
T-Cham

A Programming Language Based on

Transactions and the Chemical Abstract Machine

Wanli Ma

A thesis submitted for the degree of

Doctor of Philosophy

at

The Australian National University

@July 2001 by Wanli Ma

All rights reserved

Statement

I hereby state that this thesis contains only my own original work

except where explicit reference has been made to the work of others.

Wanli Ma

..
11

.....
.....
.....

To

My Parents:Heling Ma, Yuxiu Jia

and

My Wife and Daughter: Ting Lu, Tianhui (Lulu) Ma

for Their Love

~ J.h ~' ...m-
~ ~".J ~ 4:

¾ *=

~!it

J!; ~ /kf, JJr $rt *
? -11, J!; 3c -If-

lV

Acknowledgments

I'd like to express my sincere thanks to the past and current members of my supervisory

panel: Richard P. Brent, Christopher W. Johnson, E. V. Krishnamurthy, J. Bruce

Millar, Malcolm C. Newey, and Mehmet A. Orgun1 for their advice, encouragement,

and support, which directly shape this thesis. A special thank you goes to Prof. John

Lloyd for his help and encouragement when I was revising the first version of the thesis.

I'd like to thank the examiners of the thesis for their constructive comments.

I'd like also to give my special thanks to my English tutor Ms June Hornby for her

help with my English.

A thank you also goes to all the people, to name a few: Dennis Andriolo, Joe Elso,

Arthur McGuffin, and Michelle Moravec, for their wonderful work at CSL, ANU.

I'd like to extend my thanks to Katarina Christenson and Geoff Rozenberg2 for

their understanding and support me to continue the thesis after I joined them to work

for the University of Canberra.

Finally, my deepest thanks go to my family: my parents, my wife and my daughter.

Their love and assistance made the thesis possible.

The work presented in this thesis was supported by the Overseas Postgraduate Research Schol­

arship (OPRS) of the Australian government and the ANU PhD Scholarship of the Australian

National University.

1Department of Computing, Macquarie University.
2Both are at the University of Canberra.

V

<

.....
.

Abstract

The last two decades witnessed the fast development of parallel and distributed com­

puters, but their applications are still obstructed by the facts that the design and

implementation of a parallel program are very complex, and only a few of those who

have been well trained in this area can barely manage.

Programming languages play a vital role in program development and implemen­

tation. Although a plethora of concurrent, including both parallel and distributed,

programming languages and models have been proposed, the parallel programming is

still far more difficult than in the sequential case. We believe one of the most important

reasons is that the differences between the concurrent and sequential programming are

not lying in the single thread nature versus the multi-thread with communications but

a functionality program versus a reactive one, and therefore, concurrent programming

languages should be designed to reflect those new features.

In this thesis, we propose a new concurrent programming language- T-Cham. It
extends the Chemical Abstract Machine (Cham) with transactions. A Cham is an

interactive computational model based on chemical reaction metaphor, where a com­

putation proceeds as a succession of chemical reactions. A transaction is a piece of

programming code which has the properties of ACID (Atomicity, Consistency, Isola­

tion, and Durability). A T-Cham program can be_ executed in a parallel, distributed,

or sequential manner based on the available computer resources. As a newcomer to the

crowded parallel and distributed programming language community, T-Cham empha­

sizes simplicity, efficiency, and a sound theoretical background.

..
Vll

'\ I ,, ' I' ,i lj :, ·l
<

' ,,

,...
.

,...
.

,...
.

,, 11 ,. il 11
 ,. ,I

,1

Recent Publications

During the period of my PhD research, I published several papers. Some of them are

directly related to T-Cham, while the others contribute to my future work. A list of

the related publications follows:

1. W. Ma, M. A. Orgun and C. W. Johnson. Towards a Temporal Semantics for

Frame. In Proceedings SEKE'98, Tenth International Conference on Software

Engineering and Know ledge Engineering, pages 44- 51. Knowledge Systems In­

stitute, 3420 Main Street, Skokie, IL 60076, USA, 1998.

2. W. Ma, C. W. Johnson and R. P. Brent. Programming with Transactions

and Chemical Abstract Machine. In Guo-Jie Li, D. F. Hsu, S. Horiguchi and

B. Maggs, editors, Proceedings of Second International Symposium on Parallel

Architectures, Algorithms, and Networks (I-SPAN'96), pages 562- 564. IEEE

Computer Society Press, 1996.

3. W. Ma, C. W. Johnson and R. P. Brent. Concurrent Programming in T-Cham.

In K. Ramamohanarao, editor, Nineteenth Australasian Computer Science Con­

ference Proceedings (ACSC'96), pages 291- 300. Vol. 18, No. 1, Australian

Computer Science Communications, 1996.

4. W. Ma and M. Orgun. Verifying Multran Programs with Temporal Logic. In

M. Orgun and E. Ashcroft, editors, Intensional Programming I, pages 186- 206,

World Scientific Publishing, 1996.

IX

5. W. Ma, V. K. Murthy and E. V. Krishnamurthy. Multran - A Coordina­

tion Programming Language Using Multiset and Transactions. In S. K. Aityan,

L. T. Hathaway, et al. , editors , Proceedings of the First International Confer­

ence on N eural, Parallel, and Scientific Computations, pages 301- 304. Dynamic

Publishers, Inc., 1995.

6. W . Ma, E. V. Krishnamurthy and M.A. Orgun. On Providing Temporal Seman­

t ics for the GAMMA Programming Model. In C. B. Jay, editor, CATS: Proceed­

ings of Computing: the Australian Th eory S eminar, pages 121- 132, University of

Technology, Sydney, Australia, 1994.

7. M.A. Orgun and W. Ma. An Overview of Temporal and Model Logic Program­

ming. In Dov M. Gabbay and H. J. Ohlbach, editors , The First International

Conferen ce on Temporal Logic, LNAI 827, pages 445- 479. Springer-Verlag, 1994.

8. K. Zhang and W. Ma. Graphical Assistance in Parallel Program Development.

In A. L. Ambler and T. D. Kimura, editors , Proceedings of IEEE Symposium on

Visual Languages, pages 168- 170. IEEE Computer Society Press, 1994.

X

Contents

1 Introduction 1

1.1 Introduction 2

1.1.1 Observations 2

1.1.2 Programming Language Design Criteria 4

1.1.3 Our Proposal 4

1.2 Major Contributions 6

1.3 Outline of the Thesis . 7

2 Background and Related Work 9

2.1 Parallel Computer Systems 11

2.2 Parallel Programming Models and Languages 12

2.2.1 Petri Nets 14

2.2.2 GAMMA Model and the Chemical Abstract Machine 16

2.2.3 The Linda Paradigm 18

2.2.4 Unity and Swarm .. 20

2.2.5 Argus and the 'Transaction Programming Paradigm 23

2.2.6 Strand, PCN and Bilingual Programming Languages 25

2.2.7 The DINO Programming Language . 27

2.2.8 Others . 29
2.3 Conclusion .. 32

XI

3 Motivation

3.1 Observations on Parallel Programming

3.1.1 Functionality versus Interaction .

3.1.2 Single Thread, Multi- thread and Non-thread

3.1.3 Shared Memory versus Distributed Memory

3.1.4 Granularity

3.1.5 Variables versus Resources .

3.1.6 Debugging versus Verification

3.2 Motivation: Questions Answered ..

3.2.1 Why Yet Another Parallel Programming Language?

3.2.2 Why the Chemical Abstract Machine?

3.2.3 Why Coordination?

3.2.4 Why Tuple Space? .

3.2.5 Why Transactions? .

3.2.6 Why Theoretical Background?

3.2.7 Why Program Composition?

4 Basic T-Cham Notations

4.1 Notational Conventions

4.2 The Essential Components of a Chemical Abstract Machine

4.3 Non-leaf transactions .

4.3.1 Tuples . .

4.3.2 Initialization

4.3.3 Reactionrules

4.3.4 Termination .

4.3.5 Sub-transactions

4.4 Leaf Transactions .

4.5 A Small Example .

4.6 The Execution of a T-Cham Transaction .

4. 7 Summary

..
Xll

33

35

35

37

38

39

39

41

42

42

43

44

44

45

45

46

47

48

49

50

51

53

54

55

56

56

57

59

61

5 Programming in T-Cham 63

5.1 The Sieve of Eratosthenes 64

5.2 Vending Machine 66

5.3 The Producer-Consumer Problem . 68

5.4 The Dutch Flag Problem 70

5.5 Sleeping Barber 72

5.6 The Meeting Scheduler . 74

5.7 The Fibonacci Numbers 75

5.8 The Calculation of the Value of 1r . 79

5.9 Discussion 81

6 T-Cham Implementation 83

84

85

6.1 Introduction

6.2 The Execution Model of T-Cham

6.2.1 Tuple Space Partition and Duplication 88

6. 2. 2 The Communications Between Task Managers 90

6.2.3 The Communications Between Task Managers and Executors 95

6.3 The Basic Performance Measurements: T-Cham Machine Implementa-

tion Case Study 96

6.3.1 The Basic Performance Experiment 97

6.3.2 The Performance Measurements of Matrix Multiplication 101

6.4 Con cl us ion .

7 Towards the Temporal Logic Proof System of T-Cham

7.1 Temporal Logic

7.2 The Temporal Logic Model of T-Cham .

104

107

108

113

7.2.1 From a T-Cham Program to its Temporal Logic Formulae 113

7.2.2 Stuttering . 116

7.3 The Impact of Race between Reaction Rules.

7.3.1 The Problem

7.3.2 The Solution

7.3.3 How to Decide No Race Under Race Condition

Xlll

117

117

122

124

7.3.4 Dining Philosophers: An Example 126

7.4 T-Cham Program Verification 128

7.4.1 The Producer-Consumer Problem 128

7.4.2 The Dutch Flag Problem 130

7.4.3 The Meeting Scheduler Problem 132

7.5 The Impact of T-Cham Termination Conditions. 135

7.6 Conclusion 138

8 Advanced Notations: Hierarchical Tuple Spaces and Tuple Mapping141

8.1 Tuple Structures, Hierarchical Tuple Spaces and Transaction Granularities142

9

8.1.1 Case Study ..

8.1.2 New Concepts: Hierarchical Tuple Spaces, Tuple Mapping and

Transaction Granularities

8.2 Tuple Mappings and Plain Masks

8.3 Regular Masks

8.4 Matrix Multiplication: an Example of Using Masks

8.5 Implementation Issues

8.6 Summary

A Compositional Proof System

9.1 Union of Transactions

9.2 Union of Temporal Formulae

9.3 Properties of the United Transactions

9.4 Superposition

9.5 Summary ..

10 Conclusion and Future Work

A The BNF Definition of T-Cham Syntax

B The APl000 Multicomputer

Bibliography

XIV

142

146

148

150

151

154

156

157

157

158

161

163

164

167

173

177

179

List of Figures

2.1 Shared Memory versus Distributed Memory Computer Architectures 13

2.2 The Firing of a Transition in a Petri Net . 14

2.3 Producer-Consumer in Petri Net 15

2.4 Sorting an Array in GAMMA . . 17

2.5 The Pairwise Summation of Two Arrays in C-Linda 20

2.6 An Observation on the Tuple Space 21

2.7 Sorting an Array in Unity 22

2.8 A Parallel Array Summation Program in Swarm 24

2.9 Producer-Consumer Program in PCN

2.10 Matrix-Vector Multiplication Program in DINO .

3.1 The Spectrum of T-Cham between GAMMA and C

3.2 The Conceptual Levels of Programming

4.1 The T-Cham Program of Element Summation.

4.2 A Possible Computation Process of Element Summation

5.1 The T-Cham program of Eratosthenes Sieve ...

5.2 Another T-Cham program of Eratosthenes Sieve

5.3 The T-Cham Program of Vending Machine ...

5.4 The T-Cham Program of Producer-Consumer Problem .

5.5 The T-Cham Program of Dutch Flag ...

5.6 The T-Cham ProgTam of Sleeping Barber

5.7 The T-Cham Program of Meeting Scheduler .

xv

28

30

34

37

58

60

64

65

67

69

71

73

76

5.8 The T-Cham Program of Fibonacci Number 78

5.9 The T-Cham Program to Calculate the Value of 1r 80

6.1 The Implementation of T-Cham 87

6.2 The Tuple Space Partition Algorithm 89

6.3 The Tuple Space Partition of Vending Machine Problem 91

6.4 The Tuple Migration Algorithm . 93

6.5 The Bid Handling Algorithm . . 94

6.6 The Task Bidding and Receiving Algorithm 95

6. 7 The Communication Overhead for a Reaction 98

6.8 Tuple Space Partition and Communication Patterns of Sleeping Barber 100

6.9 The Calculation of TaskBidHist and Hit Rate 101

6.10 The Choice Function

6.11 Performance of Matrix Multiplication (128x128)

7.1 Illustrative Examples of Temporal Logical Operators

7.2 Different Execution Paths

7.3 The Graphs for Tuple Re-producing Checking .

7.4 The T-Cham program of Dining Philosophers

7.5 A small T-Cham program

102

103

110

118

125

127

137

8.1

8.2

8.3

8.4

8.5

8.6

The T-Cham program of Vector Summation, the First Approach 143

Vector Summation, the First Approach. . 143

Vector Summation, the Second Approach 144

The T-Cham program outline of Vector Summation, the Second Approach145

Vector Summation, the Third Approach 146

The Vertical Mappings of Tuples 149

8. 7 The Ordering Operator

8.8 The Multiplication of Two Matrices

9.1 The Transactions of shop, customer, and barber

B.1 The Architecture of the APl000 Multicomputer ..

XVI

152

153

159

178

C:1
Introduction

The last two decades witnessed a rapid development of parallel and distributed compu­

tation techniques, both in hardware and software. Many parallel computers have been

manufactured, and many parallel programming models , languages and development

environments have been proposed. The ever growing need for computational power

and the maturity of techniques for connecting computers together have given an impe­

tus to the rapid growth of parallel computer applications. In addition, widely installed

computer networks provide the opportunities for computers to work together , so called

distributed computation, to provide more power than any individual computer.

The computational power of sequential computers is approaching its limits because

of the maximum speed limit of electron transmission and the minimum feasible inte­

gTated circuit chip size. An alternative way to achieve more computational power is to

use parallelism, i.e. , to bind a number of sequential computers together and program

them to cooperate in solving a problem. The major obstacle that prevents parallel

computers from more general usage today is not the design and manufacturing of the

hardware but the design and implementation of parallel programs , i.e. , the lack of

widely accepted methodologies, programming models and languages, and the related

supporting tools for parallel program development. These software techniques are still

under development and far from maturity.

2 Introduction

In this thesis, we suggest a united paradigm of parallel computational model, pro­

gramming language, and programming development environment.

This chapter first gives a brief introduction to the idea and then our major contri­

butions. Finally, the outline of the thesis is given.

1.1 Introduction

1.1.1 Observations

A plethora of concurrent, both parallel and distributed, programming languages

and models has been proposed, yet parallel programming is far more difficult than

sequential programming, as most of the languages just extend the existing sequen­

tial programming languages with thread control facilities. Those approaches take the

assumption that the difference between concurrent and sequential programming is the

number of active control threads at a given time. In fact, the difference, realised recently

by the research communities, is not in the single thread nature versus the multi-thread

with communications, but in the contrast, between a functionality program1 versus a

reactive one [111]. The same observation is also realised by distinguishing a closed

program from an open one in [4 7].

A functionality program is the one which maps an input state (or data) into an

output state. Traditionally, we explain a program in this way: it accepts some input

data and then, according to the instructions of the program, produces the output data.

The instructions are executed in a step by step manner. There may be some procedure

and function calls, but, at any time instance, only a single control flow, which is also

known as a thread. The flow starts from an initial point , normally the first instruction

of the main module of that program, and terminates at a stop point. For example, the

value of the nth Fibonacci number f(n) is ,

J(n) = { ~(n - 1) + f(n - 2) if n > 2

if n = l or n = 2,

where the input data is the n while the output is f (n). Inside of the program, there

are a number of instructions which operate on the input data n to produce the final

1 A functionality program is not a functional program. See Section 3.1.1 for details.

1.1 Introduction 3

result. Denotational semantics [160, 82] is the formal description of the idea, where

each progran1 statement transfers the program from the state before the execution of

itself to the state after it . The behaviour of the whole progTam is to map the initial

state to a final state.

The same conceptual model also exists in our daily life. For example, assembling

lines in the manufacturing industries, first-aid procedures , check list style work sheets

and so on are the examples of functional model. But the simple model fails in a more

complex situation. For example, when we drive a car approaching a roundabout , we

have to interact with other cars, the one on the right and the one in the opposite

direction (the car may stop the one on the right). An interactive model is necessary to

describe this kind of behaviour.

When more than one computer is put together to make a parallel computer system,

each component computer works on one thread. The multi-thread manner contributes

to the execution of a parallel program. At first, it is natural to think that the main task

of parallel programming is the thread control, e.g., thread fork , join and termination,

but with the increasing number of element computers, hundreds and thousands in

a massive parallel computer system, handling the threads becomes more and more

difficult.

A reactive system emphasizes the interactions among the components of a pro­

gram: different parts of a program interact with each other in response to stimuli from

the "outside" world. The intrinsic property of the systems is the interactions among

the components rather than the co-existing execution flows (or, multi-control-thread)

although the latter can also be observed from the outside of the systems .

The widely accepted object-oriented programming techniques [80, 132, 155] provide

auxiliary evidence that a program consists of interacting components. An object­

oriented program comprises a number of objects. Each of them has its interface to

communicate with other objects and some methods to conduct the required internal

operations . The interactions among those objects, not the control flows , are the primary

concern in the object-oriented progTa.mming.

The concepts of sequential, parallel, or distributed belong to the execution of a pro­

gTam on a particular computational resource rather than the program itself. There

4 Introduction

are no sequential, parallel, or distributed programs but only functionality or interac­

tive programs. Accordingly, the programming language for concurrent activities should

not be judged only by its abilities of thread control and communications but also the

abilities to express the interactions. In other words , a concurrent programming lan­

guage should not be just an extension to an existing sequential programming language

with some thread control and communication facilities, but a new one based on an

interactive computation model.

1.1.2 Programming Language Design Criteria

There are many choices available when designing a programming language, and

there are also many selection criteria in making the choice. The three most important

criteria, we believe, are the programmability, execution efficiency, and provability of the

programming language. As a programming language is the tool for human beings to

instruct computers to work properly, it should be easy for human beings to manage

and use, by which we call it programmability. On the other hand, the programs written

in the programming language have to be executed on a real computer (or computers).

The execution efficiency is the ultimate goal for the overall performance. The most

efficient programming language is the assembly language of a particular computer, but

it is far from human-friendly (i.e., it has low programmability). The higher level a pro­

gramming language is , the less efficient it is , and most likely, the more human-friendly.

Some compromise between programmability and execution efficiency has to be made.

With the increasing use of computers in every aspect, including many mission-critical

applications, the correctness of a program is essential. If there is a rigid mathematic

reasoning process which could formally prove the correctness of the programs written in

a programming language, we say that the programming language has good provability.

1.1.3 Our Proposal

We propose a new programming language called T-Cham [123, 124]2. It extends

the Chemical Abstract Machine (Cham) [29, 34] with (sequentially executed) transac­

tions [4]. A Cham is an interactive computational model based on the chemical reaction

2It is a successor of our former programming language Multran (126, 127].

1.1 Introduction 5

metaphor, where a computation proceeds as a succession of chemical reactions. The

molecules (also known as tuples) for the reactions are floating and interacting in "chem­

ical solution" - tuple space. A transaction is a piece of programming code which has the

properties of ACID (Atomicity, Consistency, Isolation, and Durability) [4]. It could be

written in any language, such as C, Pascal, or Fortran etc. The tuple space, where the

molecules of the Cham reside and interact, is used to coordinate those transactions.

A transaction may begin its execution whenever its execution condition is satisfied.

A T-Cham program can be executed in a parallel, distributed, or sequential manner

based on the available computer resources.

The T-Cham approach is inspired by the coordination idea [77] of Linda. On

the one hand, the control part, which is responsible for coordinating concurrent reac­

tions and communications, is based on tuple spaces. Reaction rules are used to specify

when and which actions (transactions) can happen. On the other hand, the "computa­

tional part" could be written in any programming language, even T-Cham itself; thus ,

transactions can be nested , or are hierarchical. The execution of a T-Cham program

starts from a special transaction called root- the main transaction of the program. It

is the only transaction which could be exempt from termination (not really atomic).

The transactions referred to by the reaction rules in a transaction, say T , are called

sub-transactions of the transaction T. From the point of view of any transaction, its

sub-transactions are merely atomic operators. Finally, a reaction rule also has its tem­

poral logic interpretation [125, 127, 122], which makes correctness proofs possible for a

T-Cham program.

As a newcomer to the parallel and distributed programming language community,

T-Cham emphasizes simplicity, abstraction, efficiency, and a sound theoretical back­

ground. The chemical reaction model makes it easy to express concurrent or parallel

tasks in T-Cham; the hierarchical transaction structure is good for program abstrac­

tion and refinement; the explicit declaration of tuple space will help the optimisation

of data (tuples) and task distribution, and hence the efficient execution of T-Cham

programs; finally, the temporal logic interpretation of reaction rules promotes program

verification.

6 Introduction

1.2 Major Contributions

The research work undertaken in this thesis consists of three main parts: (i) the

design of the T-Cham programming language, (ii) the application of temporal proof sys­

tem to T-Cham program verification, and (iii) a prototype implementation of T-Cham
\

programs.

The Chemical Abstract Machine (Cham) is a mathematical model for computation.

It is to T-Cham what the Turing Machine [163 , 114) is to an imperative programming

language, such as Fortran, Pascal, or C. To the best of our knowledge, T-Cham is the

first programmable language based on the chemical abstract machine. T-Cham also

introduces some new features , for example, termination conditions, bulk reaction oper­

ations (i.e. , transactions), hierarchical chemical reaction sub-systems (i.e. , hierarchical

tuple spaces and nested transactions) , molecule mapping, and mapping mask etc., to

the original Cham model. They make the T-Cham programs more efficient and easier

to manage than the original model.

T-Cham semantics observes the same operational semantics of the Chemical Ab­

stract Machine [98). We adopt a temporal logic proof system for T-Cham program

verification. The purpose of the verification system is to show programmers how easy

to prove the correctness of T-Cham programs. With the increasing use of computers in

every aspect, including many mission-critical applications, of modern society, the cor­

rectness of a program is essential. There are many proposals for using rigid mathematic

reasoning processes to prove the correctness of the programs, but they emphasize more

on the theoretical sides and, quite often, scare programmers away. In this thesis , we

will concentrate on the application of mathematic reasoning instead of the mathematic

theory itself. Similarly, in our daily life, we always say directly that "3 + 4 is 7" instead

of "the third successor of the number O plus the fourth successor of the O is proven to

be its seventh successor' as done in a rigid algebraic way; otherwise, it is very likely

that most of us cannot do calculation at all.

To justify our T-Cham programming language, we developed some prototype imple­

mentations. One implementation is on the top of the C-Linda programming language

[123), where there is a logically shared memory, and another is directly using the C

1.3 Outline of the Thesis 7

compiler on the Fujitsu APl000 multicomputer , which is a distributed memory par­

allel computer. An early test was also on the CM-5 parallel computer [126]. Some

implementation techniques , such as task managers, task executors , task bidding, and

bid history array were developed and used. In addition, we also developed the tuple

space partition and duplication algorithms to ease the bottle-neck problem on the task

managers.

1.3 Outline of the Thesis

The thesis deals with the three major problems mentioned in the previous section

in two steps: first the basic features of T-Cham and then the advanced concepts. The

rest of the thesis is organised as follow:

Chapter 2 covers previous research work in this area. Background knowledge is also

provided. In this chapter, we first discuss the parallel computer hardware development

and their classification, and then, most of the chapter concentrates on the software

aspects of parallel computation by studying some abstract programming models and

programming languages which are closely related to T-Cham.

Chapter 3 discusses the motivations behind our research based on our observations

of parallel programming. Basically, it answers the questions , such as, why do we

need yet another new parallel programming language, why do we choose the chemical

abstract machine as the underlying computational model, why do we need transactions ,

why are the transactions nested, why do we need temporal logic proof system?

Chapter 4 introduces the basic notations of T-Cham. We use EBNF (Extended

Backus-Naur Form) to define the syntax of T-Cham programming language, while the

semantics of the language is defined by informal explanation and examples. The chapter

first gives a brief introduction to the EBNF notation conventions, and then the syntax

and semantics of the basic T-Cham programming language. Finally, it concludes with

a simple example showing how to program in T-Cham and how a T-Cham program

works.

Chapter 5 gives a number of examples to illustrate T-Cham programming. Some

of them are computation oriented programs, and the others are interact ive ones. The

8 Introduction

effect of non-determinism is also discussed in this chapter.

Chapter 6 proposes an implementation model for T-Cham programs. It is a generic

model, called T-Cham Machine, for MIMD (Multiple Instruction streams over Multiple

Data streams) computer architectures. It is an extension to the master /worker parallel

computation model, where there could be more than one master. The prototype imple­

mentation on the APl000 multicomputer is also discussed, and the basic performance

measurement data are also given.

Chapter 7 develops a basic temporal logic proof system for T-Cham programs. The

chapter first introduces a temporal logic system, and then proposes the temporal logic

model for T-Cham programs. A set of rules, which could translate T-Cham programs

into corresponding temporal logic formulae, is also developed. Finally, we give examples

of T-Cham program verification.

Chapter 8 deals with the advanced T-Cham notations. They are used to construct

hierarchically structured T-Cham programs. Program abstraction and refinement are

also considered. The central idea of this chapter is tuple mapping, which can be used

to decompose a large tuple into a number of smaller sub-tuples or vice versa. The

mapping applies hierarchical views to T-Cham tuples and provides a means of con­

structing subtransactions to T-Cham programs: a transaction consists of a number of

subtransactions (or sub-reaction-systems), which are isolated from the other systems.

When put together, they specify the whole reaction system, while any changes to a

transaction (or subtransaction) are transparent to the others.

Chapter 9 discusses the composition of the temporal logic proof systems. In this

chapter, we study the temporal logic theory of two kinds of transaction compositions,

union and superposition, and their effects on the T-Cham proof system. The techniques

developed in this chapter will help us to build a large proof system from a number of

small systems the same way as building a large transaction from a number of small

transactions in T-Cham programs.

Chapter 10 gives the final summary of our research work and suggests some future

work.

C: 2 _____________ ______J

Background and Related Work

The pursuit of high performance (automatic) computation tools has been driven by

the ever-increasing demand for computational power in real-life applications. In the

early days of human history, our ancestors used their own fingers , perhaps toes, as

well as pebbles and sticks to help them to count and calculate. The first human-made

sophisticated computational tool is the abacus [107], dated back to 5,000 years ago in

China. It dramatically increased the computational power of human beings in that

time and is still used in China and some other countries . Some thousands of years had

passed since the invention of abacus to the Mechanical Adder/ Subtractor [15] of Blaise

Pascal in France in 1642 and to the Difference Engine for Polynomial E valuation [36]

of Charles Babbage in England in 1827. The real breakthrough of computational tools

in human history is the invention of electronic computers. One of the first computers

is known as ENIA C [14], built at the Moore School of the University of Pennsylvania

in 1945. ENIAC was a giant monster: with 18,000 vacuum tubes, 70,000 resistors , and

5,000 ,000 soldered joints; weighing 30 tons , occupying a 30 x 50 square feet room, and

consuming 160 kilowatts of electrical power. But , an addition or subtraction operation

took as long as 200 µs.

A major drawback of ENIAC was that its programs were hard-wired ; in other words,

the physical electronic circuit has to be changed if the program needs to be changed.

10 Background and Related Work

The characteristic is always used by some people to deny that ENIAC was the first

modern computer. The first electronic computer1 which has the same architectures,

the so-called the von Neumann structure [101], as today's computers is EDVAC [101].

