector-radix fast Fourier transform [15, 35] performs multi-dimensional
FFTs by computing and combining multiple smaller FFTs of the same dimen
sionality as the desired FFT.

The data reordering required for both these forms of the FFT may be
specified using PMFs. The fractal surface shown in figure 7.2 was generated
by performing an inverse Fourier transform on noise with a 1/ Jf3 distribution,
as described by Voss, with a fractal dimension of 2.4 specified [74]. A scan-line
mapping was used with the index-bit reversals and transposition performed by
the radix 2 implementation of PMFs.

Fier has examined many implementations of the radix 2 FFT and has found
that "the most efficient implementation consists of an alternating sequence of
... sequential FFTs followed by data redistribution" [19]. The data distribution
required for his examples may also be specified by PMFs. Kuszmaul has also
examined FFTs for the MasPar, and PMFs could be used for many of the data
mappings he proposes. However, he also specifies an embedded cube mapping,
which cannot be described by PMFs [40, 41] .

7.3.7 Neighbourhood operations

A large class of image processing operations can be expressed as neighbour
hood operations, in which every pixel is replaced by some function of its closest
neighbours. Some examples of neighbourhood operations are filtering by ker
nel convolution, mathematical morphology, simple edge detection, gradient
determination and shading. In this section we examine the number of com
munication operations required for performing neighbourhood operations on
data stored in several data mappings. We will only examine 2d neighbourhood
operations, but the same analysis could be carried out on higher-dimensional
images with similar conclusions.

We examine a lower bound on communications cost for a 3 x 3 neighbour
hood operation on an N x N image on a square P x ?-element processor array,
where N is divisible by P, for each of three mappings: ld hierarchical, 2d hier
archical and 2d cut'n'stack. If P 2 > N , a partial scan-line from the image will
be stored in each PE in the ld hierarchical mapping, and nearest-neighbour
communication is not sufficient for finding neighbours in the ld hierarchical
mapping.

In each of these mappings each processor will contain N 2 / P 2 elements.
We assume that the neighbourhood algorithm is intelligent enough to read
each data element only once, thus the number of memory and computation
cycles will be the same for each of the three mappings. We ignore image edge
effects, which could be handled by element duplication or substitution of a
padding value. We express the number of communication steps in terms of a

I

I

7.3. SAMPLE APPLICATIONS 195

'2d' virtualization ratio, V = N/P (the true virtualization ratio is N 2/P2).

The algorithm using the ld hierarchical mapping will need to communicate
with each processor's neighbours to obtain the pixels from the scan-lines above
the first and below the last in its memory, and to the left and right of a partial
scan-line if N < P. The algorithm using the 2d hierarchical mapping needs
communication to obtain the pixels on the four sides of each 2d tile. The
algorithm using the cut'n'stack mapping needs communication to obtain the
neighbours of every pixel:

• ld hierarchical: C={ 2 X N = 2 X p X V if N >= P 2

6 + 2 x N 2
/ P 2 = 6 + V2 if N < P 2

• 2d hierarchical: C = 4 x (1 + N/ P) = 4 x (1 + V)

• 2d cut'n'stack: C = g X N 2 I P 2 = g X V2

Clearly a 2d hierarchical mapping requires the fewest communication steps
when there are at least four processors.

Unfortunately, an algorithm using a 2d hierarchical mapping to perform a
3 x 3 neighbourhood operation which combines communication with computa
tion operations is complex, as there are nine distinct types of communication
associated with pixels in the tile, corresponding to the four corners, the four
sides and the interior. If the algorithm is designed to cope with small virtu
alization ratios, there is one more type of communication associated with a
virtualization ratio of 1. Thus, either the code for computation must be du
plicated ten times or the containing loop must test for the distinct cases for
an efficient implementat ion of a 3 x 3 neighbourhood operation. Operations
on larger neighbourhoods contain many more distinct communications types.

An alternative method for implementing this type of operation is to sepa
rate the communication and computation components by allowing a region of
padding around each tile. Before computation begins, the pixels neighbour
ing each tile are copied into the padding area. The computation may now be
performed in exactly the same manner for each pixel.

This technique causes an overhead in memory use, and further investigation
is necessary to determine if any time saving may be achieved. However, it may
provide gains through the combining of all communications operations and
simplification of the computational loop.

Although no algorithms have yet been developed for performing this type
of PMF operation, it may be specified using k-Tile tern plate offsets. This
example shows how a 1024 x 1024 image on a 32 x 32 mesh may be padded
to allow a 3 x 3 neighbourhood operation to be performed using the simplified
communication and computation operations:

!

196 CHAPTER 7. THE SCOPE OF DATA MAPPING OPERATIONS

a [1024; 1024]
a [1024; 1024] k [32, 32; 32, 32]
k [32, 32; 32, 32] tK [34, 32; 34, 32]

[O, 2; 1, 3] => [1, O; 1, OJ m OTK

d 1024; 1024] m [O, 2; 1, 3]
d [1156; 1024]

7.3.8 Computing the Mandelbrot set

The computation of the Mandelbrot set by iteration on each pixel has some
properties that allow the computation to be optimized by choosing the appro
priate data mapping. The calculation of each pixel is independent of every
other pixel: only its position in the complex plane needs to be known. How
ever, the cost of computing a pixel is generally similar to that of its neighbours,
because every iteration contour N surrounding the Mandelbrot set is connected
and is surrounded by iteration contours N ± l. This situation breaks down
near the Mandelbrot set where the contours are closer together than a single
pixel, but is usually a good guide.

This spatial dependence of the cost of computing a pixel may be used to
balance the load per processor when computing the Mandelbrot set. If each
processor has a similar spatial distribution of pixels, the computational load
per processor should be similar. A 2d cut'n'stack mapping gives each proces
sor a widely and evenly spaced collection of pixels, and therefore should have
good load-balancing characteristics. This characteristic can be used to perform
load-balancing of any algorithm in which the generation of pixels is spatially
dependent and neighbourhood-independent; load balancing is improved in the
merge-and box colour quantization algorithm with a well-spread spatial distri
bution [23, 24], and other problems such as ray-tracing could also benefit from
this approach.

Tomboulian and Pappas have performed experiments in load-balancing
Mandelbrot set calculations on the MasPar [65] . The results they obtain with
a regular mapping are poor, and they attribute this to the fact that every pro
cessor contains a non-uniform distribuf on of the array. Although they describe
their regular mapping as cut'n'stack, their results suggest that it is in fact a 2d
hierarchical mapping. However, they obtained good results with a randomly
skewed mapping. Further details about the mechanism for load-balancing may
be obtained in their paper.

Good results can also be obtained using a regular 2d cut'n'stack mapping;
figure 7.6 compares the best results of Tomboulian and Pappas using a ran
domly skewed mapping with those we obtained using a 2d cut'n'stack mapping,
and figure 7.7 shows the regions of the Mandelbrot used for the tests. These
figures show that the 2d cut'n'stack mapping is superior to the random skewing

I

7.4. SUMMARY 197

Iteration counts and time for solving 512 x 512 Mandelbrot with 4K PEs

real

-2.0,0.5
-1.251,-1.25

-0.6,-0.5
0.26 ,0.27

-1.26,-1.24
0.2732,0.2741

imaginary

-1.25,1.25
0.024,0.025

-0.6,-0.5
0.00,0.01
0.01,0.03

-0 .0064,-0.0055

Random skew 2d cut'n'stack
iter time (sec) iter time (sec)

25949 8.39 20280 5.80
11995 3.85 11952 3.57
33080 10.66 29376 8.38
52574 16.93 48672 13.73
61114
13123

19.68
4.22

58416
11952

16.22
3.58

Figure 7.6: Mandelbrot set calculation comparison between Tomboulian and
Papert's random skewing and a 2d cut'n'stack mapping

method in both time and number of iterations required: although the source
code for Tomboulian and Papert's is not the same as ours, the same compiler
and run-time parameters were used for both tests.

Another consideration in the choice of mapping is the set-up cost in cal
culating the mapping and the recovery cost in either writing the computed
data to disk or to a display. The start-up cost in the random skewing method
is small, involving the computation of 64 random numbers. Because it is a
regular mapping, the start-up cost for the 2d cut'n'stack method is negligible.
The recovery cost for the random skewing method will take one or two steps;
communicating each of the 64 pixels a random distance along the x axis of
the MasPar's mesh, and if the resultant regular mapping is not suitable for
display, remapping it. These costs are negligible compared to the computation
time. The recovery cost for the 2d cut'n'stack method is a single remapping,
from a 2d cut'n'stack mapping to a ld hierarchical mapping suitable for a fast
write to disk:

a
k
m
d

[512; 512] a
[64, 8; 64, 8) k

=> [1, 3; 0, 2) m
[64; 4096] d

[512; 512]
[64, 8; 512]
[O; 1, 2]
[64; 4096]

This remapping takes 14mS, and so is also insignificant compared to the
cost of calculating pixels in the Mandelbrot set.

7.4 Summary

This chapter examines the scope for the usage of a PMF system by giving
examples of its use for: the implementation of a compiler incorporating data

I

I
:
I

I

I

198 CHAPTER 7. THE SCOPE OF DATA MAPPING OPERATIONS

(a) (b)

(c) (d)

(e) (f)

Figure 7.7: Sections of the Mandelbrot set computed with a 2d cut'n'stack
mappmg

:

!

I

7.4. SUMMARY 199

mapping constructs; an image processing kernel; and several applications that
have benefitted from the use of the k-Tile format and PMFs.

HPF is perhaps the first programming language which includes a rich class
of directives for specifying the data mapping of a data array onto a parallel
processor. We show that all the mapping directives specified by HPF may
also be specified using . the k-Tile format, hence all the remapping operations
specified by HPF may be performed by a complete PMF system. PMFs provide
a richer class of mapping specifications than HPF, and PMFs are not defined
within a language such as Fortran 90, giving them a wider applicability. At
present, however, only a radix 2 PMF system has been implemented.

The relationship between the k-Tile format and KIPS has been examined
briefly. PMFs were designed for computation on parallel devices, and will pro
vide the basis for implementing data tiling for KIPS on parallel architectures.
The functionality of both PMFs and KIPS could be merged in the future
to provide a powerful data mapping system for both parallel and sequential
architectures.

Several visualization algorithms have benefitted from the implementation
of radix 2 PMFs on the MasPar MP-1. A large class of scan-line algorithms,
such as 2- and 3- dimensional rotation, perspective surface view generation
and volume visualization have been implemented using PMFs for axis trans
position/reflection and remapping to make display and disk operations both
simpler and faster. Other operations such as the multidimensional FFT, neigh
bourhood filters and the computation of the Mandelbrot set have also been
shown to benefit from approaches using data remapping.

I

I

200 CHAPTER 7. THE SCOPE OF DATA MAPPING OPERATIONS

I
I

I

I i

'

I

I

:

i
I

I

I

I

'

Chapter 8

Conclusions

This thesis addresses two problems becoming increasingly relevant as more
processing is applied to larger multidimensional data arrays on increasingly
massively parallel architectures:

• The task of mapping a data array onto a device, which we have termed
the data mapping problem

• The task of altering the mapping of a data array already mapped to a
device by rearranging the data, which we have termed the data remapping
problem.

In this thesis we have examined some aspects of the mapping and remap
ping problems in detail. The approach we have chosen is to define a concise
and flexible framework within which data mappings can be defined, and using
this framework as a basis for a system of algorithms to perform data remap
pings. We have limited the scope of this thesis to examine regular mappings of
multidimensional data arrays, but many problems in visualization, simulation
and image processing can be addressed within this framework.

In this chapter we look at the effectiveness of the approach and our pro
posed solutions to the problems raised, outline limitations in the approach and
suggest possible directions for future work.

8.1 The data mapping problem

To address the data mapping problem we developed the k-Tile format , based
on Fraser's multidimensional tile format. The k-Tile format provides a flexible
method for specifying the mapping of multidimensional images to multidimen
sional storage devices. Many useful data mapping techniques are incorporated
in the k-Tile format:

201

I

I

I

I
I

I

202 CHAPTER 8. CONCLUSIONS

• hierarchical decomposition of image dimensions into tiles to allow the
shape of an image to be matched to the storage device, and the layout
of the image to be matched to the algorithms;

• reversal and translation of image dimensions to allow the specification of
geometrical transformations;

• padding of dimensions to allow images with inconvenient sizes to be
mapped more flexibly, and to allow empty space to be declared around
data tiles;

• replication of data across distributed memories to allow a local copy of
data to be stored with every processor.

