Random Number Generators
with Period Divisible by
a Mersenne Prime*

Richard P. Brent
Computing Laboratory
University of Oxford, UK
ICCSAQ@rpbrent.co.uk

Paul Zimmermann
LORIA/INRIA Lorraine
615 rue du jardin botanique
BP 101, 54602 Villers-les-Nancy
France

*Invited talk at ICCSA 2003, Montreal, 21 May 2003.
Copyright ©2003, the authors. ICCSA03t

Abstract

Pseudo-random numbers with long periods and
good statistical properties are often required for
applications in computational finance,
numerical integration, physics, simulation, etc.

We consider the requirements for good uniform
random number generators, and describe a class
of generators whose period is a Mersenne prime
or a small multiple of a Mersenne prime. These
generators are based on primitive or “almost
primitive” trinomials, that is trinomials having
a large primitive factor. They enable very fast
vector /parallel implementations with excellent
statistical properties.

Outline
e Requirements for RNGs

e Linear Congruential RNGs

e Generalized Fibonacci RNGs

e Ordering of triples

e Combining generators

e Comments on some available RNGs
e Initialization

e Irreducible and primitive trinomials
e Almost primitive trinomials

e Application to RNGs

Introduction

Pseudo-random number generators (RNGs) are
widely used in simulation.

A program running on a fast computer or
cluster of PCs might use 10° random numbers
per second for many hours. Small correlations
or other deficiencies could easily lead to
spurious results.

In order to have confidence in the results of
simulations, we need to have confidence in the
statistical properties of the random numbers
used.

Some Requirements

e Uniformity. This is the easiest
requirement to achieve, at least when
considered over the whole period.

e Independence. d-tuples should be
uniformly and independently distributed
in d-dimensional space (say for d < 6).
Subsequences (e.g. odd/even) of the main
sequence should be independent.

e Long Period. The period (length of a
cycle in the random numbers generated)
should be large, certainly at least 10'2 and
preferably much larger (say at least 10%4).

A few years ago, the generator RANU2 in
the SSL II library on the Fujitsu VP2200
had period 23! and ran through a
complete cycle in less than one minute!
This and similar generators are obsolete
and should be avoided.

Requirements continued

e Statistical Tests. The generator should
appear random when subjected to any
“natural” statistical test (i.e. one which
does not depend on a detailed knowledge
of the algorithm used to generate the
“random” numbers) using an amount of
computation comparable to that in
applications (say 102 operations).

There are many statistical tests.
Here are a few examples:

— Marsaglia’s “birthday spacings” test.

— Shchur, Heringa and Bléte’s 1D
random-walk test.

— A test on orderings of triples
(Un, Un—s,un—j) for 0 < j <1 < B,
B?/2 < 10'2 say. This test is
designed to detect generators based
on 3-term recurrences with lags < B.

— Similarly for k-tuples with
BF1/(k—1)! <102, 3 < k < 7 say.

Requirements continued

¢ Repeatability. For testing and
development it is useful to be able to
repeat ezactly the same sequence as was
used in another run, but not necessarily
starting from the beginning of the
sequence.

Thus, it should be easy to save all the
state information required to restart the
generator.

e Portability. For testing and development
it is useful to be able to generate exactly
the same sequences on different machines.

Requirements continued

¢ Disjoint Subsequences. If a simulation
is run on a parallel machine or on several
independent machines, the sequences of
random numbers generated on each
machine must be independent (at least
with very high probability).

¢ Efficiency. Only a few arithmetic
operations should be required to generate
each random number. Procedure call
overheads should be minimised (e.g. one
call could fill an array with random
numbers).

Linear Congruential RNGs
Introduced by D. H. Lehmer in 1948.

Unt+1 = (aUp + ¢) mod m

where m > 0 is the modulus, a is the multiplier,
and c is an additive constant.

Often m = 2" is chosen as a convenient power
of 2. In this case it is possible to get period m.
However, w = 32 is not nearly large enough
(1012 > 239),

If m is prime and ¢ = 0, we can get period
m — 1 by choosing a to be a primitive root.