Since then, computer hardware has advanced from vacuum tubes , discrete transis­

tor circuits, integrated circuits (IC), large scale integrated circuits (LSI) , to very large

scale integrated circuits (VLSI), the so-called five hardware generations. Although their

underlying fundamental architectures are still of the von Neumann structure, the com­

putational power of computers has been rapidly developed.

At the very beginning, programs were coded in binary machine language (strings

of Os and is), and a program occupied the resource of the whole computer. Those

programs were very small. For example, the evaluation of a complex arithmetic ex­

pression was a big task at that time. Of course, on the other hand, the processing

speed of a CPU was very low during that time, and it could handle only one task at

a given time instant. With the increasing of processing speed and memory capacity,

a computer is to be expected to manage multi-tasks at the same time. Time-sharing

operating systems begin to appear, and multiprogramming, or concurrency, becomes

· possible. A computer then could handle more than one task simultaneously. Those

tasks share the same physical computer in a time-sharing mode and work together in

an unpredictable order. To be executed, a task has to be on a queue to wait for CPU.

When its turn comes, the task receives a slice of CPU time. After it runs out of the

time, no matter whether it finishes or not , it gives up the CPU to the others. If it

needs more CPU time to finish the job, it has to rejoin the queue and wait for another

turn. Because of the high CPU speed and the short period of the time slice, it seems

that the tasks are running concurrently. A major difficulty of multiprogramming is the

synchronization among those tasks, in a more technical term, processes. A fair sched­

uler is needed to schedule those processes; in addition, any of those tasks should be free

from interference from the others. Semaphores, conditional critical region protection,

and monitors [65, 86, 90] are the most important and also commonly used mechanisms

for process synchronization.

1There exists some dispute about which was the real first, but as this thesis is not on the history of
computers , we only take ENIAC and EDVAC as our examples.

2.1 Parallel Computer Systems 11

The demand for computational power has increased further nowadays. The areas

of computational fluid dynamics , subatomic string dynamics, high temperature super­

conductivity, astrophysical particle dynamic, plasma physics , computer chess, artificial

intelligence and so on [74] are among those which give a big challenge to computational

power of any single computer, because the development of the computer processing

speed is restricted by the bounded electron transmission speed, which is the same as

the speed of light, and the memory capacities are restricted by the integration density of

a VLSI chip. The only way to answer the challenge is to combine individual computers

and make them work together with the strength accumulated from each member of the

computer system. Thus, parallel computation made its debut to take the challenge. The

idea of parallel computation is, amazingly, very old. Hockney and Jesshope [92, pp 5- 7]

credited the honor to General Menabrea's publication in the Bibliotheque Universelle

de Geneve, October, 1842. It was still in the Charles Babbage era! However, it is only

the electronic computers that make the dream of parallel computation come true.

2.1 Parallel Computer Systems

The computer architectures can be roughly classified into four classes, SISD, SIMD,

MISD and MIMD, according to Flynn [68].

A single von Neumann computer is an SISD (Single Instruction stream over a Single

Data stream) architecture machine. Conventionally, it is called a sequential computer.

An SIMD (Single Instruction stream over Multiple Data streams) architecture ma­

chine is also known as a vector computer or a data parallel computer, where a single

instruction stream controls a number of vector processors which execute the same in­

struction on different elements of a vector. A vector is often called an array in a

programming language. A major application of SIMD computers is matrix calculation.

A well-known example of MISD (Multiple Instruction streams over a Single Data

stream) is the systolic arrays structure [106], where a same data stream flows through

an array of processors which execute different operations on the streams.

An MIMD (Multiple Instruction streams over Multiple Data streams) computer

system comprises of a number of individual computers, or computer nodes , which

12 Background and Related Work

interact, i.e., communicate and synchronize, with each other and work concurrently.

Each computer node, also called processor element (PE), is autonomous and can execute

its own control thread independently. There may be some shared memory among

those PEs, or not. If there is , it is called a shared memory parallel computer system,

Figure 2.l(a), where the communication and synchronization are realised via the shared

memory. The concurrent processes on different nodes share a global address space.

Processes interact with each other by reading, writing, locking and unlocking a certain

piece of the shared memory. If there is no such kind of shared memory, it is called

a distributed memory computer system, Figure 2.1 (b), where the communication and

synchronization are achieved by a message passing facility.

Of the four architecture models, SISD is just a sequential computer; SIMD and

MISD, parallel though, are more suitable for special purposes; only MIMD structure

can be considered for general purpose usage. MIMD structure machines are also the

most popular commercially available parallel computers. In this thesis, we constrain

our terminology of parallel computer to MIMD machine, if without explicit explanation.

One of the first MIMD computers was delineated in the paper of Slotnick et al [158] ,

where the authors described a new computer architecture: a 32 x 32 array of process­

ing elements, each with a memory of 128 x 32 bit numbers. A processing element is

an autonomous computer with its own CPU, arithmetic unit and memory. The new

computer was called SOLOMON. Although it was never built as the authors wished,

it catalysed ILLIA C IV [150].

There are many commercially available MIMD computers nowadays. The two com­

puter systems we used to conduct our experimental implementation of T-Cham are

AP1000 [13] and CM-5 [55 , 54].

2.2 Parallel Programming Models and Languages

Programming languages play a vital role in program development and implemen­

tation. On the one hand, a programming language provides a means of algorithm pre­

sentation; on the other hand, it reflects the underlying abstract computational model.

For example, an imperative programming language reflects the Turing machine, and a

2.2 Parallel Programming Models and Languages

IPE I
1

IPE I
t

IPE I
1

Interconnection Network

t
jvol

Shared Memory

(a) Shared Memory Computer

PE PE PE

t t
Interconnection Network

t l 1
PE PE PE

(b) Distributed Memory Computer

Figure 2. 1: Shared Memory versus Distributed Memory Computer Architectures

13

14 Background and Related Work

functional programming language reflects the >.-calculus.

We give a brief introduction to parallel programming models and languages in this

section. The models and languages listed here are by no means exhaustive, but are all

directly related to our work. They are introduced in order to outline the background

of our research work. For a more comprehensive introduction of parallel programming

languages and paradigms, we refer readers to [103, 46, 18, 143, 144, 19].

2.2.1 Petri Nets

Petri nets [145, 147, 60] were first described by Petri in his PhD dissertation [146]

in the 1960s and have been widely accepted since then.

The idea of Petri nets is very simple: a Petri net is a bi-partite directed graph,

where there are two types of nodes- places and transitions- and some arcs, each of

which connects either from a place to a transition or from a transition to a place.

There are a number (> 0) of tokens residing in each of the places. If each of the places

which have an arc pointing to the same transition contains at least one token, the

transition can be fired. As the result of the firing, it consumes one token from each

of the places mentioned above and produces one token to each of the places which are

connected to by an arc from the transition. An example of firing is in Figure 2.2.

0- 0-

Figure 2.2: The Firing of a Transition in a Petri Net

There is no restriction on the orders of transition firings; thus, a Petri net is an in­

herently concurrent model. A simple example of concurrency is the Producer-Consumer

problem: a producer produces a product- say, a message- at a time to a container,

while a consumer consumes a message, at a time, from the container. The producer

2.2 Parallel Programming Models and Languages 15

constantly produces messages to the container until it is full , meanwhile the consumer

constantly consumes the messages from the container until it is empty. When it is full,

the producer suspends until there is more room available; similarly when the container

is empty, the consumer is waiting for an available message. The producer and the con­

sumer are completely autonomous. The only restriction is the capacity of the container

and the number of the messages currently in the container. A Petri net version of the

Producer-Consumer is in Figure 2.3 , where the capacity of message buffer is unlimited.

The two places and two transitions at left hand side of the figure operate as the pro­

ducer, the place in the middle (with four tokens at the moment) is the container, and

the two places and transitions at right hand side work as a consumer. It is quite easy

to see that a transition firing at the producer side adds one more token to the container

place, while the firing at consumer side takes one token from the container place.

Figure 2.3: Producer-Consumer in Petri Net

There exist many different interpretations of the places and transitions in a Petri

net. A straightforward interpretation is just places and transitions themselves, called

Place/Trans ition N ets. An alternative way considers places as conditions because they

decide which transitions can be fired , while transitions as events because firing a tran­

sition means a kind of event is happening. In this case, a P etri net is interpreted as

a Condition/Event System. A third way treats places as predicates, and thus, Predi­

cate/Event N ets [147].

There are also lots of extensions to the original Petri net. A most important one is

so-called Colored Petri nets [99], where tokens are not identical any more but belong

to different types or colors; transition firing conditions are composed by not only the

16 Background and Related Work

numbers of tokens but also the types of tokens. The others, for example, assigning

a transition some actions, setting time restriction on tokens or transitions, or adding

extra conditions on each arc so that some tokens cannot pass through etc., cannot be

exhaustively listed in this thesis.

The most important contribution of Petri nets is the recognition of resource-like to­

kens , which can be consumed and produced like real resources. This property is lacking

in the conventional programming languages. We believe that there should be two kinds

of variables in a program: one is the normal "variable" and the other is "resource".

Those two are equally important. The difference between them is not so significant in

a sequential program, but without fully understanding of the difference, a concurrent

program is very hard to harness (see Section 3 .1. 5 for the detailed discussion).

2.2.2 GAMMA Model and the Chemical Abstract Machine

GAMMA [21, 22 , 23 , 104, 20] model is based on a multiset data structure. A

multiset is the set except that there can be multiple occurrences of its elements. The

computational model of GAMMA resembles a succession of chemical reactions in which

some elements (aka molecules) of a multiset are consumed and then some new elements

are produced, just like the behaviours of molecules in chemical reactions. A distinguish­

ing property of GAMMA is the absence of control structures, which are prevalent in

the imperative programming paradigm. Compared to the logic and functional pro­

gramming paradigms, GAMMA model has a very simple structure, and it can reveal

parallelism easily.

A GAMMA program is a set of transformation rules , also known as reaction rules ,

which transform the original multiset to a new multiset. Programmers need only to

consider the two possible states of a multiset: the original state (a multiset of tuples)

and the new state produced after the action. A GAMMA program is defined as the

function:

2. 2 Parallel Programming Models and Languages

I'(R, A)(T) if :3x1, x2, · · · Xn ET such that R(x1, x2, · · · , Xn)

then (T - {x1, x2, · · · , Xn}) + A(x1, x2, · · ·, Xn)

else T ,

17

where T is the original multiset before the action, and the operators + and - denote

multiset union and difference. The boolean type function R is the reaction condition.

When it is evaluated to the value TRUE , the function A, known as an action text, is

activated, and after its execution, it returns a multiset of elements as the result of the

action.

An example program is the sorting of an array A[l..N], which is decomposed into

a multiset of N elements, (1, A[l]), (2, A[2]), · · ·, (N, A[N]). Each of the multiset

elements has two components: the first is the index, which denotes the position of the

element in the array, and the second is its value. The idea of the sorting is very simple:

for any two elements chosen, if they are not in the right order, exchange their index.

In multiset operational language, remove the two elements which have wrong indexes

from the multiset and then generate two new elements with the right indexes. The

GAMMA program of this example is illustrated in Figure 2.4.

R ((i' X)' (j' y)) = i > j I\ X < y
A ((i' X) ' (j' y)) = T - { (i' X) ' (j' y) } + { (i' y) ' (j' X) }

Figure 2.4: Sorting an Array in GAMMA

Although GAMMA model is powerful yet concise in expressing program logic, its

implementation on today's computers is not so efficient [21]. The major reason is ,

ironically, due to the lack of control structures in GAMMA model. Take the sorting

program in Figure 2.4 for example: as there is no control on how to choose tuples (i, x)
and (j, y) to evaluate the reaction condition R, it is highly possible that the two tuples

chosen are already in the right order, i.e. , i < j , and this may happen over and over.

A lot of effort has been taken by the research community to improve the efficiency

18 Background and Related Work

of the GAMMA model. Hankin et al. [84, 85] proposed a serial of refinement and

equivalence rules based on the IO behaviours of GAMMA programs. With the help

of the rules, a simple GAMMA program can be rewritten into an equivalent but less

nondeterministic (or more deterministic) program, therefore, increasing the efficiency

of the program. Ciancarini et al. [48] took a different approach by suggesting the

refinement and equivalence rules based on bisimulation of CCS [136]. Chaudron and

Jong [44], on the other hand, tried to impose some orders on the reactions of GAMMA

programs. They resort to an external schedule to reduce the nondeterminism of a

GAMMA program. Weichert [169] incorporate the approaches of both Hankin [84, 85]

and Chaudron [44] by proposing a "pipelining" technique to refine GAMMA programs.

In this thesis, we take yet another completely different approach to improve the

implementation efficiency of GAMMA model. By realizing the continuous dominance

of the von Neumann structure in modern computer architectures, we use self-contained

and atomic imperative program segments-transactions- to pack more operations into

reactions. Please see Chapter 3 for more detailed discussion.

Cham (Chemical Abstract Machine) [29, 34] is a theoretical refinement of GAMMA.

The rigid mathematical definitions of molecules, reactions and reaction rules are given,

and so are the structured molecules and their transformation rules. Recently, Cham

has also been used to specify a multi-phase compiler by Inverardi and Wolf [98] .

2.2.3 The Linda Paradigm

Linda [42 , 40 , 7] is the first coordination parallel programming paradigm based on

a global tuple space. There are a couple of fully implemented Linda languages. The

most popular one is C-Linda [52] . Since its debut, Linda remains as an active research

area. For the history of Linda and its possible future development, we refer readers

to [30] , and for the up to date research work on Linda, we refer readers to the Linda

Group at Yale University [64]. Coordination [77] is the basic idea promoted by Linda.

Instead of simply mixing different languages together, Linda provides a global shared

t uple space to coordinate the activities of each individual programming languages . We

will discus the idea of coordination in Section 3.2.3.

There are four tuple space operators in Linda:

2.2 Parallel Programming Models and Languages 19

1. in: withdraws a tuple from the tuple space if it exists; otherwise the action is

blocked until the tuple is available. If there are more than one tuple of this type

available, one of them is chosen arbitrarily;

2. rd: has the same functionality as in except that the tuple is not deleted from

the tuple space;

3. out: outputs a tuple to the tuple space;

4. eval: outputs a tuple containing at least one field of active data, which needs to

be executed before the result can be reached. For example, we call "3" and "4"

passive data while "3 + 4" an active data. A tuple which contains active data is

called an active tuple; otherwise a passive tuple. Any active tuple will eventually

evolve to its passive form, for example, "3 + 4" to "7".

Linda is not a full-fledged programming language. It can only coordinate the activi­

ties written in other ordinary (sequential) programming languages. According to differ­

ent choices of underlying computational languages, we can get C-Linda, Fortran-Linda,

and Pascal-Linda etc. Taking C-Linda as an example, the activities, i.e. , the chunks

of computation, are written in the C programming language. They interact and com­

municate with each other on the tuple space by the four Linda operators. A C-Linda

program of summing two arrays B [O · · · N - 1] and C[O · · · N - 1] to A[O · · · N - 1) pair­

wise is given in Figure 2.5 , where the elements of the two arrays are first injected into

the tuple space by the for loop , and then the summation function does the pair-wise

summation. If we have a function sum(x,y) which returns the summation of its two

arguments, the out statement of summation() can be replaced by "eval (Array A, i,

sum (x, y)) ; " . The latter version reveals more parallelism.

The elegant idea of coordination becomes awkward when the four tuple space oper­

ators reside in a sequential host language. The sequential skeleton of the host language

forces programmers to consider its sequential control structures first instead of the con­

currently accessible tuple space. Furthermore, the syntax structure of an existing host

language also blurs the globality of the tuple space.

A better way to realise the idea of coordination is to view the tuple space operations

20

main()
{

int B[N]={ ... }, C[N]={ ... };
int A[N];
inti;
for (i=O; i<N; i++) {

out(ArrayB, i, B[i]);
out(ArrayC, i, C[i]);

} I* for *I
summation();

} I* main *I

summation()
{

inti;
for (i=O; i<N; i++) {

in(ArrayB, i, ?x);
in(ArrayC, i, ?y);
out(ArrayA, i, x+y);

} I* for *I
} I* summation *I

Background and Related Work

Figure 2.5: The Pairwise Summation of Two Arrays in C-Linda

as a skeleton with the computational chunks as pieces of flesh which are fitted onto

this skeleton. T-Cham promotes this approach. A comparison of Linda and T-Cham is

illustrated in Figure 2.6 , where in Linda approach, the tuple space (the shadowed area)

can only be seen through the holes of a sequential programming language front-end ,

while in T-Cham approach, the tuple space is in front of the computational chunks.

In short , rather than extending a sequential computational programming language by

adding a parallel tuple space, we attach the sequential computational chunks to a

concurrent accessible tuple space.

2.2.4 Unity and Swarm

Unity is based on Dijkstra's do [66] structure and has no control statements: it re­

tains the assignment statement of the imperative programming paradigm but abandons

2.2 Parallel Programming Models and Languages

0 -

~ -.
-

0

(A) Linda Approach

(B) T-Cham Approach

Figure 2.6: An Observation on the Tuple Space

21

\

22 Background and Related Work

Program sort3 .
assign

< ~j : 0 < j < 1 ::
< 11 i : 0 < i < N I\ j = i mod 2 : :

A[i], A[i + 1] := A[i + 1], A[i] if A[i] > A[i + 1]
>

>
end {sort3}

Figure 2.7: Sorting an Array in Unity

its control part. The conflict between control statements and assignment statements is

the main problem for the formal correctness proof of the programs written in impera­

tive programming languages [16] . A Unity program consists of a group of assignment

statements which are executed infinitely and fairly. A statement can assign different

values to different variables in one step. "II" is used as the sub-assignment separa­

tor, and "~" for assignment statements. An example of a Unity sorting program is in

Figure 2.7, adapted from [43, p. 33].

Unity also has an axiomatic proof system. It is a fragment of propositional temporal

logic with the basic operators of unless and ensure. Other operators, such as stable,

invariant, and leadsto (H), are also defined based on those two operators . A fix point

operator, FP, is suggested to decide the termination point of a program, if it does

terminate.

One of the major contributions of Unity is separating programming notations from

its formal specification symbols (for program verification purposes) , although there is a

one-to-one relationship between them. The verification is transparent to the program­

mers who do not like mathematical reasoning, but the correctness of a program can

still be proved by some other people who do like such reasoning.

Swarm [152, 153] improves Unity by introducing dataspace, transactions and syn­

chronous groups into the language. The name Swarm [152] evokes a swarm of

"large (number), rapidly moving aggregation of small, independent agents

cooperating to perform a task."

2.2 Parallel Programming Models and Languages 23

The dataspace of a Swarm program consists of a tuple space, a transaction space, and

a synchronous relation space. The tuple space is used to store the data needed for pro­

gram execution. It is the same as Linda tuple space. A Swarm transaction is an atomic

action upon the tuple space. It has a set of query-action pairs , which are executed in

parallel. All the active transactions , which are waiting for execution, are in the trans­

action space. Unless explicitly expressed, a transaction is deleted from the transaction

space after its execution. A transaction may generate some new transactions and insert

them into the transaction space. The synchronous group provides a means to specify

the order of transaction execution [152]:

"Wh en one of the transactions in an equivalence class is chosen for ex­

ecution, then all members (transactions) of th e class which exist in the

transaction space at that point in th e computation are also chosen."

Swarm also introduces the concepts of pre-conditions and post-conditions to a trans­

action. They are very useful in program verification. An example of a parallel array

summation program is in Figure 2.8 , where the "t" operator indicates the tuple before

it is consumed, or deleted, from the tuple space by the transaction. The pre-condition

(P) and the post-condition (Q) of the transaction are:

P def pow2(N) /\ j = 1 /\ [Vi : 1 < i < N :: x(i) = A(i)],

def
where pow2(k) = [3p: p > 0 :: k = 2P] , and

def () Q = x(N) = sum A 0, N ,

def
where sumA(l, u) = [~k: l < k < u :: A(k)].

2.2.5 Argus and the Transaction Programming Paradigm

Argus [116 , 117] is the first instance of integrating the atomicity property of trans­

actions into the fundamental programming concepts at the programming language level.

An Argus program consists of a group of guardians. A guardian is actually an

atomic object, which encapsulates and controls the access to and the operations on

its data, or resources. By atomic objects we mean that an action completes by either

24 Background and Related Work

program ArraySum(N, A: [:3 p: p > 0 :: N=2P }, A(i: 1 < i < NJ)

end

tuple types
[i,s: 1 < j < N :: x(i,s)}

transaction types
[j: 1 < j < N::

Sum(j) -

/ 11 k: 1 < k < N /\ k mod (j * 2) = 0::
v1,v2: x(k-j,vl)t, x(k,v2)t-----+ x(k,vl +v2)

j
II j < N-----+ Sum(j * 2)

j

initialization
Sum(l); [i: 1 < i < N :: x(i,A(i)) j

Figure 2.8: A Parallel Array Summation Program in Swarm

committing or aborting. A committed action successfully finishes its operations and

brings the object to a new state, while an aborted action has no effect at all just as

if the action had never happened. The inside of any guardian is composed of some

private (i.e., for this guardian only) data and a number of processes which perform the

operations on the data. The operations are organized in procedures. There is a special

kind of procedure called a handler, which can be called by other guardians and provide

the operations on the data of this guardian on behalf of them. The handler calls are

the only channels of communication and synchronization among the guardians.

A guardian resides at a single computer node (not necessarily a physical one) and

can survive the crashes on this node because of its atomicity property. Guardians in

different nodes coordinate, communicate and synchronize via handler calls to work on

a computation task. In other words, guardians are logical computers, while handlers

are the communication network among them.

Argus was originally designed for the implementation and execution of distributed

2.2 Parallel Programming Models and Languages 25

systems, like a bank system, on an unreliable computer network. Examples of Argus

programming can be found in papers [116, 117].

The atomicity property was originally defined in database management systems

(DBMS) to protect data from corruption caused by concurrently executed transactions.

From the point of view of a programmer, all the operations within a transaction are

executed in "exactly" one step without any interruption and molestation. The atomic­

ity property sets a clear boundary around a task. It is also proved to be a very useful

property for parallel programming: programmers can concentrate on atomic tasks of a

parallel job without worrying about the interferences among them. Every task begins

its execution as soon as its execution condition is satisfied. The concurrence among

those tasks is decided by the test of their execution conditions .

Atomicity is also a desirable property for program verification. Manna and Pnueli

use the concept of grouped statements to make a number of conventional programming

language statements in a program to be uninterruptable , i.e. , atomic [130, Chapter 1].

By grouping some already grouped statements together, a larger grouped statement

is constructed, and hence, different granularit ies of atomicity can be achieved . If the

atomicity property can be introduced into a programming language, there is no need

for grouping the statements, and it will be easier for both programming and program

verification.

2.2.6 Strand, PCN and Bilingual Programming Languages

Strand [73, 70 , 72] (later PCN [71, 69]) is a bilingual programming language claimed

to solve the problems of portability, expressiveness, efficiency , and compatibility with

existing software.

The motivation of Strand is based on a straightforward observation: a very-high-level2

programming language, such as a logic or functional one, or even higher , has two highly

desirable properties , scalability and portability, for parallel programs, as they free the

programs from the details of computer architectures. There are no concepts such

as variables (alias memory cells), control structures (alias the changing of program
2We use very-high-level to refer to languages which is in a level higher over the traditional imperative

programming languages, such as the C programming language, which is at a lower-level according to
Foster in the paper [72), but we'd like call it as a high-level programming language.

26 Background and Related Work

counter- PC- in the control unit of a computer), and assignment (alias the moving

of data among memory cells). A programmer thus can concentrate on the problem

solving strategies and does not have to have the knowledge of underlying computers

and the way of program execution.

In contrast to those nice properties, on the other side, these kinds of very-high-level

languages are normally poor, at least, related to a high-level one, in implementation

efficiency. There is no theoretical reason which accounts for the phenomenon but

today's techniques favour the high-level programming language because it is closer to

the current computer structures. Efficient as a high-level programming language is, it

involves too many details of underlying computer hardware. This reduces the scalability

and portability of a program, especially in the parallel programming situation.

Naturally, we may ask if we can combine a very-high-level programming language

with one or more high-level languages, which together can make a new programming

paradigm. The very-high-level language would be responsible for the logic of a program

while the high-level language(s) would be responsible for the computationally intensive

tasks of the program. In this way, we can keep the scalability and portability without

sacrificing much of efficiency. The Strand approach gives a yes answer to the question

as put by Foster and Overbeek [72]:

"The key idea in bilingual programming is to construct th e upper level of ap­

plications in a high-level language while coding selected low-level components

in low-level languages. This approach permits th e advantages of a high-level

notation (expressiveness, elegance, conciseness) to be obtained without the

cost in performance normally associated with high-level approaches. In ad­

dition, it provides a natural framework for reusing exiting codes. "

Four basic ideas contribute to the design of Strand. They are single-assignment

variables, concurrent processes, non-deterministic choices and the separation of sequen­

tial code. A single-assignment variable can be assigned and referred to , respectively,

once and only once. It can be used to synchronize two concurrent processes which

share the same single-assignment variable, or do the communication between the two

processes3 . A running Strand program has a number of concurrent processes, which
3This kind of variables is known as resources in a T-Cham program. We will discuss the benefit of

2.2 Parallel Programming Models and Languages 27

are non-deterministically chosen to be executed. The execution of a process is on a

computer node in a sequential mode. The process which is written in a sequential

programming language is known as foreign code to a Strand program. User-defined

operations and user-defined data type are used to encapsulate foreign codes and foreign

data, respectively. In other words, they are the interface between the higher-level part

and the lower-level one in a Strand program.

PCN (Program Composition Notation) enhances Strand in three ways: (i) PCN

introduces program composition concepts, (ii) PCN has richer and more flexible syntax,

and (iii) PCN supports the implementation and the use of reusable parallel modules.

A PCN version of Producer-Consumer program is given in Figure 2.9. The proce­

dure stream_comm in the first line of the program creates two processes, stream_producer

and stream_consumer, and set the maximum number (N) of messages which could

be produced by the producer (stream_producer). The stream_producer continu­

ously creates a new message called "message" before the counter N gets to 0, and

the stream_consumer prints the message out.

2.2.7 The DINO Programming Language

DINO (Distributed Numerically Oriented language) [154] is an SIMD programming

language built on the top of the C programming language. DINO provides a top-down

description of a distributed parallel algorithm: a programmer first defines a virtual

machine which fits the problem best and then maps it to a real machine. The three

essential concepts of DINO are environment structures, distributed data and composite

procedures. An environment is a virtual processor which contains the same procedures
.

and data structures. There is one- and only one- special environment called host and

an array of ordinary environments in each DINO program. The host environment acts

as the master of all the others. Distributed data are used to map the global data

structure of an algorithm into the structures of environments, i.e. , virtual processors.

The mapping determines how an environment accesses and shares those data. It also

makes the inter-process communication implicit. The idea of distributed data can be

simply and logically considered as partitions on data arrays. A composite procedure is

distinguishing them from normal variables later in Section 3.1.5.

28 Background and Related Work

stream_comm(n)
{

I I stream_producer(n,x), stream_consumer(x)
}

stream_producer(n,out)
{

?

}

n > 0 ->
{I I out=[Messagelout1], stream_producer(n-1,out1)
},

n == 0 -> out=[]

stream_consumer(in)
{

?

}

in?= [Messagelin1] ->
stdio:printf(11 %s\n 11

, Message), stream_consumer(in1),
in?=[] -> stdio:printf(11 STOP\n 11

)

Figure 2.9: Producer-Consumer Program in PCN

- -- ---~ --- ---

l
I
i

l

2.2 Parallel Programming Models and Languages 29

a set of identical procedures, each of which resides in an environment.

A simple example of matrix-vector multiplication is in Figure 2.10. The 1natrix in

the example is partitioned, or distributed, by rows and each processor calculates one

element of the result vector.