The basic form of the k-Tile format requires the specification of four vectors.
Additional flexibility is provided by the specification of a selection of several
other vectors.

8.2 The data remapping problem

A data remapping may be specified using a pair of k-Tile formats, one rep
resenting the source data mapping and the other representing a destination
data mapping. This method of specification does not prescribe how the data
movement is to be performed, however. To provide a solution to the data
remapping problem, algorithms must be created to take two k-Tile formats
describing a data remapping and move data on the storage device to perform
the remapping.

A system to perform this task is called Parallel Mapping Functions (PMFs).
We have developed radix 2 PMFs, which are a restricted form of PMFs, and
have developed algorithms for performing some components of a general PMF
system.

8.2.1 Radix 2 PMFs

A restricted form of the k-Tile format, in which data sets have dimension
lengths a power of two and not incorporating translation, padding, or replica
tion, defines the 2k-Tile format. Using the 2k-Tile format we implemented a
restricted form of PMFs, radix 2 PMFs.

We implemented radix 2 PMFs using a generalized form of index bit per
mutation, which forms the basis for the work of Flander's Parallel Data Trans
forms (PDTs) on the DAP. PDTs perform index bit permutation on the DAP
using a mesh connection network and direct memory addressing.

I

I

11

•

I
I

I

!
I

I

I

I

8.3. APPLICATION OF THE APPROACH 203

We have designed algorithms for performing index bit permutation on par
allel architectures incorporating indirect memory addressing and a crossbar
like connection network. The algorithms are optimal in their use of the com
munications network, and use a small factor times the minimum number of
memory operations. The algorithms operate by breaking an index bit per
mutation into a set of index bit permutation cycles, which may be performed
independently and often simultaneously.

We have implemented these algorithms on the MasPar MP-1 within a radix
2 PMF system, and have incorporated many additional optimizations for the
MasPar architecture. We have tested the speed and reliability of our im
plementation against many random remapping problems, a computed lower
bound, and remapping routines written by others. The results obtained show
our radix 2 PMF system to be fast, reliable and flexible.

8.2.2 Mixed radix remapping

The restriction of radix 2 PMFs to images whose dimension lengths must be
powers of two is unfortunately a significant one. We have explored a gener
alization of index bit permutation, mixed radix remapping. We have outlined
and implemented algorithms for performing several components of mixed radix
remapping, which would be used in the implementation of a general PMF sys
tem:

• Mixed-radix index digit permutation

• Mixed-radix index digit re-signification, using two approaches:

Using a series of index digit permutations to allow re-signification
within device dimensions

A brute-force approach performing index digit re-signification by
using a general but inefficient permutation algorithm

• Processor cluster contention removal to optimize usage of crossbar con
nections shared by clusters of processors

Our results show that many components of a general PMF system could
be implemented efficiently, although some components need more attention.

8.3 Application of the approach

To further justify the importance of finding solutions to the data mapping and
remapping problems, we have examined several areas which could benefit, and
have benefited, from these ideas:

I

I

'
I

204 CHAPTER 8. CONCLUSIONS

• High Performance Fortran is an extension to the Fortran '90 language
which incorporates many data mapping directives. We show that these
directives may be specified and performed using PMFs;

• KIPS is an image processing kernel used for the storage and manipulation
of multidimensional images on storage and computational devices. The
k-Tile format and PMFs will be incorporated within the storage model
of KIPS, and will provide a bridge between sequential storage of images
in disk files and parallel computation on distributed memory processor
arrays;

• Many visualization, image processing and image generation systems have
been implemented using PMFs for image format remapping, 2d and 3d
geometrical image transformations, and algorithm optimization.

These examples show that the specification of the k-Tile format and the
implementation of radix 2 PMFs provide both a useful tool for applications
being created now, and a general framework for future systems.

8.4 Limitations of the approach, and future
work

We have demonstrated that the k-Tile format and a general PMF system covers
the needs for data mapping and remapping of many visualization and image
processing algorithms. This approach has several limitations, some of which
could be addressed in the future.

8.4.1 Data structures

Because we have limited the scope of this thesis to mappings of multidimen
sional data arrays, many commonly used data structures and operations are
not addressed.

Although the multidimensional array is a suitable data structure for a large
range of data storage and data processing tasks, it is not suitable for data
structures such as data-bases, linked lists, graphical objects, quad-trees and
sparse arrays. Integration of these objects within the k-Tile format would be
desirable.

8.4.2 Data-dependent mappings and operations

Another limitation of the scope of this thesis is the requirement that data
mappings be data-independent.

I

8.4. LIMITATIONS OF THE APPROACH, AND FUTURE WORK 205

This requirement has many advantages, because many of the resulting data
mapping algorithms are highly regular and suitable for implementation on
SIMD architectures. However, this requirement also precludes the use of data
compression, such as run-length encoding or the use of oct trees .

Many commonly used algorithms such as sorting and clustering are also
related to data-dependent mappings. Full integration of data-dependent map
pings within the k-Tile format may not be realistic, but some form of general
ization to data dependency would be desirable.

8.4.3 A general PMF system

Although the implementation of a radix 2 PMF system was successful, there
are still many problems to be solved before the implementation of a general
PMF system would be possible. The experiments we performed with mixed
radix remapping showed that a number of tasks associated with a general
PMF system could be performed using similar algorithms to the radix 2 PMF
system.

However, an implementation of index digit re-signification using the sug
gested brute-force approach is likely to be disproportionately slower than the
other components of mixed radix remapping, and the use of a more intelligent
approach would be desirable.

Before it would be possible to integrate mixed radix remapping into a gen
eral PMF system additional tasks, outlined in section 6.5, must be completed.
However, we believe there are no conceptual barriers to prevent the implemen
tation of a general PMF system.

8.4.4 Human interaction with data mappings

An unfortunate aspect of the data mapping problem is the difficulty humans
have in visualizing and interpreting multidimensional data mappings. Al
though the k-Tile format is a simple structure of one-dimensional vectors,
it is difficult to extract the meaning of a data mapping from this abstract
description.

Ad-hoc approaches have an advantage over general approaches for describ
ing simple data mappings because descriptive names are more easily recognized
than values in vectors. However, the large number of mappings available with
the k-Tile format make the incorporation of the ad-hoc approach within a
general data mapping system unrealistic except for a few special cases.

A possible solution to the problem of learning to visualize data mappings
is the provision of a tool that could give an easily interpreted visual represen
tation of any data mapping. By providing an experimenter with practice and
experience in specifying and visualizing data mappings, the selection of a data
mapping for an arbitrary problem could become an easier task.

I

I

I

-

.....

206 CHAPTER 8. CONCLUSIONS

I

I

I

Bibliography

[1] Active Memory Technology Ltd. Parallel Data Transforms. 65 Sut
tons Park Avenue, Reading, Berks, UK, 2 edition, November 1988.
(man022.02).

[2] ANSI. Fortran 90. ANSI, 1991. X3J3 internal document S8.118 Submitted
as Text for ANSI X3.198-1991.

[3] Gregory L. Baker and Jerry P. Gollu b. Chaotic dynamics : an introduc
tion. Cambridge University Press, 1990.

[4] T. Blank. The MasPar MP-1 architecture. In CompCon '90 San Fran
cisco, California, San Francisco, California, 1990.

[5] Tom Blank. Personal Communication.

[6] Rajendra V. Boppana and C. S. Raghavendra. Generalized schemes for
access and alignment of data in parallel processors with self-routing in
terconnection networks. Journal of Parallel and Distributed Computing,
11:97-111, 1991.

[7] Oscar Bosman, Peter Fletcher, and Kenneth Tsui. K-tiling: A structure
to support regular ordering and mapping of image data. In APRS Work
shop on Two and Three Dimensional Spatial Data: Representation and
Standards, Perth, December 7-8 1992.

[8] Ron Bracewell. The Fourier Transform and its Applications. McGraw
Hill, Inc., New York, 1965.

[9] Ed Catmull and Alvy Ray Smith. 3d transformations of images in scanline
order. In SIGGRAPH '80 Conference Proceedings, pages 279-285, 1980.

[10] P. Christy. Virtual processors considered harmful. In DMCC6, Portland,
Oregon, 1991.

[11] James W. Cooley and John W. Tukey.
calculation of complex Fourier series.
19(90):297-301, 1965.

207

An algorithm for the machine
Mathematics of Computation,

~- --

I

208 BIBLIOGRAPHY

[12] L. De Ferrari. Scientific visualisation on a massively parallel SIMD su
percomputer: Approaches to image-based visualisation. In 4ASC QLD,
Bond University, Gold Coast, Australia, 1991.

[13] Adriano J. de 0. Cruz. Parallel algorithms for SIMD computers. Micro
processing and Microprogramming, 28:85-90, 1989.

[14] Adriano Joauim de Oliveira Cruz. The Design of a Control Unit and Par
allel Algorithms for a SIMD computer. PhD thesis, University of South
hampton , 1988.

[15] Dan E. Dudgeon and Russel M. Mersereau. Multidimensional Digital
Signal Processing. Prentice-Hall International, Inc., London, 1984.

[16] J. 0. Ekiundh. A fast computer method for matrix transposing. IEEE
Transactions on Computers, C-21(7), July 1972.

[17] Jeff Fier. Personal Communication.

[18] Jeff Fier. Efficient router-based permutations on the MasPar MP-1/MP-
2. Technical report, MasPar Computer Corporation, 749 North Mary
Avenue Sunnyvale, California, 1993.

[19] Jeff Fier. Ordered fast Fourier transforms on the MasPar MP- 1/MP-
2. Technical report, MasPar Computer Corporation, 749 North Mary
Avenue Sunnyvale, California, 1993.

[20] P. Flanders. Languages and Techniques for Parallel Array Processing.
PhD thesis, Queen Mary College, 1982.

[21) P. M. Flanders. The effective use of SIMD processor arrays. In Dennis
Parkinson and John Litt, editors, Massively Parallel Computing with the
DAP, pages 119- 129. The MIT Press, Cambridge, Massachusetts, 1990.

[22] Peter Fletcher. Scientific visualisation on a massively parallel SIMD su
percomputer: Regular mapping and handling of multidimensional data
on SIMD architectures. In The Fourth Australian Supercomputing Con
ference, Bond University, Gold Coast, Queensland, 1991.

[23] Peter Fletcher. A SIMD parallel colour quantization algorithm. Comput
ers and Graphics, 15(3):365-373, 1991.

[24) Peter A. Fletcher. Adaptive selection of optimised colour subsets for
displaying 24-bit colour images on 8-bit graphics workstations. In Image
Processing and the Impact of New Technologies, pages 193- 196, Australian
Defence Force Academy, Canberra, Australia, December 18- 20 1989.

I

I

BIBLIOGRAPHY
209

[25) Peter A. Fletcher and Phillip K. Robertson. A generalised framework for
parallel data mapping in multidimensional signal and image processing.
In International Symposium on Signal Processing and its Applications,
pages 614-617, Gold Coast, Australia, 1992.

[26] Geoffrey Fox, Seema Hiranandani, Ken Kennedy, Charles Koelbel, Uli
Kremer, Chau-Wen Tseng, and Min-You Wu. Fortran D language speci
fication . Technical report, Department opf Computer Science, Rice Uni
versity, P.O. Box 1892, Houston, Texas, April 1991.

[27) D. Fraser. Array permutation by index digit permutation. Journal of the
ACM, 23:298-309, 1976.

[28] D. Fraser. Bit reversal and generalized sorting of multidimensional arrays.
Signal Processing, 9(3):163-176, 1985.

[29] D. Fraser. Multidimensional image data formats. Consultation report ,
CSIRO Division of Information Technology, 1988.

[30] Donald Fraser. Rectification of multichannel images in mass storage using
image transposition. Computer Vision, Graphics, and Image Processing,
29:23-36, 1985.

[31] Donald Fraser and Eddie O'Brian. Fast image rotation techniques using
a colour display. In Proceedings of the Digital Equipment Computer Users
Society, pages 1601-1604, Christchurch, New Zealand, August 1979.

[32) Rafael C. Gonzalez and Paul Wintz. Digital Image Processing {Second
Edition). Addison-Wesley Publishing Company, Inc. , 1987.

[33] Pat Hanrahan. Three-pass affine transforms for volume rendering. Com
puter Graphics, 24(5):71- 78 , 1990.