Linear congruential generators have difficulty
passing the spectral test (“Random numbers
fall mainly in the planes” — Marsaglia).

Marsaglia and Zaman have introduced “add
with carry” and “subtract with borrow”
generators, which are essentially linear
congruential generators with large moduli
of a special form.

Generalized Fibonacci Generators

Un = Un—r 0 Un—s

where 7 and s are fixed “lags” and 6 is some
binary operator. We always assume 0 < s < r.

For example, the choice of § = + (mod 2%)
which we assume below is convenient on a
binary machine. In this case the period is at

most
v=l(2r — 1),

and this is attained if " + z° + 1 is a primitive
polynomial over GF(2) and the initial values
Up,...,U,_1 are not all even.

The case of addition in GF(2), i.e. w=1,

0 = @, gives a linear feedback shift register
(LFSR) generator which is easy to implement in
hardware. These (and the case w > 1, § = @)
are also called Tausworthe generators.

10

Problem with Ordering of Triples

If 6 = + (mod m), then the orderings of certain
triples do not occur with the correct probability
(1/6). This is unacceptable if r = 2 (Fibonacci),
but it is not so serious if r is large. Neglecting
probabilities O(1/m), we have:

Ordering Probability
Un—r <Upn_s < Uy 1/4
Unr <Up <Ups 0
Up—s <Up_y < U, 1/4
Un—s < Un < Up—r 0
Un < Up—r < Un—s 1/4
Up<Up s < Uy 1/4

We can implement a statistical test that gives a
significant result for ordering of triples, knowing
only that 0 < s < r < B say, with O(B) words
of memory, B + O(log B) random number calls,
and O(B? log B) overall operations.

11

The Generating Function

Suppose T, = Tn—r + Tp—s Over any field F, e.g.
F = GF(2). We define the generating function

Gt) = zat".

n>0
It is easy to see that
Go(t)
G(t) =
=T
where Go(t) is a polynomial of degree (at most)
r — 1 defined by the initial values xg,...,Z,—1,
and

P(t)=1—1t"—t"
is defined by the recurrence.

The generating function can be used to obtain
various theoretical results (expected values,
correlations, etc).

12

Improving a Generator by Decimation

If (zo,z1,...) is generated by a 3-term
recurrence, we can obtain a (hopefully better)
sequence (yo,y1,.-.) by defining y; = x;,, where
p > 1 is a suitable constant. In other words, use
every p-th number and discard the others.
(“Decimation” refers to p = 10.)

Consider the case w =1 (i.e. Tausworthe
generators). If p = 2, the y; satisfy the same
3-term recurrence! However, if p = 3 we do get
an improvement. Using generating functions, it
is easy to show that the y; satisfy a 5-term
recurrence. For example, if

Tp = Tn-1® Tn-127,
so P(t) = 1+t +t'27, then then expanding

P(t)P(wt) P(w?t), where w® = 1, and replacing
t® by u, shows that

Yn = Yn—1 D Yn—43 © Yn—85 @ Yn—127 -

An improvement (suggested by Liischer) over
simple decimation is decimation by blocks.

13

Combining Generators by Addition

We can combine some number K of generalized
Fibonacci generators by addition (mod 2%). If
each component generator is defined by a
primitive trinomial

Te(z) =a™ +z°* +1,

with distinct prime degrees 7, then the
combined generator has period

K
2 (2 - 1)
k=1

and satisfies a 3% -term linear recurrence.

Because the speed of the combined generator
decreases like 1/ K, we would probably take

K < 3 in practice. The case K = 2 seems to be
better (and more efficient) than “decimation”
with p = 3.

14

Combining By Shuffling

Suppose we have two pseudo-random sequences
X = (z0,21,...) and Y = (y0,¥1,...). We can
use a buffer V' of size B say, fill the buffer using
the sequence X, then use the sequence Y to
generate indices into the buffer. If the index is j
then the random number generator returns V[j]
and replaces V[j] by the next number in the X
sequence [Knuth, Algorithm M].