There are three kinds of distributed data in the node environment: BlockRow, All

and Block. The first one, BlockRow, maps one row of the matrix M [n] [n] to each of the

n node environments, the second maps the whole vector v to each node environment,

and the third maps one element of the vector a to each node environment. BlockRow,

All and Block are the pre-defined DINO mapping functions. The main function in

the host environment calls function MatVec , which is a composite procedure defined in

environment node [n: id] , to fork the same process on each of the environments. The

suffix # symbol indicates a remote name reference as MatVec is not defined within the

host environment itself. The MatVec in each environment is a row-wise algorithm to

calculate the production of matrix M and vector v.

A major contribution of DINO is its distributed data structures, or the environ­

ments, and the mappings between them. They provide abstract data structures to a

parallel program. A programmer can define the abstract structures which fit exactly

the problem to be solved. The problems with DINO are that the mapping to a real

computer is not going to be easy; it is also hard for DINO to manage the data which

are not in array structures, and finally, the new distributed data structures are mixed

together with the data structures of the C programming language itself, which makes

the programming even harder and more confusing.

2.2.8 Others

There are many other approaches that we have not mentioned in the previous

sections . It does not mean that they are not important , but are not directly related

to our work. This section gives a brief introduction to some other very important

achievements in this area.

In 1978, Hoare introduced the idea of CSP (Communicating Sequential Pro­

cesses) [91]. Originally, CSP was not intended to be used as a prograIIllling language

but as a medium to study a system with co-existing, i. e., concurrent, activities. Three

30 Background and Related Work

#define n
#include

512
11 dino.h 11

environment node[n:id]
{

}

composite MatVec(in M, in v, out a)

float distributed M[n] [n] map BlockRow;
float distributed v[n] map All;
float distributed a[n] map Block;

{

int j;

a[id]=O;
for(j=O; j<n; j++) a[id] += M[id] [j]*v[j];

}

environment host
{

}

main()
{

}

long int i,j;
float Min[n] [n];
float vin[n];
float aout[n];

MatVec(Min[] [] ,vin[] ,aout[])#;

Figure 2.10: Matrix-Vector Multiplication Program in DINO

2.2 Parallel Programming Models and Languages 31

•

major issues of a concurrent system were addressed. They are parallelism, communi­

cation and non-determinism; therefore , any programming language for these kinds of

systems- concurrent, distributed and parallel- should have the abilities to express par­

allelism, communication and some extent 0f non-determinism. CSP directly gives birth

to the programming language Occam [120 , 121], which was developed by Inmos Ltd.

for their transputers [119]. CSP also has had a very strong influence on Ada [140, 51].

Actually, CSP can be regarded as the common antecedent of all message passing pro­

gramming languages.

CCS (Communication and Concurrent System) [136] is a concurrent model devel­

oped by Milner in the 1980s. The most important thing in CCS is the communication

behaviours of a number of agents, unlike all the other traditional approaches, where the

main concerns are the activities of the agents4 themselves. Two concurrent systems

are considered exactly the same if their communication behaviours are the same by

the external observations. The communication behaviours among the agents via their

ports are similar to chemical reactions. There is an equivalence between CCS and the

Chemical Abstract Machine [34, 29].

The 1r-calculus [138] is an algebra also developed by Milner to study the behaviours

of the interactive systems which consist of the interactions among its different agents.

The equivalence relations , say, bisimulation, of the 1r-calculus are the theoretical foun­

dations for transforming an interactive system to another equivalent system, in term

of their semantics. As the thesis does not focus on program transformation, we won't
J

discuss the details of the 1r-calculus. We refer interested readers to [137, 139, 138].

The Game Semantics [2, 3, 1] is a theory which studies the interactive actions of

a system. In this system, there are two participants , a player P and an Opponent

0 , where O represents the environment, while P is the player in the environment. 0

provides stimuli, and P responses to those stimuli. The theory is another attempt

taken by the research community to study program behaviour from the point of the

view of interaction.

PRAM (Parallel Random Access Memory) [135 , 9] is perhaps one of the oldest

parallel programming models. It has four varieties: EWER (Exclusive Write and Ex-

4 An agent can be considered as a program module , or an object.

32 Background and Related Work

•

elusive Read) model, EWCR (Exclusive Write and Concurrent Read) model, CWER

(Concurrent Write and Exclusive Read) model, and CWCR (Concurrent Write and

Concurrent Read) model. The concepts of EWER, EWCR, CWER, and CWCR help

a programmer to be aware of the concurrent nature of read and write activities in a

parallel program. However, PRAM is less useful in the context of parallel programming

languages because it ignores communication costs. The main contribution of PRAM

was in the complexity analysis of parallel algorithms.

2.3 Conclusion

In the parallel software development environment, there is a plethora of parallel

programming paradigms, models, languages which have been proposed by research

communities and computer manufacturers, yet few of them has been widely accepted.

Parallel programming techniques are still in the same situation as sequential program­

ming in the early days of computer history: relatively powerful hardware versus clumsy

programs of assembly programming languages. The research communities and manu­

facturers are aware of this situation, but still cannot get rid of the dilemma of efficiency

vs manageability. If the programming language is too close to a parallel computer hard­

ware structure, we get efficiency but lose manageability. Programming becomes noto­

riously hard to handle, and it is impossible to port any of this kind of programs across

different platforms. While on the other hand, if the programming language structure

is far higher than the parallel computer hardware structures, the programs can be easy

to write- an extreme example is a super-compiler which can extract parallelism from

an existing sequential program- but it may not always be easy to be implemented effi­

ciently. It is sometimes even worse than the performance of a sequential program on a

sequential computer. The major research in this area is to find a balance point, where

the programming is manageable by ordinary programmers, while not sacrificing much

efficiency. It is this goal that motivated our proposal of T-Cham. In the next chapter,

we will discuss our observations and motivations.

c:;-3 _____________ _
Motivation

The basic idea behind T-Cham is very simple. We believe that the GAMMA model

(or Chemical Abstract Machine) is an ideal underlying computational model for broad­

band computer programs, especially for the so-called 1 parallel and distribution prob­

lems. But due to the lack of control structures (although it is the feature which makes

GAMMA model concise and powerful), it is very difficult to efficiently implement the

programs based on GAMMA model. To improve the implementation efficiency, the

research community has proposed different ways of program transformation, which

rewrite a program into different formats or structures. The later version of the pro­

gram is equivalent to the original one, but more efficient. Section 2.2.2 has more

detailed discussion about the latest research work in this area. In this thesis, we pro­

pose a different approach to attack the implementation efficiency problem. We realise

the predominance of the von Neumann structure computer architectures nowadays,

and the trend may still be kept for another decade or so. We believe it is not :wise to

completely abandon the imperative structures in programs. As long as we are aware of

the problems caused by imperative programming structures [16] and try to avoid the

problems as much as possible, we shall be able to enjoy the efficiency of implementation

1 We believe that the concepts of sequential , parallel , or distribution programming do not belong to
programming language level. GAMMA model has no mention of the concepts either.

34 Motivation

while still preserve the essential properties of GAMMA. Based on the belief, we propose

using imperative program segments, which are self-contained and atomic, to pack up

more operations into the reactions of GAMMA model. This kind of program segments

are called transactions. As a transaction can have more or less operations and exe­

cutes in an atomic manner, i.e. , like a single basic operator, we can enjoy the efficient

implementation of transactions without destroying the beauty of GAMMA model. By

combining GAMMA model (Chemical Abstract Machine) and transactions together,

we propose the T-Cham programming language.

Essentially, a T-Cham program is just a group of transactions wrapped by the

reaction rules of GAMMA model. In other words , the top level of the program belongs

to GAMMA model, while the lower level of the program consists of transactions. The

top level is responsible for the coordination of the reactions (i.e., the transactions of the

lower level) and the logical correctness of the program. The lower level is responsible

for the computationally intensive tasks. The portion of the top level and the lower

level in a T-Cham program can vary from no transactions at all (a pure GAMMA

model program) to a program with a trivial top level which consists of a reaction rule

with only a one-off reaction and a big single transaction. The purpose of the only

reaction on the top level is to start the big single transaction. Virtually, the later

program is just a conventional imperative program. Figure 3.1 gives a diagram of

the spectrum of T-Cham programs, which spread from GAMMA to a conventional

imperative programming language (the C programming language).

GAMMA
-------- T-Cham ------------------- --------

• GAMMA part 0 Cpart

\
0

Figure 3.1: The Spectrum of T-Cham between GAMMA and C

C

3.1 Observations on Parallel Programming 35

The idea of combining different programming paradigms or languages into one pro­

gTamming language to enjoy the benefit from each of the paradigms or languages , for

example, easy to program, simple to prove the correctness of the programs, and good

performance etc., can also be found in [115, 72 , 73 , 71]

In the rest of the chapter, we will discuss the motivation of our work in more

details. The proposal of the T-Cham programming language is initially motivated by

our observations on programming models and languages. The components of T-Cham

are chosen as the result of those observations . We first discuss those observations and

then answer questions on the choice of T-Cham components.

3.1 Observations on Parallel Programming

3.1.1 Functionality versus Interaction

A functionality program2 is the one which maps an input into an output. Function­

ality is the traditional way of thinking about the behaviour of a sequential program.

The Turing machine [163, 114), which is the foundation of all the imperative program­

ming languages , works in this way. A program starts from the starting point of the

program with initial data and then halts at the ending point with the resulting data of

this computation. Functional programming [16, 88, 96) and logic programming [93, 118)

carry out the same idea. A functional program is a mathematical mapping, which maps

a type of data to another type of data, while a logic program starts from a query and

ends with an answer (or answers) to the query. Although in fUI1ctional and logic pro­

gramming situations, the execution order is not necessarily sequential, the basic idea

is still of fUI1ctionali ty.

A functionality program fits well in a sequential computer. When it comes to a

parallel computer, which is built by connecting sequential computers together with a

communication network, the idea of fUI1ctionality still dominates the method of pro­

gramming, because it is straightforward to think that the difference between a sequen­

tial program and a parallel one is in the number of control threads. A parallel program

has more than one control thread so that it can reach the termination point and get
2 A functionality program is distinct from a functional program based on >, calculus.

36 Motivation

the results faster than a sequential program. In practice, the approach emphasizes the

design of control threads , see Section 3.1.2 for more details. The synchronisation and

data exchange among those control threads are implemented by message passing or the

shared memory, see Section 3.1.3. The implementation of this idea, in both theory and

practice, becomes awkward when there are tens of thousands of control threads.

A reactive program emphasizes the interactions among the components of a pro­

gram: different parts of a program interact with each other in response to the stimuli

from outside world. The phenomenon was noticed as early as the beginning days of

concurrent programming and operating system design. That is why Dijkstra introduced

the Dining Philosophers problem, but it takes a very long time for computer scientists

to accept the "new" idea in the parallel programming area, according to Lamport [111]:

((Computer scientists originally believed that the big leap was from sequen­

tiality to concurrency. . . . We have learned that, as far as formal methods

are concerned, the real leap is from functional to reactive systems."

.where the honour of this discovery was credited to Harel and Pnueli [87].

Milner [136] also realised the problem in his CCS, where "interaction or communi­

cation is the central idea". Ciancarini [47] has the same observation by distinguishing

a closed program from an open one. Abramsky's Game Semantics [2, 3, 1] is another

theory emphasizing the interactive actions of a system. Wegner [168] also advocates

this idea.

The concepts of sequential, concurrent, parallel, or distributed should belong to the

execution of a program on particular computational resource instead of the program it­

self, Figure 3.2. At the programming language level , we should not focus on sequential,

concurrent , parallel, or distributed programs but only functional and interactive pro­

grams. Accordingly, any non-sequential programming language should not be judged

only by its abilities of thread control and communications but also the abilities to

express the interactions. In other words, a concurrent programming language should

not be just an extension to an existing sequential programming language with some

thread control and communication facilities but a new one based on an interactive

computation model.

3.1 Observations on Parallel Programming

----------------- -- -- - -- - ---- - - ---- --
1
I

functional interactive

sequential parallel distributed

B ~

.
progranurung
language level

implementation
level

Figure 3.2: The Conceptual Levels of Programming

3.1.2 Single Thread, Multi-thread and Non-thread

37

Control flow and control thread are two different concepts in the description of

a program. Control flow relates to a static program. It can be built on three basic

constructs , sequence, branch and goto3 . During execution, only one branch of a branch

construct can be chosen at any time on a given set of data. The operation sequence of

the execution of a program is unrolled by control thread . Control thread is a concept

related to the execution of the program.

A sequentially executed program has only one control thread , which unrolls the

control flows of a program step by step in a sequential manner. When the program

goes to a parallel machine, more than one control thread may exist concurrently. It is

possible to unroll the operations of a program in a parallel manner. To achieve this

goal, a programmer needs to consider and write down the strategies of thread control

for example, the creation, t ermination, and join etc. of threads . At the first sight ,

multi-threading is a natural way to go from sequential to parallel programming, but

when the number of processing elements in a parallel computer scales up , the physically

available threads become very large; therefore, thread control becomes very difficult for

3The three basic constructs are the complete set for programming [57].

38 Motivation

human beings to handle.

Rather than having multi-threaded control in a parallel program, a different ap­

proach completely abandons the control part of a program: it consists of a number

of autonomous actions, which are executed atomically and concurrently in a chaotic

manner. It does not have any form of control, centralised or de-centralised. An action

happens whenever its execution condition is satisfied. Unity, Gamma and Cham belong

to this approach.

The main idea behind non-control flow programs is non-determinism, which dis­

tinguishes this kind of programming paradigm from data flow model [63, 62, 159]. No

control flow in programming language level means that a programmer need not worry

about the execution order of a program but concentrate on its logical correctness. For

example, a sorting algorithm can be concisely described as "choosing any two elements

and sorting them in a right order". In most cases, non-control flow paradigm provides

a natural way to describe the logic of an algorithm.

On the other hand, a non-deterministic program cannot be implemented so effi­

ciently as a deterministic one. Too much non-determinism may lead to inefficiency.

What we need to do is to find a balance point between non-determinism and determin­

ism: use non-determinism whenever it is necessary while use determinism whenever it

is possible. The same observation was also noticed by Beguelin and Nutt [26].

3.1.3 Shared Memory versus Distributed Memory

The concepts of shared memory and distributed memory originally come from com­

puter architectures , Figure 2.1. As most of parallel programming languages still cannot

free programmers from computer hardware architectures, the same concepts apply to

them as well. It is a prolonged discussion on which one is better [42]. The proponents of

shared memory programming paradigm claims it is easy to handle while the opponents

criticize its bad scalability. In the distributed memory case, synchronizations and data

exchanges are achieved by message passing mechanism. The pros and cons are exactly

in a reverse order as those of shared memory.

The third approach is an associatedly accessible logical shared memory- tuple

space. Tuples in a tuple space are accessed by pattern-matching on their content

------ .. J

3.1 Observations on Parallel Programming 39

instead of their addresses . A tuple space provides high level accessable distributed

data. It avoids the scalability problem of a normal shared memory system and is easier

to manage by programmers than a distributed memory one [170, 42].

3.1.4 Granularity

A program is the task which consists of some computer operations. A program

may cons_ist of sub-routines, procedures , and functions , and hence, a task may consist

of sub-tasks. Granularity reflects the number of operations in a given task. We call

a task coarse-grain if it contains a large number of operations; otherwise, fine-grain.

A fine-grain parallel program reveals more parallelism than a coarse-grain one, but

demands more communication and synchronization; hence, is less efficient . " Th ere's

no reason in theory why this kind of program can't be supported efficiently, but on most

current parallel computers there are substantial overheads associated with creating and

coordinating larg e numbers of processes" [41, p. 33]. How to choose the right granularity

depends on the problem to be solved and the computer resources available. An ideal

way to do this is to apply fine-grain first to explore all potential parallelism and then

amalgamate several fine-grain tasks into a coarse-grain task to reduce unnecessary

communication overheads. The procedure is called grain packing [97, pp. 61- 70]. It

is one of the most difficult tasks in parallel programming. We believe the difficulty

coming from the lack of autonomy in task description. In other word, the tasks are

interwoven together.

3.1.5 Variables versus Resources

Some of the best things in our life are free. 1ruth is free. You can tell the truth

of " Th e earth is orbiting the sun" as many times as you like. Some other things are

not. Food is not free. Whenever you bake a loaf of bread , you can only enjoy the loaf

once. After the bread is eaten, you have nothing left. The first kind of fact is known

as information while the latter resources.

1raditionally, in a sequential programming language, variables are used to hold

both information and resources. We may use a variable, say pi , to hold the value of

1r, which is 3.1415926 · · ·. The variable pi can be accessed repeatly. But when we deal

40 Motivation

with bread, we have to use another variable, say loaves , to record how many loaves

of bread we have. For example, after you bake a loaf of bread, the variable loaves

is increased by 1, and after you eat one, the variable loaves is decreased by 1. This

variable works well in a sequential execution situation. In other words, you are just

yourself in a closed world and isolated from others. You bake and you eat.

In the concurrent case, using a simple variable to hold a resource-like thing is

troublesome. For example, if we have two processes (persons) to consume the bread:

Process_1:

aO:

a1: if (loaves>O)

a2:

a3:

loaves := loaves-1;

Process_2:

bO: ...

b1: if (loaves>O)

b2:

b3: ...

loaves := loaves-1;

when loaves=1, a possible execution path may be a1b1a2a3b2b3 , which consumes two

loaves of bread from one!

To avoid this unreal outcome, the visit to a shared variable, loaves in this case, is

regarded as a critical section and is indivisible. No other actions are allowed to cut into

the sequence of a1a2a3 or b1b2b3. Some techniques, such as semaphores and monitors

etc., were developed to protect the sections from the intervention of other co-existing

processes.

By introducing the resource concept, where a resource can be produced and con­

sumed, to a programming language, programs will be much easier to be written and

understood. We believe that Petri net [145 , 147, 60] is the first one to study the con­

sumption and production of resources. Linda [42, 40, 7] and PCN [71] (the so-called

single-assignment programming language) are among the other very few programming

languages which have the mechanism to deal with resources.

Coinc~dentally, the same observation on the importance of resources in a logic sys­

tem4 was spotted by Girard when he studied the classical logic. Even more interesting,

the report [79] of this discovery, known as linear logic, was not published in a logic or
I

a philosophy journal but in the Theoretical Computer Science, which suggests that it

4The traditional logic system does not have the concept of resources, either.

3.1 Observations on Parallel Programming 41

is closer and more important to computer science than philosophy or logic.

3.1.6 Debugging versus Verification

Testing and debugging a program are real challenges to a programmer. In the

sequential situation, there exists a lot of development tools and environments, for

example, adb , sdb , dbx and lint etc. in a Unix system, Turbo environments (Turbo

C, Turbo .Pascal, and Turbo C++ etc.) in PCs , to help a programmer to do the job.

In general , those tools and environments provide a means to trace out the execution

behaviors of a program on a set of input data. They can set break points on, check the

run-time environments and modify dynamic data values of the program. Despite the

abundant auxiliary tools and environments, the debugging is still a painstaking and

time-consuming procedure.

Unlike in the sequential situation, where the execution path- the order of the op­

erations taken by a CPU- of a program remains the same on the same set of input

data no matter how many times the program is executed, a parallel program has no

such property. Take the bread baking-eating procedures in Section 3.1.5 for exam­

ple: the execution order could be a1a2a3b1 b2b3 , b1 b2b3a1a2a3 , a1 b1a2a3b2b3 , or

a1b1b2b3a2a3 etc . on a same set of input data with different executions. Those paths

are not predictable. The basic reason is that whenever there is more than one CPU

involved, the communication time between any two CPUs is unpredictable, the drift of

the synchronization (hardware) clock pulses inside of each CPU is unpredictable, and

the exact processing speed of each CPU is unpredictable either; furthermore, the use

of registers and cache contributes even more uncertainty.

Lots of effort have been made to guarantee that parallel programs only take ac­

ceptable execution paths. Many parallel programming environments and tools have

been developed. Most of them use intuitive visual tools, so-called program visualiza­

tion [171,151,134, 25, 27, 81], to reveal the static structures and the dynamic activities

of a parallel program. To get the execution behavior data of a parallel program, we

have to do instrumentation, i.e .. inserting some extra instructions into the program and

using the data captured by those instructions to recover the execution path of that pro­

gram. The dilemma is that the instrument instructions themselves always change the

42 Motivation

run-time behavior of a parallel program [151 , 128]. Bearing the uncertainty mentioned

before in mind, an extra instruction may change the starting time of a communica­

tion session, cause more CPU and cache time, and even trigger chain reactions from

other processes. All in all, it is extremely difficult to locate and fix a bug in a parallel

program.

Automatic program verification is a long desired goal in the program development

community. We wish that one day, after we finish the programming work, a mathe­

matical system could prove the program is correct. A great deal of achievement has

been made in this area. Some of them become more and more mature and applicable

to real applications. A good example is that Clark, Grumberg and et al using temporal

logic model checking method proved the correctness of a couple of IEEE communica­

tion protocol standards and found a few bugs in IEEE Futurebus+ standard (IEEE

Standard 896. 1-1991) [49 , 50]. Given the fact of that IEEE standards are carefully de­

signed and well debugged by the elite of the related areas, bugs are still not avoidable.

To conclude, we'd like to cite Dijkstra's famous words: "program testing can be quite

effective for showing the presence of bugs, but is hopelessly inadequate for showing their

absence" [66, p. 20]. In contrast, a formal verification system can prove the absence of

any bugs.

3.2 Motivation: Questions Answered

Programs should be judged by their logic operations instead of the execution order

of these operations. In other words , the concepts of sequential, parallel, or distributed

should not be a main issue of programming. They are the issues of program imple­

mentation on a particular computer system. We believe that a program should only

contain the description of the logic of the program.

3.2.1 Why Yet Another Parallel Programming Language?

A large number of parallel programming languages have been proposed in the last

two decades. Why do we suggest yet another parallel programming language? As dis­

cussed in Section 3.1.1, parallel activities have inherently interactive nature, and hence

_ _J

3.2 Motivation: Questions Answered 43

a parallel programming language should reflect this kind of nature. In other words,

it should have the ability to easily express the interactions among the components of

a program. To the best of our know ledge, no such kind of parallel programming lan­

guages have been proposed yet. Most of the parallel programming languages proposed

in the past are the result of extending the existing sequential programming languages

with thread control primaries (operators or statements) . Those approaches empha­

size the difference between multi-thread and single thread execution of a program, but

have no concept of interaction. This kind of approach makes the parallel programming

much harder than it should be. Analogously, it is just like using a spanner to drive a

screw. To try a different approach, we suggest a new programming language based on

an interactive abstract computation model, the Chemical Abstract Machine (Cham) .

T-Cham extends the Chemical Abstract Machine (Cham) with transactions. A

Cham is an interactive computation model based on chemical reaction metaphor, where

a computation proceeds as a succession of chemical reactions. The molecules (also

known as tuples) for the reactions are floating and interacting in a solution (tuple

space). A transaction is a piece of programming code which has the properties of

ACID (Atomicity , Consistency, Isolation, and Durability). It could be written in any

programming language . The tuple space, where the molecules of the Cham reside

and interact, is used to coordinate those transactions . A transaction may begin its

execution whenever its execution condition is satisfied.

The reason why we design T-Cham in this way is discussed in the following sections.

3.2.2 Why the Chemical Abstract Machine?

Abstract computation machines play very important roles in program description

and implementation, for example, the Turing machine to an imperative programming

language, e.g., Pascal or C; Warren Abstract Machine (167 , 8] to a logic program­

ming language, e.g. , Prolog, and its implementation; SECD [88 , 102] to a functional

programming language, i.e. , Lisp , and its implementation.

The Chemical Abstract Machine (Cham) provides a natural and easy way to express

the interactions among the components of a program. It also has formal operational

semantics, much easier to understand than a declarative one . As discussed in the

44 Motivation

previous sections, interactions are the central focus of a parallel programming language.

Given the interactive nature of a Cham, it is the most qualified candidate to be the

abstract computation model for parallel programming languages.

3.2.3 Why Coordination?

We always try to assemble well-behaved constructs together to build better tools,

but a simple assembling method introduces interference among these different compo­

nents and is liable to create untamed complex "monsters", such as P L/1 [12] and the

Algol68 [35, 161] programming language as well as the Multics [67] operating system.

The basic idea of coordination [77] is orthogonally gluing together: different parts

are orthogonally glued together to let the final product take advantage of each individual

part while without suffering from interference among the parts.

Orthogonal coordination maintains the independence of each component. Adding

or removing one component has no effect on the others.

3.2.4 Why Tuple Space?

A tuple space is a logically shared memory used for data exchange and synchroniza­

tion control among the interactive components of a program. Unlike traditional data

structures, a tuple space is inherently distributed and naturally offers parallel access.

Parallelism specification and implementation thus become much easier.

A hierarchical tuple space structure provides different abstract views and a means of

refinement to a T-Cham program. It can be used to localise a group of tuples and their

reactions , i.e., dividing a global tuple space to a number of smaller sub-tuple-spaces.

Each of the sub-tuple-spaces is relatively independent to the others.

The tuple mapping mechanism transforms one tuple (or a group of tuples) to an­

other (or another group of tuples). With tuple masks, a tuple can have many different

appearances to meet different requirements.

Unlike the tuples in a general tuple space, where they are of the same generic data

type (just known as tuples), in T-Cham, the tuples in a tuple space belong to different

types , for example, an integer tuple, a real number tuple, or a tuple of a compound

structure. For the detailed discussion about tuple types and their declaration, we refer

3.2 Motivation: Questions Answered 45

readers to Section 4.3.1. The purpose of introducing types to the tuples is twofold. On

the one hand, it makes the optimisation of tuple spaces easier, and hence, better imple­

mentation efficiency. On the other hand, the typed tuples can reduce some potential

programming errors. R. van der Goot et al. made the same arguments when proposing

Blossom [165) , a strongly typed tuple space C++ version of Linda.

3.2.5 Why Transactions?

A transaction5 is a piece of self-contained program code which has the properties

of ACID (Atomicity, Consistency, Isolation, and Durability) [4] and executes sequen­

tially on a computer node. The atomicity property of a transaction means that the

transaction is regarded as an un-dividable single step operator, no matter how big it

may be. Consistency and isolation actually stand for the same property: a transaction

is a closed system and won't be affected by the change of the context it is in. Dura­

bility means that the effect of the transaction, when it is committed, won't be rolled

back. If we only look at a single transaction, the property seems so obvious. When

talking about many transactions running concurrently, durability is essential for the

correctness of the transaction system and their efficient implementation.

Just as a parallel computer system is a number of sequential computer nodes , which

are suitable for the efficient execution of program code in a sequential manner , bundled

together by a communication network, a T-Cham program is a number of sequential

tasks (transactions) bundled together by a chemical abstract machine.

With the concept of transactions, task granularity can be easily adjusted by chang­

ing the operators contained in the transactions , for example, a transaction can do

a very complex function (coarse-grain), or only a simple summation operation (fine­

grain). The changing of one transaction is isolated from the others; furthermore , the

orthogonally integrated transactions can be re-used from program to program.

3.2.6 Why Theoretical Background?

Although mathematics and logic are the better way to achieve a correct program

as discussed in Section 3.1.6, most programmers are not so comfortable with the rigid
5It is a leaf transaction. See Chapter 4 for more precise definition.

46 Motivation

process of mathematical reasoning. People tend to use a natural and intuitional way

to express their ideas. For example, people prefer the Venn Diagrams [53] to the

mathematical definitions of the set operations.

Formal temporal logic semantics provides a means of correctness proof for T-Cham

programs, but the proof system is separated from programming, or kept in the back­

ground. T-Cham programming notations serve as the Venn Diagrams in set theory,

while the temporal logic interpretation of a T-Cham program is like the mathematical

definitions, by which the reasoning is carried out.