[34) Samuel P. Harbison and Guy L. Steele Jr. C: A Reference Manual.
Prentice-Hall, 2 edition, 1987.

[35] David B. Harris, James H. McClellan, David S. K. Chan , and Hans W.
Schuessler. Vector radix fast Fourier transfrom. In IEEE International
Conference on Acoustics Speech and Signal Processing, pages 548-541,
Hartford, Conn., May 1977.

[36] High Performance Fortran Forum. DRAFT High Performance Fortran
Language Specification. Rice University, Houston Texas, 1992. ftp
/anonymous©titan.cs . rice.edu:public/HPFF.

[37) W. D. Hillis . The Connection Machine. MIT press, Cambridge, Mas
sachusetts, 1985.

--

I

I

I

210 BIBLIOGRAPHY

[38] Brian Kernighan and Dennis Ritchie. The C Programming Language.
Prentice-Hall, 1978.

[39] D. Knuth. The Art of Computer Programming, Value 1 - Fundamental
Algorithms. Addison-Wesley, 1973.

[40] Christopher Lee Kuszmaul. Fast Fourier transform. Technical report,
MasPar Computer Corporation, 749 North Mary Avenue Sunnyvale, Cal
ifornia, March 1990.

[41] Christopher Lee Kuszmaul. FFT communications requirement optimiza
tions on massively parallel architectures with local and global interpro
cessor communications facilities. In The International Society for Optical
Engineering, San Diego, California, July 1990.

(42] Christopher Lee Kuszmaul. Rapid transpose methods on massively par
allel SIMD computers. In The Society for Industrial and Applied Mathe
matics Annual Meeting, Chicago, Illinois, july 1990.

[43] F. Thomson Leighton. Introduction to Parallel Algorithms and Architec
tures: Arrays-Trees-Hypercubes. Morgan Kaufmann, 2929 Campus Drive,
Suite 260, San Mateo, CA, 1992.

(44] Marc Levoy. Display of surfaces from volume data. IEEE Computer
Graphics and Applications, 8(3):29-37, 1988.

[45] John M. H. Lilleyman and G. H. Allen. Dynamic bit-mapping of address
space by hardware. In International Symposium on Signal Processing and
its Applications, pages 781-784, Brisbane, Australia, 1987.

[46] John Michael Lilleyman. Bit Mapping of Address Space by Hardware
for General Purpose Microprocessor Systems. PhD thesis, James Cook
University, 1991.

[47] MasPar Computer Corporation. MasPar Assembly Language {MPAS)
Reference Manual. 749 North Mary Avenue Sunnyvale, California, 1990.

[48] MasPar Computer Corporation. MasPar Programming Language {ANSI
C Compatible MPL) Reference Manual. 749 North Mary Avenue Sunny
vale, California, software version 2.2 edition, December 1991. Document
Part Number 9302-0001, Revision Al, December 1991.

[49] MasPar Computer Corporation. MasPar Programming Language {ANSI
C Compatible MPL) User Guide. 749 North Mary Avenue Sunnyvale,
California, software version 2.2 edition, December 1991. Document Part
Number 9302-0101, Revision Al, December 1991.

I

I

I

BIBLIOGRAPHY
211

[50] MasPar Computer Corporation. The design of the MasPar MP-2: A
cost effective massively parallel computer. Technical Report TW057.1092,
MasPar Computer Corporation, 749 North Mary Avenue Sunnyvale, Cal
ifornia, 1992.

[51] MasPar Computer Corporation. MasPar Image Processing Library
(MPIPL) Reference Manual. MasPar Computer Corporation, 749 North
Mary Avenue Sunnyvale, California, 1992.

[52] MasPar Computer Corporation. MasPar MP-1 and MP-2 Architecture
Specification. 749 North Mary Avenue Sunnyvale, California, 1992.

(53] M. Metcalf and J. Reid. Fortran '90 explained. Oxford University Press,
Oxford, 1990.

(54] Scott Milton. Irregular routing strategies on the MasPar MP-1 architec
ture. CSIRO Division of Information Technology, 1992.

(55] Chris J. Moran, Dale C. Sutcliffe, and Lisa G. De Ferrari. Kernel image
processing software (KIPS) functional specification version 1.2. Technical
report, CSIRO Division of Information Technology, May 1990.

[56] D. Nassimi and S. Sahni. An optimal routing algorithm for mesh
connected parallel computers. Journal of the ACM, 27(1):6-29, 1980.

(57] Gary Newman. Memory management support for tiled array organiza
tion. Technical memorandum, Kodak Electronic Printing Systems, 164
Lexington Road, Billerica, MA, 1992.

[58] Alan W. Paeth. A fast algorithm for general raster rotation. In Graphics
Interface '86, pages 77-81, 1986.

[59] D. Parkinson, D. J. Hunt, and K. S. MacQueen. The AMT DAP 500. In
Dennis Parkinson and John Litt, editors, Massively Parallel Computing
with the DAP, pages 77-84. The MIT Press, Cambridge, Massachusetts,
1990.

[60] Lutz Prechelt . Measurements of MasPar MP-1216A communication op
erations. Technical Report 01/93, Universitat Karlsruhe, Postfach 6980
D-7500 Karlsruhe, Germany, 1993.

[61] Philip K. Robertson. Fast perspective views of images using one
dimensional operations. IEEE Computer Graphics and Applications,
7(2):47-56, February 1987.

-

-

212 BIBLIOGRAPHY

[62] Philip K. Robertson. Spatial transformations for rapid scanline sur
face shadowing. IEEE Computer Graphics and Applications, 9(3):47-56,
March 1989.

[63] H. Samet. The quadtree and related hierarchical data structures. ACM
Computing Surveys, 16(2), 1984.

[64] Kevin A. Smith and Peter A. Fletcher. Status of PMFs. Working paper
HJ/2/6-1, CSIRO Division of Information Technology, 1992.

[65] Sherryl Tomboulian and Matthew Pappas. Indirect addressing and load
balancing for faster solution to Mandelbrot set on SIMD architectures.
In Third Symposium on the Frontiers of Massively Parallel Computation,
College Park, MD, October 1990.

[66] K. Tsui, P. Fletcher, and S. Hungerford. A flexible kernel image model. In
Proc. DICTA-91, pages 502-509, Melbourne, Australia, December 1991.

[67] Lewis W. Tucker and George G. Robertson. Architecture and applications
of the connection machine. Computer, 21:26-38, August 1988.

[68] Robert Ulichney. Digital Halftoning. MIT Press, Cambridge, Mas
sachusetts, 1990.

[69] Unknown. Algorithm 513. Transactions on Maths Software, January 1977.

[70] Marin van Heel. A fast algorithm for transposing large multidimensional
data sets. Ultramicroscopy, 38(1):75-83, October 1991.

[71] G. Vezina, Peter A. Fletcher, and Philip K. Robertson. Volume rendering
on the MasPar MP-1. In 1992 Workshop on Volume Visualisation, pages
3-8, 1992.

[72] G. Vezina and P. Robertson. Scientific visualisation on a massively parallel
SIMD supercomputer: Viewing and processing. In 4ASC QLD, 1991.

[73] Guy Vezina and Philip K. Robertson. Terrain perspectives on a mas
sively parallel SIMD computer. In N. M. Patrikalakis, editor, Scientific
Visualization of Physical Phenomena. Springer-Verlag, 1991.

[74] Richard F. Voss. Fractals in nature. In Heinz-Otto Peitgen and Dietmar
Saupe, editors, The Science of Fractal Images, chapter 1, pages 49-51.
Springer-Verlag New York Inc., 1988.

Appendix A

Cluster contention removal

In section 6.4 a successful algorithm for cluster contention removal was intro
duced. The code for the algorithm is introduced here because of its length.
Another algorithm for cluster contention removal was developed, but had many
undesirable characteristics. Because a large amount of effort was spent in de
veloping this algorithm, it is also included here.

Function A.l, uncontend1 , was described in section 6.4 and finds a contention
free ordering by applying transformations to a sub-optimal ordering.

Function A.2, uncontend2, will find such an ordering by recursively trying
each processor in each cluster in turn. By the use of parallelism, the algorithm
is able to detect any deadlock situations as they occur.

As an example, figure A.l shows the operation of the second algorithm
for a processor permutation with K = 3 and C ::::; 7. Clusters are labelled a
through tog, sending processors are indicated 0 and disabled processors as-.

The worst-case running time of function A.2 is not known, but its behaviour
varied considerably when applied to different random processor permutations.
Contention-free orderings were obtained for most permutations within about
a second, but for some permutations no solutions appeared even after 100
seconds.

These situations are assumed to occur when a processor is chosen as a
sender which force a deadlock many levels deeper in the tree of choices, forcing
the traversal of many unrewarding pathways. Because they are uncommon,
it is possible that a different traversal order may avoid the slow situations
completely.

The algorithm was modified to give up on a solution that was taking too
much time, randomly re-ordering the traversal order of both the clusters and
the processors within the clusters, and starting again with the new traversal
order. This scrambling step increased the speed of the previously intractable
permutations, making all computations take a similar amount of time. Fig
ure A.2 shows the execution time of a scrambling uncontend2 on 10000 random

213

I
I

214 APPENDIX A. CLUSTER CONTENTION REMOVAL

i. Desired processor permutation

d e J g a a a
J g b b J e e
b C C C g d d

ii. Try sending to d from cluster a

[Ijefgaa a
g b b J e e
C C C 9

iii. Try sending to e from cluster b

[Il0J g a a a
b b f
C C 9

iv. Force send from clusters f, g

[Il0Jg 00
b b f
C C 9

v. Failure; unroll

[II Jgaaa
g b b f e e .
C C C g

vi. Try sending to g from cluster b

[II f aaa

@bbfe e

C C

vii. Try sending to f from cluster c

b
a a a

e e

C -

viii. Forced sends from d, e

e e

ix. Forced sends from f, g

[ill @ 0
[!] [EJ 0 0

0
x. Failure; unroll

[ill a a a

[!] b b f e e

C C

xi . Try sending to b from cluster c

QJ a a a

[] [EJ f e e

C

xii. Forced sends from d, e

[ill a a

[] [EJ IT] e e

0
xiii. Try sending to a from f

[ill 0
[] [EJ @ e

0
xiv. Forced send from g

QJ 0
[] [I] @ 0

0
xv. Done. Next problem:

e f g a - a
f b e
b C C g d d

Figure A.l: Finding a contention-free ordering of a processor permutation

I

215

processor permutations.

Unfortunately, the algorithm has two faults. It is, at its heart, a sequential
algorithm, so the in the best case execution still requires K x C iterations.
In some cases, especially when dealing with index digit permutations, many
thousands of scrambles may be performed with no solution being obtained.

