Primitive Trinomials and

Random Number Generators

Richard P. Brent
Computing Laboratory
University of Oxford

rpb@comlab.ox.ac.uk

26 Sept 2001

*Copyright ©2001, R. P. Brent.

*

HK2t

Abstract

In this talk, which describes joint work with
Samuli Larvala and Paul Zimmermann, we
consider the problem of testing trinomials over
GF(2) for irreducibility or primitivity. In
particular, we consider trinomials whose degree
is the exponent of a Mersenne prime. We
describe a new algorithm for testing such
trinomials. The algorithm is significantly faster
than the standard algorithm, and has been used
to find primitive trinomials of degree 3021377.
Previously, the highest degree known was
859433.

One of the applications is to pseudo-random
number generators. Using the new primitive
trinomials, we can obtain uniform random
number generators with extremely long period
and good statistical properties in all dimensions
less than 3021377.

Outline

e Definitions

e Connection with RNGs

e Sieving

e The standard algorithm

e The new algorithm

e Performance

e Some new primitive trinomials
e Application to RNGs

e A generalisation

Introduction

Irreducible and primitive polynomials over finite
fields have many applications in cryptography,
coding theory, random number generation etc.
See, for example, the books by Golomb, Knuth
(Vol. 2), and Menezes et al.

In this talk, which describes joint work with
Samuli Larvala (Helsinki University of
Technology) and Paul Zimmermann (INRIA
Lorraine), I will describe a new algorithm which
has been used to find primitive polynomials of
very high (in fact, “world record”) degree over
the field GF(2) of two elements.

Polynomials over GF(2)

GF(2) is just the set {0, 1} with operations of
addition and multiplication modulo 2.

Equivalently, GF(2) is the set of Boolean values
{F,T} with operations & (exclusive or) and
& (and).

We consider polynomials over GF(2), that is,
polynomials whose coefficients are in GF(2).
For the sake of brevity, we won’t repeat this
statement every time!

Note that, for polynomials u,v over GF(2),
2u=2v=0.
This implies that v — v = u + v and

(u+v)? =u? 4+ 0%,

Some Definitions

We say that a polynomial P(z) is reducible if it
has nontrivial factors; otherwise it is irreducible.

If P(z) is irreducible of degree r > 1, then
GF(2") = Zs[z]/(P()) ,

so we have a representation of the finite field
GF(2") with 2" elements. If z is generator for
the multiplicative group of Zq[z]/(P(z)), then
we say that P(z) is primitive.

Since the multiplicative group has order 2" — 1,
we need to know the complete factorisation of
2" — 1 in order to test if an irreducible
polynomial is primitive. However, if r is a
Mersenne exponent, i.e. 2" — 1 is prime, then
irreducibility implies primitivity.

Random Number Generators

Pseudo-random number generators (RNGs) are
widely used in simulation.

A program running on a fast computer or
cluster of PCs might use 10° random numbers
per second for many hours. Small correlations
or other deficiencies could easily lead to
spurious results.

In order to have confidence in the results of
simulations, we need to have confidence in the
statistical properties of the random numbers
used.

There is no time to talk about random number

generators in detail today, but I will mention
some connections with primitive polynomials.

Generalized Fibonacci Generators

Un=Upn_r 0 Un—s

where 7 and s are fixed “lags” and 6 is some
binary operator. We always assume 0 < s < r.

For example, the choice of § = + (mod 2%)
which we assume below is convenient on a
binary machine. In this case the period is at

most
2ol 1),

and this is attained if 2" + z° + 1 is a primitive
polynomial over GF(2) and the initial values
Uop,...,U,_1 are not all even.

The case of addition in GF(2), i.e. w=1,

0 = @, gives a linear feedback shift register
(LFSR) generator which is easy to implement in
hardware. These (and the case w > 1, 0 = @)
are also called Tausworthe generators.