In other words, we use one generator to shuffle
the output of another generator. This seems to
be as good (and about as fast) as combining
two generators by addition. B should not be
too small.

15

Combining By Shrinking

Coppersmith et al suggested using one sequence
to “shrink” another sequence.

Suppose we have two pseudo-random sequences
(zo,1,...) and (y0,y1,.-.), =i,y € GF(2).
Suppose y; = 1 for i = sg, 51, ... Define a
sequence (29, 21, - . .) to be the subsequence

(Tsgs Tsyy---) Of (x0,%1,...). In other words, one
sequence of bits (y;) is used to decide whether
to “accept” or “reject” elements of another
sequence (z;). This is sometimes called
“irregular decimation”.

Combining two sequences by shrinking is slower
than combining the sequences by @, but is less
amenable to analysis based on linear algebra or
generating functions, so is preferable in
applications where the sequence needs to be
unpredictable (e.g. in cryptography — see
Menezes et al, §6.3).

16

Comments on Some Available RNGs

Many implementations of linear congruential
generators are available. They usually have a
period which is too short and do not give good
d-dimensional uniformity for d > 3 (Marsaglia).

Marsaglia dislikes Tausworthe RNGs because
they fail the “birthday spacings” test. He
recommends add/subtract with carry/borrow
(“Very Long Period”) generators, but these may
also fail the birthday spacings test or the gap
test.

Shchur, Heringa and Blote showed that
generalized Fibonacci generators based on
primitive trinomials of small degree fail a 1D
random-walk test. To avoid this, we suggest
using large degree and/or combining at least
two generators. (This idea is certainly not
original — it has been suggested by many
people, although not so often used in practice.)
We give some examples later.

17

Blocking of Output

It is easy to vectorise both linear congruential
and generalised Fibonacci RNGs. This is only
useful if batches of random numbers are
generated together. Thus, the interface to a
library routine should allow an array of random
numbers to be returned.

This comment applies even on a scalar
workstation, because returning an array of
random numbers reduces subroutine-call
overheads.

18

Initialization

Using the theory of generating functions (or,
less efficiently, linear algebra), it is possible to
“skip ahead” n terms in the sequence for a
generalized Fibonacci RNG in O(logn)
arithmetic operations. The idea is similar to
that of forming n-th powers by squaring and
multiplication.

This technique allows us to guarantee that
different seeds give different sequences for all
practical purposes (e.g. use segments of the full
sequence separated by more than 10'®

numbers).

This facility is useful for performing
independent simulations on a serial computer,
or on each processor of a parallel computer.

19

Lazy Initialization

Consider a generalized Fibonacci RNG based on
a primitive trinomial of degree r, using addition
mod 2¥. There are W = 2"~ (2" — 1) ways to
initialize 7 words of w bits so that not all words
are even. Each cycle has length

L =2¥"1(2" — 1). Thus there are

C =W/L=20"Dw1)

distinct cycles. Provided w > 2 and r is not too
small, C' is very large.

If we initialize the RNG twice using an
independent RNG (e.g. a linear congruential
generator), it is extremely unlikely that the two
sequences will be in the same cycle. In fact, the
probability is 1/C = 2-=D@=1)_ Thus, in
practice this “lazy” method of initialization is
adequate whenever we want to generate
different random sequences (e.g. on different
processors of a parallel computer).

20

Summary

e The class of generalized Fibonacci RNGs
is attractive because of the potential for
speed, long period, and good statistical
properties.

e Generators based on 3-term recurrences
are the fastest. They can (and should) be
combined to give generators with better
statistical properties.

e In order to find such RNGs with known
(large) period, we need to find suitable
(primitive or almost primitive) trinomials.
This is the topic of the remainder of this
talk.

21

Definitions

From now on we consider polynomials over
GF(2). For the sake of brevity, we won’t repeat
this statement every time!