Function A.1 Generation of contention-free communication ordering

plural int order = (index of processor within cluster);
plural int ibase = (base processor within cluster);
plural int dbase = (base processor within destination cluster);

uncontendl()

{
int iorder;

for (iorder=O; iorder<(number of processors in cluster)-1 ; iorder++)
{

do {

f * Processor attempting to send from cluster, in base cluster *I
plural int current = -1;
f* Base processor in current 's destination cluster, in base processor *I
plural int cdbase = -1;

f * Set to 1 in base processor if sending proc involved in deadlock *I
plural int deadlock = O;

I* Set to 1 in destination base proc if someone attempting to send *I
plural int touched = O;
/* Set to 1 if we should try to change sender *I
plural unsigned char tryfree = O;

f* If order==iorder, try to perform permutation *I
if (order==iorder) {

router[ibase].current = iproc;

}
router[ibase].cdbase = dbase;

f* Now check for deadlock *I
if (iproc == ibase) {

plural unsigned char locked;
plural int tmp;

f* Attempt to connect *I
all tmp = -1;
router[cdbase].tmp = iproc;
all touched= (tmp~O);

I* Did we fail to get there first ? *I
deadlock= !(router[cdbase].tmp == iproc);

if (!globalor(deadlock)) {

}

I* We 're done! Everyone connected *I
break;

I
I

216

}

APPENDIX A. CLUSTER CONTENTION REMOVAL

f * I dentijy deadlockers from deadlockees * /
all locked = O;
if(deadlock) {

router[cdba.se].locked = 1;
}
if (router[cdba.se].locked == 1) {

deadlock = 1;
}

I* Undeadlock by finding free proc to connect to * /
fixed= O;
tryfree = deadlock;
do {

f* Guard allowing only one proc to grab free cluster * /
plural int grabfree;
f* Guard allowing only one proc per cluster to grab free cluster *I
plural int gotfree;
f* Base proc contains id of proc connected to free cluster *I
plural int canfree = -1;
f* Base destination proc contains id of connecting processor *I
plural int canbefree = -1;
f* Freeable proc *I
plural int freeforme = -1;
I* Flag cluster that someone wants to talk to * /
plural char freeme = O;

subiter++;

if ((order > iorder) & router[iba.se]. tryfree) {
f* Possible sender in deadlock cluster *I
if (router[dba.se].touched == 0) {

}
all {

}

f* Definite sender in deadlock cluster *I
router[dba.se].grabfree = iproc;
I* Try and grab free cluster * /
if (router[dba.se].grabfree == iproc) {

I* Got it! *I
router[iba.se].gotfree = iproc;

}

I* Tell base proc we're OK *I
if (router[ibase].gotfree == iproc) {

I* Got it: flag a fix *I

}

fixed= 1;
f* Swap order with deadlocking processor *I
router[router[iba.se].current].order = order;
order = iorder;

freeme = O;
tryfree = O;

}

}

}

router[dbase] .freeme = l ;
router[ibase].deadlock = l;

f * Things are a little easier now * /
if (fixed) break;

f* Couldn't find free sender. *f
f * Try to free a cluster to allow another cluster to be freed *f
if ((iproc == ibase) && (!deadlock) && router[cdbase].freeme) {

tryfree = l ;
}

} while (l);
} while (l);

f* Now order gives contention-free routing order *f

217

Function A.2 Generation of contention-free communication ordering

#define NUM_CLUSTERS 64
#define NUM.lN_CLUSTERS 16

uncontend2(plural int dest,
plural int *Order

f* Destination processor *f
f* Computed order of sending *f

{

)

int iorder;

for (iorder = O; iorder<NUM.JN _CLUSTERS; iorder++) {

int i=O; f* Current cluster to test *f
(Disable processors with order < iorder)
(If several procs in cluster sending to same cluster, disable all but one)

do {
if ((Cluster i has exactly one sender)) {

i++;

continue; f* This cluster OK, move to next cluster *f
} else if ((There is some untried processor P in cluster i)) {

while ((P is newly next sending processor) II
(A cluster newly has only one sender P) II

}

(A cluster newly is sent to by only one P)) {
(Disable other processors in same clusters as Ps)
(Disable processors sending to same clusters as Ps)
(Ps are senders)

if ((No more than one sender from each cluster) &&
(No more than one sender to each cluster) &&
(Every cluster has at least one potential sender) &&
(Every cluster has at least one potential receiver)) {

i++;
continue; f * This cluster OK, move to next cluster *f

l

..

218

}

}
}

APPENDIX A . CLUSTER CONTENTION REMOVAL

f* Something has failed *I
(Unroll i back to last processor tried)

} while (i<NUM_CLUSTERS);

(Set order = iorder in successfully sending processors)

}
f* order now gives contention-free ordering within cluster *I

;

219

700 -
I I --,

600 r uncontend execution time -

500 r

400 -

300 ~

200 r

100 -

0 I '"· '-· I I

0 0.5 1 1.5 2 2.5

Figure A.2: Execution time of scrambling uncontend2 over 10000 random
problems

I

220 APPENDIX A . CLUSTER CONTENTION REMOVAL

I

I

I

- -

Appendix B

Status of PMFs

This working paper was written by Kevin Smith and Peter Fletcher and pro
vides an informal set of notes and usage instructions about the PMF system.

B.1 Introduction

Over the last 2 years the general concept of Parallel Mapping Functions (PMFs)
that can be used for efficient data remapping on both serial and parallel com
puters has been developed. This work was based, in turn, on several years of
previous work on generalized multi-dimensional image mapping onto storage
and computing facilities. The MasPar was chosen as the computing system
for the first implementation because efficient data re-ordering is a critical re
quirement for the development of a large number of computationally intensive
applications.

The mapping of a large range of regular multi-dimensional data sets onto
a Mas Par can be described using a "k-Tile Format". A k-Tile Format is made
up of a number of components:

• A description of the data set in what is known as the Image Coordinate
System (ICS). This is an abstract description of the multi-dimensional
data set (usually an image) in a mathematical sense. That is, a 16 bit
1024 by 1024 image is simply described as:

ICS: [2, 1024, 1024]

where the length of dimension O is 2, dimension 1 is 1024 and dimension
2 is 1024.

• A segmentation of the image into tiles desc_ribed by the k-Tile Coordinate
System (KCS). For example, the 16 bit 1024 by 1024 system described
above can be covered by 1024 16 bit 32 by 32 tiles. This would be
represented as:

221

I

I

I

..

..
222 APPENDIX B. STATUS OF PMFS

KCS: [2, 32, 32, 32, 32]

That is, the image can now be thought of as having been mapped into
a 5 dimensional space. As with the ICS, the KCS is still an abstract
concept .

• A model of the physical device that the image is to be stored on is
required. In the case of the MasPar MP-1201B, there are several models
that could be used for the same physical device. These different models
are represented via a Device Coordinate System (DCS). For our 16 bit
1024 by 1024 image we could have many models; here are two examples:

DCS: [2048, 1024]

which views the device as being 2048 bytes of memory in each of a linear
sequence of 1024 PE's,

DCS: [2048, 32, 32]

which views the device as being 2048 bytes of memory in each of a 2
dimensional array of 32 by 32 PE's.

• A mapping between the KCS and the DCS to describe how the image
is actually stored on the device. This is called the KDMAP. For exam
ple, a 16 bit 1024 by 1024 image that is stored on a MP-1201 in a 2D
Cut'n'stack Format (traditionally known as 2D sheet format) would have
the following k-Tile format:

res: [2, 1024, 1024J
KCS: [2, 32, 32, 32, 32]
KDMAP: [0, 2, 4, 1, 3]
DCS: [2048, 1024]

Additionally, a full k-Tile format also contains a vector called KSENSE
which allows the ordering of bytes to be reversed in any k-Tile dimension.

A library has been developed which allows:

• the k-Tile format of an image to be declared,

• the 'new' k-Tile format of an image to be declared,

• a remap function that takes an image, its existing k-Tile specification
and a new k-Tile specification and, depending on which version of the
library is used, will automatically generate either: a sequence of index
bit permutations implemented with both xnet operations and direct PE
memory addressing; or a sequence of indirect PE memory addressing and
router operations

B.2. PMF SYSTEM CALLS 223

• once a remap sequence of operations is generated it does not need to be
recalculated during the execution of the particular MasPar process.

There is also a command line based "PMF Workbench" interface that allows
a user to declare k-Tile formats and perform remappings. The Workbench
gives the user the timing on the MasPar for a particular remap and could
be modified to let the user store the sequence of remapping operations which
could then be imported directly into a MasPar program. This would allow a
user developing signal processing applications to firstly find the optimal set of
k-Tile to k-Tile remaps for, say, an FFT and then to store the resultant set of
low-level remap operations in a macro assembler format which could then be
imported as "in-line" code within a MasPar program.

Furthermore this PMF Workbench could be easily extended to have a GUI
interface.

Currently, PMFs have only been implemented for power-of-two k-Tile di
mensions. However, there is no limitation on the utility of the k-Tile format
for specifying non power-of-two data mappings, and much of the low-level data
movement code could be used with arbitrary mixed radix data remapping with
little change.

By allowing an offset to be specified for each image dimension in the k
Tile mapping, it will in future be possible to use PMFs for the translation of
multi-dimensional data, and will give PMFs the full functionality required for
the regular FORTRAN D 'DISTRIBUTE' and 'ALIGN' statements; currently,
PMFs would only support the 'DISTRIBUTE' statement alone.

B.2 PMF system calls

In order to access the functionality of the PMF system, several functions are
provided for specifying k-Tile formats, declaring data memory, initializing data
remaps and remapping data in-place or copying. Calls are also provided for
initializing any of the standard one- and two-dimensional parallel mappings
and performing geometric transformations such as transpositions and reversals
of data axes.

B.2.1 The k-Tile format

The k-Tile format is used to describe a mapping of an image onto the MasPar
processor array. The meaning of the elements of this structure are described
in other documents, but its contents are:

• ICS - Image Coordinate System

• KCS - k-Tile Coordinate system

..

I

I

I

..
224 APPENDIX B. STATUS OF PMFS

• DCS - Device Coordinate system

• KDMAP - Map between KCS and DCS

• KSENSE - Direction indicator for KCS dimensions

Declaring k-Tile format - gr_new_.ldile(in ktile, out kid)

The function 'gr_new....ktile' takes a k-Tile format as an argument, which it
checks and converts to a canonical form. If the format has already been speci
fied, a usage count is incremented and no memory storage is required. If valid,
the a k-Tile identifier is output and O returned. If the format is invalid, a
descriptive error message is printed and -1 returned.

Errors

• ics dims in k-Tile format is bad

• kcs dims in k-Tile format is bad

• des dims in k-Tile format is bad

• ics dim in k-Tile format is bad

• kcs dim in k-Tile format is bad

• des dim in k-Tile format is bad

• kdmap out of range

• des does not fit within pmem

• des does not fit in processor array

• des does not fit in processor x array

• des does not fit in processor y array

• des must have 0, 1, 2 or 3 des dimensions

• kcs dimension mentioned twice in kdmap

• too many kcs dims for ics

• kcs dim overflows des dim

• kcs dims do not cover des dims

• bad ksense

I

I

I
1

I

B .2. PMF SYSTEM CALLS 225

• kcs dims do not fit in ics dims

• kcs dims do not cover ics dims

• no free k-Tile ids

Inquiring k-Tile format - gr-1nquire_ktile(in kid, out ktile)

The function 'grJnquireJctile' takes a k-Tile identifier as an argument. If the
identifier is valid, the appropriate k-Tile format is output and O returned. If
invalid, a descriptive error message is printed and -1 returned .

Errors

• bad k-Tile id

• k-Tile id not allocated

Freeing k,.Tile format - gr_free_ktile(in kid)

The function 'gr_freeJctile' takes a k-Tile identifier as an argument. If the
identifier is invalid or if the k-Tile identifier is referred to by an mtag or a pair,
a descriptive error message is printed and -1 returned. Otherwise, the usage
count of the kid is decremented, and if this is zero the storage for the k-Tile is
freed, and zero is returned.

Errors

• bad k-Tile id

• k,. Tile id not allocated

• mtag still references kid

• pair still references kid

B.2.2 The mtag

The mtag is used to declare memory storage to the PMF system. It is the ap
plication's responsibility to allocate and release memory, but the PMF system
will maintain information about the size and mapping associated with a piece
of memory. The contents of an mtag are:

• mem - pointer to data memory

• size - size (in bytes) of memory

• kid - k-Tile id associated with this memory (-1 if none)

I

J

.,

!
I

226 APPENDIX B. STATUS OF PMFS

Declaring an mtag - gr_new_mtag(in mem, in size, out mid)

The function 'gr_new _mtag' takes a memory address and a size as arguments. If
the memory defined is valid, a mtag id is output and zero returned. Otherwise,
a descriptive error message is printed and -1 returned.

Errors

• mem is null

• mem is too high

• size is negative or zero

• size is too large

• size must be power of two

• mem +size is too high

• mem overlaps another mtag

• invalid k-Tile id

• size too small for kid

• no free mtag ids

Freeing an mtag - grJree_mtag(in mid)

The function 'gr_free_mtag' takes an mtag identifier as an argument. If the
identifier is invalid a descriptive error message is printed and -1 returned.
Otherwise, the mtag is freed and zero is returned.

Errors

• bad mtag id

• mtag id not allocated

Inquiring an mtag - gr _inquire_mtag(in mid, out mtag)

The function 'grjnquire-111tag' takes an mtag identifier as an argument. If
the identifier is invalid a descriptive error message is printed and -1 returned.
Otherwise, the mtag is output and zero is returned.

Errors

• invalid mtag id

B.2. PMF SYSTEM CALLS 227

Associating a mapping with an mtag - grset(in mid, in kid)

The function 'gr ...set ' takes an mtag identifier and a Ar Tile identifier as an
argument. If either identifier is invalid or the mtag is too small for the map
ping described by kid, a descriptive error message is printed and -1 returned.
Otherwise, the the kid is associated with mid and O returned.