The Generating Function

Suppose z, = Tn_r + T, Over any field F, e.g.
F = GF(2). We define the generating function

Gt)=)_ wnt".

n>0
It is easy to see that
Go(t)
G(t) =
0=
where Go(t) is a polynomial of degree (at most)
r — 1 defined by the initial values zg, ..., z,_1,
and

P(t)=1—1t—t"
is defined by the recurrence.

The generating function can be used to obtain
various theoretical results (period, expected
values, correlations, etc).

Some Well-Known Results

The following results can be found in texts such
as Lidl, Menezes et al. Here p is the Md&bius
function, and ¢ is Euler’s phi function.

1. 22" + z is the product of all irreducible

polynomials of degree d|n. For example,
Brr=c(+2)1+z+23)(1+2%+2%) .

2. Let J, be the number of irreducible
polynomials of degree n. Then

1
> dJa=2" and Jy = =3 2%(n/d).
dln din

In particular, if n is prime then
Ip = (2™ = 2)/n.

3. The number of primitive polynomials of
degree n is P, = ¢(2" — 1)/n < J,.

In particular, if n is a Mersenne exponent,
then P, = J, = (2" — 2)/n.

10

The Reciprocal Polynomial

If P(z) = 37 a;jz? is a polynomial of degree r,
with ag # 0, then

Pr(z)=2"P(1/z) = iajmr_j
=0

is the reciprocal polynomial. Clearly P(z) is
irreducible (or primitive) iff Pg(z) is irreducible
(or primitive).

In particular, if
Plz)=1+2°+3", O<s<r
is a trinomial, then the reciprocal trinomial is
Pr(z)=1+2""°+z".

If it is convenient, we can assume that s < r/2
(else consider the reciprocal trinomial).

Similarly, if r is odd, we can assume that s is
odd (this will be useful later).

11

Searching for Irreducible Polynomials

The irreducible polynomials (over GF(2), as
usual) of degree r are analogous to primes with
r digits. When searching for large primes we
can quickly eliminate most candidates by
sieving out multiples of small primes. Similarly,
when searching for irreducible polynomials, we
can eliminate candidates by checking if they are
divisible by irreducible polynomials of low
degree.

Sieving

Given a candidate P(xz), we check if
GCD(P(z),2%" +x) #1,forn=1,2,3,...,N
where N < deg(P) is some bound. Since all
irreducible polynomials of degree n are divisors
of 22" + z, P(x) passes these checks iff it has no
irreducible factors of degree < N.

If 2™ > r = deg(P), we can save time and space
by computing 22" mod P(z) by repeated
squaring and reduction, before computing the
GCD.

12

Irreducible Trinomials

For applications such as random number
generation, we want irreducible (or better,
primitive) polynomials of high degree r and
with a small number of nonzero terms. Hence,
we restrict attention to trinomials of the form

Pz)=Ps(z)=1+2+2", 0<s<r.

For simplicity, assume r is an odd prime.

Swan’s Theorem

Swan (1962) determines the parity of the
number of irreducible factors by an argument
involving the discriminant (actually, Swan’s
main result is due to Stickelberger (1897)).

If r is an odd prime, then Swan’s theorem
implies that P, s(z) has an even number of
irreducible factors (and hence is reducible) if
r =23 mod 8 and s # 2 or r — 2.

The condition on s can not be omitted,
e.g. 29 + 22 + 1 is irreducible.

13

Expectation of Success

The probability that a randomly chosen
polynomial of degree r is irreducible is of order
1/r. Empirically, it seems that the same holds
for trinomials of prime degree r = £1 mod 8
(this condition implies that Swan’s theorem is
not applicable).

Thus, if we consider all s in the range

0 < s < /2, we expect a small constant number
¢ of irreducible trinomials of degree r.

Empirical evidence suggests that ¢ =~ 3.2 .

For example, considering the 523 prime

r € [1000, 10000] such that » = +1 mod 8, we
find exactly 1683 irreducible trinomials, giving
an estimate ¢ = 3.22 £ 0.08 .