Recall that, for polynomials u,v over GF(2),
2y = 2v = 0. This implies that u —v=u+v
and (u+4v)? =u? +02

We say that a polynomial P(z) is reducible if it
has nontrivial factors; otherwise it is irreducible.

If P(z) is irreducible of degree r > 1, then
GF(2") = Zs[z]/(P(z)). If z is generator for the
multiplicative group of Za[z]/(P(z)), then we
say that P(z) is primitive.

Since the multiplicative group has order 2" — 1,
we need to know the complete factorization of
2" — 1 in order to test if an irreducible
polynomial is primitive. However, if r is a
Mersenne exponent, i.e. 2" — 1 is prime, then
irreducibility implies primitivity.

22

Some Well-Known Results

The following results can be found in texts such
as Lidl, Menezes et al. Here u is the Mobius
function, and ¢ is Euler’s phi function.

1. 2" + z is the product of all irreducible

polynomials of degree d|n. For example,
8 _ 3 2, .3
4z =z(l+z)(l+z+z°)(1+2°+2°).

2. Let J, be the number of irreducible
polynomials of degree n. Then

1
dzl:de =2" and J, = ;Zdu(n/d) .
n n

In particular, if n is prime then
I = (2™ = 2)/n.

3. The number of primitive polynomials of
degree n is P, = ¢(2" — 1)/n < J,.

In particular, if n is a Mersenne exponent,
then P, = J, = (2" — 2)/n.

23

The Reciprocal Polynomial

If P(z) =37 a;z’ is a polynomial of degree 7,
with ag # 0, then

Pa(z) =" P(1/z) = Y aja™
j=0

is the reciprocal polynomial. Clearly P(z) is
irreducible (or primitive) iff Pr(z) is irreducible
(or primitive).
In particular, if
P(z)=142z°+12", 0<s<r
is a trinomial, then the reciprocal trinomial is
Pr(z)=142""°+2".

If it is convenient, we can assume that s < r/2
(else consider the reciprocal trinomial).

When applied to random number generation,
the reciprocal polynomial generates the
sequence in reverse order.

24

Irreducible Trinomials

For applications such as random number
generation, we want irreducible (or better,
primitive) polynomials of high degree r and
with a small number of nonzero terms. Hence,
we restrict attention to trinomials of the form

Pz)=Ps(z)=1+2+2", 0<s<r.

Swan’s Theorem

Swan (1962) determines the parity of the
number of irreducible factors by an argument
involving the discriminant (actually, Swan’s
Theorem is a rediscovery of 19th century
results).

If r is an odd prime, then Swan’s theorem
implies that P, s(z) has an even number of
irreducible factors (and hence is reducible) if
r==x3mod8 and s # 2 orr —2.

The condition on s can not be omitted,
e.g. 29 + 22 +1 is irreducible.

25

Some Primitive Trinomials

In Table 1 we give a table of primitive
trinomials «" 4+ z° + 1 where r is a Mersenne
exponent (i.e. 2" —1 is prime). We assume that
0<2s <7 (soz"+z"°+1is not listed).

Results for r < 756839 are given by
Heringa et al. [11]. We have confirmed these
results.

The entries for r < 3021377 have been checked
by running at least two different programs on
different machines.

During this checking process, the entry with
r = 859433, s = 170340

was found. This was surprising, because
Kumada et al. [14] claimed to have searched the
whole range for r = 859433. It turns out that
Kumada et al. missed this entry because of a
bug in their sieving routine!

26

Some Primitive Trinomials cont.

In Table 1, " + 2° + 1 is primitive over GF(2).

The entries for r = 132049 are by Heringa et al.

Smaller primitive trinomials are listed in
Heringa’s paper and the references given there.
The second entry for » = 859433 is from
Kumada et al..

The other seven entries were found by Brent,
Larvala and Zimmermann.