Errors

• invalid mtag id

• invalid k-Tile id

• size too small

B.2.3 The remap

Once you have declared data mappings with gr_declarelctile and associated
them with memory in gr_declare_mtag, you will want to actually perform data
remappings. This can be performed directly by simply specifying a new k-Tile
id for an existing mtag, but if the mapping is to be performed many times it
is advisable to initialize the remap so that the data movements for the remap
operation need only be computed once.

Initializing a remap - gr .Jnit._remap(in kidl, in kid2)

The function 'grjniLremap' takes as arguments two k-Tile identifiers. If the
two identifiers describe mappings of the same size, there is enough memory
arid no horrible bugs appear, a mapping is generated to remap data from
format kidl to format kid2 (but not vice-versa). Otherwise, a descriptive error
message is printed and -1 returned . If a attempt is made to initialize a mapping
more than once, only one copy of the mapping is kept and an internal usage
count ensures that the mapping is retained while it is needed.

Errors

• kid #1 is invalid

• kid #2 is invalid

• image sizes do not match

• no free pair ids

• no free remap ids

• p_malloc(remap_ps) failed

--~

I

-

228 APPENDIX B. STATUS OF PMFS

Freeing a remap - gr_free..remap(in kidl, in kid2)

The function 'gr_freeJemap' takes as arguments two k-Tile identifiers. If either
identifier is invalid or if the map between the k-Tile identifiers has not been
initialized, a descriptive error message is printed and -1 returned. Otherwise,
the usage count of the remap is decremented, and if this is zero the storage for
the remap is freed, and zero is returned.

Errors

• kid # 1 is invalid

• kid #2 is invalid

• invalid pair id

Performing an in-place remap - gr..remap(in mid, in kid)

The function 'grJemap' takes as arguments an mtag identifier and a k-Tile
identifier. If either identifier is invalid or if the k-Tile identifier is too large
for the mtag memory, a descriptive error message is printed and -1 returned.
Otherwise, the data stored at the address referred to by the mtag is remapped
in place and the mtag's kid updated to reflect the new mapping. Note that
if a map has previously been initialized for this mapping, the operation will
require no pre-initialization and will occur much faster.

Errors

• mid is invalid

• destination kid is invalid

• size is too small

Performing a copy remap - gr_copy(in midl, in mid2, in kid)

The function 'gr_copy' takes as arguments two mtag identifiers and a k-Tile
identifier. If any identifier is invalid o if the k-Tile identifier is too large for
the mtag memory, a descriptive error message is printed and -1 returned. Oth
erwise, the data stored at the address referred to by mtagl is simultaneously
remapped and copied to the memory referred to by mtag2, and mtag2's kid
updated to reflect the new mapping. Note that if a map has previously been
initialized for this mapping, the operation will require no pre-initialization and
will occur much faster

Errors

• mid # 1 is invalid

I

I

B.2. PMF SYSTEM CALLS 229

• mid #2 is invalid

• destination kid is invalid

• size is too small

B.2.4 Standard mappings

Several routines have been provided to initialize k-Tile formats to standard
mappmgs.

2 dimensional cut'n'stack mapping - gr_make_2dcs(in size, in x, in y,
out ktile)

The function 'gr_make..2dcs' takes as arguments an image size and a k-Tile
structure. If the size is valid, a 2d cut'n'stack k-Tile format is generated and
output and O returned. If the size is invalid, a descriptive error message is
printed and -1 returned.

Errors

• a dimension is negative or zero

• x dim is not a multiple of nxproc

• y dim is not a multiple of nyproc

2 dimensional hierarchical mapping - gr _make_2dh(in size, in x, in y,
out ktile)

The function 'gr_make..2dh' takes as arguments an image size and a k-Tile
structure. If the size is valid, a 2d hierarchical k-Tile format is generated and
output and O returned. If the size is invalid, a descriptive error message is
printed and -1 returned.

Errors

• a dimension is negative or zero

• x dim is not a multiple of nxproc

• y dim is not a multiple of nyproc

I

I

J

..
I

I

r

230 APPENDIX B. STATUS OF PMFS

1 dimensional cut'n'stack mapping - gr_make_ldcs(in size, in x, in y,
out ktile)

The function 'gr_make_ldcs' takes as arguments an image size and a k-Tile
structure. If the size is valid, a ld cut 'n 'stack k-Tile format is generated and
output and O returned. If the size is invalid, a descriptive error message is
printed and -1 returned.

Errors

• a dimension is negative or zero

• cannot split y to cover processors

• cannot combine x to cover processors

1 dimensional hierarchical mapping - gr _make_ldh(in size, in x, in y,
out ktile)

The function 'gr_make_ldh' takes as arguments an image size and a k-Tile
structure. If the size is valid, a ld hierarchical k-Tile format is generated and
output and O returned. If the size is invalid, a descriptive error message is
printed and -1 returned.

Errors

• a dimension is negative or zero

• cannot split y to cover processors

• cannot combine x to cover processors

1 dimensional scan mapping - gr_make_ldscan(in size, in x, in y, out
ktile)

The function 'gr_make_ldscan' takes as arguments an image size and a k-Tile
structure. If y is smaller than or equal to nproc, a ld scan mapping, else a ld
hierarchical mapping, is generated and output and O returned. If the size is
invalid, a descriptive error message is printed and -1 returned.

Errors

• none

I

I

I

B.3. EXAMPLES OF USING PMFS 231

B.2.5 Geometrical transformations

Once a k-Tile format has been generated, it is possible to perform several geo
metric transformations on the dimensions within the k-Tile format. Note that
these functions will work on any valid k-Tile formats, not just those generated
with gr_make_*. The operations may also be composed , but it must be re
membered that because the operations are performed on the image dimensions
rather than the device dimensions, they will appear to act as pre-operations
rather than post-operations.

Transposition of axes - gr_xpose(in diml, in dim2, inout ktile)

The function 'gr_xpose' will transpose two image dimensions in a k-Tile format.
Because there are several possible ways of transposing rectangular mappings,
the two dimensions to be transposed must be the same size.

Errors

• dimension #1 is bad

• dimension #2 is bad

• dimensions must have same size

Reversal of axis - gr_reverse(in dim, inout ktile)

The function 'gr_xpose' will reverse an image dimension in the k-Tile format.
Errors

• dimension is bad

Index bit reversal of axis - gr _bitrev(in dim, inout ktile)

The function 'gr_xpose' will bit-reverse the index bits of an image dimension
in the k-Tile format. This function is useful for the remapping prior to a radix
2 FFT.

Errors

• dimension is bad

B.3 Examples of Using PMFs

B.3.1 Performing a simple remap

Simple remap code: exl.m

This example declares a 1024 x 1024 image and uses PMFs to transpose it. To
ensure that all executable code is loaded into memory and timing is accurate,

I

I

232 APPENDIX B. STATUS OF PMFS

the remapping operation is performed twice and timings taken on the second
call.

#include "timing.h"
#include "gr .h"

plural void *p..malloc();

I*
* Example 1:

*
* Transposing a lkxlkx8bit image

*
*I

void main()

{
plural unsigned char *img;
ktile....s ktile;
int kscanid;
int kxposid;
int mid;

img = p..malloc(1024);

gr..make_ldscan(/* Create a ktile structure
1,

I* Allocate image *I

corresponding to image * /
I* One byte pixels * /

I* x=1024 *I
I* y=1024 *I

1024,
1024,
&ktile);

gr _new _ktile(&ktile, &kscanid); I* Declare new ktile format * /

gr_xpose(l,2,&ktile); /* Modify ktile structure for transposed image *I
gr__newJctile(&ktile, &kxposid); /* Declare ktile format *I

gr init_remap(kscanid, kxposid);
I* Create data structures for remap scan-> transposed * /

gr iniLremap(kxposid, kscanid);
I* Create data structures for remap transposed-> scan * /

gr__new..mtag(img, 1024, &mid); I* Declare image to remap * /

B.3. EXAMPLES OF USING PMFS

I* (It would now be usual to fill image with something .. . * /
I* . . . but we won't bother) * /

233

gr_set(mid, kscanjd);
gr_remap(mid, kxposjd);

/* Attach a ktile id to the image *I
I* Transpose the image * /

gr_set(mid, kscanjd); /* Attach a ktile id to the image *I
tstart(); /* Timing is now valid (all code should be loaded) *I
gr_remap(mid, kxposjd);

I* Transpose the image again (so it's back to the start!) *I
tfin("Time to do transpose") ; I* Timing message *I

I* That's all folks! *I
}

Sample run of exl.m on an MP-1201B

garnet% ex1
Time to do transpose : 0.037156
garnet%

B.3.2 Error reporting

"Buggy" transpose code: ex2.m

This example shows the style of error reporting that can be expected when
using PMFs

#include "timing.h"
#include "gr. h"

plural void *p_rnalloc();

I*
* Example 1:

*
* Transposing a 1kx1kx8bit image

*
*I

void main()

{
plural unsigned char *img;
ktile_s ktile;

234

int kscanjd;
int kxposjd;
int mid;

img = p_malloc(1024);

APPENDIX B. STATUS OF PMFS

I* Allocate image * /

gr_make_ldscan(/* Create a ktile structure corresponding to image * /
I* One byte pixels * /

I* x= 1023 will create an error! * /
1,
1023,
1024,
&ktile);

gr ...new __ktile(&ktile, &kscanjd);

I* y=1024 *I

I* Declare new ktile format * /

gr...xpose(l,2,&ktile); /* Modify ktile structure for transposed image *I
gr ...new __ktile(&ktile, &kxposjd); I* Declare ktile format * /

gr jniLremap(kscanjd, kxposjd);
I* Create data structures for remap scan-> transposed * /

griniLremap(kxposid, kscanid);
I* Create data structures for remap transposed->scan *I

gr...new_mtag(img, 1024, &mid); I* Declare image to remap * /

I* {It would now be usual to fill image with something . . . * /
I* . . . but we won't bother) * /

gr...set(mid, kscanid);
gr...remap(mid, kxposid);

I* Attach a ktile id to the image * /
I* Transpose the image * /

gr...set(mid, kscanid); /* Attach a ktile id to the image *I
tstart(); /* Timing is now valid (all code should be loaded) *I
gr...remap(mid, kxposid);

I* Transpose the image again {so it's
tfin("Time to do transpose");

back to the start!) * /
I* Timing message * /

I* That's all folks! *I
}

Sample run of ex2.m on an MP-1201B

maspar% ex2
kmath.m:63: gp2_log ??? log(1023)

B.3. EXAMPLES OF USING PMFS

ktiles.m:364: gp2_ktol : ics dim in ktile format is bad
*** ktile **
!CS: [1, 1023, 1024]
KCS: [1, 1023, 1024]
DCS: [1023, 1024]
KDMAP: [O, 1, 2]
KSENSE: [+++]

ktiles.m:583: gp2_convert_ktile : failed
alloc_ktiles.m:216: gp2_declare_ktile : failed
gr.m:97: gr_new_ktile : failed
kmath.m:63: gp2_log : ??? log(1023)
ktiles.m:364: gp2_ktol : ics dim in ktile format is bad
*** ktile **
!CS: [1, 1023, 1024]
KCS: [1, 1023, 1024]
DCS: [1023, 1024]
KDMAP: [O, 1, 2]
KSENSE: [+++]
stdmap.m:114: gr_xpose : failed
kmath.m:63: gp2_log : ??? log(1023)
ktiles.m:364: gp2_ktol : ics dim in ktile format is bad
*** ktile **
!CS: [1, 1023, 1024]
KCS: [1, 1023, 1024]
DCS: [1023, 1024]
KDMAP: [O, 1, 2]
KSENSE: [+++]
ktiles.m:583: gp2_convert_ktile : failed
alloc_ktiles.m:216: gp2_declare_ktile : failed
gr.m:97: gr_new_ktile : failed
alloc_ktiles.m:236: gp2_ktile_valid ktile id not allocated
pairs.m:140: gp2_declare_pair : kid #1 invalid
gr.m:238: gr_init_remap : failed
alloc_ktiles.m:236: gp2_ktile_valid : ktile id not allocated
pairs.m:140: gp2_declare_pair : kid #1 invalid
gr.m:238: gr_init_remap : failed
alloc_ktiles.m:236: gp2_ktile_valid : ktile id not allocated
mtags.m:249: gp2_mtag_set_kid : invalid ktile id
gr.m:281: gr_set : failed
alloc_ktiles.m:235: gp2_ktile_valid : bad ktile id
gr.m:309: gr_remap : mtag kid is bad
alloc_ktiles.m:236: gp2_ktile_valid : ktile id not allocated
mtags.m:249: gp2_mtag_set_kid : invalid ktile id

235

236 APPENDIX B. STATUS OF PMFS

gr.m:281: gr_set : failed
alloc_ktiles.m:235: gp2_ktile_valid bad ktile id
gr.m:309: gr_remap : mtag kid is bad
Time to do transpose : 0.042832

B.3.3 Fourier transform

Fourier transform code: ex3.m

This example shows the use of PMFs for performing a radix 2 FFT. The one
dimensional FFT code in the routine fft() is not shown for brevity.