Open Question. What is this constant ¢ 7

14

Searching for Irreducible Trinomials

Suppose r is an odd prime, r = £1 mod 8, and
sieving has failed to show that P(z) = P, s(z) is
reducible. The standard algorithm computes

¥ mod P(z)

by r steps of squaring and reduction, then uses
the result that P(z) is irreducible iff

¥ = z mod P(z) .

All authors of papers which give tables of
irreducible trinomials (Watson, Rodemich,
Zierler, Kurita, Heringa, Kumada, ...) seem to
have used essentially this algorithm, which is
why we call it the standard algorithm.

15

Complexity of the Standard Algorithm

Since we are working over GF(2),

2
J J
Thus, each squaring step takes O(r) operations.

Each reduction step also takes O(r) operations,
since P(z) is a trinomial and we can apply

/7" = 27+ 4+ 29 mod P(z)

for j=r—2,r—3,...,0 to reduce the result of
squaring to a polynomial of degree less than r.

Thus, the complete test for reducibility of P, s
takes O(r?) operations, and to test all s takes
O(r3) operations (assuming that sieving leaves
a constant fraction of trinomials to test).

If the sieve limit is N and 2V ~ r¢ for some

¢ <1, then N = clog,r and we expect O(r/N)
trinomials to survive sieving, so the overall
complexity might be reduced from O(r3) to
O(r3/logr).

16

Improving the Standard Algorithm

The standard algorithm uses 2r bits of memory
for squaring, and 2r + O(1) @ operations for
each reduction (we count bit-operations but in
practice we perform 32 or 64 bit-operations in
parallel using word-operations; this also applies
to our new algorithm). Many of these
operations are on bits which are necessarily
zero. There is a better algorithm which avoids
these redundant operations.

Both algorithms represent a polynomial
A(z) = Z;;[l) a;z’ as a bit-vector ag...ay_1.

Since r is odd and we can consider either P or
its reciprocal P, ,_s, we can assume that s is
odd.

17

The New Algorithm — Squaring

The first point is that there is no need to
actually perform the squaring step! The
standard algorithm would replace the bit vector

apa1a2 . ..ar_20r_1
by its “square”
ap0a10as . ..0a,_20a,_1 .
However, we can simply keep the bit vector
apa1asg . ..ar_920r_1

and regard it as implicitly representing a square
(in other words, we do not store the coefficients
of odd-degree terms, since they are known to be
Z€ro).

18

The New Algorithm — Reduction

To see how the reduction can be performed
after our “implicit squaring”, consider the
example r = 7,5 = 3.

We initialise A(z) < z, i.e. ag...ag < 0100000.
The “squaring” operation is implicit: we keep
the bit-vector 0100000 and regard this as
representing

apa2040608010012

We now reduce mod P(z) =1+ z3 + z7.
Observe that £'2 = z° 4+ 28 mod P(z), so we
should replace ag by ag @ a12 and as by

as @ a2, but as is currently zero, so we can
simply regard the rightmost bit as representing
as rather than aio. Thus, after the first step of
the reduction we have a bit-vector representing

a0a204064801005 -

The only bit(s) which could have changed,
because they depend on the result of an @
operation, are underlined.

19

Example of Reduction continued

Proceeding in a similar fashion, we observe that
2% = 23 + 26 mod P(z), but a3 = 0 , so we
replace ag by ag @ a1p and implicitly regard the
second bit from the right as representing ag
rather than a19. Thus, after the reduction we
have a bit-vector representing

apa2a4a6a8a3as .

One more step of reduction gives a bit-vector
representing

apa2a406a1a3as5 .

Observe that this bit-vector contains the
coefficients of A(z)2 mod P(z), but they are in
a shuffled order. We need to apply an interleave
permutation to get back to the natural order

apa1a2a3a4a50a¢6 -

20

Interleaving

Interleaving is closely related to squaring. In
fact, if we square agasaqag:

apaza4a — ag0a20a40a60 ,
square and rightshift ajasas0:
aiazas0 — 0aq10a30a500 ,
and apply a bitwise V operation, we obtain
apaiasazaqasag .