3.2.7 Why Program Composition?

The experience of program development suggests that a large program should be

constructed from a number of smaller components. The formal proof systems for pro­

gram verification also prefer this kind of composition property [24]. Like in Unity, we

consider two kinds of transaction (program) compositions, union and superposition.

The union is used to juxtapose the corresponding sections of two different T-Cham

transactions, while the superposition is responsible for the layers, or a hierarchical

structure, of the final transaction. We also study their effects on the T-Cham proof

system.

AT-Cham program can be constructed by the union and/or superposition of trans­

actions. The union combines two small transactions into a big one, while the super­

position makes a transaction to be a sub-transaction of another one. With union and

superposition composition, a large T-Cham Program can be built from a number of

small transactions; besides, the composition also provides the modular and abstract

views to T-Cham programs.

C: 4 _____________ __.
Basic T-Cham Notations

AT-Cham program consists of a number of transactions . A transaction which does not

have any sub-transactions is called a leaf transaction; otherwise, a non-leaf transaction.

A leaf transaction could be a C function (or other programming language units) with

the enhancement of the transaction concept made it ACID (Atomicity, Consistency,

Isolation, and Durability) [4]. The execution of a T-Cham program starts from a

special non-leaf transaction root , called main transaction of the program. It is the

only transaction which may not terminate. The transactions referred to by the reaction

rules in a transaction are called sub-transactions of it. From the point of view of any

transaction, its sub-transactions are atomic operators.

The chapter first gives a brief introduction to the extended BNF (Backus-Naur

Form) conventions , and then the syntax and semantics of the basic T-Cham program­

ming language. We use extended BNF for the syntax description of the T-Cham

programming language, while plain English for its semantics. We conclude this chap­

ter with a simple example showing how to program in T-Cham and how a T-Cham

program works.

48 Basic T-Cham Notations

4.1 Notational Conventions

In the thesis, we adopt the following notational conventions [6]:

1. Strings and characters with typewriter fonts, for example, if , then and else ,

are terminals, and a double-quoted string or symbol, e.g., "{", means the string

itself.

2. Strings and characters with Roman (italic) fonts and beginning with capital let­

ters, for example, Expr and Stmt, are nonterminals.

3. Lower-case Greek letters, for example, a, J3 and ,, represent strings of grammar

symbols.

4. If A ---+ a1, A ---+ a2, · · ·, A ---+ ak are all productions with the same nonterminal

A on the left, they can be written as A ---+ a1 I a2 I · · · I ak for short.

5. Square brackets denote an optional part of a production, for example,

Stmt ---+ if Expr then Stmt [else Stmt]

6. Braces denote a phrase which can be repeated zero or more times, for example,

Stmt ---+ begin Stmt {; Stmt} end

7. Braces followed by a+ denote a phrase which can be repeated one or more times,

for example,

Stmt ---+ "{ " { Stmt;} + "}"

Under the convention, the grammar of simple one digit arithmetic (plus and minus)

expressions can be specified as follows:

E ---+ E+E

E ---+ E-E

E---+ 01112J3l4l5J6l7l8J9

A T-Cham program consists of a number of leaf and non-leaf transactions. The

grammar 1s

4.2 The Essential Components of a Chemical Abstract Machine 49

Program • { NonLeafTrans I LeafTrans }+

where Program is the start symbol, and NonLeafTrans and LeafTrans are nonterminals

standing for non-leaf transactions and leaf transactions respectively. We will discuss

the details of them in the consequent sections . For the complete definition of T -Cham

syntax, we refer readers to Appendix A.

4 .2 The Essential Components of a Chemical Abstract

Machine

T-Cham is a programming language based on the Chemical Abstract Machine (29

34], where a computation proceeds as a succession of chemical reactions in a chemical

reaction system. In T-Cham, a program can be considered as the specification of

a "chemical reaction system" . To be able to describe a chemical reaction system,

T-Cham has to have the ability of specifying the essential components of a Chemical

Abstract :Niachine.

Take an ordinary chemical reaction system1 as an example:

two hydrogen molecules and one oxygen molecule make two water molecules:

2H2 + 02 = 2H20

Let·s study the essential components a chemical reaction system must have. For exam­

ple. a certain amount of hydrogen molecules and oxygen molecules are in a container,

a reaction happens whenever the reaction condition is satisfied, and the reaction stops

when there are no hydrogen molecules (at least two of them) or oxygen molecule left .

vVhen we introduce this chemical reaction system to computers as a model for compu­

tation. the essential components include:

• a container . which contains all the molecules of this chemical reaction system:
1
The details of a chemical system and chemical reactions are certainly not the focus of this thesis.

\Ve only discuss them based on the common sense for analogy purpose only.

50 Basic T-Cham Notations

• the types of molecules possibly appearing in the reaction system, e.g., hydrogen,

oxygen, and water molecules;

• the initial status of the container, i.e., how many of each type of molecules , and

the status of those molecules before any reaction;

• a number of reaction rules , which specify how and when a reaction proceeds

and the impact of the reaction on the molecules;

• the termination conditions, i.e. , when the reactions stop. The hydrogen and

oxygen reaction example above terminates when there are no hydrogen molecules

(at least two of them) or oxygen molecule left.

If we look at a reaction from different points of view, such as those of atoms, electrons,

and so on, different actions can also be spotted. For example, in the hydrogen and

oxygen reaction system, at the electron level, we can see how the outer layer electrons

of the two hydrogen molecules and one oxygen molecule react to each other. In other

words, a chemical reaction system may also have

• multiple views of a reaction from different levels.

To be able to specify the programs of the Chemical Abstract Machine model, the

T-Cham programming language has the corresponding components as well.

The tuple space of the T-Cham is actually the "container", which contains all the

molecules, called tuples in T-Cham.

A T-Cham program consists of a number of leaf and non-leaf transactions (chemical

reaction systems). Inside of a non-leaf transaction, there are tuples , initialization,

reactionrules, termination, and sub-transactions sections. They are, in turn,

corresponding to the types of molecules possibly appearing in a reaction system, the

initial status of the container (tuple space) , the reaction rules, the termination

conditions, and the different views of this reaction system discussed above.

4.3 Non-leaf transactions

Syntactically, a non-leaf transaction is composed of (i) the specification of its tuple

space, including the types of tuples and the initial state, (ii) reaction rules , and (iii)

4.3 Non-leaf transactions 51

sub-transaction interfaces- pre-conditions and post-conditions of its sub-transactions.

The tuple space specified is visible to the transaction and its sub-transactions only.

A non-leaf transaction consists of a name and a body:

NonLeafTrans • transaction NName NBody endtrans

NName • Plainidentity

NB ody • Tuples I nit React [Term] [Sub Trans]

The keywords transaction and endtrans are used to encapsulate this non-leaf trans­

action. The NBody is the transaction body and contains information about partici­

pating molecules (Tuples) , the initial state of those molecules (I nit) , the reaction rules

(Reac), termination condit ions (Term), and the actions carried out by those rules

(Sub Trans) 2 . We call each of them a section. The last two sections, i.e., termination

and sub-transaction, are optional.

4.3.1 Tuples

The tuples section declares all possible tuple types (molecules) which may appear in

the tuple space of this transaction. The declaration only specifies the type of possible

tuples. How many of the declared tuples , when, and where they enter the tuple space

depend on a particular execution and cannot be predicted in advance. In generaL the

specification starts with a keyword tuples followed by a list of tuple declarations. The

keywords fifo , f ilo and random are used to specify the order of tuple consumption

(the default is random) , and tuple is used to declare a tuple . If a tuple has only one

field. the key word tuple can be omitted.

Tuples

TupleDcl

• tuples Tupl eDcl { Tupl eDcl I MaskDcl}

• [DclH ead] D clBody

DclHead • fifo I filo I random

DclBody • Type NameList ·

2
From now on , a sub-transaction is called a transaction for brevity if there is no confusion.

52 Basic T-Cham Notations

We use a type system similar to that of the C programming language for these decla­

rations. Tuple names are visible to the transaction and its sub-transactions. A tuple

in T-Cham corresponds to a struct in the C programming language or a record in

Pascal, for example,

tuples

tuple {

int A[100];

int gridsieved;

} num;

boolean token;

fifo char msg[256];

The keyword tuple is omitted if the tuple has only one field. The above declaration

defines three tuple names: num, token, and msg. The tuple num has two fields; msgs

are consumed in first-in-first-out (f if o) order.

The consumption order of a certain type of tuples is quite interesting, because those

tuples may be distributed to and consumed by different computer nodes.

Theoretically, a tuple is randomly chosen for a reaction, and the choice is fair.

It means that any available tuple will be eventually chosen. This kind of fairness is

called weak fairness because the time when a particular tuple is chosen might be

indefinitely far away [75]. Weak fairness works fine in a theoretical setting, where the

time needed to get to a result is not the primary concern. However , in the most cases

of real programs, results should be worked out in a limited time period. Take Producer­

Consumer problem for example. If the Producer generates a message, say msg1 , at a

time while the Consumer does not consume the message immediately. After this time

instance, every produced message will be consumed immediately. It can be claimed

that the message msg1 will be eventually consumed, provided time is unlimited, but

nobody, although he/she is interested in this message but with limited life span, has

the chance to see the message.

A first-in-first-out (f if o) or first-in-last-out (f ilo) ordering is used to enhance the

fairness of a T-Cham program in the choices of tuples. As we know, a T-Cham program

4.3 Non-leaf transactions 53

can be executed in a sequential, parallel , or distributed mode. In the sequential case,

tuples have a linear time order. There can be an absolutely fifo or f ilo ordering.

But in a parallel or distributed execution, T-Cham f ifo ordering is only committed to

the tuples coming from the same node; so is f ilo. Because in this two cases, a tuple

can be generated by any execution node at any time instance. For example, suppose

we have two execution nodes PE1 and PE2. PE1 generates a tuple msg1 at its local time

t1 (local clock time) , and PE2 generates a tuple msg2 at its local time t2. We call t1

and t2 time-stamps. If t1 and t2 come from the same computer, they can be used to

indicate the age of msg1 and msg2. But they are from two different execution nodes PE1

and PE2 . Each of those two execution nodes uses its own clock , i.e. , the two execution

nodes are on different time systems. It is very hard, even impossible to some extent, to

compare t 1 and t2. The clocks of both PE1 and PE2 may be able to be synchronized

against a real time clock, but the synchronization is not 100% precise [108].

In summary, an absolute linear time order cannot be pursued in the parallel situa­

tion. Although time-stamps can give some hints on the time when a tuple is generated,

they only make sense for the tuples generated by the same computational node, for

they are on the same time system.

4.3.2 Initialization

The initialization section sets up the initial state of a tuple space.

!nit -+ initialization InitList

InitList -+ { Actvl nit I Passlnit I M appinglnit}

An initialization action could be passive (assigning values to tuples) or active (calling

one or more leaf-transactions , where there could be some input operations to get data

from an input device or a file) , for example

initialization

[i:O .. 9]: :token={i*2};

init_num;

54 Basic T-Cham Notations

The initialization of token is passive, while the call to init_num() , which is a leaf­

transaction, to initialize tuple num is active. " [i: 0 .. 9] : : token={ i*2 }" means that

for every i from O to 9, token={i*2} , i.e., there are ten tokens in the initial tuple

space and their values are even numbers from O to 18 respectively. The i is called an

index variable.

A third initialization method (Maplnit) is the mapping of some tuples to the tuples

in the tuple space of its parent transaction or of one of its children 's. See Section 8.2

for details.

4.3.3 Reactionrules

The reactionrule section consists of a number of reaction rules. The rules operate on

the tuple space of a transaction and coordinate its computational act ions- transactions.

R eact --+ reactionrules { ReactRule }+

R eactRule --+ LHS leadsto RHS [by Trans] [when ReactBExp] ;

LHS --+ Simple TupleList

RHS --+ Simple TupleList

Trans --+ Simple TransN ame I OnLine Trans

Simple TupleList --+ Tuple{, Tuple}

Tuple --+ Plain] dentity

Informally, a reaction rule looks like

x1, x2, · · ·, Xn leadsto Yi, Y2, · · · , Ym by T when f (x1 , x2, · · ·, Xp),

where xi, x2, · · ·, Xn (i.e., LHS) , Y1, Y2, · · ·, Ym (i.e., RHS) are tuples whose types are

declared in the tuples section, T (i.e ., Trans) is the name of a transaction (known

as a sub-transaction to this transaction), and f (x1 , x 2 , · · ·, xp),p < n- i.e., Cond- is

a boolean expression. The rule means that whenever the tuples x1, x2, · · ·, and Xn

are all currently in the tuple space and the function f (x1, x2, · · · xp) evaluates to TRUE,

(i) the tuples x1 , x2, · · ·, and Xn are selected and consumed, (ii) the transaction T is

executed, and (iii) new tuples y1, Y2, · · ·, and Ym are generated and injected back into

4.3 Non-leaf transactions 55

the tuple space. From the point of view of the transaction which contains the reaction

rule, these three actions are indivisible. Both by and when qualifiers of a reaction rule

can be omitted if the transaction used is null and/ or the condition is trivially TRUE.

There may be some common tuples among x1, x2, · · ·, Xn, Y1 , Y2, · ··,and Ym· This

means that more than one tuple of a certain type is needed for the reaction and/ or

some selected tuples are sent back to the tuple space (with or without changes), for

example, "x, x leads to x, y :' To distinguish the different appearances of tuples in the

body of a sub-transaction and the when condition part , the "$" operator is used with

a constant integer index (called instance reference), e.g., "when (x$1==x$2-10) :'

A pair of curly-brackets on a tuple name, say {x} , means all tuples of this type

together , i. e., selecting them all, and a pair of l's (vert ical bars) , Ix I, means the number

of this kind of tuples currently in the tuple space. Furthermore, a transaction does not

have to consume all the tuples on the left-hand-side of its reaction rule. We use " !" to

denote that the tuple is just read by the rule but not consumed, i.e. , it is still available

in the tuple space.

4.3.4 Termination

The termination section gives conditions such that whenever any of them is satisfied,

the corresponding final act ion is committed and the transaction then terminates.

Term • terminination { TermStmt}+

TermStmt • on (R eactBExp) do (Trans I AssembleData);

A termination specification looks like this:

termination

on (ltokenl==O) do output;

A transaction automatically enters termination status when there is no more reac­

tion available, no matter whether the transaction has termination section or not. For

an interactive program, which may never terminate, there is no termination section.

It always has reactions.

56 Basic T-Cham Notations

4.3.5 Sub-transactions

The sub-transaction section specifies the pre-conditions and the post-conditions of

the sub-transactions referred to by the reaction rules defined in the reactionrules

section of a non-leaf transaction.

For example,

Sub Trans

TransStmt

PreCond

PostCond

----+ subtransactions { TransStmt }+

----+ Trans : PreCond / / PostCond ;

----+ BExp

----+ BExp

subtransactions

prod: ltokenl>O // I token I '=ltokenl-1;

where prod is the name of the transaction referred to by a reaction rule , " I token I >O"

is the pre-condition of the transaction, and " I token I '= I token 1-1" the post-condition.

The ' postfix operator means the values after the execution of the transaction.

4.4 Leaf Transactions

A leaf transaction contains no reaction rules and subtransactions. It is merely a

group of operations.

Lea/Trans ----+ transaction LName LBody endtrans

LName ----+ Plainldentity

LBody ----+ Micros BodyCode

Micros ----+ #language LangName [#tuplein SimpleTupleList]

[#tupleout SimpleTupleList]

where LName is the name of this leaf transaction. It abides by the same rule as

that of a non-leaf transaction name. LBody is the body of this leaf transaction, which

4.5 A Small Example 57

consists of a Micros part and a Body Code part. The Micros part provides the necessary

information concerning the resources passed to and the language used to write this

leaf transaction to the Body Code part, which is written in the programming language

declared in the Micros part and carried out the operations of this transaction.

A leaf transaction looks like this:

transaction my_name

#language my_language

#tuplein tuple_desp

#tupleout tuple_desp

my_body

endtrans

where my_language, known as a guest language, is the programming language used to

code this transaction, tuple_desp provides the type information of the tuples to the

transaction, and my_body is the programming units written in "my_languag e". There

could be none or many "#tuplein" and "#tupleout" lines . The tuples described

in "#tuplein" line are resources passed to this transaction before its execution and

consumed by it during its execution. They are not parameters or arguments in the sense

of being passed by call-by-value, call-by-reference, and/ or call-by-name mechanism as

in an ordinary programming language. T-Cham tuples are resources and can only be

consumed and generated but not copied. Similarly, the tuples described in "#tupleout"

line are those generated by the transaction. They are not the value returned to the

"caller" but new resources injected back to the tuple space. The "#tuplein" and

"#tupleout" lines serve as the interface between a conventional programming language

"my_language" and T-Cham.

4.5 A Small Example

Example 1 (Element Summation) Figure 4- 1 is a T-Cham program which calcu­

lates th e summation of all tuples in a tuple space of integers. I

58

transaction root
tuples

endtrans

int m;
initialization

m=10 m=20 m=30 m=50 m=15·
' ' ' ' '

reactionrules
m, m leadsto m by surn2up;

termination
on (lm1==1) do out_surn;

subtransaction
surn2up: p//q;

transaction surn2up
#language C
#tuplein int m$1, m$2;
#tupleout int m$3;

endtrans

surn2up() {
m$3 = m$1+m$2;

}

transaction out_surn
#language C
#tuplein int m;

out_surn() {

Basic T-Cham Notations

the main transaction

tuple declaration

there are five tuples in
the initial tuple space

the only reaction rule

when only one tuple left,
output the result

-- pre and post conditions

a leaf transaction
the guest language
the input resource ,
the generated resource
the real function body

-- another leaf transaction

printf("The summation= %d\n", m);
}

endtrans

Figure 4.1: The T-Cham Program of Element Summation

4.6 The Execution of a T-Cham Transaction 59

The T-Cham program has three transactions: a main transaction root and two leaf

transactions, surn2up and out _sum. The tuple section of the root transaction declares

only one kind of tuples named m. Each of the tuples has only one field, which is an

integer.

The initialization section of the program sets up the initial state of the tuple space.

In this example, there are five tuples in the initial tuple space. They are 10, 20, 30,

50, and 15.

The only reaction rule says that any two tuples in the tuple space can be replaced

by a new tuple which is the sum of the two. The reaction for the replacement is carried

out by the leaf transaction surn2up. At the first step, there could be up to l ~ J reactions

depending on the available computer resources, where n is the number of tuples in the

initial tuple space, and then l ~ J, l fi- J, · · ·. When there is only one tuple left in the

tuple space, we output the result according to the termination condition section of the

transaction.

The effect of surn2up upon the tuple space can be found in the subtransaction

description section of this root transaction. If the values of the two input tuples to the

transaction surn2up are x and y respectively, the value of result tuple generated by the

transaction should be x + y. Thus, the pre- and post-condition of surn2up are:

p true, q m$3=m$1+m$2

The post-condition here syntactically resembles the assignment statement of the trans­

action surn2up, but it carries different meaning. It is a logic assertion, which can

be either true or false. A nice property of subtransaction description is that sub­

transaction behavior can be figured out without knowing the details of its code, and

also, the pre- and post-conditions can be used to build a constructive proof system for

the program verification. The subtransaction section serves as the interfaces between

transactions so that each of them can be treated in isolation.

4.6 The Execution of a T-Cham Transaction

The execution of a T-Cham transaction proceeds as follows: until a termination

condition is satisfied, all of its reaction rules are fairly chosen and tested. Whenever

60 Basic T-Cham Notations

20

~
) (I l5

50
80

---------- l 0 90 ,
' 30

125

Figure 4.2: A Possible Computation Process of Element Summation

the reaction condition of a reaction rule holds, i.e., the tuples needed by the reaction rule

are all currently in the tuple space and the boolean function of its when qualifier- if it

exists- evaluates to TRUE, the corresponding sub-transaction (the by part of a reaction

rule) is eligible to be invoked. By fairly, we mean that a reaction will eventually happen

if its reaction condition is continuously satisfied. The pictorial description of a possible

execution path of the Figure 4.1 program is in Figure 4.2, where arrows indicate the

tuple space state changes.

If a sub-transaction to be executed is written in T-Cham, a new tuple space is

established according to the specification of this sub-transaction. The relations between

the tuples of the two level tuple spaces are also established. The simplest relationship is

to project a subset of the tuples from a parent transaction to its sub-transaction. More

complex mappings are described in Chapter 8. All the actions of the sub-transaction

operate on the new tuple place, which will be destroyed after the execution. The tuple

space of a T-Cham transaction corresponds to the run time environment of a function

or a procedure in an imperative programming language. From the point of view of a

transaction, each of its sub-transactions is an "operator" and is executed atomically.

4.7 Summary 61

4.7 Summary

The chapter discussed the basic T-Cham notations and a small example. The

basic idea is that a T-Cham program consists of a number of transactions. Each

of them is an autonomous operation unit and imitates an isolated chemical reaction

system. Transactions are categorized into two classes: leaf transactions and non-leaf

transactions. A leaf transaction is written in a language other than T-Cham and does

not spawn any sub-transactions in the sense of T-Cham. A non-leaf transaction 1s

· written in T-Cham itself.

A transaction is an autonomous operation unit, but it does communicate with oth­

ers. A large T-Cham system consists of a number of transactions. As those transactions

are from the same system, each of them may be designed to solve part of the same

problem. They cooperate with each other to solve the problem and achieve the ulti­

mate goal. A transaction communicates with the others via its interfaces, which are

specified as its initialization section, termination section, and subtransaction section.

The initialization section sets the initial tuple space status of a transaction according to

the current tuple space configuration of its parent transaction. The termination section

brings the result (return value in terms of an imperative programming language) of a

transaction to its parent transaction. Finally, the subtransaction section describes the

behaviors and attributes of sub-transactions.

~5 Chapter _____________ __.

Programming in T-Cham

In this chapter, we use some examples to illustrate the T-Cham programming style.

Different programming languages have different programming styles. For example, if

we are asked to calculate the summation of n numbers N 1 , N 2 , · · · , and Nn in an

imperative programming language, the n numbers may be assigned to an array, and a

loop which repeats n times accumulates the result by adding from N 1 to Nn, but in

T-Cham, the result is achieved by simulating the process of a chemical reaction system:

the n numbers are represented by n tuples in a tuple space, and those tuples react to

each other- any two tuples can be transformed to a new tuple with the value of their

summation- like molecules in a chemical reaction system.

This chapter mainly concentrates on the programming style of the T-Cham pro­

gramming language. Some of the examples used in this chapter are computation

oriented programs, including th e sieve of Eratosthenes, th e Dutch flag , the Fibonacci

numbers, and the calculation of the value of 1r problems , and the others are interac­

tive ones , such as vending machine, producer-consumer, sleeping barber, and meeting

scheduler problems. In this chapter, we also discuss the effect of non-determinism on

programming and program execution.

All the leaf transactions of the examples in this chapter are written in the C pro­

gramming language except the calculation of the value of 1r (Section 5.8) , whose leaf

64 Programming in T-Cham

transactions are written in Java [133] to show the ability of T-Cham to adopt different

programming languages.

5.1 The Sieve of Eratosthenes

Example 2 (Eratosthenes Sieve) Eratosthenes Sieve is one of the oldest methods

to find prime numbers. Th e basic idea is very simple: we put all (in a particular

program, some) the natural numbers in a sieve. In the first round, all the multipliers

of the number 2 are sieved out, and then the multipliers of 3, 5, · · ·. Finally, only the

prime numbers left. The program of Figure 5.1 finds all prime numbers in a segment

of natural numbers beginning with the smallest prime number 2. I

transaction root

tuples
int n;

initialization
[i:2 . . 500000]: :n=i;

reactionrules
n, n leadsto n$2 when (n$1 mod n$2 == 0);

endtrans

Figure 5.1: The T-Cham program of Eratosthenes Sieve

The tuple space in this example only has one type of tuples. Each individual

tuple has one field of integer. Initially, the tuple space has (500000 - 1) tuples which

represent the natural numbers from 2 to 500,000 according to the initialization section.

The reaction rule says that every number (tuple) destroys its multipliers; thus, only

prime numbers are left until no reaction rules can be applied.

We have prototype implementation experience (on CM-5) of this example [126].

5.1 The Sieve of Eratosthenes 65

#define R
#define M

500000
20000

the total number to be sieved
the size of data chunks

transaction root

endtrans

tuples
tuple {

} num;

int A[20000];
int gridsieved;

data chunks: 2-M, M+1-2*M

sieved by this number

int N; -- the number of chunks
int grid, nextgrid;
boolean done;

initialization
grid=2; nextgrid=3; N=R/M;
init_num();

reactionrules
num, !grid leadsto num, done, nextgrid by sieve

when (num$1.gridsieved != grid);
{done}, nextgrid, grid leadsto grid by {grid$2 = nextgrid;}

when (ldonel==N);

termination
on (lnextgridl==0 && ldonel==N) do out_prime;

subtransactions
sieve: ldonel==k // i:1-M:: num$2.A[i] = (num$1.A[i]%grid) 7

num$1.A[i] :0 and ldonel==k+1

Figure 5.2: Another T-Cham program of Eratosthenes Sieve

66 Programming in T-Cham

Our experience reveals that although the T-Cham program is very concise and straight­

forward, its implementation is not so efficient. We observed that sometimes, though

implemented on a 64 node CM-5 parallel computer, it is even slower than a sequential

program written in the C programming language running on a SUN station. The cul­

prit here is the so-called non-determinism. The reaction rule in this example is very

simple: every number destroys its multipliers. For example, the number 2 destroys the

numbers of 4, 6, 8, · · ·, and the number 3 destroys the numbers of 6, 9, 12, • • • etc.

The idea is clear, but the order of the process is not given. In a completely chaotic

situation, the possibility exists that when the number 2 is destroying the number 4,

the number 6 is trying to destroy 12, and 9 is trying 33 , while the number 25 just

failed to destroy 5. This experience suggests that while the non-determinism is good

for algorithm expressio_n, determinism is good for efficiency.

A more efficient and also more difficult to understand program is in Figure 5.2,

where the sequence of the natural numbers from 2 to 500,000 is broken down into sub­

sequences (called chunks) , e.g., 2-20000, 20001-40000, and so on. We sieve the chunks

with grid concurrently (reaction rule 1). After every chunk has been sieved by grid

which is indicated by the number of done tuples in the tuple space, grid is replaced

by one of nextgrid tuples and all done tuples vanish at the same time (reaction rule

2) , and then the next round of sieving. The program will be easier to understand if

you come back after the subsequent sections.

As T-Cham relies on the transactions written in imperative programming languages

for its efficiency, automatic program transformation is not our primary concern in this

thesis, although it can further increase the efficiency of T-Cham implementation. We

refer the interested readers to [84, 48, 44, 85 , 169].

5.2 Vending Machine

Example 3 (Vending Machine) There is a vending machine which sells chocolate

bars: a large bar costs $2, and a small one costs $1; furthermore, we assume that only

thes e two kinds of coins1 can be used. Two buttons on the vending machine are large

1·\ve ha-.-e $1 and $2 coins in Australia.

5.2 Vending Machine 67

and small , which are used by a customer to choose a chocolate bar. Th e program is in

Figure 5.3.

transaction root

tuples
boolean ausd1, ausd2;
boolean small, large;
boolean LargeBar, SmallBar;

initialization

endtrans

[1 .. MJ: :LargeBar=TRUE;
[1 .. NJ: :SmallBar=TRUE;
[1 .. SJ: :ausd2=TRUE;
[1 .. TJ: :ausd1=TRUE;
small=TRUE, large=TURE;

reactionrules
ausd2, large leadsto LargeBar,
ausd2, small leadsto SmallBar,
ausd1, ausd1 leadsto ausd2;
ausd1, small leadsto SmallBar,

$1 and $2 coins
the two buttons

I

the two kinds of choc bars

M large bars
N small bars
S number of $2
T number of $1
the two buttons

large;
ausd1, small;

small;

Figure 5.3: The T-Cham Program of Vending Machine

The tuple space of the problem simulates the vending machine. It has M large

chocolate bars , N small ones, and two buttons (small and large) at the beginning.