#include <mpl.h>
#include <stdio.h>
#include "gr .h"

I*
*
* Example 3:

*
* Raw ktile formats for doing F FT

*
*I

plural void *p_malloc();

extern void initroots();
extern void randomize();
extern void fft();
extern void ifft();

I*

I* Initializes roots-of-unity tables *I
I* Fills image with random goop * /

I* Perform an FFT *I
I* Perform an inverse FFT *I

* Define a scan-line mapping of complex numbers
*
* Storage layout:

*
* PEO:
* PE1:
*

real{O,O} real[0,1} .. real{0,1023} imag/0,0} .. . imag[0,1 023}
real/1,0} real/1,1} .. real/1,1023} imag/1,0} .. . imag/1,1 023}

* PE1023: real/1023,0}. imag/1023,1023}
*
* JCS dim O is float
* JCS dim 1 makes pair of float
* JCS dim 2 is x
* JCS dim 3 is y

B.3. EXAMPLES OF USING PMFS

*

ktile..s k..scan =
{

};

I*

{ 4, { 4,2,1024,1024} },
{ 4, { 4,2,1024,1024} },
{ 2, { 8192,1024 } },
{ 4, { 0,2,1,3 } },
0

* Bit-reverse of dimension 2 {x)

*I
ktile..s k_br =
{

};

I*

{ 4, { 4,2,1024,1024} },
{ 13, { 4,2,2,2,2,2,2,2,2,2,2,2,1024 } },
{ 2, { 8192,1024} },
{ 13, { 0,11,10,9,8,7,6,5,4,3,2,1,12} },
0

* Transpose dimensions 2 and 3

*I
ktile..s k_tr =
{

};

I*

{ 4, { 4,2,1024,1024} },
{ 4, { 4,2,1024,1024} },
{ 2, { 8192,1024 } },
{ 4, { 0,3,1,2} },
0

237

I* JCS *I
I* KCS *I
I* DCS *I

I* KDMAP *I
I* KSENSE *I

I* JCS *I
I* KCS *I
I* DCS *I

I* KDMAP *I
I* KSENSE *I

I* JCS *I
I* KCS *I
I* DCS *I

I* KDMAP *I
I* KSENSE *I

* Transpose dimensions 2 and 3, and bitreverse dimension 3

*I
ktile..s Ltrbr =
{

{ 4, { 4,2,1024,1024} }, I* JCS *I

238 APPENDIX B. STATUS OF PMFS

};

{ 13, { 4,2,1024,2,2,2,2,2,2,2,2,2,2} },
{ 2, { 8192,1024} },
{ 13, { 0,12,11,10,9,8,7,6,5,4,3,1,2} },
0

plural float f[1024+1024];
plural float *ar = f;
plural float *ai = f + 1024;

void main(int argc, char *argv0)

{
int numt;
inti;

int kid...scan;
int kid_br;
int kid_tr;
int kid_trbr;

int mid;

nurnt = 2;

I* KCS *I
I* DCS *I

I* KDMAP *I
I* KSENSE *I

I* Number of FFT's *I

I* Ktile identifiers *I

I* Mtag identifier * /

gr..newJctile(&k...scan, &kid...scan); /* Declare kTile identifiers *I
gr ..new Jc tile(&k_br, &kid_br);
gr ..new Jc tile(&k_tr, &kid_tr);
gr ..new Jc tile(&k_tr br, &kid_trbr);

gr..new..mtag(f, 2048*sizeof(float), mid); /* Declare memory *I

tstart(); /* Initialize roots *I
initroots();
randomize(ar);
tfin("FFT initialization time");

tstart();
gr JniLrernap(kid...scan, kid_br);

I* Initialize remaps * /

tfin("scan -> br initialization time");

tstart();
gr JniLremap(kid...scan, kid_trbr);

B.3. EXAMPLES OF USING PMFS 239

tfin("scan -> trbr initialization time");

for (i=O; i<numt; i++)
{

fprintf(DOUT, 11 ---\n");

gr...set(mid, kid...scan);

tstart();

I* Give memory a ktile id * /

gr_remap(mid, kid_br);
tfin("Time for bi trev");

tstart();
fft();
gr...set(mid, kid...scan);

I* Bitreverse * /

I* Do row FFT *I

I* Set mtag ktile id back to default scan map * /
tfin("Time for FFT #1");

tstart();
gr_remap(mid, kid_trbr); /*
tfin("Time for transpose+bi trev");

ts tart();
fft();
gr...set(mid, kid...scan);
tfin("Time for FFT #2");

tstart();
gr_remap(mid, kid_br);
tfin("Time for bi trev");

tstart();
ifft();

gr...set(mid, kid...scan);
tfin("Time for inverse #1 ");

tstart();
gr_remap(mid, kid_trbr); /*
tfin("Time for transpose+bi trev");

tstart();
ifft();

Transpose and bitreverse * /

/* Do column FFT *I
I* Set back to scan map * /

I* Bitreverse * /

I* Inverse FFT columns *I

I* Back to scan map *I

Transpose and bitreverse * /

I* Inverse FFT rows *I

..
I

240 APPENDIX B. STATUS OF PMFS

tfin("Time for inverse #2");
}

printf("Goodbye ! \n");
}

Sample run of ex3.m on an MP-1201B

garnet% ex3
FFT initialization time : 3.132999
scan-> br initialization time : 0.232343
scan-> trbr initialization time : 0.037523

Time for bitrev 0.037081
Time for FFT #1 0.913147
Time for transpose+bitrev 0.200400
Time for FFT #2 0.913144
Time for bitrev 0.025950
Time for inverse #1 0. 913118
Time for transpose+bitrev 0.170086
Time for inverse #2 0.912824

Time for bitrev 0.025947
Time for FFT #1 0.913146
Time for transpose+bitrev 0.170092
Time for FFT #2 : 0.913144
Time for bitrev 0.025949
Time for inverse #1 0.913127
Time for transpose+bitrev 0.170085
Time for inverse #2 0.912818
Goodbye!
garnet%

B.3.4 Mandelbrot set generator

Mandelbrot code (abridged): ex4.m

This example shows the use of PMFs to convert a 2 dimensional cut'n'stack
image (a very efficient mapping for computing the Mandelbrot set) to 1 dimen
sional hierarchical (efficient for writing the image to disk). Some of the early
timings are slower than expected because 'the instructions for the program
must be pages from disk.

#include <stdlib.h>

I

'

I

I

I
I

I

B .3. EXAMPLES OF USIN G PMFS

#include <stdio.h>
#include <sys/file.h>
#include <math. h>
#include <mpl. h>
#include < reduce.h>
#include <ppeio.h>

•

241

#include < strings.h>
#include <maspar/rnp_libc.h>
#include "rasterfile .h"
#include "gr. h"

I* fo r write() */

*
* Example 4:
*
*Mandelbrot set generator

*
*I

plural unsigned short counts[64][64];
unsigned char outarray[32*64] ;
extern int fix_wheader(struct rasterfile *h);
extern void iterate_indirect(

extern void iterate_direct(

main(argc, argv)

double xs ,
double ys ,
double xo,
double yo,
int ni,
int gridsize,
int print,
plural unsigned char *image[64],
plural unsigned short counts[64l[64]) ;

double xs ,
double ys ,
double xo,
double yo,
int ni,
int gridsize,
int print,
plural unsigned char *image[64],
plural unsigned short counts[64)[64]) ;

242

{

•

int argc;
char *argvQ;

/* (mandelbrot definitions .. .) * /

I* kTile definitions * /
ktile_s cutnstack;
ktile_s onedh;
int cnsid;
int odhid;
int mid;
int ncols;
int nrows;

{

}
I* (process arguments ...) *I

APPENDIX B. STATUS OF PMFS

I* (initialize mandelbrot window ...) *I

I* Create kTile formats to be used * /
gr ..make--2dcs(1, gridsize*nxproc, gridsize*nyproc, &cutnstack);
gr..make_ldh(l, gridsize*nxproc, gridsize*nyproc, &onedh);

I* Declare them * /
tstart();
gr_new .. ktile(&cutnstack, &cnsid);
if (print) tfin("Time for gr..new...ktile (cutnstack) ");
if (print) fprintf(stderr, "cnsid = %d\n 11

, cnsid);

tstart();
gr..new ...ktile(&onedh, &odhid);
if (print) tfin("Time for gr..new...ktile(onedh) ");
if (print) fprintf(stderr, "odhid = %d\n", odhid);

I* Initialize mapping * /
tstart();
grjniLremap(cnsid, odhid);
if (print) tfin("Time for init__remap");

I* Declare memory * /

}

B.3. EXAMPLES OF USING PMFS

tstart();
gr_new_mtag(image[O], gridsize*gridsize, &mid);
if (print) tfin("Time for new....mtag");

I* Loop over all frames to be generated * /
for (frameno = O; frameno < nframes; frameno++)
{

}

I* (generate mandelbrot set) *I

I* Write out image * /
if (fn)
{

}

int i, j, k, l;
int f;

I* {prepare filename) *I

I* Map 2d cut'n'stack to 1d hierarchical *I
tstart();
gr....set(mid, cnsid);
gr_remap(mid, odhid);
if (print) tfin("Time for remap");

I* { write file) * /

I* {prepare for next image .. .) * /

Sample run of ex4.m on an MP-1201B

243

garnet% ex4 -print -nframes 2 -gridsize 16 -outfile zit# 512x512 output image
Time for gr_new_ktile(cutnstack) : 0.207896
cnsid = 0
Time for gr_new_ktile(onedh) : 0.003296
odhid = 1

Time for init_remap : 0.410082
Time for new_mtag : 0.006236
Frame #0
Time to calculate Mandelbrot set : 18.262710
[-2.000000000000000, -1.500000000000000]

244 APPENDIX B. STATUS OF PMFS

[3.000000000000000, 3.000000000000000]
Time for remap : 0.081849
Frame #1
Time to calculate Mandelbrot set : 38 . 584498
[-1.908400900000000, -1.477085500000000]
[2.850000000000000, 2.850000000000000]
Time for remap : 0.010209
garnet%

B.4 Some header files

B.4.1 gr.h

The gr module is a high-level interface to underlying remapping routines, for
both convenience and to hide the actual remapping mechanism used.

fa.----------------

* gr
* ----------------

*!
I* Declare a new ktile format,
* returning ktile id if successful.
* --1 returned if failure occurs because
* 1. ktile format is invalid
* 2. ktile format does not fit on current PE array
* 3. no more ktile identifiers

*I
int gr ..newktile(

I*

ktile...s *k,
int *kid ...);

* Inquire a ktile format,
* returning O if successful.
* --1 returned if failure occurs because
* 1. ktile id is invalid

*I
int gr.inquireJctile(

I* Free a ktile format,

int kid,
ktile...s *ktile);

* returning O if successful.