Thus, interleaving can be implemented by
squaring and a few additional operations
(shifting and V-ing). Although two squarings
are necessary, the bit-vectors are only half as
long as before, so the work involved is almost
the same.

21

A Complete Example

Consider the example r = 7, s = 3. The k-th
operation of (implicitly) squaring and reducing
mod P(z) is denoted by Sk, and the k-th
operation of interleaving by I.

If we start with A(z) = = and perform
operations S1, I1, 52, Io, ..., S7, [t we obtain the
following;:

S; — 0100000, I; — 0010000 = z2

Sy — 0010000, I — 0000100 = z*

S5 — 0010100, I3 — 0100100 = z + z*

Sy — 0110100, Iy — 0110100 = & + z2 + «*
S5 — 0100100, I — 0110000 = z + z2

Ss — 0110000, I — 0010100 = z2 + z*

S7 — 0000100, I7 — 0100000 = =

Since the final result is , we deduce that
P(z) =1+ 23 + 27 is irreducible.

22

The New Algorithm

We now describe the new algorithm formally, in
terms of bit-operations. As before, assume that
r and s are odd.

To avoid confusion, we denote the working
bit-array by bgb; - - - by,—1. This bit-array is used
to represent the coefficients aga; - - - a,—1 of the
polynomial A(z), but not necessarily in the
natural order.

Let « = (r—1)/2 and 6 = (r — s)/2. Since r
and s are odd, a and ¢ are integers. Initially we
set b1 < 1 and the other b; +— 0 to represent
A(z) = z.

23

Squaring and Reduction

Fach step Sy is implemented by
for j < r—1 downto a+ 1 do
bj_,; — bj_5 D bj.
Squaring and reduction step S
Note that there are only r/2 + O(1) “@”
bit-operations in the loop, which is a 75%

reduction over the 2r 4+ O(1) for the reduction
step of the standard algorithm.

24

Interleaving

The obvious implementation of the interleaving
step I, requires a temporary bit-array (say
coey - - - ¢r—1). For example:

cp bo;
for j «+ 1 to a do {forward interleave}
begin
c2j—1 + bjta;
Coj < bj;
end;
for j <= 0 to r —1 do bj < ¢;.

Forward interleave I; with copy

We call this a “forward interleave” because the
first loop index j increases.

We can avoid the final loop (copying the ¢ array
to b) by alternately using the array b and the
array c (or by interchanging pointers
appropriately). However, the space required is
still 2r + O(1) bits, the same as for the standard
algorithm.

25

A Refinement: Overlapping Arrays

We can interleave in the backward direction
(replace “for j + 1 to a” by “for j + «
downto 1” above). Suppose we also interchange
the roles of b and ¢ to avoid the final copy.

The point of interleaving alternately in the
forward and backward directions is that we can
save space by using a single working array of
size 3r/2+ O(1) bits. The b and ¢ arrays can
partially overlap — in fact b; can occupy the
same memory as ¢jiq (j =0,1,...), as shown:

‘b()bl"'ba"'br—l‘

Cocl...ca...cr_l|

Note that the “forward interleave” transmits
data from b to ¢ (i.e. to the left) and the
“backward interleave” transmits data from c to
b (i.e. to the right)!

26

Effect of the Refinement

Partially overlapping the arrays b and ¢ can
improve performance dramatically on machines
with memory hierarchies and cache sizes of less
than 2r bits, because the working set is reduced
in size by 25%. It has little effect on machines
with much larger caches.

Generalisation of the New Algorithm
If we replace 1 + z° + z" by
1+2z% + -+ 2% + 27|

then an obvious generalisation of our new
algorithm is applicable provided that r is odd
and the s; all have the same parity (all odd or
all even).

27

Comparison of the Algorithms

The new algorithm has 756% fewer @ operations
than the standard algorithm.