T s
132049 | 7000, 33912, 41469, 52549, 54454
756839 215747, 267428, 279695
859433 170340, 288477
3021377 361604, 1010202
6972593 3037958

Table 1: Primitive trinomials

27

Almost Primitive Trinomials

There is a large gap between some of the
Mersenne exponents r for which primitive
trinomials exist. For example, there are none in
the interval 859433 < r < 3021377, even though
there are three Mersenne exponents in this
interval. This is because Swan’s theorem rules
out about half of the Mersenne exponents —

it rules out most exponents of the form

r = 4+3 mod 8.

The usual solution is to consider pentanomials
(five nonzero terms) instead of trinomials, but a
faster alternative is to use almost primitive
trinomials.

Definition. We say that a polynomial P(z) is
almost primitive with exponent r and increment
d < r if P(z) has degree r + 4, P(0) # 0, and
P(z) has a primitive factor of degree r.

28

Almost Primitive Trinomials cont.

For example, the trinomial 26 + 2® + 1 is
almost primitive with exponent 13 and
increment 3, because

¥ 423 41 = (23 4 2% +1)D(x),
where
D(z) = 2B +22+ 2+ 2%+ 28+ 2%+ 2t + 27 +1
is primitive.

In Table 2 we list some almost primitive
trinomials. In fact, we give at least one for each
Mersenne exponent r < 107 for which no
primitive trinomial of degree r exists.

The search is complete for r < 2976221.

29

r 4 s f
13 3 3 7
19 3 3 7
61 5 17 31
107 2 | 8,14, 17 3
2203 3 355 7
4253 8 1806 255
1960 85
9941 3 1077 7
11213 6 227 63
21701 | 3 | 6999, 7587 | 7
86243 | 2 2288 3
216091 | 12 42930 3937
1257787 | 3 74343 7
1398269 | 5 417719 21
2976221 | 8 1193004 85
Table 2:

Some almost primitive trinomials over GF(2).
"9 4+ 2% + 1 has a primitive factor of degree r;
d is minimal; 25 < r + §; the period p = (2" — 1) f.

30

A Larger Example

We already considered the almost primitive
trinomial 216 + 23 4 1. Here we give an example
with higher degree: » = 216091, § = 12. We
have

p16108 4 42930 | 9 _ G(4)D(z),
where
S(z) =2 + & + 2% + 28 4 1,

and D(z) is a (dense) primitive polynomial of
degree 216091.

The factor S(z) of degree 12 splits into a
product of two primitive polynomials,

22+zt+28+2+1and
2T+t a4+ 1.

The contribution to the period from these
factors is f = LCM(2% — 1,27 — 1) = 3937.

31

Use of Almost Primitive Trinomials in
RNGs

If T'(z) = 2"+° 4+ 2° + 1 is almost primitive with
exponent r, we can use the corresponding linear
recurrence

U,=Up_r_s5+Up_s mod 2%

as a generalized Fibonacci random number
generator.

The period will be a multiple of 2" — 1 (usually
a multiple of 2¥~1(2" — 1)) provided Uy, ..., Us
are odd.

The condition ensures that a recurrence with
lags < ¢ (corresponding to the degree-d factor of
T'(x)) is not satisfied.

32

Some Random Number Generators

Although it is easy to suggest bad random
number generators, there is no “best”
generator. Here are a few possibilities for good
generators based on primitive or almost
trinomials 1 + z° + z". (Note our slight change
of notation, 7 < 7 + §.) The memory
requirements are stated on the assumption that
each random number takes eight bytes.

1. Combine (r, s) = (2976221 + 8, 1193004), and
(r,s) = (3021377,361604) by addition.

The period is greater than 101800000 (1)

The numbers satisfy a 9-term recurrence given
by the product

11 4 297622 1604 21
(1+£E 9300 +x 976 9)(1+$36 60 +$30 377) .

Uses 46MB of memory and slow to initialise, so
this is “overkill”.