Coins and the buttons pressed are the stimuli from the outside world. The vending

machine responds to the stimuli according to the reaction rules: a $2 coin with a button

large pressed gives out a large chocolate bar (reaction rule one), or a small chocolate

bar and a $1 coin change if the button small is pressed (reaction rule two). By reaction

rule three, two $1 coins makes one $2 value, and by rule four , a $1 coin and pressing

button small produce a small chocolate bar. In the reaction rule 1, we can see that

the tuple large , which stands for the button for a large chocolate bar, appears on both

68 Programming in T-Cham

side of the reaction rules. It means the tuple is a re-usable resource, and it can be

recycled after "being used" .

We use the " !" operator before the tuples of small and large because they can

never be consumed.

To manage the re-charge of chocolate bars, we can use termination section:

termination

on (ILargeBarl==0 I I ISmallBarl==0) do wait_for_recharging;

As the transaction wai t_ior _recharging is in the termination section, a re-start of the

program is necessary. The arrangement is fine with this particular application. In real

world, we do see vending machines being shut down for re-charging. For some other

applications, which may have to keep running all the time, we cannot rely on termi­

nation section to handle exceptional events . Exception handlers should be introduced

into T-Cham. As it is not the core components of T-Cham, we leave it as future work

for the time being.

5.3 The Producer-Consumer Problem

Example 4 (The Producer-Consumer Problem, with bounded buffer) The pro­

ducer produces one message) a string of at most MAX characters; at one time and the

consumer consumes one message at another time. Both producer and consumer are

autonomous. Th e only constraint on them is the capacity of the repository where the

messages are temporarily stored. We assume the capacity is N in our example. Th e

producer will continue producing messages as long as the total message number is less

then N) and the consumer will consume messages whenever they are available. Th e

T-Cham program is given in Figure 5.4. I

The first two lines define two constant MAX and N. They are substituted by 1024

and 100 respectively before the program is passed to a T-Cham compiler.

There are two kinds of tuples in this program. They are token and msg. The

number of tuple tokens denotes the current capacity of the message container in this

example. If there are n (0 < n < N) tokens currently in the tuple space, it means that

5.3 The Producer-Consumer Problem

#define MAX
#define N

transaction root

tuples

1024
100

boolean token;
char msg[MAX];

initialization

the max length of a message
the max number of messages

a place-holder for a message
a message

[i: 1 .. NJ: :token=1;

reactionrules
token leadsto msg by prod;
msg leadsto token by cons;

subtransaction

producer's rule
consumer's rule

69

prod: ltokenl>0 // (ltokenl '=ltokenl-1)&&(1msgl '=lmsgl +1) ;
cons: lmsgl>0 // (ltokenl '=ltokenl+1)&&(1msgl ' =lmsgl-1) ;

endtrans

transaction prod
#language C
#tuplein boolean token;
#tupleout char msg[J;

prod() {

}

endtrans

transaction cons
#language C

I* some C code writing messages to the msg tuple *I

#tuplein char msg[];
#tupleout boolean token;

cons() {
I* some C code reading the content of the msg tuple *I

}

endtrans

Figure 5.4: The T-Cham Program of Producer-Consumer P roblem

70 Programming in T-Cham

the producer still can produce n messages without any consumption by the consumer.

The tuple msgs simply hold the messages. At the very beginning, there are N tuple

tokens and no msg.

The first reaction rule says that the leaf transaction prod consumes (thinking as

occupies) one token tuple and generates one message msg. The reaction cannot happen

if there are no tokens left. The second reaction rule says that the leaf transaction

cons consumes one message, and as the result of the consumption, one more token is

available. Similarly, the consumption reaction could not happen if there is no message

curre:o.tly in the tuple space.

The subtransaction description section gives the pre- and post-conditions of the two

leaf transactions: prod and cons. They actually specify the population of token and

msg in the tuple space before and after the execution of the leaf transactions.

There is no termination section in this example because this is a non-terminating

program.

We do not give the details of the C codes of the two leaf transactions. They are

not relevant to T-Cham.

Finally, in this example, we do not care about the order of the consumed messages.

That any message will be eventually consumed is guaranteed by the fairness principle

of T-Cham.

5.4 The Dutch Flag Problem

Example 5 (Dutch Flag) We have an array of n elem ents, each of which is either

Red, White , or Blue. A program is needed to re-arrange their positions so that all Red

elements come before White ones, which are in turn before Blue ones. Then elements

are represented by n tuples in the tuple space. Every tuple has the fo rm of (x, y) , where

x is the sequence number of the element in the original array and y is the color of the

element. The T-Cham program is in Figure 5. 5. I

The idea of the program is very simple. Pick up any two tuples of two different

colours. If their relative position indexes are not right , exchange the two indexes, and

then put the two new tuples back to the tuple space. Repeat the procedures until no

5.4 The Dutch Flag Problem

transaction root

tuples
tuple {

int order;
enum color {r,w,b};

} strip;

initialization
init_element;

reactionrules

-- one element

strip(i,r), strip(j,w) leadsto strip(i,w), strip(j,r)
when (strip.i > strip.j);

strip(i,w), strip(j,b) leadsto strip(i,b), strip(j,w)
when (strip . i > strip.j);

strip(i,r), strip(j,b) leadsto strip(i,b), strip(j,r)
when (strip.i > strip . j);

termination
on(forall (i,r), (j,w), (k,b)

endtrans

transaction init_element
#language C

init_element() {

i<j<k) do output_strip ;

I* put n strip tuples into the tuple space *I
}

endtrans

transaction output_strip
#language C

output_strip() {
I* code for strip tuples output *I

}

endstran

Figure 5.5: The T-Cham Program of Dutch F lag

71

72 Programming in T-Cham

such tuples exist .

In this example, we use the internal structures (with some values) of tuples as part

of the selection criteria to choose tuples for reactions. The first reaction rule of the

program in Figure 5.5 is equivalent to:

strip, strip l eadsto strip, strip by index_exchange

when (strip$1 . color=='r' && strip$2 . color=='w' &&

strip$1 . i > stri p$2.j) ;

where the transaction index_exchange exchanges the index value of strip$1 and

strip$2.

5.5 Sleeping Barber

The Sleeping Barber problem is actually an abstraction of the client/ server pro­

gramming model, which is widely used in programming for computer networks.

Example 6 (Sleeping Barber) 2 A barber provides hair-cutting service in his shop,

where there are two doors - one for entrance and the other f or exit- and N chairs for

waiting customers. Only one customer can receive the service on the barber's chair at

a time. When there are no customers in the shop, the barber will f all asleep on his

chair; otherwise, he continuously provides hair-cutting service until no customers are

left. The barber spends all his life serving customers or sleeping.

When a customer arrives and finds the barber sleeping, he wakes up the barber and

has his hair cut on the barber's chair. After the service, the customer gets out of the

shop by the exit door. If the barber is busy when a customer comes, the customer will

take a seat, provided that there is an empty chair, and wait for the barber. If all chairs

are occupied, the new customer has to wait until a chair is available. The T-Cham

program is in Figure 5. 6. I

The tuple space of this program simulates the barber's shop. The tuples in the

tuple space denote the states of each customer, each chair, and the barber. A pin in

2We simply assume that the barber and all his customers are male for description brevity.

5.5 Sleeping Barber

transaction root

tuples
boolean pin, pwt, pcut, pout; the states of

a customer

73

boolean bsp, bwk, bfin;
boolean chair;

the states of the barber

endtrans

initialization
[i:1 .. NJ: :chair=TRUE;
bsp=TRUE;

reactionrules
pin, bsp leadsto pcut, bwk;

There are N chairs.
The barber is asleep.

pin, chair leadsto pwt when (!bsp);
pcut, bwk leadsto pout, bfin by cutting;
pwt, bfin leadsto pcut, chair, bwk;
bfin leadsto bsp when (lpwtl==O);

subtransaction
cutting: pcut&&bwk // pout&&bfin;

transaction cutting
I* some operations here *I

endtrans

Figure 5.6: The T-Cham Program of Sleeping Barber

74 Programming in T-Cham

the tuple space means that a new customer is coming, pwt a customer is waiting on a

chair, pcut a customer is sitting in the barber's chair and having his hair cut, and pout

means a customer leaving the barber's shop. bsp denotes that the barber is sleeping,

bwk the barber is working, and bf in the barber has just finished cutting the hair of a

customer. A tuple chair in the tuple space means that the chair is available for a new

customer.

Initially, there are N chairs available in the tuple space (i.e., barber 's shop) and the

barber is sleeping.

The first reaction rule says that if a customer finds the barber is sleeping when he

is coming, he wakes the barber up and has his hair cut, i.e. , makes the barber busy,

and the second, that if a new customer finds that the barber is busy (or not sleeping)

and a chair is available, he will sit down on the chair and wait for the barber. By

the reaction rule three, the busy barber will finish his service to the customer who is

having his hair cut so that the customer is ready to go. A waiting customer is asked to

sit down on the barber 's chair to have his hair cut according to reaction rule four; as

the consequence, an occupied chair is available again. By the reaction rule five , when

there are no waiting customers, the barber is going to sleep on his chair.

This is a typical interactive situation. Unlike the Eratosthenes Sieve example, there

is no way to eliminate non-determinism. Other solutions of the problem can be found

in [17, pp 266- 267] and [11, pp 290- 294]. We believe readers will find the program

given here has a more natural and intuitive presentation.

5.6 The Meeting Scheduler

Example 7 (Meeting Scheduler) We are to find the earliest common meeting time

for a group of people. For the sake of brevity; we suppose that there are only three

people, F , G , and H , in the group. Every person of the group suggests his/her earliest

acceptable meeting time. Finally, the earliest common meeting time is reached. Fig-

ure 5. 1 shows a T-Cham program to solve the problem3
. I

3 For a more detailed discussion of the problem and other solutions} we refer readers to Chandy and
Misra [43} pp 13- 18}

5. 7 The Fibonacci Numbers 75

In the program, the tuple time holds the current suggested time for the meeting.

It will be changed by the persons F, G, and H according to their own agenda. The

transaction F _time (resp. G_time and H_time) withdraws time and then checks it

against to his/her own agenda. If the time is an acceptable time, it remains unchanged

and F _changed is set to FALSE; otherwise, a new time is put back into the tuple

space and F _changed is set to TRUE. The common meeting time will be reached when

F _changed, G_changed, and H_changed are all set to FALSE.

More formally, the transaction F _time executes the function f:

f : int • int.

The result off (t) is the time acceptable for F to have the meeting according to the

current suggestion t, i. e., for any t, f (t) > t, and f (t) is an acceptable time for F while

any other time r , t < r < f (t), is not acceptable. g and h are defined accordingly.

In fact, we can have a unique transaction my _time instead of F _time , G_time , and

H_tirne. The transaction executes the function ¢:

¢: {F,G,H} x int • int, or ¢: {F, G, H} • (int • int).

If we apply¢ to F , G, and H , we obtain ¢(F) - f, </>(G) _ g, and ¢(H) _ h. We keep

the different transactions , F _time, G_time , and H_time , in the thesis to simplify our

proof in Chapter 7. The result of program in Figure 5. 7 is the time u which satisfies

u = f(u) = g(u) = h(u).

5.7 The Fibonacci Numbers

Fibonacci numbers are not a commonly used example for concurrent programming,

especially in parallel situation, for the definition of the n th Fibonacci number,

{
f (n - l) + f (n - 2) if n > 2

f(n) =
1 if n = l or n = 2,

suggests a very limited degree of concurrency, but an alternative definition of the for­

mula exposes a high degree of concurrency.

76 Programming in T-Cham

transaction root

tuples
date time; -- the type of time is date.
boolean F_changed, G_changed, H_changed;

initialization
time=O;
F_changed=G_changed=H_changed= true;

reactionrules
time, F_changed, !G_changed, !H_changed leadsto time, F_changed

by F_time when (G_changed==TRUE I I H_changed==TRUE);
time, G_changed, !F_changed, !H_changed leadsto time, G_changed

by G_time when (F_changed==TRUE I I H_changed==TRUE);
time, H_changed, !F_changed, !G_changed leadsto time, H_changed

by H_time when (F_changed==TRUE I I G_changed==TRUE);

termination
on(F_changed==false && G_changed==false && H_changed==false)

do output;

subtransactions
F_time: time=r II (time=r) && (F_changed==FALSE) I I

(time=f(r)) && (F_changed==TRUE)
G_time: time=r // (time=r) && (G_changed==FALSE) I I

(time=g(r)) && (G_changed==TRUE)
H_time: time=r // (time=r) && (H_changed==FALSE) I I

(time=h(r)) && (H_changed==TRUE)
endtrans

transaction F_time
#language C
#tuplein date time;
#tupleout boolean F_changed, G_changed, H_changed;

F_time() {

}

endtrans

I* the C code to figure out the earliest available time *I
I* for the person F from his/her event calendar. *I

I* the leaf transactions of G_time and H_time, similar to that of F_time *I

Figure 5.7: The T-Cham Program of Meeting Scheduler

5. 7 The Fibonacci Numbers 77

Example 8 (Fibonacci Number) The n th and the (n - l) th Fibonacci numbers can

be defined by the (n - l) th and the (n - 2) th numbers, and so on:

(
J(n)) (1 1) (J(n - 1))

f(n-l) - 1 0 f(n-2)

(: ~ r-1 (~)
Let coef be (: ~) and fib be (~) , then the n th and (n-l) th Fibonacci numbers

will be the matrix product of (n - 1) eoef s and one fib. The T-Cham program zs zn

Figure 5.8. I

The tuple eoef and the tuple fib correspond to the two matrices. At first, i.e.,

the initial tuple space state of transaction root , there are (n - 1) copies of tuple eoefs

and one fib. The reaction rules of root say that two copies of eoefs can be used to

produce one eoef by the transaction me , which calculates the product of the two eoef

matrices, and one eoef and one fib can be made to one new fib , the product of the

two tuples (matrices) by mf. Whenever there is no eoef left, the program can terminate

and output the result - the n th and the (n - l) th Fibonacci numbers , contained in

the remaining fib tuple.

The leaf transactions ini t _eoef and mf are written in the C programming language

("#language C" in the transactions). The former reads the number n from keyboard

and then generates (n - l) copies of eoef tuples to the root 's tuple space; and the

latter calculates the matrix product of a eoef and a fib. The eoef and the fib in

the transaction mf are not taken as arguments. They are the resources prepared for

the transaction before its execution and consumed by it after the execution. Similarly,

the tuples generated by a transaction are not the function value returned but the new

resources. Finally, "#language" specifies the language used to write the transaction

(default is T-Cham itself) and the "#tuple in" and "#tupleout" line is used to provide

the type information of a tuple to the compiler.

pO , p1 , p2 , qO , q1 , and q2 are the pre-conditions and post-conditions of the three

transactions of ini t _eoef , me , and mf . They are

78

transaction root

endtrans

tuples
tuple {int a,b,c,d;} coef;
tuple {int x,y;} fib;

initialization
init_coef; fib={{i,i}};

reactionrules
coef, coef leadsto coef by me;
coef, fib leadsto fib by mf;

termination
on (lcoefl==O) do output_fib;

subtransactions
init_coef: pO // qO;
me: pi// qi;
mf: p2 // q2;

transaction init_coef
#language C
#tupleout tuple {int a, b, c, d} coef;

void init_coef() {

int i,n;

scanf(11 %d 11
, &n);

Programming in T-Cham

for (i=i; i++; i<n) coef.a=coef.b=coef.c=i, coef.d=O;
}

endtrans

transaction mf
#language C

. #tuplein tuple {int a, b, c, d} coef;
#tuplein tuple {int x, y} fib$i;
#tupleout tuple {int x, y} fib$2;

endtrans

void mf () {
fib$2.x=coef.a*fib$i.x,coef.b*fib$i.y;
fib$2.y=coef.c*fib$i.x,coef.d*fib$i.y;

}

I* me is omitted. it is similar to mf *I

Figure 5.8: The T-Cham Program of Fibonacci Number

5.8 The Calculation of the Value of 1r 79

pO TRUE,

(
al bl) (a2 b2) p1 coef$1 = /\ coef$2 = ,
cl dl c2 d2

p2 coef = (: :) Af ib$1 = (:),

(
1 1) qO I coef I = n I\ Vcoef ET: coef =
1 0

Alfibl = 1 i\ fib= (~),

(

ala2 + blc2 alb2 + bld2)
q1 coef$3 = ,

cla2+dlc2 clb2 +dld2

(
ax+ by)

q2 fib$2 = ,
ex+ dy

where T denotes the tuple space. These pre-conditions and post-conditions are used for

program verification purposes. If a programmer finds it is difficult to provide them for

every transaction or is unwilling to do so, just simply have the conditions be trivially

true.

5.8 The Calculation of the Value of 1r

Example 9 (The Calculation of the Value of 1r) The value of 1r can be obtained

by numerical integration method:

Jr ~ 11 1
4 --dx

o 1 + x 2

n-1 i +l
1 L, 4 l n ' • ,dx,

i=O n

n EN,

where N is the set of natural numbers. For each integration JPq J(x)dx, its numerical

value is, approximately,

i q 1 N (q - p) * i
f(x)dx ~ -L, J(p + ---), NE N.

p N i=O N

The T-Cham program is in Figure 5. 9. I

80

transaction root
tuples

tuple {double p, q;} dom;
double val;

Programming in T-Cham

-- a chunk of integration
-- the value of the pi

int N;
initialization

N=1000;
init_dom();

density for the numerical integration

endtrans

-- active initialization for dom
reactionrules

dom, !N leadsto val by integration;
val, val leadsto val by summation;

termination
on (ldoml==O && lvall==1) do out_pi;

subtransaction
init_dom:pO//qO;
integration:p1//q1;
summation:p2//q2;

transaction init_dom
I* omitted to save space *I

endtrans

transaction integration
#language Java
#tuplein {double p, q;} dom
#tuplein int N
#tupleout double val

endtrans

public class integration() {
double pi, x, step;
inti;

}

step= (dom.q-dom.p)/N;
x = dom.p;
pi= 4*(1/(1+x*x));
for (i=O; i<N; i++) {

x += step;
pi+= 4*(1/(1+x*x));

} //for
val= pi/(N+1);

transaction summation
I* omitted to save space *I

endtrans

Figure 5.9: The T-Cham Program to Calculate the Value of 1r

5.9 Discussion 81

This program is quite easy to understand. Initially, in the tuple space, there are

certain chunks of the integration:
i+l 1

4 X (_ n 2 dx,
}2- l+x

n

which are put into the tuple space by the leaf transaction ini t_dorn. The transaction

integration turns them to a numerical value val. The value 1r is obtained by adding

all those vals together.

There can be as many transaction integration concurrently as to the limit of the

computational resources or the total number of the tuples <lorn left in the tuple space.

The amalgamation of the tuple val can happen at the same time.

5.9 Discussion

The chapter concentrated on the using of the basic T-Cham programming language

to write application programs.

To write a T-Cham program, or to solve a problem with the T-Cham programming

language, we first divide the problem into small pieces of sub-problems, and then figure

out the reactions among those sub-problems during the process of computation. We

use tuples to store the data, including the initial data, intermittent results and the

final results , and reaction rules to describe the reactions. Some of the examples in

this chapter are interactive programs, which never terminate, while the others are

computational intensive ones. All of them only have the main (i.e., the root) transaction

and a number of leaf transactions. There is no nested T-Cham transaction. We leave

the issue to Chapter 8.

In this chapter, we also discussed the impact of non-determinism on the program ex­

ecution efficiency and the program itself specification. We believe that non-determinism

is good for algorithm expression, but determinism is good for execution efficiency. The

T-Cham implementation (in Chapter 6) has little ability to reduce non-determinism.

It is necessary for programmers to eliminate any unnecessary non-determinism. We

suggest that programmers start with the most natural way to write their programs.

After the ideas and the logic of the programs have been proven, reduce the unnecessary

non-determinism for the efficient execution of the programs.

~ 6 _____________ _
T-Cham Implementation

In this chapter, we propose an implementation model for T-Cham programs. It is

a generic model, called T-Cham lvf achine, for MIMD computer architectures. We

tested this basic idea on the APl000 multicomputer and received some preliminary

performance data.

The chapter first introduces some fundamental issues involved in the implementa­

tion of a parallel programming language, and then proposes the T-Cham Machine. It

is actually an extension to the master/worker parallel progTamming model. Because

the native master/worker model is subject to communication congestion between the

master node and the worker nodes when the number of worker nodes increases. the
J

T-Cham Machine suggests a multi-master structure. Section 6.2 describes our ba-

sic methods of managing data integrity, task distribution, and the communication in

multiple master environment. Section 6.3.1 gives some preliminary performance data

of a T -Cham Machine implementation on the APl000 multicomputer together with

theoretical performance analysis, and Section 6.3.2 studies the performance of the Ma­

trix iVIultiplication example (Example 12) on the T-Cham Machine. We conclude this

chapter with a discussion on some broader issues involved in a full-fl edged T-Cham

implementation.

84 T-Cham Implementation

6.1 Introduction

The implementation of a parallel programming language is much more complex

than that of a sequential programrning language. For example, in addition to the

transformation from the source code of a programming language to the machine code

of a target computer, (i) parallel task description and partitioning (how to describe a

parallel task, how large is the task, and how to divide and assemble parallel tasks?) ,

(ii) scheduling (when and where a task should be started?), (iii) communication and

synchronization among those tasks, and (iv) scalability (will the performance be better

if more processor elements are involved?) are all new issues.

In this section, we briefly discuss the implementation issues which are directly

related to our T-Cham Machine. For more detailed discussion about parallel program­

ming implementation, we refer readers to other reports , papers, and books [171 , 97,

46, 72, 103, 31, 142, 61 , 157, 33, 162, 102).

Parallel task description and partitioning are not only the major issues of parallel

programming language design but also the issue of its implementation. As we discussed

in Section 2.2 , there are two kinds , in terms of parallel task description, of parallel pro­

gramming languages: implicit or explicit. An implicit parallel programming language

has no concept of parallelism at the programming language level. Parallel tasks are

identified by its implementation. In contrast, an explicit language requires program­

mers to provide the information of parallelism. When talking about implementation,

it is obvious that the parallel tasks inside of the program written in an implicit pro­

gramming language need to be identified, while for the program which is written in an

explicit programming language, there is still some room for parallel task identification

because the description of the original program may not be suitable to this particular

implementation or this particular run-time environment etc. The size of a parallel task

is defined as granularity (Section 3.1.4). Ideally, a good implementation has the ability

to automatically change the granularity, known as granularity packing, of parallel tasks

for the best performance. Of course, the more information provided by the source code

of a program, the better and the easier the granularity packing.

Parallel task scheduling is the biggest and hardest problem of any parallel language

6.2 The Execution Model of T-Cham 85

implementation. Given that many processor elements are available in a parallel com­

puter system (Section 2.1) , scheduling the parallel tasks among those computers is by

no means an easy job. Even if there is no internal connection among the parallel tasks ,

scheduling them on those computers is still an NP hard problem [94, 114]. In fact ,

those parallel tasks are from the same program. They cooperate with each other to

solve the same problem: each of them contributes a bit to the final result of the prob­

lem. Therefore, they have to communicate with each other , and what is more , some

tasks may depend on the results of some other tasks. In other words , there have to be

some communication and synchronization among those tasks. It makes the scheduling

problem even more complex. Worse still, in some implementations , the number of the

parallel tasks and the patterns of their communication and synchronization are not

static but generated on the fly due to granularity packing.

Scalability over processor elements is another important issue of parallel program

implementation. An implementation with good scalability can produce better perfor­

mance when the number of the processor elements in a parallel computer system goes

up , while a poor scalability implementation may not be able to take the advantage of

the increasing processor element number and even drop the performance.

Finally, a theoretical performance calculation model is always desirable. There are

some proposals of using chemical kinetics calculation in parallel computing [32 , 31]. As

T-Cham is based on the chemical reaction metaphor , chemical kinetics may be able to

serve as a theoretical performance model for the execution of a T-Cham program on a

particular parallel computer system.

6.2 The Execution Model of T-Cham

This section mainly concentrates on the abstract execution model of T-Cham, which

we call T- Cham Machin e. The model is independent of any particular computer archi­

tecture. It can be easily realized on a JVIIMD computer.

As the reactions of a T-Cham program rely on large dynamic sets of tuples , the

management of tuples and tuple spaces is one of the main issues in a T-Cham im­

plementation. To avoid synchronizations across different computers or computational

86 T-Cham Implementation

nodes, which are very expensive (and time-consuming) operations, it is desirable to

keep all the related tuples in one place. A straightforward implementation therefore

uses the master/workers paradigm, where a host node (master) stores tuples and tests

the reaction conditions, and a number of worker nodes execute the reaction rules. Each

of the worker nodes bids for tasks to execute from the host node, Figure 6.l(a). This

kind of implementation is very inefficient when there is heavy communication between

the host node (tuple space) and the worker nodes, and it does not scale well.

Our approach is an extension to the basic master /workers structure in that we may

have more than one master, Figure 6.l(b). Every master holds a piece of the original

tuple space, and the workers bid for tasks from one of those masters. As the duties of the

masters are mainly on tuple management while a certain group of tuples symbolizes the

generation of a new task, a master is thus called a task manager, or simply a manager;

accordingly, a worker is a task executor, or just an executor. The managers hold all the

tuples of a T-Cham program, and the executors bid for tasks from those managers (by

the action we call task bid). The execution of a reaction rule under T-Cham Machine

starts from an executor which bids for a task from one of the managers. After the

·executor receives the task, it executes the operations of this reaction and then returns

the tuples generated. An executor can only communicate with one of the managers

to bid a task or send the newly generated tuples back. It cannot communicate with

another executor. A manager can communicate with those executors as well as other

managers to maintain tuple space integrity, including managing tuple migration, or

pass a newly received bid, bid handling, if this manager has no task ready to go out for

execution. The number of task managers varies with the problem to be solved and the

machine on which this program is executed.

With the co-existence of multiple masters , there is more than one place where a

tuple can go and a task can be from. This makes task scheduling more complicated

than the simple master /worker structure. To cope with the tuple space partition and

data integrity among the multiple masters, task distribution, and the communication

between the masters and the workers etc. problems in this new environment, we suggest

four basic algorithms, Tuple Space Partition, Tuple Migration, Task Bid Handling, and

Task Bidding and Receiving in the subsequent sections. Those four algorithms are the

6.2 The Execution Model of T-Cham 87

Task Manager

Task Executors

(a) A Naive Implementation

Task Managers

Communication Network

•
Task Executors

(b) The T-Cham Machine

Figure 6.1: The Implementation of T-Cham

88 T-Cham Implementation

central part of the T-Cham Machine.

6.2.1 Tuple Space Partition and Duplication

Tuple space partition and duplication algorithm breaks a big tuple space into smaller

pieces so that each of them can be assigned to one of the multiple masters. There are

two methods, partitioning and duplication, to break down a monolithic tuple space into

a number of smaller pieces so that each of them can be stored in one of the managers.

For brevity, each piece is still called a tuple space hereafter while the one before the

breakdown is called the logical tuple space. Partitioning is used to separate different

types of tuples, and duplication makes multiple incarnations of the same tuple space

in order to reduce the tuple populations in each of the new tuple spaces. The basic

idea of those two operations is that partitioning can break down a tuple space to pieces

while keeping the related tuples together as much as possible, while duplication helps

to avoid over-crowding in any of those pieces. There is a trade-off between partition

and duplication. When and to what extent each of the two operations should be used

depend on a particular program and the execution environment.