Perhaps more significant than the number of
operations is the number of memory references,
which is reduced by 56%, from 8r/w + O(1)
loads/stores to 4= + O(1) loads/stores, on a
machine with wordlength w bits.

Also significant on some machines is that the
working set size is reduced by 256%, so memory
references are more likely to be in the cache.

In practice the improvement provided by the
new algorithm depends on many factors: the
values of 7 and (to a lesser extent) s, the cache
size, the compiler and compiler options used,
whether inner loops are written in assembler,
etc, but it is generally at least a factor of two.

28

Performance of the New Algorithm

Table 1 gives normalised times for the standard
and new algorithms on various processors, for
r = 3021377. The third column is the
“normalised time” ¢ = time(nsec)/r2.

processor algorithm c

300 Mhz P-II standard 6.31
K new (no overlap) | 2.60
new (overlap) | 1.64

”

500 Mhz P-III ” 0.77
833 Mhz P-III " 1.66
300 Mhz SGI R12000 7 1.16
667 Mhz DEC Alpha ” 0.60

Table 1: Normalised time to test reducibility

Note that 3r/2 bits is 5563KB. The L2 cache size
was 512KB on the P-IT and P-III machines
ezcept only 256KB for the 833 Mhz P-IIL

The program was written in C, except that on
PCs the inner loops were written in assembler
to use the 64-bit MMX registers.

29

Times for Various Degrees

In Table 2 we show the time for a full
reducibility test with our new algorithm and
various degrees r on a machine (300 Mhz
Pentium P-II) with 512KB L2 cache.

r time T (sec) | ¢ = 10°T/r?
19937 0.42 1.06
44497 2.10 1.06
110503 14.4 1.18
132049 21.7 1.24
756839 812 1.42
859433 1027 1.39

3021377 15010 1.64
6972593 198000 4.10

Table 2: Time to test reducibility on a P-II

30

New Primitive Trinomials

In Table 3 we give a table of primitive
trinomials 2" + 2° + 1 where r is a Mersenne
exponent (i.e. 2" — 1 is prime). We assume that
0<2s<r (soz"+z"*+1is not listed).

Results for r < 756839 are given by
Heringa et al. [9]. We have confirmed these
results.

The entries for » < 3021377 have been checked
by running at least two different programs on
different machines.

During this checking process, the entry with

r = 859433, s = 170340

was found. This was surprising, because
Kumada et al. [11] claimed to have searched the
whole range for r = 859433. It turns out that
Kumada et al. missed this entry because of a
bug in the sieving routine!

31

New Primitive Trinomials cont.

The three entries for r = 756839 are new
(Kumada et al. did not search for this r), as are
the two entries for r = 3021377.

T s Notes
756839 | 215747 | BLZ, 14 June 2000
267428 | BLZ, 11 June 2000
279695 | BLZ, 9 June 2000
859433 | 170340 | BLZ, 26 June 2000
288477 | Kumada et al. [11]
3021377 | 361604 | BLZ, 8 August 2000
1010202 | BLZ, 17 Dec 2000

Table 3: Primitive trinomials

The new entries are from Brent, Larvala and
Zimmermann (BLZ) [5].

32

New Irreducible Trinomials

There is a large gap between some of the
Mersenne exponents 7 for which primitive
trinomials exist. For example, there are none in
the interval 132049 < r < 756839. In Table 4 we
give some irreducible trinomials to fill this gap.
As usual, we only list s < /2. The exponents r
were chosen to be close to the arithmetic
progression 10°,2 x 10%,3 x 10, ... with the
constraints that:

1. r is prime.
2. r = =£1 mod 8.

3. 2" — 1 is composite, but no prime factors
of 2" — 1 are known. These factors are
certainly larger than 232 (see GIMPS [7]).

33

New Irreducible Trinomials cont.