33

Some RNGs continued

2. Combine two generators by shrinking, where
the “small” generator uses (say)

(r,s) = (3217,576), and the “large” generator
uses (r, s) = (3021377,361604) and gives single
bits (they can be generated a word at a time for
efficiency).

The period is 23021376(23217 _ 1) and the
memory requirement is 394KB.

3. Combine (r, s) = (1279, 418), (2281,1029).
The period is > 101000,

The generator is fast, and uses only 28KB
memory. The numbers satisfy a 9-term
recurrence, so we expect good statistical
properties.

34

Some RNGs continued

4. Combine (r,s) = (109, 2), (127, 30),
and (521, 158) by addition (and perhaps
shuffling).

The period is > 10?27, Uses only 6KB memory,
so should run in cache (important for speed).

The output satisfies a 27-term recurrence (if
combined by addition), so expect excellent
statistical properties.

5. Combine two of the three generators above
(restricted to single bits) by shrinking to obtain
a cryptographically strong generator with
memory less than 100 bytes (excluding the
program). This might be appropriate for
implementation in hardware or firmware.

35

ranut

Many random number generators based on
primitive trinomials have been documented in
the literature, but the implementations are
usually for a fixed trinomial. The choice of this
trinomial involves a tradeoff. Larger values of
the degree r give generators with better
statistical properties, but the space
requirements and the time required for
initialization increase with r. Thus, the optimal
choice of a trinomial depends on the particular
application and computing resources available.

We have implemented an open-source uniform
pseudo-random number generator ranut that
automatically selects a primitive or almost
primitive trinomial whose degree depends on
the size of the working space allocated by the
user, and then implements a generalized
Fibonacci generator based on that trinomial.
We believe that ranut satisfies all the
requirements of mentioned earlier. It has been
tested with Marsaglia’s Diehard package and no
anomalous results have been observed.

36

Last Words References
Many good random number generators in the [1] S. L. Anderson, Random number generators on
literature are based on primitive trinomials. vector supercomputers and other advanced
However, only a small number of primitive architectures, SIAM Rev. 32 (1990), 221-251.
trinomials of large degree are known. By [2] R. P. Brent, On the periods of generalized
introducing the concept of “almost primitive” Fibonacci recurrences, Math. Comp. 63 (1994),
trinomials we have roughly doubled the number 389—401. http://www.comlab.ox.ac.uk/oucl/
of possible choices. work/richard.brent/pub/pub133.html
. P. Brent, Random number generation an
3] R.P.B Rand b i d
simulation on vector and parallel computers
(extended abstract), Proc. Fourth Euro-Par
Conference, LNCS 1470, Springer-Verlag,
Berlin, 1998, 1-20. - - -/pub185.html
. P. Brent, Some uniform and normal random
4 R.P. B S) d l d
number generators, version 1.03 (January 2002).
Available from http://www.comlab.ox.ac.uk/
oucl/work/richard.brent/random.html
. P. Brent, S. Larvala and P. Zimmermann,
5] R.P.B S. Larvala and P. Zi A
fast algorithm for testing irreducibility of
trinomials mod 2 ..., Math. Comp. 72 (2003),
1417-1441. - - -/pub199.html
[6] A. Compagner and A. Hoogland,
Maximum-length sequences, cellular automata,
and random numbers, J. Computational
Physics 71 (1987), 391-428.
37 38
[7] D. Coppersmith, H. Krawczyk and Y. Mansour, [14] T. Kumada, H. Leeb, Y. Kurita and M.
The shrinking generator, Proc. CRYPTO’93, Matsumoto, New primitive ¢-nomials (¢ = 3, 5)
LNCS 773 (1994), 22-39. over GF(2) whose degree is a Mersenne
[8] A. M. Ferrenberg, D. P. Landau and expo.nent, Ma.tl.z. Comp. 69 (2000), 811-814.
Y. J. Wong, Monte Carlo simulations: Hidden Corrigenda: ibid 71 (2002), 1337-1338,
errors from “good” random number generators, [15] Y. Kurita and M. Matsumoto, Primitive
Phys. Rev. Lett. 69 (1992), 3382-3384. t-nomials (¢ = 3,5) over GF(2) whose degree is
[9] GIMPS, The Great Internet Prime Search, z(zllg\)/lgelgsegil;(;);plonent < 44497, Math. Gomp. 56
http://www.mersenne.org/ ’ ’
: : [16] R. Lidl and H. Niederreiter, Introduction to
[10] Is-fo}zfén(?]g?mg;f};i l:g;zieq‘;%q; ences, Finite Fields and their Applications, Cambridge
Y ’ ’ Univ. Press, Cambridge, second edition, 1994.
(11 i lé.olr-lner;nizz; HNX Jr-in]?i]gi/eeil;ﬂlomials of [17] M. Liischer, A portable high-quality random
M-ersenni—gxpo-nent digrees for random-number number genera‘@r for lattice.ﬁel.d simulations,
generation, International J. of Modern Physics S)%ﬁpfger Physics Communications 79 (1994),
C 3 (1992), 561-564.)
[12] F. James, A review of pseudorandom number [18] G. Marsaglia, Random numbers' fall mainly in
} S the planes, Proc. Nat. Acad. Sci. USA 61
generators, Computer Physics Communications (1968), 25-28
60 (1990), 329-344. 2 29758
[13] D. E. Knuth, The art of computer programming, [19] G. Marsaglia, A current view of random