B.4. SOME HEADER FILES

* -1 returned if failure occurs because
* 1. ktile format is invalid
* 2. an mtag still references kid
* 3. a pair still references kid

*I
int gr_free.Jdile(

int kid);

I*
* Declare a new memory tag,
* returning mtag id if successful.
* -1 returned if failure occurs because
* 1. size must be a power of two
* 2. memory is invalid or overlaps another mtag
* 3. no more mtag identifiers

*
* Initial ktile mapping is -1 {bad).
* You must malloc/declare mem yourself

*I
int gr _new _rntag(

I*

plural void *mem,
int size,
int *mid_);

* Inquire an mtag,
* returning O if successful.
* -1 returned if failure occurs because
* 1. mtag id is invalid

*I
int gr__inquire_rntag(

I*

int mid,
mtag..s *IDtag);

* Free existing mtag id.
* -1 returned if failure occurs
* due to mid being invalid

*I
int gr_free_rntag(

int mid);

I*
* Generate and remember a pair mapping

245

246

* between ktile formats kl and k2,
* returning O if successful
* -1 returned if failure occurs because
* 1. ktile id is invalid
* 2. no more pair identifiers

APPENDIX B. STATUS OF PMFS

* 3. kl and k2 have incompatible JCS
* 4. there are a still a few special cases
* which cannot be dealt with

*I
int grJniLremap(

I*

int kl,
int k2);

* Pree and remember a pair mapping
* between ktile formats kl and k2,
* returning O if successful
* -1 returned if failure occurs because
* 1. ktile id is invalid
* 2. no pair has been allocated to kl and k2

*I
int gr _free_remap(

int kl,
int k2);

I* Set ktile format of mtag mid *I
int gr....set(

int mid,
int kid2);

I* Remap image with mtag mid
* inplace to ktile format kid2,
* returning O if successful
* -1 returned if failure occurs because
* 1. mid is invalid
* 2. kid2 is invalid
* 3. mid has no kid attached to it
* 4. kid2 is incompatible with JCS of kid attached to mid
* 5. DCS of kid2 is incompatible with size of mid

*
* If no pair has been declared
* with init_remap, the generated

B.4. SOME HEADER FILES

* remap will be ephemeral, so unless
* a remap will only be used once,
* it is better to call iniLremap first

*I
int gr_remap(

int mid,
int kid2);

I* Copy image from mtag midi to
* mtag mid2, simultaneously
* remapping it tq ktile format kid2
* 0 is returned if successful,
* -1 if failure occurs because
* 1. midi is invalid
* 2. mid2 is invalid
* 3. kid2 is invalid
* 4. midl has no kid attached to it
* 5. kid2 is incompatible with JCS of kid attached to midi
* 6. DCS of kid2 is incompatible with size of mid2

*
* If no pair has been declared with
* iniLremap, the generated remap
* will be ephemeral, so unless a
* remap will only be used once, it
* is better to call iniLremap first

*
* If dimension O (memory) of the DCS
* of the kTile attached to midi is
* larger than the size of mid2, it is
* possible that data will be written
* past the size of mid2, silently corrupting
* everything! It is safer (but painful)
* to use gr_remap to map the data in midi
* in-place, then copy the data to mid2,
* the map midi back to its original format

*I
int gr_copy(

int midl,
int mid2,
int kid2);

I*· ---------------
* stdmap

247

248

* ----------------

* I
I* Given a ktile format,
* transpose two of its dimensions

*I
int gr..xpose(

int dl,
int d2,
ktile...s *k);

I* Given a ktile format,
* reverse one of its dimensions

*I
int gr _reverse(

int d,
ktile...s *k);

I* Given a ktile format,
* bitreverse one of its dimensions
* (prior to an FFT}

*I
int gr_bitrev(

int d,
ktile...s *k);

I* Make a ktile format for
* 2d cut'n'stack mapping for

APPENDIX B. STATUS OF PMFS

* an x by y image with size-byte pixels
* If x<nxproc or y<nyproc,
* use only part of the array

*I
int gr_make..2dcs(

int size,
int x,
int y,
ktile...s *k);

I* Make a ktile format for
* 2d hierarchical mapping for
* an x by y image with size-byte pixels
* If x<nxproc or y<nyproc,
* use only part of the array

*I

B.4. SOME HEADER FILES

int gr_rnake_2dh(

int size,
int x,
int y,
ktile_s *k);

I* Make a ktile format for
* 1 d cut 'n's tack mapping for
* an x by y image with size-byte pixels
* If X*y<nproc, use only part of the aT'T'ay

*I
int gr_rnake_ldcs(

int size,
int x,
int y,

ktile...s *k);

I* Make a ktile format for
* 1 d hierarchical mapping for
* an x by y image with size-byte pixels
* If X*y<nproc, use only part of the aT'T'ay

*I
int gr_rnake_ldh(

int size,
int x,
int y,
ktile_s *k);

I* Make a ktile format for
* 1 d scan mapping for
* an x by y image with size-byte pixels
* If y>nproc, store multiple scan-lines per PE
* (equivalent to ldh)

*I
int gr_rnake_ldscan(

#endif

int size,
int x,
int y,
ktile...s *k);

249

250 APPENDIX B. STATUS OF PMFS

B.4.2 Extract from gp2.h

The gp2 module defines the k-Tile data structure along with many other asso
ciated lower-level data structures, and defines routines for generating index bit
permutations from k-Tile definitions. Only the relevant parts of this include
file are shown.

I*
* Generic coordinate system

*I
typedef struct
{

} cs_s;

I*

int num_dims;
int dim[O);

* kTile format structure

*I
typedef struct
{

int num_dims;
int dim[MAX-1DIMS];

} ics_s;

typedef struct
{

int num_dims;
int dim[MAX__KDIMS);

} kcs_s;

typedef struct
{

int num_dims;
int dim[MAXJ)DIMS);

} dcs_s;

typedef struct
{

int num_dims;
int dim[MAX__KDIMS];

} map_s;

typedef struct

B.4. SOME HEADER FILES

{

} ktile...s;

I*

lCS...S lCSj

kcs...s kcs;
dcs...s des;
map...s kdmap;
int ksense;

* Memory tag structure

*I
typedef struct
{

} mtag...s;

I*

plural unsigned char *IDem;
int kid;
int size;

251

I* ktile identifier * /
I* size in bytes {must be POT) *I

* Example kTile map: 256x256x256 volume on 32x32 array
* with z-axis and low x, low y in mem

*
* With non-log sizes:

*
* ics = /256, 256, 256}
* kcs = {32, 8, 32, 8, 256}
* des = /32, 32, 16384}
* kdmap = /0, 2, 1, 3, 4}
* ksense = %00000

*
* With log sizes:

*
* ics = /8, 8, 8}
* kcs = /5, 3, 5, 3, 8}
* des = /5, 5, 14}
* kdmap = /0, 2, 1, 3, 4}
* ksense = %00000

*
*I

252 APPENDIX B. STATUS OF PMFS

B.5 PMF Implementation notes

PMFs use either the router or the xnet to implement general index bit permu
tation operations. The xnet is used for general processor/memory transpose
operations whenever contiguous Pbits are exchanged with contiguous Mbits,
and the router is used for all other inter-processor communication.

The following optimizations ensure that respectable performance can be
achieved from the router:

• Index bit permutations are rearranged to ensure that each data element
is sent through the router a maximum of once.

• Index bit permutations are rearranged to enable data to be sent in large
chunks (up to 64 bits) through the router to minimize latency and the
number of opened router connections.

• Router contention is minimized by pre-calculating the order in which
router connections are opened.

• In most cases where several processors within a cluster wish to communi
cate with the same external cluster, unnecessary ropen instructions are
not executed. This is not yet performed where processor/memory bit
exchanges complicate the issue.

• Most memory accesses use the faster direct addressing, except when pro
cessor /memory bit exchanges are required.

• All data movement code is handwritten MasPar assembler, with slow
ampl versions available for testing purposes

B.6 Using the PMF workbench

A tool called 'gpt' for testing and exploring PMFs has been written. All
the internal and application-visible data-types are visible and a large set of
commands allows them to be altered and applied. The following examples
show the use of this tool for experimentation and delectation.

B.6.1 Declaring a krTile format

A le-Tile format may be declared in up to four ways:

• By directly specifying all fields

B.6. USING THE PMF WORKBENCH

gpt>ktile kl [64] [8,8] [8,8][0,1] [++]
gpt>print kl

*** ktile **
!CS: [64]
KCS: [8, 8]
DCS: [8, 8]
KDMAP: [O, 1]
KSENSE: [++]

• By initializing to a standard mapping

gpt>ktile k2 2dhi 1 256 256
gpt>print k2
*** ktile **
!CS: [1, 256, 256]
KCS: [8, 32, 8, 32]
DCS: [64, 1024]
KDMAP: [O, 2, 1, 3]
KSENSE : [++++]

• By applying a transformation to an existing k-Tile format

gpt>ktile k3 txpose k2 1 2
gpt>print k3
*** ktile **
!CS: [1, 256, 256]
KCS: [8, 32, 8, 32]
DCS: [64, 1024]
KDMAP: [2, 0, 3, 1]
KSENSE: [++++]

253

• By specifying an index-bit permutation in cycle notation. This will be
shown later with the pair data type.

B.6.2 The kmap

Attached to every k-Tile format is a kmap, which is an internal representation
of an index bit map. It may be examined from the k-Tile format as follows:

gpt>ktile kp [8,8] [8,8,2] [16,8] [2,1,0] [-+-]
gpt>print kp

*** ktile **
!CS: [8, 8]

254

KCS: [8, 8, 2]
DCS: [16, 8]
KDMAP: [2, 1, OJ
KSENSE: [-+-]
gpt>print kp.kmap

*** kmap ***
Device sense : [-+++] [---]

Enable : [.EEE] [EEE]

APPENDIX B. STATUS OF PMFS

ICS->DCS [pO, pi, p2, mi, m2, m3]
DCS->ICS : [XXX, 3, 4, 5] [O, 1, 2]

B.6.3 Declaring an mtag

An mtag is declared with a specified amount of memory using the mtag com
mand. Initially, no mapping is attached to the mtag. A mapping may be
attached to the mtag using the kset or the kfill commands. The kfill com
mand fills the memory with something meaningful so that it can be checked
after a remapping operation.

gpt>mtag m 8
gpt>kfill m k1
gpt>print m

*** mtag ***
Size= 8
kTile = k1
gpt>print m.data

0: 0001020304050607
1: 08090a0b0c0d0e0f
2: 1011121314151617
3: 18191a1b1c1d1e1f
4: 2021222324252627
5: 28292a2b2c2d2e2f
6: 3031323334353637
7: 38393a3b3c3d3e3f

gpt>kfill m zap
gpt>print m

*** mtag ***
Size= 8
kTile = NONE

B.6. USING THE PMF WORKBENCH

B.6.4 Declaring a pair

255

A pair contains all the information needed to perform remappings using PMFs.
It is declared in one of three ways:

• Declaring the pair directly from two k-Tile formats :

gpt>ktile ka 2dhi 1 64 64
gpt>ktile kb 2dcs 1 64 64
gpt>print ka
*** ktile **
ICS: [1, 64, 64]
KCS: [2, 32, 2, 32]
DCS: [4, 1024]
KDMAP: [O, 2, 1, 3]
KSENSE: [++++]
gpt>print kb
*** ktile **
ICS: [1, 64, 64]
KCS : [32, 2, 32, 2]
DCS : [4, 1024]
KDMAP: [1, 3, 0, 2]
KSENSE: [++++]
gpt>pair p ka kb
gpt>print p
pair
kid pair= (ka,kb)

• Declaring the pair as an index bit permutation with cycle notation. This
also creates two k-Tile formats generated from the cycles:

gpt>cycle pr kra krb [m0,m1,m.2,m3,p0,p1,p2,p3] [rn4] [p4-J
gpt>print pr
pair
kid pair= (kra,krb)
gpt>print kra
*** ktile **
res: cs12J
KCS: [32, 16, 2]
DCS: [32, 32]
KDMAP: [O, 1, 2]
KSENSE: [++-]
gpt>print krb

256

*** ktile **
ICS: [512]
KCS: [8, 2, 2, 8, 2, 2]
DCS: [32, 32]
KDMAP: [4, 0, 2, 1, 3, 5]
KSENSE: [+++++-]

APPENDIX B. STATUS OF PMFS

• A pair may also be generated automatically when a remapping is at
tempted between two k-Tile formats for which a pair has not yet been
initialized.

B.6.5 Data types attached to a pair

Several data types may be seen attached to a pair. These are used in the
generation and application of remapping operations:

gmap

The gmap is a representation of an index bit permutation:

gpt>print pr.gmap
*** gmap ***

Pre enabled
Pre flipped

Post enabled
Post inverted

[EEEEE] [EEEE .]
[+++++] [++++-]
[EEEEE] [EEEE .]
[+++++] [+++++]

Forward permutation: [m1, m2, m3, pO, I] [pl, p2, p3, mO]
Reverse permutation: [p3, mO, m1, m2, I] [m3, pO, p1, p2]

cycles--> [m0,m1,m2,m3,p0,p1,p2,p3] [m4] [p4-]

eye

The eye is a representation of an index bit permutation with embedded index
bit permutation cycle information and transformed into (m*), (P*), (mp*) and
identity cycles.

gpt>print pr.eye
*** Cyc #0

*** gmap ***
Pre enabled
Pre flipped

Post enabled
Post inverted

[EEEEE] [EEEE .]
[+++++ J [++++-J
[EEEEE] [EEEE .]