Because of the constraints, we can be sure that
the trinomials listed are irreducible. They are
extremely likely to be primitive, but we can not
prove this without knowing the complete
factorisation of 2" — 1. [The search is
incomplete for r > 900217.]

T S
100151 4764, 15503
200033 10175, 55224, 95397
96236, 97575, 98763
300151 49950, 87430
400033 17865, 103623
500231 | 4862, 10101, 203207, 205310
600071 111503
700057 24829, 121384
800057 92487, 140565, 161777
192416, 249828
900217 82555, 437251
1000121 39528, 144815, 154157

Table 4: Some irreducible trinomials

34

Another Way

There is another way to generate irreducible
polynomials of high degree. It is known
[Golomb, §6.9] that if

T
P(z) = Z aja’
§=0
is primitive (of degree r) then
T .
Qz) =)_ajz" ™
=0

is irreducible (of degree 2" — 1).
For example, P(z) = 1 + z% + 2% is primitive,
which implies that

Q(I) =14+ 1127 + $1048575

is irreducible. To determine if Q(z) is primitive
we have to completely factorise 21048575 _ 1,
which is probably difficult.

35

A Very Large Irreducible Trinomial

In the same way, P(z) = 1 + 2361604 4 53021377

is primitive, so
361604 _ 3021377 _
2 1,2 1

Qa)=1+a

is irreducible, and extremely likely to be
primitive, but to prove this we have to factor

22302137771 _

1
which seems infeasible, since the smallest prime

factor must be larger than the Mersenne prime
exponent 23021377 _ 1

36

Some Random Number Generators

Although it is easy to suggest bad random
number generators, there is no “best”
generator. Here are a few possibilities for
generalized Fibonacci random number
generators based on primitive trinomials

1+ z* 4+ 2". The memory requirements are
stated on the assumption that each full-word
random number takes eight bytes.

1. Combine a “small” generator using (say)
(r,s) = (3217,576), and a “large” generator
with (r, s) = (3021377, 361604). Assume the
small generator gives full words, and the large
generator gives single bits (though they can be
generated a word at a time). If the generators
are combined by Coppersmith’s shrinking
method, the period is

23021376 (23217 _ 1)

and the memory requirement is 394KB.

37

Some RNGs continued

2. Combine (r,s) = (1279, 418), (2281,1029) by
addition.

Period > 10'09, Fast, uses only 28KB memory.
The numbers satisfy a 9-term recurrence so we
expect good statistical properties.

3. Combine (r, s) = (127, 30), (521,158),
and (607, 273) by addition (and perhaps
shuffling).

Period > 10377, Uses only 10KB memory, so
should run in cache. 27-term recurrence (if
combined by addition), so expect excellent
statistical properties.

4. Combine the last two generators in 3
(restricted to single bits) by shrinking to obtain
a cryptographically strong generator with
memory less than 160 bytes (excluding the
program).

38

A Generalisation

For about half the Mersenne exponents r (those
with 7 = £3 mod 8, 7 > 5), primitive trinomials
of degree r probably do not exist. Examples are
r=13,19,61,....

In applications it would be almost as good to
find trinomials of slightly higher degree, say

r + ¢, having a primitive polynomial of degree r
as a factor. Thus the period of the associated
linear recurrence would be a small multiple of
2" — 1 (except for certain exceptional initial
conditions which are easy to avoid). Blake, Gao
and Lambert recently found some such
trinomials of degree up to 500.

We can use a slight modification of our
searching algorithm to find such trinomials.
The sieving phase needs some modifications,
and we have to allow the possibility of
trinomials of even degree. Some examples are
given in Table 5.

39

Some Trinomials with Long Period
For the values of 7,0 and s given in Table 5,
xr+§ +xs +1

has a primitive factor of degree exactly r, and
period greater than

2r+571 .
The values of r are all the Mersenne exponents

for which primitive trinomials of degree r do
not exist, 107 < r < 105,

r é S
2203 3 355
4253 8 1806
9941 3 1077
11213 6 227

21701 | 3 | 6999, 7587
86243 2 2288
216091 | 12 42930

Table 5: Some Trinomials with Long Period

40

References

[1]

[2

[4]

6

S. L. Anderson, Random number generators on

vector supercomputers and other advanced
architectures, SIAM Rev. 32 (1990), 221-251.