Suppose that we have a tuple space1 consisted of three types - -0 a,a,/3,a,,,/3,a,· · · ~
- of tuples, partition can separate as from j3s and ,s to produce two smaller tuple

spaces: -0 a,a,a,· · · ~ and -0 /3,/3,,, · · · ~ . The criterion of the separation is to minimize

the communication among the managers while maximizing the throughput between the

managers and workers (see Algorithm 1). To make a partition, the left hand sides and

the when sections of all reaction rules in a T-Cham program are first transformed to a

weighted graph (step 1), where each vertex is a tuple type from the left hand side of a

reaction rule and the boolean expressions of its when sections, and an edge means that

the tuples at both ends of this edge are always selected together, while the weight w

of an edge means that the edge comes from w different reaction rules. In step 2, the

graph is then partitioned into k pieces: the number of vertices in each piece is either

l I J or l I J + 1, where n is the number of vertices in the original graph. The weight

summation (which corresponds to the communication cost) of cutting edges has the

1We use ~ and ~ to denote a tuple space. For example, ~ a ~ means a tuple space which has one
tuple a in it.

6.2 The Execution Model of T-Cham 89

Algorithm 1 (Tuple Space Partition)

INPUT: The reaction rules of a T-Cham program and a number k
OUTPUT: k partition of the set of tuples on the left hand sides and the when parts of

the reaction rules.
METHOD:

V := 0; -- the vertex set
E := 0; -- the edge set
W := O; -- the weight matrix
for every reaction rule such as

x1, x2, · · · , Xn leadsto Y1, Y2, · · · , Ym by T when J(x1, x2, · · · , Xn)
do

begin -- step 1: reaction rules--> weighted graph

end

repeat

v = {x1,x2, · · · ,xn} ·
V := VUv;
sort v into alphabetical order
for every s, t E v and t is next to s do

begin

end

E := Eu{(s , t)};
Wst := W st + l·
v := v-{s};

-- step 2: partition the graph
~ := 0:

I

decompose the set V into k subsets: V1, V2, ... , and Vk , and the

number of the elements in each subset is either l I~ I J or l I~ I J + 1;
for every two subset Vi and Vj , 1 < i,j < k do

for every s E Vi and every t E Vj do
~ := ~ + Wst ;

until a minimal ~ obtained:
I

output V1 , V2 , ... , and Vk·

Figure 6.2: The Tuple Space Partition Algorithm

90 T-Cham Implementation

minimum value among all possible partitions.

Taking the Vending Machine problem (Example 5.3) for example: the graph ob­

tained from the reaction rules and its partition are in Figure 6.3.

As graph partition algorithms are NP hard, most of them use heuristic rules to

reduce the computation time. The graphs obtained from the reaction rules of T-Cham

programs so far have reasonably small number of vertices (no more than 100); thus, we

partition them by brute-force. A better algorithm may be used, but it does not affect

the idea discussed in this thesis.

If the population of the tuples in one of those tuple spaces, say, the one with the a

type tuples , is still very large, the tuple space therefore needs to be continuously broken

down into even smaller pieces (in terms of tuple population instead of tuple types) to

alleviate communication congestion. The tuple space (not the tuples themselves) is

then duplicated. In other words, if the population of people in a building is too high,

we build another (or another n) building exactly the same as this building, and move

half (or ¼ population) of the population to the new building. For example, the a type

tuple space can be made into, for example, three incarnations: each of them holds one

third of the original tuple population.

6.2.2 The Communications Between Task Managers

There are two kinds of communications between any two task managers. The first

is that one manager asks tuples from another (tuple migration), and the second is task

bid receiving and passing (bid handling).

We adopt a distributed two phase locking (2PL) protocol [28, pp. 77- 78] for tuple

migration. When a task manager, known as asking site in Algorithm 2, needs some

tuples which are not available in the local tuple space at the moment, it immigrates

those kinds of tuples from remote managers. To keep the integrity of the tuple space,

the local manager first acquires all the necessary locks on the tuples from the remote

managers , known as asked sites in Algorithm 2, and then withdraws those tuples to its

local tuple space. Finally, the locks are released after the tuples have been immigrated.

The asking site follows this sequence: (i) send out messages to the corresponding sites

asking for locks, (ii) wait for the replies from each site, and (iii) if all agree, i.e., the

6.2 The Execution Model of T-Cham

reactionrules

ausd2, large leadsto LargeBar;

ausd2, small leadsto SmallBar,

ausdl, ausdl leadsto ausd2;

ausdl, small leadsto SmallBar;

~
1 ' ' ' '

1

' ' ' ' \
\

ausdl

1

1

ausd2
large

ausdl
small

large

ausdl;

Figure 6.3: The Tuple Space Partition of Vending Machine Problem

91

92 T-Cham Implementation

locking on every site is successful, broadcast a successful signal to all related sites, and

wait for the tuples come out from those sites; otherwise, broadcast a failure signal and

then abort. In an asked site, activities proceed like this: (i) upon receiving a lock

requirement, the site tries to lock the tuples specified; if successful, replies an agree

signal and waits for further replies; otherwise, a disagree signal and then abort, (ii)

on receiving a successful signal, i.e., the locks on every site are successful, this site

sends out the tuples needed by the asking site and then unlocks the tuples if necessary;

otherwise, unlocks the tuples- if they were locked- and then aborts. See Algorithm 2

for details.

Whenever a manager receives a task bid from an executor, it either sends out a

task for execution or passes the bid to another manager if no task is ready to go. The

other manager will fulfill the bid or continuously pass it through, Algorithm 3.

An important data structure in the algorithm is the TaskBidHist array, which keeps

the local version of bid fulfillment history. It partially reflects the task loads of each

manager. We call a bid corp.ing from another manager a passing bid to the local

manager while a bid directly from an executor a direct bid. One merit point is given to

the manager who fulfills a passing bid because it has done extra work; meanwhile, a

demerit point is fined to the manager who cannot fulfill a direct bid because it cannot

do its own job well. No penalty or award is given to a manager who passes through a

passing bid. The value of TaskBidHist is used by each executor to choose a manager

for a task bid. The basic idea is the belief that the manager who fulfilled one extra bid

is most likely to fulfill another one.

Every manager has its local copy of TaskBidHist array, which is initialized to Os at

the beginning. It is updated according to the local history and sent out with tasks to

a task executor. An interesting observation is that a manager keeps the merit points

of itself and demerit points of the others. If it fails to fulfill a direct bid, its records

of other managers, i.e., demerit points , are forced to reset to neutral, i.e., 0 (zero).

Although the TaskBidHist value on any manager is not a global history, it causes no

problem, as an executor can get a new copy every time when it receives a task from

a manager. The details of its usage is in Section 6.2.3 and the simulation result is in

Section 6.3.

6.2 The Execution Model of T-Cham 93

Algorithm 2 (Tuple Migration) To generate a task T of the reaction rule :

X1 , x2 , · · · , Xn leadsto ... by T when J (x1, x2 , · · · , X n)

a manager n eeds the tuples of ~x1 , x2 , · · · , Xn~ - Grouping the tuples according to where
they belong: we have Si and di; l < i < k : the tuples in Si can be got f rom the manager
di .

A SKING SITE : for each non-empty Si , 1 < i < k do
send lock requirement for each t uples in Si to site di ·

collect all t he replies from site di, l < i < k·
if all agree t o give out t he t uples required then

begin
broadcast a successful signal to site di, l < i < k;
collect all t he tuples coming from site di, l < i < k·

end
else

begin

end

broadcast a failure signal to sites di
abort·

ASKE D SITE: when receive a lock requirement message;
locking t he t uples, say s1, s2 , ... , St;

if t he locking success then

1 < i < k :
- I

begin -- the site is willing to give out the tuples

end

send an agTee signal·
wait for a broadcasting signal·
if a successful sign al then

send t he t uples needed to t he ASKING S ITE;

unlock s1 , s2 , . .. , St ;

else send a disagree sign al;

Figure 6.4: The Tuple 1v1igTation Algorithm

94 T-Cham Implementation

Algorithm 3 (Task Bid Handling) The algorithm executes on every manager.

TaskBidHist := O;
self := the identity of the node running this algorithm;
when receive a message;

case: a task bid message from an executor E;
if there is at least one task ready to go then

send a task with the current value of TaskBidHist to E;
else

begin
send the bid to its neighbor manager M;
TaskBidHist{s elf} := -1; -- unable to do its job well
for all x, x -=/-self do

if TaskBidHist[x}< 0
then TaskBidHist[xj := O;

-- reset the demerit records of the other managers
end·

' break;

case: a task bid message, originally from E , passed from another manager M' ;
if there is at least one task ready to go then

else

begin
. TaskBidHist[self j := TaskBidHist{s elf }+ 1;

TaskBidHist{M' j := TaskBidHist[M' }- l;
send a task with the current value of TaskBidHist to E ;

end

send the bid to its neighbor manager M ;
break;

others: other actions;

Figure 6.5: The Bid Handling Algorithm

..

6.2 The Execution Model of T-Cham 95

Algorithm 4 (Task Bidding and Receiving) The algorithm is executed on every
Executor.

bid_target := F(TaskBidHist); -- bid a task
send a bid message to task manager bi,d_target;
wait for a task and the new TaskBidHist value;
update the TaskBidHist array;
execute the task;
for every generated tuple x do -- send back the tuples generated

if x has only one place to go, say M
then send x to M

' else begin
tuple_target := G(TaskBidHist);
send x to tuple_target;

end

Figure 6.6: The Task Bidding and Receiving Algorithm

6.2.3 The Communications Between Task Managers and Executors

The load balance is an important problem in this proposed T-Cham Machine exe­

cution model, although it is not a problem in the original master /workers architecture,

because there is only one master. As each node, a manager or an executor, knows

nothing about the states of the others in our approach, task distribution is a difficult

issue. Generally speaking, there are two types of task distributions: manager-based

or executor-based. By manager-based distribution, whenever there is a task ready in

a manager at a time, the task is sent out to an executor for execution. The destina­

tion (executor) is determined by a choice function. If that executor is busy, the task

will be passed to another executor like the bid passing among managers. The other

way is when there is a task ready, it waits in the manager for an executor to bid, i.e. ,

executor-based distribution. An unloaded executor chooses one manager to bid for a

task. The bid will be passed to another manager if it fails in this one. The choice of

a manager is made by a choice function, too. Our implementation experience is based

on the second approach.

Every executor works on a permanent loop (until a termination condition is satis-

96 T-Cham Implementation

fled) of three steps: bidding for a task, executing the task, and returning the generated

tuples back to where they belong. The executor chooses a manager to send its bid

message and a manager, if necessary (i.e., if the generated tuple has more than one

"tuple space" to go), to return a tuple. Two choice functions, bid-choice function F

and return-choice function G, are responsible for the choice. We call them F function

and G function for brevity. Both of them are based on the TaskBidHist array, which is

originally set to Os, posing no discrimination to any manager, and then every coming

task updates it to the value of the TaskBidHist array in the manager who fulfills this

task bid.

There are many ways to define the functions F and G, but the basic philosophy

is the same: the manager who fulfills an extra bid passed from the other managers is

most likely to fulfill another one and the one who failed to fulfill a bid badly needs new

tuples to generate more tasks; in other words, F favors the manager who gives more

tasks while G favors the one of less tasks.

6.3 The Basic Performance Measurements: T-Cham Ma­

chine Implementation Case Study

This section gives some basic performance measurements of a prototype T-Cham

implementation, which is conducted on the APlOOO multicomputer. The APlOOO mul­

ticomputer is a distributed memory MIMD machine, and the communications between

the processing nodes are performed by point-to-point message passing or group broad­

casting. We currently have 128 processing nodes installed at ANU. We refer the readers

to Appendix B for more details about the structure of the APlOOO multicomputer.

In this section, we use an interactive program, the Sleeping Barber problem, to

illustrate the communication patterns among masters and workers, the calculation of

the TaskBidHist array, and the impact of this array to execution efficiency by calculating

the bid hit rate. We will use the Matrix Multiplication problem as the example for the

execution efficiency study.

6.3 The Basic Performance Measurements: T-Cham Machine
Implementation Case Study

6.3.1 The Basic Performance Experiment

97

Three kinds of experiments have been conducted on APl000 using its message pass­

ing library. They are (i) the communication overhead for a reaction, (ii) the accuracy

of the TaskBidHist array, and (iii) the bid hit rate (or the bid failure rate).

The execution of every reaction consists of three steps: bidding a task, rece1v1ng

and executing the task, and sending back the tuples generated:

Tr eac = Tbid + Tr ecv + Tex ec + Tr et (6.1)

where Tr eac is the total time needed for the execution of a reaction, Tbid the time used

to send a bid, Tr ecv the time to receive a task , T exec the time used to execute the

operations in the reaction, and finally, Tr et is the time used to return generated tuples

to where they belong. The time needed for bid passing, if the bid cannot be fulfilled

in the first place, is omitted for brevity. The communication overhead (Tcomm) for a

reaction is

T comm = Tbid + Tr ecv + Tr et (6.2)

The time used for any communication can be roughly divided into two parts: the time

for synchronization (including hand-shaking etc .) and that for real data transmission,

i.e. ,

T = Tsync + Ttrans (6.3)

where Tsync is almost a constant for a particular communication function call, and Ttrans

is proportional to the size of data to be transn1itted2 . Formula 6.2 is thus rewritten as

T comm = 3 X T sync + total size of data transmitted

communication bandwidth
(6.4)

The real time of communication overhead for a reaction with different amount of data

transmission involved is in Figure 6.7. The details of APl000 communication mecha­

nism and performance data can be found in [156] .

2
The communication over APl000 network is almost distance independent , and the message passing

bandwidth is constant. \Ne ignore network contention , which is rarely observed in this kind of programs
[100).

98

.....
8
;:::l
u
Cl)

><
t:.I.l

I. bid a task

Manager

::::,.({)~
v~

o"
,___'{.i

::-.~
l"v/ <..'{,i .;s

.:i-'

,-t
~

• .::.'{,i

u
'{,iCJ

<.:

3.
send the generated tuples back

Comm. between a manager and an executor

for a reaction

T-Cham Implementation

4.5 ,-----,---,-----,---~----~--------~

4

'o'
g 3.5
u
<l.)

"'
.E 3
~

-0
co
o.>

~ 2.5
>

0

§ 2
0 u

1.5

1.3

I '-----'------'--------'---'----'-----'----'---'------'--___,
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 I 0000

The Size or Data Transmitted (byte)

Figure 6.7: The Communication Overhead for a Reaction

The isoefficiency concept [97, pp. 125- 129] is often used to analyze the scalability

of a parallel program or algorithm. The efficiency (E) of a parallel program on a given

parallel computer is:

E = w(s)
w(s) + h(s , n)'

(6.5)

where s is the problem size, n the computer size, say, the number of computational

nodes, w(s) the useful computations which normally grows in the order O(s) , and

h(s, n) are overhead attributed to synchronizations and data communications.

The bid hit rate, defined as the ratio of the number of direct bids to the number of

total bids, is another factor affecting good performance. The higher the rate means the

less the bid passing, and hence, a better performance. The value of the TaskBidHist

array and the bid hit rate are two very close things. Taking the Sleeping Barber problem

as an example, the logical tuple space of the problem can be decomposed into four pieces

(therefore, four task managers): the first one contains the tuple types of pin, bsp, and

chair, the second one pcut and bwk, the third one pwt and bfin, and the fourth one

pout. In this example, we have four task executors, which bid for tasks for execution

from those managers, Figure 6.S(a). The example gives a clear illustration on tuple

space partitioning and the run time communication patterns. As only one barber is

available in the original problem (Example 6) , there could not be any concurrent tasks.

To be more general, we adapt the problem to more than one barber sharing a common

barber shop so that the barbers can work concurrently. Figure 6.S(b) is the so-called

6.3 The Basic Performance Measurements: T-Cham Machine
Implementation Case Study 99

Space-Time Diagram [108] of the first several rounds of an execution of Sleeping Barber

(with 5 barbers) on the APl000 computer. The computational nodes (called "cells"

in APl000) 0 to 3, cell O to cell 3 , work as the four task managers and nodes 4

to 7, cell 4 to cell 7 , the four task executors. From the diagram, we can see the

communications needed for any reaction: task bidding, bid passing, task receiving and

tuple returning,and the time spent on the communications and a real computation.

The calculation of the TaskBidHist array and hit rate are shown in Figure 6.9.

The functions F and G take the TaskBidHist array as input and return the task

manager chosen. A simplest definition ignores the value of TaskBidHist and gives the

same chance to each of the task managers:

F = random(x) mod 4, (6.6)

where "random" is a random number generator. A more sophisticated definition takes

the load information (TaskBidHist) into account: the manager who has more tasks

gets more chance and the one who runs out of its tasks has less chance been chosen

Algorithm 5.

The "random" function in the algorithm is a positive random integer number gen­

erator. We assume that the period of the generator is big enough so that x is uniformly

distributed from 0 to length. We can divide the length from 0 to length into n slots

(n = 4 in the Sleeping Barber problem discussed above). When a random number falls

into one of the slots, say, slot 2, the ordinal of that slot , 2 for slot 2, is the return value

of the F function. If all the slots are in the same size, F has no bias to any of the

slots. The significant part of Algorithm 6.10 is the SCALE array. Together with the

TaskBidHist array, it dynamically changes the size of the slots and thus , gives favourite

to some slots by making them bigger , and meanwhile , imposes bias to some slots by

making them smaller . As a result , F favors the manager who gives more tasks. By

changing the SCALE array constants of the algorithm, we can have different degrees

of favouritism or bias. For example, Formula 6.6 can be realized by assigning 1 (no

favourite or bias) to every element of the constants SCALE.

G can be defined in a similar way. The only difference is that when two managers

host a same tuple type, the one who has less value of TaskBidHist has a better chance

100

~ pcut

bsp chair I
,-.
~

bwk

-- - ------------- --~-

•
pout

I
I

I
I

/ '

pwt

~
bfin

T-Cham Implementation

cell O cell 1 cell 2 cell 3

pin

b I pwt I J pout
bsp bfin

chair
k

t

DO
cell 4 cell 5 cell 6 cell?

(a) Tuple Space and the T-Cham Machine

tuple returning
-----------------;::,..

- - task bidding or

receivmg

bid passing

--

-- --- -

cell 4 cell 5 cell 6 cell 7

cell 0 cell 1 cell 2 cell 3
- _,, - - - - . -- - - - - ,,, - - --- - -- - - - --"- - -- - -- -- - -- - d

(b) Space-Time Diagram

Figure 6.8: Tuple Space Partition and Communication Patterns of Sleeping Barber

6.3 The Basic Performance Measurements: T-Cham Machine
Implementation Case Study

0,0,0,0 0,0,0,0

l,-1,0,0

0,0,0,0 0,0,0,0

total bid: 4 -
direct bid: 1
passing bid: 3

101

hit rate: 1/4=25%
missing rate: 3/4=75%

2,-1,-1,0

manager O 1 2 3

the movement of a bid (from in to out)

x,x,x,x: the value of TaskBidHist

Figure 6.9: The Calculation of TaskBidHist and Hit Rate

to be chosen.

The hit rate for the first several rounds of an execution of Sleeping Barber is 53%

with Formula 6.6, and 79% under Algorithm 5. Figure 6.8(b) is its Space-Time diagram

under Formula 6.6.

6.3.2 The Performance Measurements of Matrix Multiplication

The T-Cham program of Matrix Multiplication is in Section 8.4. For simplified

description, imagine that each row of the first matrix and each column of the second

matrix are represented as tuples in a tuple space. We call the first one x and the second

one y. A reaction rule withdraws one x and one y to produce one product element z.

As the tuple space of the problem has only three types of tuples , there is no need

for tuple space partition, but duplication is needed for a good performance when the

computer nodes used for the execution scale up. The performance curves , Figure 6.11 ,

suggest that in the case of 128x128 matrix multiplication, one manager is good for

every 30- 40 executors. From Figure 6 .11 (b) , which is an enlargement of performance

102 T-Cham Implementation

Algorithm ~ (F function)
CONSTANT: SCALE{..-4 . .4 .. } = { .. , -0.94, -0.88, -0.75, -0.5, 1, 1.5, 2, 2.5, 3, .. };

SLOTLENGTH 100;
INPUT: TaskBidHist and k (the number of managers)
OUTPUT: Task Manager Id (0 .. k - 1)
METHOD: from := to := 0;

for i := 0 to k - 1 do
begin

from:= to;
to:= from+ SLOTLENGTHx (SCALE[TaskBidHist[i}}+l);
slot[i} := {from .. to-1 };

end
. length:= to-1;
seed := random(seed);
x := seed mod length; -- the period of the random number is big enough
for j : = 0 to k - 1 do

if (x in slot[i}) then return F := i;

Figure 6.10: The Choice Function

curve segment from the 40 th executors to the 110th executors in Figure 6.ll(a), readers

can easily figure out the effect of the second task manager.

This result can also be obtained by a simple calculation from the basic performance

measurement data in Section 6.3.1. The volume of data involved in every execution of

multiply is approximately (8 byte per float number in APl000):

128 x 8 (tuple x) + 128 x 8 (tuple y) +others(tupleheadetc.) ~ 2000 (bytes) (6.7)

From Figure 6.7, the time cost of a communication is the time of data transmission

plus three time synchronizations (Formula 6.4); thus the communication time needed

for every multiply execution (two synchronizations) is:

_ Tsync 1.3 ..
Tcomm - T2000 -

3
= 1.8 - 3 = 1.4 (millisecond) (6.8)

The average calculation time for an execution of x x y is 54.4 (millisecond). The ideal

performance can be obtained if a task manager always keeps busy while no bid waits

for communication, i.e., the maximum capacity of a manager is

54.4 ~ 39 (executor),
1.4

(6.9)

6.3 The Basic Performance Measurements: T-Cham Machine
Implementation Case Study

70

60

50

..--.. .
~ 40
CJ) ..._...
Q)

E 30
+--'

co
+--'

.8 20

10

128x128, 10 repeats

one manager +­
two managers -+ · -

0 ''' ''' ''''' ''' ' ' '' ''
0 20 40 60 80 100

number of executors
(a) The Number of Executors from 1 to 110

128x128, 10 repeats
1.9

1.8
one manager +­

two managers

1.7
I +

1.6
+

..--..
(.) 1.5 +.
Q)
CJ) +

..._... 14
Q) . +.

E +.

~ 1.3 ·+

co
+--'
O 1.2

+--'

+.
+

+.
+.

1.1 -+.
+.

'·¥

1

103

120

+
·· + ·+ .

·+ -+ -+ -- +- -+ -+·+·+·+·+··+ -. =J=. -+ -+ ·- + ·+ ·

0.9
40 50 60 70 80 90 100 110

number of executors
(b) The Number of Executors from 40 to 110

Figure 6.11: Performance of Matrix Multiplication (128x128)

104 T-Cham Implementation

in an ideal situation, where there is no communication race.

This kind of calculation can be carried out statically by the T-Cham compiler

or dynamically by the T-Cham run time environment for the best performance of a

particular program execution. As discussed before, T-Cham Machine uses multiple

master structure to alleviate the communication congestion problem of the original

master/worker structure. The new problem here is what is the best master to worker

ratio. If we have too few masters, the communication congestion problem is still there,

while if we have too many masters, there would not be the communication congestion

problem, but it will waste the computing power of some masters by having them waiting

for the workers to finish their current tasks so that the new generated tasks can be

given out. The best performance, i.e., the ideal master to worker ratio, can only

be achieved by maximizing the capacity of the masters, e.g., one master for every

39 workers in the previous example. By maximum capacity, we mean that a master

is always busy in doing its job and there is no traffic delay due to communication

congestion. If the number of the masters is fixed (static), the ratio calculation can

be carried out by the T-Cham compiler. A better way to achieve good performance

is dynamically changing the master to worker ratio during the course of a particular

program execution. The number of the masters dynamically changes according to the

current execution situation.

6.4 Conclusion

In this chapter, we proposed a generic T-Cham implementation model, the T-Cham

Machine. It is an extension to the original master /workers parallel computational

model. A T-Cham Machine may have more then one master, known as tuple manager,

and a number of workers, called task executors.

The most significant contribution of T-Cham Machine is the idea of multiple master

masters/workers structure. It is well known that the original master/workers structure

suffers from bad scalability because when the number of workers goes up, the commu­

nication to the single master goes up as well, and the bandwidth of the master becomes

the bottleneck and restricts the maximum number of workers it can have. Given the

6.4 Conclusion 105

reaction rule nature of T-Cham programs, parallel tasks are relatively easy to be iso­

lated, and also, the tuple space style data structure of T-Cham programs makes data

partition much easier then other kinds of data structures. It is possible for us to have

multiple masters, who cooperate with each other working as a much more powerful

master. Four basic algorithms were proposed to implement this multiple master idea.

They are Tuple Space Partition, Tuple Migration, _Task Bid Handling, and Task Bidding

and Receiving. The first two algorithms are responsible for data integrity across the

multiple masters, and the last two manage parallel task scheduling.

To decide how many masters are required for the execution of a particular T-Cham

program, T-Cham Machine develops a method for the best master to worker ratio

calculation. Although we did not discuss the issues of static number masters versus

dynamical number masters implementation and how to apply the ratio calculation dy­

namically in a great detail, the basic idea of the calculation procedures was illustrated

in Section 6.3. More investigation is required on those issues , but the foundation has

been laid.

The history array (TaskBidHist) in each of the worker node (executor) is very

useful. Two heuristic functions , bid-choice function F and return-choice f11:_nction G ,

are defined on the array. As the F function favors the master (manager) who gives more

tasks while G function favors the one of less tasks , they keep the balance of tuples and

tasks among those multiple masters without extra communication overhead and hence,

increase the efficiency of the T-Cham Machine. On the other hand, dedicating some

worker nodes to certain types of tasks may reduce the complexity of the task bidding

process and, therefore, reduce communication overhead and increase performance.

The implementation discussed in this chapter was conducted on the APl000 mul­

ticomputer. A unique feature of APl0O0 is its dedicated synchronisation network , see

Appendix B. This synchronisation network makes it easier to query the status of each

computer node (known as a cell). Therefore, it is relatively easy to test the termina­

tion conditions . In a general distributed computing environment , when the tuples are

across several computer nodes, to gather the information about a particular type of

tuples is a very costly operation. The simplest way to gather the information is to send

out a halt request to every node involved and then ask for the information about the

106 T-Cham Implementation

tuples. This is very inefficient. Another approach is to lock only the relevant tuples.

A distributed two phase locking (2PL) protocol [28 , pp. 77- 78] can be used to do the

locking. In addition, a deadlock-preventing algorithm should also be applied to avoid

any potential deadlock. For detailed discussion in this area, we refer readers to [39].

Finally, BSP [164, 89, 37] is another encouraging model for T-Cham implemen­

tation. In BSP, the execution of a program is achieved by a number of sequential

steps of so-called supersteps. Each superstep consists of three phases. They are the

local computation in every processing node of the underlying computer, communica­

tion amongst them, and a barrier synchronisation, which waits for each of the local

computation to finish and then moves forward to the next superstep. The superstep of

BSP well matches the concurrent reactions of the same reaction rule of T-Cham, but

the implementation of the global accessible tuple space on BSP seems not so trivial

and requires more investigation.

r::::: 7 _____________ __,i

Towards the Temporal Logic Proof

System of T-Cham

In this chapter, we concentrate on the application of a temporal logic system to T-Cham

program verification. As it is about the application of temporal logic, we take the

theoretic results of temporal logic for granted and do not repeat the proof procedures.

We do not always stick to the rigid temporal logic regime either1 , but we will refer

interested readers to the related references.

We first briefly introduce the temporal logic system, which is based on Manna-Pnueli

temporal logic [130, 129], and then, in Section 7.2, we adapt the temporal logic system

to T-Cham. We also develop a number of definitions and transformations by means of

which we can translate a T-Cham program into a set of temporal logic formulae. In

Section 7.3, we study the impact of racing between the reaction rules of a T-Cham pro­

gram on its temporal logic proof system. Section 7.4 gives some examples on how to use

the temporal logic system to prove some important properties of T-Cham programs.