Volume 2: Seminumerical algorithms (third
ed.), Addison-Wesley, Menlo Park, CA, 1998.

39

number generators, in Computer Science and
Statistics: The Interface (edited by L. Billard),
Elsevier Science Publishers B. V.
(North-Holland), 1985, 3-10.

40

[20]

[21]

[22]

(23]

[24]

[25]

G. Marsaglia and L. H. Tsay, Matrices and the
structure of random number sequences, Linear
Algebra Appl. 67 (1985), 147-156.

G. Marsaglia and A. Zaman, A new class of

random number generators, Ann. of Appl. Prob.

1 (1991), 462-480.

A. J. Menezes, P. C. van Oorschot and S. A.
Vanstone, Handbook of Applied Cryptography,
CRC Press, New York, 1997.
http://cacr.math.uwaterloo.ca/hac/

J. F. Reiser, Analysis of additive random
number generators, Ph. D. thesis, Department
of Computer Science, Stanford University,
Stanford, CA, 1977. Also Technical Report
STAN-CS-77-601.

E. R. Rodemich and H. Rumsey, Jr., Primitive
trinomials of high degree, Math. Comp. 22
(1968), 863-865.

L. N. Shchur and P. Butera, The RANLUX
generator: resonances in a random walk test,
May 1998, preprint hep-1at/9805017 available
from http://xxx.anl.gov.

41

[26]

[27]

(28]

[31]

(32]

[33]

L. N. Shchur, J. R. Heringa and H. W. J. Bléte,
Simulation of a directed random-walk model:
the effect of pseudo-random-number
correlations, Physica A 241 (1997), 579.

W. Stahnke, Primitive binary polynomials,
Math. Comp. 27 (1973), 977-980.

R. G. Swan, Factorization of polynomials over
finite fields, Pacific J. Math. 12 (1962),
1099-1106.

R. C. Tausworthe, Random numbers generated
by linear recurrence modulo two, Math. Comp.
19 (1965), 201-209.

S. Tezuka, Efficient and portable combined
Tausworthe random number generators, ACM

Trans. on Modeling and Computer Simulation 1
(1991), 99-112.

I. Vattulainen, T. Ala-Nissila and K. Kankaala,
Physical tests for random numbers in
simulations, Phys. Rev. Lett. 73 (1994),
2513-2516.

E. J. Watson, Primitive polynomials (mod 2),
Math. Comp. 16 (1962), 368-369.

N. Zierler, Primitive trinomials whose degree is
a Mersenne exponent, Inform. and Control 15
(1969), 67-69.

42