I. F. Blake, S. Gao and R. Lambert,
Construction and distribution problems for
irreducible trinomials over finite fields, preprint,
July 2001.

R. P. Brent, On the periods of generalized
Fibonacci recurrences, Math. Comp. 63 (1994),
389-401. http://www.comlab.ox.ac.uk/oucl/
work/richard.brent/pub/pub133.html

R. P. Brent, Random number generation and
simulation on vector and parallel computers,
Proc. Fourth Euro-Par Conference, LNCS
1470, Springer-Verlag, Berlin, 1998, 1-20.
-+-/pub185.html

R. P. Brent, S. Larvala and P. Zimmermann, A
fast algorithm for testing irreducibility of
trinomials mod 2 (preliminary report), Oxford
University Computing Laboratory, Report
PRG-TR-13-00, December 2000.
-++/pub199.html

D. Coppersmith, H. Krawczyk and Y. Mansour,
The shrinking generator, Proc. CRYPTO’93,
LNCS 773 (1994), 22-39.

41

[7]
[8]

[9]

[10]

[11]

(12]

[13]

[14]

GIMPS, The Great Internet Prime Search,
http://www.mersenne.org/

S. W. Golomb, Shift register sequences,
Aegean Park Press, revised edition, 1982.

J. R. Heringa, H. W. J. Bl6te and

A. Compagner. New primitive trinomials of
Mersenne-exponent degrees for random-number
generation, International J. of Modern Physics
C 3 (1992), 561-564.

D. E. Knuth, The art of computer programming,
Volume 2: Seminumerical algorithms (third
ed.), Addison-Wesley, Menlo Park, CA, 1998.

T. Kumada, H. Leeb, Y. Kurita and M.
Matsumoto, New primitive t-nomials (t = 3, 5)
over GF(2) whose degree is a Mersenne
exponent, Math. Comp. 69 (2000), 811-814.

Y. Kurita and M. Matsumoto, Primitive
t-nomials (¢ = 3,5) over GF(2) whose degree is
a Mersenne exponent < 44497, Math. Comp. 56
(1991), 817-821.

R. Lidl and H. Niederreiter, Introduction to
Finite Fields and their Applications, Cambridge
Univ. Press, Cambridge, second edition, 1994.

G. Marsaglia, A current view of random
number generators, in Computer Science and
Statistics: The Interface, Elsevier Science
Publishers B. V.,1985, 3-10.

42

[15]

[16]

[17]

(18]

[19]

20]

[21]

M. Matsumoto and T. Nishimura, Mersenne
twister: A 623-dimensionally equidistributed
uniform pseudorandom number generator,
ACM Trans. on Modeling and Computer
Simulations, 1998.

A. J. Menezes, P. C. van QOorschot and S. A.
Vanstone, Handbook of Applied Cryptography,
CRC Press, New York, 1997.
http://cacr.math.uwaterloo.ca/hac/

R. G. Swan, Factorization of polynomials over
finite fields, Pacific J. Math. 12 (1962),
1099-1106.

S. Tezuka, Efficient and portable combined
Tausworthe random number generators, ACM
Trans. on Modeling and Computer Simulation 1
(1991), 99-112.

I. Vattulainen, T. Ala-Nissila and K. Kankaala,
Physical tests for random numbers in
simulations, Phys. Rev. Lett. 73 (1994),
2513-2516.

N. Zierler and J. Brillhart, On primitive
trinomials (mod 2), Inform. and Control 13
(1968), 541-554 and 14 (1969), 566-569.

N. Zierler, Primitive trinomials whose degree is
a Mersenne exponent, Inform. and Control 15
(1969), 67-69.

43