1There are many proposed formal proof systems using different mathematical tools to prove the cor­
rectness of programs, but most of them primarily emphasize on the mathematical theories themselves.
We believe this is the reason why they are not widely accepted by programmers, who are actually
supposed to use those systems. Programmers, whenever possible , tend to think more intuitively, for
example, the Venn Diagrams (53) in set theory.

108 Towards the Temporal Logic Proof System of T-Cham

The impact of T-Cham termination conditions on the temporal logic proof system is

discussed in Section 7.5. Finally, we conclude the chapter with a short summary in

Section 7.6.

7.1 Temporal Logic

Temporal logics [148, 83, 111 , 130] are very useful tools to reason about temporal

properties and especially suitable for modelling and reasoning about parallel and dis­

tributed applications . They are widely used in program specification and verification,

even as programming languages on their own right [141].

Temporal logic is a kind of modal logic [38, 45], the logic of necessity and possibility.

It is about time-dependent properties , such as causality, historical necessity, and the

notions of events and actions. In temporal logic , the value of a formula depends on

time. It could be TRUE at a given instant of time, but FALSE at another instant.

Temporal logics are also used to study the temporal properties, which depend on

time instants during computation, of programs. They can express the properties, such

as safety, liveness, precedence, and response, in a natural and succinct way. There

are many kinds of temporal logics : linear , branching, or interval time, discrete time or

dense t ime, etc. Gotzhein's paper [83] is a good introduction to temporal logics.

Reynolds [149] applied Lamport 's Temporal Logic of Actions (TLA) [112] to GAMMA

programs and developed their temporal logic proof systems. The GAMMA programs

studied by Reynolds have some sorts of ordering operators on their reaction rules. They

are more like the refined GAMMA programs of Chaudron and Jong [44], rather than

the original GAMMA programs proposed by J.-P. Banatre et al. [21 , 22 , 23].

In this thesis, we adopt Manna-Pnueli temporal logic [130], which is linear , discrete,

and based on non-negative time with an original t ime point 0. In other words , the time

domain is modeled by the set of natural numbers with its usual ordering relation, <

(less than).

The temporal logic is based on the first-order (predicate) logic [56, 130] with the

extension of some temporal operators. Formulae from predicate logic are called state

formulae, and so are state predicate, state term and so on. A temporal formula is a state

7.1 Temporal Logic 109

formula governed by temporal operators. We use the following temporal operators:

• , •, u, w.

Their informal meanings are

1. • is always or henceforth. • p says that p is TRUE from now on;

2. •q means q will be TRUE eventually;

3. p U q means p is TRUE and holds until q eventually becomes TRUE; and

4. W is called weak until - p W q means p is TRUE and holds until q eventually

becomes TRUE or p holds forever if q cannot become TRUE.

We do not use the next (0) operator in our logic system, because it is hard to define

the exact meaning of the next state as the reaction rules are all autonomous, and

the execution order of the reaction rules and the time spent on a reaction rule can

be arbitrary. In addition, the next operator destroys the compositionality of a logic

system [109].

Example 10 (Temporal Logic Formulae) Let p and q are formula e, we can get

temporal logic formulae: • p, •q, • •p, • p V •q, D(p V q), pU q, and p W q. I

A more illustrative explanation of temporal logic formulae is in Figure 7.1, where

we suppose that time begins from A.D. (Anno Domini) year 0. The English statements

above the arrow lines are state formulae; • and • are temporal logic operators. The

arrow lines indicate the projection of the truth of the underlying English statements on

the time axis. The thick lines or the short vertical bars mean truth; otherwise, false.

The formal semantics of a temporal formula is defined on a model CJ" , which is a

sequence of states CJ" = s0s1s2s3 · · · along the time axis, where si(i > 0) denotes the

state at time instant i. We use M to stand for the set of models , i.e. , all possible

sequences of states. While a state formula can be evaluated at any individual state

of a sequence, a temporal formula should be evaluated on the sequences. Each state

110 Towards the Temporal Logic Proof System of T-Cham

D (It is an AD year.)
~ t

• (It is the year 2000.)
-----+-------~t

• • (It is after the year 2000.)
~ t

• • (It is January.)
I I I I I >t

Figure 7.1: Illustrative Examples of Temporal Logical Operators

7.1 Temporal Logic 111

Si can be considered as a collection of predicates which have the value TRUE at Si, or

equivalently, as a mapping between variables and boolean values.

If (a, j) F p, we say the model a E M satisfies p at position j; if a formula p holds

at position 0 of a model a, i.e. (a, 0) F p, we write a p= p and say that the model a

satisfies the formula p; and if a formula p is satisfied in every model a E M , it is valid

and we write M p= p, or F p for short.

Formally, supposing a = sos1 s2s3 · · · E M, the meaning of temporal formulae is

defined as follows (read iff as "if and only if"):

• (a, j) F p iff p is TRUE in s j if p is a state formula;

• (a, j) F -,p iff it is not the case that (a, j) F p;

• (a, j) F p !\ q iff (a, j) F p and (a, j) F q;

• (a, j) F Op iff (a,k) pp for every k > j;

• (a, j) F Op iff (a, k) F p for some k > j;

• (a,j) F pU q iffthere is a k > j, such that (a, k) F q, and for every i, j < i < k,

(a, i) F p;

• (a , j) p=pWq iff(a,j) p=pUq or (a,j) F Op.

The operators of O, •, U, and W are not all independent. Actually, we can use W

as the only primitive operator and define:

Op _p W FALSE •p --,0--,p pUq pWq!\•q

A deductive system consists of a set of axioms, say A, and a set of rewriting rules,

called inference rules, which govern the deductive process. In other words, a deductive

process is defined in purely syntactical terms. We do not deal with the issue of the

completeness and soundness of a deductive system in this thesis. We refer readers

to the related papers [113, 130, 148, 105]. For a temporal formula p, if we can find

a sequence of rewritings from the axioms by a limited number of the applications of

inference rules which leads to p (reasoning by syntax), it is called a theorem, and, we

112 Towards the Temporal Logic Proof System of T-Cham

can also be sure that it is valid provided that the deductive system is sound, i. e., it is

based on sound inference rules . We write A t- p , or simply t- p , to mean that p can be

proven in our deductive system from a given set of A.

Here we list some of temporal logic axioms and inference rules. For more details ,

we refer readers to the corresponding papers [130, 83] . Supposing p and q are temporal

logic formulae , we write:

p {::} q for D[(p • q) !\ (q • p)]

and

p • q for D(p • q)

where p • q means -.p V q. p • q is actually a stronger version of logic implication ,

which is known as entailment.

Some of gener al axioms2 of temporal logic are:

AO axioms and tautologies of underlying logic

Al • p • p

A2 p • •p

A3 •• p {::} • p

A4 ••p{=} •p

A5 • • •p {::} • •p

A6 • • • p {::} • • p

A7 • p--+p

A8 D(p-+ q) • (Op-+ • q)

A9 • p • pWq

Inference rules are:

1. Generalization (GEN): for a state formula p which does not have any temporal

logic operators (i. e .. , it is satisfied in every state).

p

• p I
2Some of them are theorems, which can be derived from a smaller set of axioms. For brevity, we

treat them all as au."Tioms in this thesis. The same method is applied to basic inference rules and derived
inference rules.

7.2 The Temporal Logic Model of T-Cham

2. Specialization(SPEC): for a state formula p ,

• p

p

3. Modus ponens(MP): for any formula Pl , ··· ,Pn and q,

(p1 I\ · · · I\ Pn) -+ q, Pl , · · · , Pn

q

4. Entailment modus ponens(EMP):for any formula Pl , ··· ,Pn and q,

(Pl I\··· I\ Pn) • q, Dp1 , · · · , Dpn

• q

5. Entailment transitivity(ET): for any formula p , q , and r,

6. OT: for any formula p , q , and r ,

p • q, q • r

p • r

p • •q , q • •r

p • •r

7.2 The Temporal Logic Model of T-Cham

7.2.1 From a T-Cham Program to its Temporal Logic Formulae

113

I

I

I

I

I

The logic proof system for a program consists of three parts: the uninterpreted logic

part, the domain part, and the program part [129]. The uninterpreted logic part is the

general underlying logic system, which is the temporal logic discussed in the previous

section. The domain part restricts the proof system to the related domains , for example,

the axioms and theorems about integers, strings, trees , etc. The program part of the

proof system further restricts the proof system to the acceptable computation sequences

of this program.

114 Towards the Temporal Logic Proof System of T-Cham

To represent the program part of the T-Cham proof system in temporal logic no­

tations, we recast T-Cham programs to a 4-tuple: P = (T, S, R , 1) 3 , where

l. T is the set of all tuples (data) possibly appearing in the tuple space, for example,

{ token, msg} in the Producer-Consumer problem (Example 4). It is specified in

the tuples section of a T-Cham program.

2. S is the set of all possible tuple space states. Its purpose is twofold. On the one

hand, an element of S can assign values to tuples or the variables contained in the

tuples. In other words, it maps variables to their domains. On the other hand, the

element designates the tuples currently in some tuple space. For any tuple t E T,

the characteristic function C (t) = TRUE if t is currently present in the tuple space;

otherwise C(t) = FALSE. For simplicity, we write just t itself for C(t) whenever

there is no ambiguity. A possible tuple space state of the Producer-Consumer

problem (Example 4) might be "C(msg) = TRUE/\msg = 'This is a message' " .

3. R (R C S x S) is the set of reaction rules. The elements of R come from

reactionrules section.

4. I (I E S): the initial state of the tuple space, which is specified by initialization

section of a T-Cham program, for example, I= {token, token, token}.

The logic model of a T-Cham program, written as P , is the set of the sequences of

tuple space states, which are the execution paths of the program, for any a-, a- E P:

a- = (s0s1 s2s3 · · ·).

AT-Cham deductive system consists of a set of axioms and a set of inference rules.

Axioms come from the general axioms of the uninterpreted temporal logic, domain

axioms (including fairness properties etc.), and the axioms from a given T-Cham pro­

gram [130, pp. 255- 258][129].

For any reaction rule, say,

xi, x2, · · · , Xn leadsto Yi, Y2, · · · , YmbY T when J(x1, x2, · · · , Xn), (7.1)
3In order to avoid attacking all complex issues in a single step, we ignore the impact of race among

T-Cham reactions and T-Cham termination conditions on the proof system in this section and will
discuss them later.

7.2 The Temporal Logic Model of T-Cham 115

supposing the pre-condition and post-condition of Tare p and q, i.e. , {p}T{q} , and

there are no repetitive elements among x1,x2, · · · ,xn,Y1,Y2, ··· ,and Ym, we have:

n n m

[[/\(l xil > 1)] /\J(x1,x2,···,xn) /\p] • •[(/\ lxil-1) /\ (/\ 1Yjl+
1
) /\q], (7.2)

i=l i=l j=l

where Ix I denotes the number of x tuples currently in the tuple space, and Ix 1-t means

the number of tuple x has decreased by t in comparison to the former state (i.e., the

state corresponding to the left hand side of the reaction rules) , while Ix l+t means that

the population of tuple x is increased by t. If there is no multiplicity of occurrences of

a same type tuple and no confusion based on the context, Formula 7.2 can be written

simply as:

n n m

[/\ Xi I\ f (x1, X2, · · · , Xn) I\ p] • •[j\ 1 Xi I\ I\ Yj I\ q], (7.3)
i=l i=l j=l

where Xi or Yj means the tuple is current in tuple space, while ,xi or 'Yj means it is

not in the tuple space.

To deal with repetitive elements, we define x -type tuples and y-type tuples.

Definition 1 (x-type tuples, x-type multiset, y-type tuples, and y-type multiset)

In a reaction rule of T-Cham such as

X1 + x2 + · · · + Xn leadsto Y1 + Y2 + · · · + Ym by T when J(x1, x2, · · ·, Xn),

the tuples which appear on th e left hand side of leadsto are called the x-type tuples of

the reaction rule. Th ey may repetitively appear on the right hand side of leadsto. The

multiset { x1, x2, · · · , Xn} is called the x-type multiset of the rule, because it is composed

by x -type tuples. Th e tuples which appear on the right hand side of a reaction rule and

do not appear on the left hand side are called they-type tuples of the rule. The multiset

{Y1 ,Y2, · · · ,Ym} - {x1,x2, · · · ,xn} is called they-type multiset of the rule. I

Definition 2 (Representative Set) A representative set of a multiset M is the set

obtained from M by eliminating repetitive elements. We write M as the representative

set of M. I

116 Towards the Temporal Logic Proof System of T-Cham

Supposing x1, x2, · · ·, and Xii are the elements of the representative set of x-type

multiset; f)i, fJ2, · · ·, and Ym are of y-type's; and the repetition number of Xi in the

x-type multiset is Ti and Yi is Si. The more general form of the formula is:

ii ii m
[[;\ (I Xi I > Ti)] /\ f (X l , X 2, · · · , Xn) /\ P] • • [(;\ I Xi , -r i + ti) /\ (j\ I f) j I+ 8 j) ;\ q], (7.4)
i=l i=l j=l

where ti is the number of x-type tuples which appear on the right hand side of the

reaction rule. For example, if we have x+x+x leadsto x+y, then Tx = 3 and ix = 1.

7.2.2 Stuttering

If there is a reaction rule T which makes the state Si transmit to the state Sj, i.e. ,

r
Si------+ Sj,

only the values and populations of the x-type tuples and the y-type tuples of the

reaction rule are changed from Si to Sj- All the other tuples remain unaffected. To

express this property, Formula 7.4 has to be rewritten.

Supposing S is the multiset of tuples in the current tuple space, and X is the

multiset of the x-type tuples in a reaction rule.

Z = S - X

is the multiset of the tuples which are not affected by the reaction rule. Similarly, the
- -

representative set of Z is Z. If there are ii elements in Z , we use i 1, i2, · · ·, and iu to

stand for each element. Formula 7.4 now is:

n u

[[;\ (I Xi I >Ti)]/\ f (x1, x2, · · ·, Xn) /\ P /\ [;\ (I Zk I = uk)]] •
i=l k=l

ii m u
•[(/\ lxi1-ri+ti) A(/\ liJjl+Sj) /\qi\[!\ (likl = Uk)]],

i=l J=l k=l

This formula schema affects all the translations from T-Cham programs to their cor­

responding temporal logic formulas , but the ik part, i.e. , the unchanging tuples part ,

is omitted in the rest of the chapter whenever there is no confusion.

If p holds at Si, and q holds at s j, we have:

p • •q.

7 .3 The Impact of Race between Reaction Rules 117

The transition r may consist of some sub-transitions r 1 , r2, · · ·, and rn:

r1 r2 T3 Tn
Si ----=-t Si 1 ----=-t Si2 ----=-t · · · ~ Sj.

We do not have to worry about the impact of r1, r2, · · ·, and rn because the transition

r is closed under stuttering [109]. In other words , if Si and Sj are in the execution

sequence (a), we will always have

p • •q.

In addition, if a termination state, say sn, is reached, e.g., in a termination pro­

gram whose termination condition is met , we simply assume that the state Sn will be

transmitted back to itself indefinitely, i.e. ,

CJ = (SQSl S2 · · · Sn-1 Sn Sn Sn · · ·).

7.3 The Impact of Race between Reaction Rules

7.3.1 The Problem

If a reaction rule deprives the execution of other rule(s) , a race happens, for example

(we refer the program as P in the subsequent paragraphs) ,

initialization

x, y, z;

reactionrules

x, y leadsto a;

y, z leadsto b;

The program P may end up with either -0 a , z ~ or -0 b , x ~ , if the initial tuple

space is -0 x , y , z ~ , depending on which reaction rule is fired. Some other possible

execution paths are shown in Figure 7.2.

We say there is a race between two reaction rules , if at any stage, one reaction rule

can permanently prevent the other from firing. In this program, whenever the tuple

118 Towards the Temporal Logic Proof System of T-Cham

GJ)-------0)

@
x,y,z
~~

G:Y

~~
-~

~

~~ ~

x,x,y,y,z,z
~~

r b,x,x,y,x

@

Figure 7.2: Different Execution Paths

7.3 The Impact of Race between Reaction Rules 119

space goes into -0 x, y , z ~ state, either of the two reaction rules of P can fire, but not

both. After the firing , the program reaches its termination point , because no reaction

rule can fire according to the new tuple space state, either -0 a , z ~ or -0 b , x ~ .

If we translate the program P into temporal logic formulae by the method developed

in Section 7.2.1 , we will have:

lxJ>l/\Jyl>l • •(l al+1 /\lxl - 1 Alyl- 1
)

JyJ>lAlzJ>l • •(lbl+ 1 /\lyJ- 1 Alzl- 1
)

If the initial tuple space, written as I , is -0 x, y, z ~ , we will have:

•(Jal= 1 /\ lbl = 1)

(7.5)

(7.6)

which is obviously wrong. The culprit here is the race between the two reaction rules

of the program P: any of those two reaction rules , if fired, can prevent the other

from firing. In other words, if one rule is fired , the other will never have a chance. It is

equivalent to say, under this particular circumstance, that the reaction rule, which does

not have the chance to fire , does not exist in the program P. But on the other hand,

the temporal logic formulae (7.5) and (7.6) are true under all possible circumstances,

regardless of initial tuple space states or the execution paths. We cannot say that

formula (7.5) holds under certain initial tuple space states and execution paths, while

formula (7.6) holds under some other circumstances. In short, the two temporal logic

formulae do not correspond to the program P.

Before we proceed any further to find out a remedy to the problem, let 's have a

careful look at the program P and its execution paths under different initial tuple space

states as well as their temporal logic significance. As temporal logic is about the safety

and liveness properties of programs [109 , 110] , what we can (and can only) expect by

formalising a program with temporal logic is to prove that:

Something bad will never happen (the safety properties), and

something good will eventually happen (the liveness properties).

Both the safety and liveness properties should be valid under any initial conditions

and any execution paths. In this program P , if we have the initial tuple space of

120 Towards the Temporal Logic Proof System of T-Cham

-0 x, y, z } , the program will stop at either -0 a , z } or -0 b , x } . If -0 a , z } is

the "something good", we can never guarantee it will happen; neither does -0 b , x } .

The same observation is true under different initial tuple space states, Figure 7.2. The

only sensible property which is true under all possible initial tuple space states and

execution paths of P is:

•D(I y I = 0), i.e. , tuple y will eventually be used up.

It might be "something good" and also can be guaranteed to happen, but we really do

not think it provides much useful information about the program P.

Due to the unpredictable outcomes of the program P , temporal logic fails to prove

any useful properties out of it. Although, in this thesis, we are not going to argue if the

program P (and all the other possible programs of its class) is sensible, the existence of

this kind of programs does raise a problem for us. We have to find out to what extent

the temporal logic proof system developed in Section 7.2.1 can apply.

As we said before, the reason for the failure of the temporal logic formulae (7.5) and (7.6)

is due to the race between the two reaction rules of the T-Cham program P. If we inves­

tigate a bit further into the two reaction rules, we find out that it is the tuple y which

causes the race. The number of tuple y in the program P , no matter what it is in the

initial tuple space state, is limited. Either of the reaction rules, when firing, reduces

the number of tuple y by one. Eventually, it will reach the critical state that only one

tuple y is in the tuple space. Whenever it comes into that state, the two reaction rules

have to race against each other for tuple y , but only one reaction rule can succeed.

This is the point where the temporal logic formulae (7.5) and (7.6) fail, because the

two formulae have to be true over every possible execution path according to temporal

logic semantics. If the number of tuple y were unlimited, i.e. , tuple y would never be

used up , the two reaction rules would not have to race for it- there always are enough

tuple y ready for the two the reaction rules to use. In reality, there is no way to include

the unlimited number of tuple y into the initial tuple space of any T-Cham program,

but two possibilities exist which make tuple y never be used up. It is just equivalent

to say that the number of tuple y in the tuple space is unlimited. The first possibility

is that the tuple y can always be reproduced after being consumed:

7.3 The Impact of Race between Reaction Rules

reactionrules

x, y leadsto a, y;

y, z leadsto b, y;

121

The other possibility is that some other reaction rules in the program will indirectly

reproduce the tuple y : whenever a tuple y is consumed, another tuple y will be re­

generated, for example, if the T-Cham program P has another two reaction rules (the

new program is referred as P')4 :

reactionrules

x, y leadsto a;

y, z leadsto b;

a leadsto y;

b leadsto y;

The temporal logic formulae (7.5) and (7.6) hold under every possible initial tuple space

state and execution path of the program P' . In addition, the other two temporal logic

formulae:

lal>l • •(I Yl+1 /\l al-1
)

lb!> 1 • •(I Yl+l /\ lbJ- 1
)

(7.7)

(7.8)

also hold under every possible initial tuple space state and execution path of the pro­

gram P' . The four temporal logic formulae (7.5), (7.6), (7 .7), and (7.8) are the proper

temporal logic formulation translation of the reaction rules of program P'.

In short, if a T-Cham program is not under a race condition, the temporal logic

system developed in Section 7.2.1 applies; if the program is under a race condition, but

all those tuples which cause the race can always be re-produced after being consumed,

the temporal logic system can still be applied; otherwise, the temporal logic system

does not apply.

4 We are not talking about the sensible meaning of the program. This artificial program only serves
to find out when we still can apply the temporal logic formula translation methods developed in
Section 7.2.1 upon the existence of race condition. Later on in this section, we discuss the Dining
Philosophers problem, which is a meaningful program.

122 Towards the Temporal Logic Proof System of T-Cham

7.3.2 The Solution

Following the previous observation on the race problems of the two T-Cham pro­

gram examples and their impact on the temporal logic proof system, here we discuss ,

in a more general sense, how to find out if a T-Cham program, which is under race

conditions , still can enjoy a proper temporal logic proof system.

Definition 3 (Maximum Common Tuple Group, MCTG) If the left hand sides

of any two reaction rules of a T-Cham program have some tuples in common, we call

any of thos e tuples as a common tuple of the two reaction rules. We call a number of

the common tuples together common tuple group, and all the common tuples of the two

reaction rules maximum common tuple group or MCTG.

For example, if we have two reaction rules:

a, x , /3 leadsto A·

/3, x , 1 leadsto B;

I

(7.9)

(7.10)

where a, /3, and, consist of the tuples from a T-Cham program, and there is no single

common tuple between a and,. The tuple x is one of the common tuples of the two

reaction rules , while tuple group /3 or any part of /3 is common tuple group. As there

is no single common tuple between a and , , tuple x and /3 together is the maximum

common tuple group (or MCTG) of the two reaction rules.

Definition 4 (Race Condition) If any two reaction rules of a T-Cham program have

at least one common tuple, we say th e two reaction rules are under race condition. If

any two reaction rules of a T-Cham program are under race condition, we say the

program itself is also under race condition. I

If two reaction rules of a T-Cham program are under race condition, they may not

necessarily race against each other for the common tuples. Only when it reaches at a

state where the number of common tuples is not big enough- at least, more than two

copies of MCTG- to meet the requirement of the both reaction rules , a race happens:

either of the reaction rules, if fired, will prevent the other from firing.

7 .3 The Impact of Race between Reaction Rules 123

Definition 5 (Race) A race between two reaction rules of a T-Cham program happens

if at any stage along any execution path of the program, one of the reaction rule, if fired,

permanently prevents the other from firing. If a race between any two reaction rules of

a T-Cham program happens, we say the race happens in program, or the program has

race action. I

Race condition is different from race. A program is under race condition does not

mean the program will absolutely develop into race actions. Both of the program P

and P' discussed before are under race condition. Program P has race actions, but

program P' doesn't.

Definition 6 (No Race Under Race Condition, NRURC) If two reaction rules

of a T-Cham program are under race condition, but under no circumstance does a race

happens between the two reaction rules, we call the situation as no race under race

condition or NRURC. Similarly, if a T-Cham program is under race condition but no

race actions, it is called no race under race condition or NRURC for the program. I

If a T-Cham program is not under any race condition, it is obvious that the temporal

logic proof system developed in Section 7.2.1 can be applied to the program without

any problem. On the other hand, if a T-Cham program is under some race conditions,

as long as the program keeps in NRURC situation, the proof system developed in

Section 7.2.1 still applies, because NRURC means that no reaction rule will be deprived

from firing by any other reaction rules. In other words, at any stage of any execution

path, whenever the condition for a raction rule to fire is true, the reaction rule will

fire , and the tuples at its left hand side will be transformed into the tuples at its right

hand side. This is just what the temporal logic formula requires. Finally, if a T-Cham

program does have race actions, and it will race, the temporal logic proof system does

not apply.

In summary, if a T-Cham program is under race condition but keeps in NRURC

situation, the temporal logic proof system developed in Section 7.2.1 can still be used

to reason the temporal properties of the program.

The conclusion brings us two new questions: how to decide if a program under race

condition is NRURC and is there any useful program in this NRURC group?

124 Towards the Temporal Logic Proof System of T-Cham

7.3.3 How to Decide No Race Under Race Condition

If two reaction rules are under race condition, a race happens when the tuple space

has only one copy of M CTG and no more M CTG after that M CTG is consumed by

either of the reaction rules. No race under race condition (NRURC) is possible only

if the number of every tuple in MCTG is unlimited. There are two possibilities where

the number of a tuple can be considered as unlimited. The first possibility is that the

tuples are guarded by the operator "! ", i.e. , they won't be consumed by the reaction

rule. The other possibility is that the tuples will be re-produced after being consumed

by the reaction rule.

To guarantee that the tuples will always be successfully re-produced, some condi­

tions have to be met. Suppose we have a T-Cham program R , and r is one of its

reaction rules. Tuple t is one of the tuples in the left hand side of reaction rule r , and

it belongs to a MCTG, i.e. , reaction rule r is under race condition with some other

reaction rules. To check if tuple t can be re-produced under any circumstance, we set

up a tuple space with exactly the tuples required by the left hand side of the reaction

rule r as the initial tuple space of program R , and then simulate the execution of the

program. During the simulation, any reaction rule which is under race condition is

excluded. If the simulation finally produces a copy of tuple t, we will know that tuple

t can always be re-produced. The simulation procedure can be terminated within a

finite number of steps if we keep the tracks of execution paths and check any possible

reaction loops, i.e. , the current tuple space state is the same as the other previous

tuple space state along this execution path. When a reaction loop happens, we stop

simulating the reactions on this loop. The algorithm for the simulation is very simple.

Manually, we can draw a graph to do the simulation. In the graph, tuples are written

as they are except that the one we want to check if it can be re-produced is in a circle.

A bar means a reaction. The arrows from some tuples to a bar indicate that those

tuples will be consumed by the reaction, while the arrows from a bar to some tuples

indicate that those tuples will be generated by the reaction. Some example graphs are

in Figure 7.3.

To decide if a tuple can be guaranteed to be re-produced after being consumed,

7.3 The Impact of Race between Reaction Rules

x~I ~ a
~

X ~~ a ~1~ (y)
~

program P program P'

U~ r-1

r~ ~r:

~,/ ~ I-- h ----"-1-------i :
~s ,s,

t -------=-I~ i
w

J '""

a more complicated graph (program not given)

Figure 7.3: The Graphs for Tuple Re-producing Checking

125

126 Towards the Temporal Logic Proof System of T-Cham

every reaction rule which has the tuple at its left hand side has to be checked by

the simulation procedure discussed before. The tuple y in the T-Cham program P of

the previous section cannot be guaranteed to be re-produced, but the tuple y in the

program P' can.

If a T-Cham program is under some race conditions, but every single tuple of any

MCTG between any two reaction rules- which are under a race condition- of the

program can be guaranteed to be re-produced after being consumed, the program is

NRURC.

7.3.4 Dining Philosophers: An Example

Most sensible T-Cham programs, which are under race condition, are NRURC. Here

we take the Dining Philosophers problem as an example. It belongs to NRURC class

of T-Cham programs.

Example 11 (Dining Philosophers) Th ere are n {n > 2, we assume n = 5 here.