[+++++ J [+++++ J
Forward permutation: [I, I, I, pO, I][pl, p2, p3, m3]

B.6. USING THE PMF WORKBENCH

Reverse permutation: [I, I, I, p3, I] [m3, pO, p1, p2]
cycles--> [rnO] [rn1] [m2] [rn3,p0,p1,p2,p3] [rn4] [p4-]
*** MM* cycles***
*** PP* cycles***
*** MP* cycles***
[m3, po, p1, p2, p3]
*** gmap identities: [EEE.E] [....]
*** gmap MM*/PP* bits: [.....] [....]
*** gmap MP* bits bits: [... E.] [EEEE]
*** Cyc #1

*** gmap ***
Pre enabled [EEEEE] [EEEE.]
Pre flipped [+++++] [++++-]

Post enabled [EEEEE] [EEEE.]
Post inverted [+++++] [+++++]
Forward permutation: [m1, m2, m3, mO, I][I, I, I, I]
Reverse permutation: [m3, mO, m1, m2, I][I, I, I, I]

cycles --> [mo ,m1 ,m2 ,rn3] [m4] [pO] [p1] [p2] [p3] [p4-J
*** MM* cycles***
[mo, m1, m2, m3]
*** PP* cycles***
*** MP* cycles***
*** gmap identities: [.... E] [EEEE]
*** gmap MM*/PP* bits: [EEEE.] [....]
*** gmap MP* bi ts bi ts: [..... J [.... J

remap

257

The remap contains all the information needed to perform an optimal radix 2
remapping. The following fields are printed:

Remap type One of (mm*), (PP*), (mp*) or tx

Steprange An array of pairs of steps/ranges for identity mbits

ipsfunc Function to be called from steprange loop when performing in-place
remappmgs

cpsfunc Function to be called from steprange loop when performing copy
remappmgs

Pvalid Valid destination processors

memory copies Linked list representing memory permutation for copy remap

258 APPENDIX B . STATUS OF PMFS

memory swaps Linked list representing memory permutation cycles for in-
place remap

Base rx Base source processor from which to fetch data

rorder Order of processor fetching for cluster contention removal

num...routes Number of transmissions required for permutation

torder Order of processor transmission for cluster contention removal

num_cluster Number of transmissions possible per ropen

roufunc Function to call to perform router operations

Base mx Base memory offset calculated from (mp*) parity masks

(mp*) masks Array of xor masks for recursive parity masking

iprfunc Function to call after recursive parity masking for in-place remapping

cprfunc Function to call after recursive parity masking for copy remapping

gpt>print pr.remap
*** Remap #0

----- remap
mp* remap.
Steprange:
[16, 32]
ipsfunc = op2_ip_routes()
cpsfunc = op2_cp_routes()
Pvalid:
................ xxxxxxxxxxxxxxxx

Base rx:
*** XXX XXX XXX XXX XXX XXX

XXX XXX XXX XXX XXX XXX
16 24 25 17 26 18
28 20 21 29 22 30

rorder (num_routes = 4):
................ 0213021302130213
torder (num_cluster = 1):
<none>.
roufunc = op2_2rc0_64()
Base mx:

XXX XXX
XXX XXX

19 27
31 23

H
1:

!

B.6. USING THE PMF WORKBENCH

*** XXX XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX XXX

0 8 8 0 8 0 0 8
8 0 0 8 0 8 8 0

mp* masks:
[8, 8]
iprfunc = op2_ip_ix_64()
cprfunc = op2_cp_ix_64()
*** Remap #1

--
----- remap
mm* remap.
Steprange:
[16,32]

ipsfunc = op2_ip_mi_08()
cpsfunc = op2_cp_mi_08()
Pvalid:

................ xxxxxxxxxxxxxxxx

memory copies

0-0 1-2 2-4 3-6 4-8 5-10 6-12 7-14 8-1 9-3 10-5 11~7
12-9 13-11 14-13 15-15

• memory swap cycles

* 1 8 4 2 * 3 9 12 6 * 5 10 * 7 11 13 14
gpt>

B.6.6 Performing a remap

259

We have now defined all the commands necessary for defining k-Tile formats,
memory and remappings. We can now use them for performing a remapping;
the following example remaps the memory referenced by mtag m from the k-Tile
format kra to krb:

gpt>mtag m 32
gpt>kfill m kra
gpt>ip m krb
gpt>kchk m
Checked out OK.

B.6. 7 Timing

To determine how efficient the PMF system is at performing a remapping,
many of the most expensive PMF operations may be timed:

I

l

11

I

I J

260

gpt>time 1
Timing= 1
gpt>ip m kra
new pair id= pOOO
Time to declare gmap
Time to declare cycles

APPENDIX B . STATUS OF PMFS

0.003583
0.009387

Time to declare remaps 0.068689
Time to perform inplace remap 0.001125
gpt>ip m krb
Time to perform inplace remap 0.001134
gpt>ip m kra
Time to perform inplace remap
gpt>kchk m
Checked out OK.

0.601122
I

~ ·-

Appendix C

Glossary of symbols

Logical relations

a => b a implies b; b if a; a only if b
!:::,.

a is defined to be b a=b

a=b a is equivalent to b

a iff b a if and only if b

3a There exists an a

Va For all a

General operators

a EB b

IT
I:

Sets

{a, b, c}

0

a EB

a rt B

B\ a

AUE
AnB
AcB

a exclusive-or b

Product

Sum

A set containing a, b and c

The empty set, {}

a is an element of B

a is not an element of B

B without a

A union B

A intersection B

A is a subset of B

261

262 APPENDIX C. GLOSSARY OF SYMBOLS

{ a E X : P(a)} The subset of the set X satisfying the property P

IAI

Functions

f:X-+Y

domain(!)

range(!)

1-1

one to one

onto

fog

The cardinality, size, or number of elements in the set A

A function f assigning a value from Y to every element in
X

The set of values for which f is defined

The set of values f maps to

The inverse function of f

f is one to one iff f(a) is different for every value of a

A function f is onto a set Y iff range(!) = Y

f composed with g; f o g(x) = f(g(x))

Multidimensional arrays

p,q,r

a

(a)

index(a)

[A]

[A] i

..L

IAI

General spaces

JR

N

Integers used for defining dimensionality

A general shape vector

The dimensionality of a

The index space of a

The shape of the multidimensional array A

The length of dimension i of A

'perp', the undefined data value or array index

The cardinality or size of A

The set of all real numbers

The set of all non-negative integers, including zero

The set of all N-vectors of length q

A set representing an arbitrary data type

The set of all multidimensional arrays

The set of all multidimensional arrays with data type 11'

The set of all multidimensional arrays with shape a

I:

263

kr Tile format

a The data space shape

k The k-Tile space shape

d The device space shape

A The data array index space

K The k-Tile array index space

D The device array index space

m The mapping vector assigning k-Tile dimensions

c The computed vector defining k-Tile dimension assignment

s The k-Tile sense indicator

tn, tK, tA Template space shapes

Tn, TK, TA Template index spaces

on, oK, oA Space offsets

oTv, oTK, OTA Template space offsets

J K k-Tile format data mapping

g K k-Tile index format index mapping

gT D, gT K, gTA Offset template index mappings

g DT Inverse sense k-Tile mapping from D to T K

gKT Implicit k-Tile mapping from K to TA

Radix 2 remapping

IIAII Log size of A= log2 IAI
a

a

A

D

M

General data array index

General device array index

Binary representation of a

Index space of ld data array

Index space of ld device array

Memory address index space

264

(~ i n
(02)(1)

p

p

s

s

E

E.,

Ed

(do , d1)(do.)

(m)

(p)

(m*)

(P*)

(mp*)

APPENDIX C. GLOSSARY OF SYMBOLS

Sam{Jle permutation in direct notation

Sample permutation in cycle notation

Processor number index space, also a general permutation
mapping

General permutation

General index bit permutation

General inversion mask

General index bit inversion

Sample index bit map

Enabled subset of device indices

Enabled subset of device indices in source mapping

Enabled subset of device indices in destination mapping

Sample radix 2 remapping

Arbitrary m-bit identity cycle

Arbitrary p-bit identity cycle

m-bit permutation cycle

p-bit permutation cycle

Permutation cycle with one m-bit, multiple p-bits

	00001
	00002-B
	00003-A
	00003-B
	00004-A
	00004-B
	00005-A
	00005-B
	00006-A
	00006-B
	00007-A
	00007-B
	00008-A
	00008-B
	00009-A
	00009-B
	00010-A
	00010-B
	00011-A
	00011-B
	00012-A
	00012-B
	00013-A
	00013-B
	00014-A
	00014-B
	00015-A
	00015-B
	00016-A
	00016-B
	00017-A
	00017-B
	00018-A
	00018-B
	00019-A
	00019-B
	00020-A
	00020-B
	00021-A
	00021-B
	00022-A
	00022-B
	00023-A
	00023-B
	00024-A
	00024-B
	00025-A
	00025-B
	00026-A
	00026-B
	00027-A
	00027-B
	00028-A
	00028-B
	00029-A
	00029-B
	00030-A
	00030-B
	00031-A
	00031-B
	00032-A
	00032-B
	00033-A
	00033-B
	00034-A
	00034-B
	00035-A
	00035-B
	00036-A
	00036-B
	00037-A
	00037-B
	00038-A
	00038-B
	00039-A
	00039-B
	00040-A
	00040-B
	00041-A
	00041-B
	00042-A
	00042-B
	00043-A
	00043-B
	00044-A
	00044-B
	00045-A
	00045-B
	00046-A
	00046-B
	00047-A
	00047-B
	00048-A
	00048-B
	00049-A
	00049-B
	00050-A
	00050-B
	00051-A
	00051-B
	00052-A
	00052-B
	00053-A
	00053-B
	00054-A
	00054-B
	00055-A
	00055-B
	00056-A
	00056-B
	00057-A
	00057-B
	00058-A
	00058-B
	00059-A
	00059-B
	00060-A
	00060-B
	00061-A
	00061-B
	00062-A
	00062-B
	00063-A
	00063-B
	00064-A
	00064-B
	00065-A
	00065-B
	00066-A
	00066-B
	00067-A
	00067-B
	00068-A
	00068-B
	00069-A
	00069-B
	00070-A
	00070-B
	00071-A
	00071-B
	00072-A
	00072-B
	00073-A
	00073-B
	00074-A
	00074-B
	00075-A
	00075-B
	00076-A
	00076-B
	00077-A
	00077-B
	00078-A
	00078-B
	00079-A
	00079-B
	00080-A
	00080-B
	00081-A
	00081-B
	00082-A
	00082-B
	00083-A
	00083-B
	00084-A
	00084-B
	00085-A
	00085-B
	00086-A
	00086-B
	00087-A
	00087-B
	00088-A
	00088-B
	00089-A
	00089-B
	00090-A
	00090-B
	00091-A
	00091-B
	00092-A
	00092-B
	00093-A
	00093-B
	00094-A
	00094-B
	00095-A
	00095-B
	00096-A
	00096-B
	00097-A
	00097-B
	00098-A
	00098-B
	00099-A
	00099-B
	00100-A
	00100-B
	00101-B
	00102-B
	00103-B
	00104-B
	00105-A
	00105-B
	00106-B
	00107-B
	00108-A
	00108-B
	00109-A
	00109-B
	00110-A
	00110-B
	00111-B
	00112-B
	00113-A
	00113-B
	00114-A
	00114-B
	00115-A
	00115-B
	00116-A
	00116-B
	00117-A
	00117-B
	00118-A
	00118-B
	00119-A
	00119-B
	00120-A
	00120-B
	00121-A
	00121-B
	00122-A
	00122-B
	00123-A
	00123-B
	00124-A
	00124-B
	00125-A
	00125-B
	00126-A
	00126-B
	00127-A
	00127-B
	00128-A
	00128-B
	00129-A
	00129-B
	00130-A
	00130-B
	00131-A
	00131-B
	00132-A
	00132-B
	00133-A
	00133-B
	00134-A
	00134-B
	00135-A
	00135-B
	00136-A
	00136-B
	00137-A
	00137-B
	00138-A
	00138-B
	00139-A
	00139-B
	00140-A
	00140-B
	00141-A
	00141-B
	00142-A
	00142-B
	00143-A
	00143-B
	00144-A
	00144-B
	00145-A
	00146