It is straightforward to extend to any value of n) philosophers spend th eir lives by only

two activities: thinking and eating. Th ey sit at a round table. E very philosopher has

his/her own bowl of noodles. To eat the noodles, two forks are needed, but th ere are

only n forks , with one fork laid between every two philosophers. If a philosopher takes

two forks on his/her left and right sides and eats his/ her noodles, his/ her two neighbour

philosophers at most can get one fork and hence cannot eat their noodles. Only after the

philosopher stops eating and releases his two forks can the two neighbour philosophers

have the possibility to eat. I

In the T-Cham program (Figure 7.4), we use tuples F1 to F5 to stand for the five forks

and tuple P1 to P5 for the five philosophers. We assume that forks in tuple space means

they are available, and philosophers in the tuple space mean they are eating.

It is very straightforward to verify that the T-Cham program is NRURC. According

to Section 7.2.1, the first reaction rule of the program can be translated into:

jF1 j > 1 /\ jF2 j > 1 • •(j P1 j+1
/\ jF1 j-l /\ jF2 j-1

)

Given the initial tuple space state and t he reaction rules , the number of any tuples in

the tuple space is either 1 or O (it is very easy to prove) . In addition, the temporal

7 .3 The Impact of Race between Reaction Rules

transaction root

endtrans

tuples
boolean F1, F2, F3, F4, F5;
boolean P1, P2, P3, P4, P5;

initialization
F1=true; F2=true; F3=true; F4=true; F5=true;

reactionrules
F1, F2 leadsto P1;
F2, F3 leadsto P2;
F3, F4 leadsto P3;
F4, F5 leadsto P4;
F1, F5 leadsto P4;
P1 leadsto F1, F2;
P2 leadsto F2, F3;
P3 leadsto F3, F4;
P4 leadsto F4, F5;
P5 leadsto F1, F5;

Figure 7.4: The T-Cham program of Dining Philosophers

127

128 Towards the Temporal Logic Proof System of T-Cham

logic formulae for the first five reaction rules are very similar, and so are the second

five. We write down the temporal logic formulae for the program in a compact way5 :

!Fi I= 1 /\ IFiEIH I= 1 • •(!Fi I= 0 /\ IFiEf)l I= 0 /\ !Pi I= 1) (ph.f)

IPil = 1 • •(!Fil= 1 /\ IFiEBl I= 1 /\ IPil = 0) (ph.p)
There is no deadlock in this program, because the condition testing is atomic. One

liveness property of the problem is free of starvation, which says that a philosopher

who is thinking (not eating, and hence will get hungry) will eventually gets the forks

and eats, and any philosopher who is eating will eventually stop eating to think. In

temporal logic, the properties are written as:

J pi J = 0 • •(J pi J = 1) and J pi J = 1 • •(J pi I = 0)

The proof is trivial given the temporal logic formula translation- Formuale (ph.f) and

(ph.p) - of the program (Figure 7.4) and the fairness assumption of T-Cham.

7.4 T-Cham Program Verification

Safety and liveness are two fundamental temporal properties (109]. Safety ensures

that something bad never happens (Op in temporal logic formula), while liveness guar­

antees that something good will eventually happen (•q or p---+ •q). A specification (or

program) disciplines the behavior of a computation. The behavior is actually a safety

property of a computation. In other words , safety properties are expressed by T-Cham

programs themselves, which will be translated into a set of temporal logic formulae.

Liveness is not always given out by a specification. Temporal logic is very useful to

prove liveness properties from the corresponding safety properties (111].

7.4.1 The Producer-Consumer Problem

To prove the correctness of Producer-Consumer (Example 4), we first convert its

T-Cham progTam in Figure 5.4 to temporal logic formulae , which will be used as

additional axioms of the "producer-consumer" deductive system. The axioms, referred

as A pe, are:

5 1 < i < 5 and i EB 1 means (i + 1) mod 5.

7.4 T-Cham Program Verification

(cr,O) f= (l token l=n)/\(l msg l=O)

l token l > 0 • O(l token l-1
/\ lmsg l+1

)

lmsg l > 0 • O(l msgl - 1
/\ ltokenl+1

)

129

For the sake of brevity, we user variable prod to denote the producing action and

cons to denote the consuming action. Thus, •prod assert there will be a producing

action, i. e., transaction prod will be committed, and •cons stands for a consuming

action in the future.

Two main properties of the producer-consumer problem are reactivity, which means

there always are producing or consuming actions, • (•prod V •cons), and progress -

every produced message (by transaction prod) will be eventually consumed (by trans­

action cons), that is, prod • •cons . The two properties can certainly be represented

by assert ions on tuples token and msg, but it is natural to reason on the actions of

prod and cons.

ltokenl > 0 • O(l token l-1
/\ lmsg l+1

)

thus is written as :

I token I> 0 • •prod and prod • O(j tokenl - 1
/\ lmsgj +1

)

Besides, from Ape, we can also have "the total number of tokens and msgs is n;' i.e.,

Ape ~ D(j Token j + j Msg I= n),

which is also called an axiom in the following proof for brevity. Thus , we have the new

set of axioms6 :

D(I Token l + IMsg j= n)

(I Tokenl + IMsgl = n) • •prodV •cons

prod • O(I Msg I> 0)

cons • O(I Token I> 0)

(I Msg I> 0) • •cons

(I Token l> 0) • •prod

6We can obtain (pc.2) by a simple calculation:

(pc.l)

(pc.2)

(pc.3)

(pc.4)

(pc.5)

(pc.6)

(I Token J + IMsg l= n) • (J Token l> 0 V IMsg J> 0) • •prod V •cons.

130 Towards the Temporal Logic Proof System of T-Cham

Theorem 1 (reactivity of producer-consumer) There will always be prod or cons

actions, i.e., • (•prod V •cons).

Proof:

1 D(ITokenl + IMsgl= n) (pc.l)

2 (!Token !+ IMsg l= n) • •prodV •cons (pc.2)

3 • (•prod V •cons) EMP, 1, 2

I

Theorem 2 (liveness of producer-consumer) Every produced message will be even­

tually consumed, or in other words, every prod action will be follow ed by a cons action.

prod • •cons.

Proof:

1 prod • •(IMsgl > O) (pc.3)

2 (IMsgl > 0) • •con s (pc.5)

3 prod • • cons OT, 1, 2

I

7.4.2 The Dutch Flag Problem

The Dutch flag problem of Example 5 shows the properties of a terminating program

and the use of universal quantifier (V).

The temporal logic formulae of the program have the so-called race problem, but

we still can verify the program by the simple solution discussed in Section 7.3. As we

do not have to rely on p • p V p or p • p I\ p to prove any theorem (see Section 7.3

for detailed discussion), this particular race problem has no impact on the underlying

temporal logic system.

Recall the rules of T-Cham program in Figure 5.5, the t emporal logic formula we

get has the form of 7 :

Vx,y,1 < x,y < n: (x, r) I\ (y, w) /\x > y • •[(x, r) I\ (y, w) /\x < y],

Please note the x and y in both sides of the formula may have different values , because

in the underlying temporal logic , values of terms are not required to be rigid. The
7 For brevity, we write (x, r) instead of strip(x, r) .

7.4 T-Cham Program Verification 131

new values, on the right hand side, are obtained by swapping the old values of x and

y. So we have "x > y" on the left hand side of the formula while "x < y" on the

right. Following the tradition and also for brevity, we drop the universal quantifier \/

whenever there is no confusion. Thus the above formula becomes:

(x, r) /\ (y, w) /\ x > y ==;> •[(x, r) /\ (y, w) /\ x < y] (df.1)

Theorem 3 (Dutch Flag) When the program terminates {no rules are applicable any

further), we expect that all Red elements come first, then White ones, and Blue ones

come last. The properties can be described by the following temporal logic formulae:

1. • •[(x, r) /\ (y, w) • x < y];

2. • •[(x, w) /\ (y, b) • x < y];

3. • •[(x, r) /\ (y, b) • x < y].

Proof:

Consider the first property, D•[(x , r) /\ (y, w) • x < y]. It can be proved by case

analysis, for any two elements of (x, r) and (y, w):

• x < y: • •[(x, r) /\ (y, w) • x < y] holds trivially;

1 (X, r) /\ (y, W) /\ X > y given;

2 (x, r) /\ (y, w) /\ x > y • •[(x, r) /\ (y, w) /\ x < y] df.1

3 D[(x, r) /\ (y, w) /\ x > y • •[(x, r) /\ (y, w) /\ x < y]] def. of •, 2

• X > y:
4 (x, r) /\ (y, w) /\ x > y • •[(x, r) /\ (y, w) /\ x < y] SPEC, 3

5 •[(x, r) /\ (y, w) /\ x < y] MP, 1, 4

6 D•[(x, r) /\ (y, w) /\ x < y] GEN, 5

7 D•[(x, r) /\ (y, w) • x < y] weakening, 6

The other two properties can be proved in a similar fashion. I

132 Towards the Temporal Logic Proof System of T-Cham

7.4.3 The Meeting Scheduler Problem

Meeting Scheduler, Example 7, is to find the minimum u such that u = f (u)

g(u) = h(u). After time= u, the tuples F _changed, G_changed, and H_changed are all

set to FALSE and the program terminates. Let F _changed denotes to F _changed = TRUE

and -,F _changed to F _changed= FALSE, so do (-,)G_changed and (-,)H_changed. From

the program (Figure 5. 7) , we get:

(a, 0) F time= 0 /\ F _changed= TRUE/\ F _changed= TRUE/\ F _changed = TRUE (ms.0)
r 1

(time = r I\ -,F _changed)

time = r I\ (G_changed V H_changed) =} • v

(time= f (r) I\ F _changed)

(time = r I\ -,G_changed)

time= r I\ (F _changed V H_changed) =} • v

(time= g(r) I\ G_changed)

(time = r I\ -,H_changed)

time = r I\ (F _changed V G_changed) =} • V

(time= h(r) I\ H_changed)

Let TC denotes the termination condition of the program,

TC =def -,F _changed /\ -,G_changed /\ -,H_changed,

(ms.l)

(ms.2)

(ms.3)

the correctness of the program relies on (i) the program will terminate, i.e., •TC, and

(ii) the value of time will reach the value of u.

In the proofs of the following results , we just show the main steps and omit some

of the trivial derivations.

7.4 T-Cham Program Verification 133

Lemma 1 (time non-decreasing) The value of time is non-decreasing: (time

r) • •(time > r).

Proof:

1. From (ms.1) - (ms.3) , we can get:

I
time= r I\ (G_changed V H_changed)

V

time = r I\ (F _changed V H_changed) I •

V

time = r I\ (F _changed V G_changed)

(time= r I\ ,F _changed) V (time= J(r) I\ F _changed)

V

• I (time= r A ~G_changed) V (time = g(r) A G_changed)

V

(time= r I\ ,H_changed) V (time= h(r) I\ H_changed)
'

2. The left side of Formula 7.11 can be reduced to

(time= r) I\ (F_changed V G_changed V H_changed) ;

(7.11)

3. From the right side of Formula 7.11 and the tautology of p I\ q--+ p , we get

(time= r) V (time= f (r) V time= g(r) V time= h(r)).

According to the definition of the functions f , g, and h, we have f (r) > r,

g(r) > r , and h(r) > r. Thus , the new right side of Formula 7.11 is

(time > r) ;

4. Formula 7.11 becomes

[(time= r) I\ (F_changed V G_changed V H_changed)] • •(time > r) ; (7.12)

5. Before time u is reached , i.e. , time = r , 0 < r < u , at least one of F _changed,

G_changed, and H_changed will be true:

(time= r) • •(F _changed V G_changed V H_changed) ; (7.13)

134 Towards the Temporal Logic Proof System of T-Cham

6. Applying tautology (p • q) +-+ (p • p I\ q) to Formula 7.13 , and with the

definition of "•"
'

(time= r) • •[(time= r) I\ (F_changed V G_changed V H_changed)]; (7.14)

7. Applying OT to Formula 7.12 and Formula 7.14, we can get

(time= r) • •(time> r).

I

Theorem 4 (u reached) The value of time will eventually reach the value of u:

•(time= u).

Proof:

1. (CT, 0) F time = 0, (given, ms.0);

2. (time= r) • •(time> r), (Lemma 1), it is the same as

(CT,i) ptime=r iff (CT,j) F time >r, forsomej,j>i;

3. time is monotonic and increasing, while u is limited. A position k can be found,

such that

(CT, k) F (time = u);

4. From A2 (p • •p), we have •(time= u).

I

Theorem 5 (termination) The termination condition will be eventually reached: •TC.

Proof:

1.
(time= r) I\ (G_changed V H_changed) •

•[(tim e= r I\ -,f _changed) V (time= J(r) I\ F _changed)] (given, ms.1);

7.5 The Impact of T-Cham Termination Conditions 135

2. Referring the reasoning in the proof of Theorem 4, we get

(time = r) • •[(time = r /\ --,f _changed) V (time= f(r) /\ F_changed)];

3. Before u has been reached, i.e., 0 < r < u, from Lemma 1:

(time= r) • •(time= f (r) /\ F _changed);

4. When time = u,

(time = u) • •(time= r /\ --, f _changed), i.e. , (time= u) • O,F_changed;

5. The same reasoning can give us

(time = u) • O,G_changed and (time= u) • O,H_changed

6. Put the three formulae together, we get

(time= u) • O(,F_changed /\ , G_changed /\ --,H_changed);

7. From Theorem 5 and the rule of OT, we have

O(--,F _changed/\ ,G_changed /\ ,H_changed).

I

7.5 The Impact of T-Cham Termination Conditions

In order to study a concurrent system, where many events may happen at the same

time instant, with the linear temporal logic system, event interleaving and fairness are

two basic and essential assumptions. Event interleaving makes the events happen in a

pseudo-linear order on the temporal logic time axis. Fairness guarantees that an event

will happen if it is continuously ready to happen. vVithout the fairness assumption

a T-Cham progTam and its proof system may not be able to deliver the expected

result. Take the Producer-Consumer problem (Example 4) as an example, under the

fairness assumption, both producing and consuming actions are fairly chosen; without

136 Towards the Temporal Logic Proof System of T-Cham

the assumption, either producing or consuming action may continuously be chosen

while the other one never has a chance. In the latter situation, the program will stop

after a certain number of steps, which is not what it is intended to. In the terms of

the sequences of tuple space states, some sequences are not valid under the fairness

assumption.

There is a potential conflict between the fairness assumption and T-Cham termi­

nation conditions. The fairness assumption says that any event will happen if it is

continuously ready to happen, while the termination conditions of a T-Cham program

say that whenever any of the conditions is true, the program terminates even if there

are pending "continuously ready to happen" events.

The conflict between the fairness assumption and T-Cham termination conditions is

not so severe. The termination conditions by no means reject the fairness assumption

but just cut a valid sequence short. For example, a T-Cham program may have an

execution path (i.e. , tuple space state sequence):

a= (s0s1s2 · · · Sk-lSkSk+l · · · Sn-lSnSnSn · · ·),

without the influence of any termination conditions. The state Sn means no more event

could happen. If the program has some termination conditions, and one of them, say,

t, is true at the state sk, according to the semantics of T-Cham termination conditions,

the program stops at the state sk, i.e. ,

a= (s0s1s2 · · · Sk-lSkSkSk · · ·).

The sudden stop, although it violates the fairness assumption, is justified because

the programmer of the program believes that at the state sk, where the termination

condition t is satisfied, the program has already delivered the expected results. It is,

therefore, not necessary for the program to go any further.

The termination conditions have some impact on the temporal logic proof system.

A temporal logic formula, which is a theorem on the model

a= (s0s1s2 · · · Sk-lSkSk+l · · · Sn-lSnSnSn · · ·),

may not be able to be proven on the cut-short model

a= (s0s1s2 · · · Sk-lSkSkSk · · ·).

7.5 The Impact of T-Cham Termination Conditions

transaction root

endtrans

initialization
a=true; c=true;

reactionrules
a leadsto b;
c leadsto d;

Figure 7.5: A small T-Cham program

137

Let 's take a very small art ificial T-Cham program, Figure 7.5, as an example. As

discussed in the previous section, the temporal logic model of the program is the set

of all possible tuple space state sequences and written as P. If there is no termination

condition, under the initial tuple space state of { a, c} , we have:

P, { a, c} F • (b /\ d). (7.15)

If the termination condition is b, there are two possible sequences:

{ a , c} • {b , c} • {b, c} • {b, c} • · · · , or

{ a , c} • { a , d} • {b, d} • {b, d} • {b , d} • · · ·.

In the first sequence, only "Ob" can be proven, but in the second sequence, "• (b /\ d) "

can be proven. Putting them together, we have:

P, {a, c} F • b. (7.16)

If the termination condition is d, we have a similar result.

The Formula 7.16 is acceptable under the termination condition b b ecause this is

what the programmer of this program wants. Actually, Formula 7.16 is the weaken­

ing form of Formula 7.15 as b is the weakening form of (b /\ d)8 . In other words, if

Formula 7.15 can be satisfied, Formula 7.16 can.

8 b /\ d • b

138 Towards the Temporal Logic Proof System of T-Cham

Generally speaking, for a T-Cham program, we can prove:

p F OP, (7.17)

where P is the temporal logic property of the program, i.e., P is a theorem under the

model P. If we take the initial tuple space state I into account, we will have

P, I F OP'. (7.18)

P' • P because P has to be satisfied on all possible tuple space sequences starting with

any initial tuple space states, including I. If the program has termination condition T,

T = t1 V t2 V · · · V tn, either P or P' becomes T, i.e.,

P p= OT, or P, I p= OT. (7.19)

7.6 Conclusion

In this chapter, we adopted a temporal logic proof system [130, 129] to T-Cham

program verification. First, we briefly introduced the theory of the temporal logic.

We did not put much strength on the temporal logic theory itself. We treated it

from the point of view of its application instead of pure theoretical research. In other

words, we apply the temporal logic to the verification of T-Cham programs. The

major contribution of this chapter is on how to translate a T-Cham program into its

corresponding temporal logic proof system and then verify the temporal properties

of the program. Several examples are used to illustrate the verification of T-Cham

programs.

The impact of the race condition problem (Section 7.3) was carefully studied. Gen­

erally speaking, the temporal logic proof system cannot handle the T-Cham programs

which are under race conditions. Fortunately, if a program is in NRURC class, the

proof system is still valid. We believe that NRURC class covers a large scope of sen­

sible T-Cham programs, including the Dining Philosophers problem. We also notice

that linear logic [79 , 78 , 166, 10] can easily delineate the resource-like variables. How

to apply linear logic to T-Cham is a very interesting research topic and needs much

more further study.

7.6 Conclusion 139

In this chapter, we also discussed the impact of T-Cham termination conditions on

the temporal logic proof systems. We found out that the termination conditions reject

some temporal properties of a T-Cham program but still keep those properties which

are the same as or implied by the termination conditions. We believe it is justified

because the purpose of termination conditions is to tell a T-Cham program not to go

any further.

C: 8 _____________ _

Advanced Notations: Hierarchical Tuple

Spaces and Tuple Mapping

The experience of program development suggests that a large program should be con­

structed from a number of smaller components. In addition, some large data may

have their internal structures . T-Cham provides hierarchical tuple space structure and

tuple mapping mechanisms to decompose a large tuple into a number of smaller sub­

tuples at different levels of tuple spaces . These mechanisms apply hierarchical views to

T-Cham tuples and provide a means of constructing modular (or structured) T-Cham

programs. A transaction of a tuple space may consist of a number of transactions

(sub-transactions) . The relationships between the tuples in those two different lay­

ers of tuple spaces are maintained by the tuple mapping mechanisms. Each of those

transactions is isolated from the others . When put together, they constitute the whole

reaction system, while changes to a transaction (or subtransaction) are transparent to

the others .

In this chapter , we first study the internal structures of tuples, the need for hier­

archical tuple spaces, tuple mappings , and their impact on transaction granularities

(Section 8.1). Section 8.2 then explains the technical details of tuple mappings and

142 Advanced Notations: Hierarchical Tuple Spaces and Tuple Mapping

introduces the concept of mapping masks. Section 8.3 concentrates on a special type

of masks- regular masks. A matrix multiplication example is given in Section 8.4. In

Section 8.5, we briefly discuss the implementation issues which are raised by those

advanced notations. Finally, we conclude this chapter with a discussion in Section 8.6.

8.1 Tuple Structures, Hierarchical Tuple Spaces and Thans­

action Granularities

8.1.1 Case Study

In the previous chapters, we studied the basic T-Cham notations and also illustrated

the style of T-Cham programming by a number of examples, but we have not yet

investigated the internal structures of tuples , especially large tuples.

Some large tuples do have internal structures, just like data structures in the imper­

ative programming paradigm. Let 's take matrix summation as an example to explain

the internal structures of tuples. For brevity, we assume they are one dimensional

vectors. Suppose we are asked to calculate:

C = A+ B

where C , A , and B are n element vectors1 . AT-Cham program is given in Figure 8.1.

Inside of the transaction surn_vectors , it is like:

for (i=O; i<n; i++) C[i] = A[i]+B[i];

A pictorial description of the program is given in Figure 8.2. In the figure , an oval

encapsulates a tuple. The grid rectangle inside of an oval denotes the value of the tuple.

We do not regard the program as a good program. It fails to reveal the inherent

parallelism of the original problem. If the T-Cham compiler cannot figure out this

inherent parallelism, the program is virtually a sequential program, because all the

calculations are carried out by the transaction surn_vectors , which relies on a loop.

A T-Cham compiler, which cannot have the domain knowledge of all problems, may

not be able to detect the maximum possible parallelism of problems. In other words ,
1 In Section 2.2.3, the same problem is used to show the programming style of Linda.

8.1 Tuple Structures, Hierarchical Tuple Spaces and Transaction
Granularities 143

transaction root
tuples

float A[N], B[N], C[N];
initialization

init_A(); init_B();
reactionrules

A, B leadsto C by sum_vectors;
termination

on (IAl==O && IBl==O) do output_C();
endtrans

F igure 8.1: The T-Cham program of Vector S11mmr1.tion, the First Approach

@1 i-·J})
I

I

: +
I

@ ~--;§)
• @b .. J])

Figure 8.2: Vector Snmmation, the First Approach

144 Advanced Notations: Hierarchical Tuple Spaces and Tuple Mapping

we cannot solely rely on compilers to reveal the inherent parallelism of a problem. It

would be very unfortunate if we, as programmers, already know some degree of inherent

parallelism, but failed to implement it.

The culprit here is that we take an vector as aw hole without looking into its internal

structures. If, instead of saying

C = A+ B,

we say

Ci = ai + bi, 0 < i < (n - l),

we will be able to take the advantage of the inherent parallelism, Figure 8.3.

®®@
I
I

: +
I
I

: + +

®@®

• • • ®
:+ • @@ ® ··· ®

• • • ®
Figure 8.3: Vector Summation, the Second Approach

Although we achieved a high degree of parallelism this time, we cannot regard the

approach as a good alternative: we lost the beauty of brevity in the first approach.

Program specification becomes tedious and is hard to understand, which makes the

program error prone. An example T-Cham program of this approach is outlined in

Figure 8.4

An ideal approach is that on the one hand, we can keep the brevity of programs,

but on the other hand, we are still able to reveal the internal structures of tuples.

We thus propose hierarchical views on tuples. The idea was inspired by database

views [58, 59], but instead of applying views on database tables , we apply views on the

internal structures of tuples. A tuple , for example, a vector in the previous examples,

may be taken as a whole or broken into smaller pieces. We can operate on the vector

8.1 Tuple Structures , Hierarchical Tuple Spaces and Transaction
Granularities 145

transaction root
tuples

endtrans

float ai, a2, . .. , an, bi, b2, .. . , bn, ci, c2 , .. . , en;
initialization

ai=2. i; a2=2. 2; ... ; bi=3. i; b2=3. 2; ... ,
reactionrules

ai, bi leadsto ci by { ci=ai+bi; }
a2, b2 leadsto c2 by { c2=a2+b2; }
......
an , bn leadsto en by { cn=an+bn ; }

termination
on (lail==O && la21==0 &&

lbil==O && lb2l==O &&
lan l==O &&
lbn l==O) do output ();

Figure 8.4: The T -Cham program out line of ·vector S11mmation, the Second Approach

itself or zoom in and operate on each individual element in parallel. To avoid any

possible confusion among different views of the same instance of a tuple , we propose a

hierarchical tuple space structure. Different views of a tuple are presented on different

levels of tuple spaces .

\i\Tith the help of multiple tuple views and hierarchical tuple spaces , the former

problem can be rephrased a.s: at top level,

C = A + B . and.

at the second level.

Ci = a i + b i , 0 < i < (n - 1).

Figure 8.5 is the pictorial description of the approach. On the one hand , the program

is as simple as C = A + B : but on the other hand, if we dig a little bit further . we

will see that the vectors are broken into pieces and evaluated in parallel.

146 Advanced Notations: Hierarchical Tuple Spaces and Tuple Mapping

,-'+

@ i-·9
~1 • @ b··9
0.
0.

I I E

00
c:: ·s.
0.
ro
E
c::
~
0
~

c::
~ - - - - - - - - -0-1- -61.)
~ c::

c:@ @ @···@I_-_,_:
')-_ / ✓ >- -

0.
0.
ro
E
0.
:::l

, ,

,,✓ "+

/

/

✓✓ - - -~- - - - --,!- - - - -- - - ✓-✓
, , ,

/ /

/
/

/,, +
,

/

/

,'+ ,
/

/+ • c:@ @ @ .. -@)-_-_,_:
., - ... -,.. , -

✓ ' ✓ / (@,,®''@,:::(;}')
------ ------------ ---------

Figure 8.5: Vector Summation, the Third Approach

8.1.2 New Concepts: Hierarchical Tuple Spaces, Tuple Mapping and

Transaction Granularities

From the discussion of the previous section, we find out that the best solution

for the vector summation problem is to have two layers of tuple spaces (hierarchical

tuple space structure) , Figure 8.5. On the top layer, we take a vector as a whole no

matter how big the vector is , and thus , we have an abstract view of the program:

C = A+ B. A single transaction is responsible for this calculation. On the bottom

layer , the detailed structures of vectors A , B , and C are revealed: they are broken

into individual elements. The transactions on this layer operate on a i and b i (0 < i <

(n - 1)) , where a i is the i th element of vector A , and b i is the i th element of vector

B . Therefore , we have Ci = a i + b i . There are n transactions. From the point of

view of the top layer tuple space, they can be called sub-transactions. Each of them

is responsible for the calculation of a i + b i, where i takes any integer value between 0

and (n - 1) inclusively, i.e. , i E [O .. (n - 1)].

The two layers of tuple spaces of Figure 8.5 are not independent to each other.

They have their internal relations. For example, vector A is decomposed into a i, 0 <

8.1 Tuple Structures, Hierarchical Tuple Spaces and Transaction
Granularities 147

i < (n - 1). Vector Bis decomposed into bi, 0 < i < (n - 1). The i th element of A

(i.e ., a i) plus the i th element of B (i.e., b i) makes the i th element of C (i.e ., ci)- And

:finally, Ci (0 < i < (n - 1)) together compose vector C. To preserve the relationship

between the tuple spaces and among the tuples themselves , we propose some tuple

mapping mechanisms. With the mechanisms, we can specify the relations between the

tuples in different layers of tuple spaces. We also introduce a special operator ©. When

a large tuple is broken into small pieces, the operator can keep the track of the order

of those small pieces. The order is essential in measuring from which part of the large

tuple a particular small piece comes , for example, bi, so that right calculation can be

carried out . In addition , the order also plays a very important role in assembling small

tuples to a big one, e.g. , from ci, 0 < i < (n - 1) to C.

To be more general , the mapping between tuples is under masks. A mask is a

window on a tuple or tuples. Through the window, only part of the underlying tuple(s)

can be seen. Different patterns of the window give different views of the under lying

tuple(s). Masks bring much more flexibility into tuple mappings. They provide multiple

views on tuples .

Another benefit of the hierarchical tuple space structure is that transaction gran­

ularity adjustment (Section 3.1.4) will be much easier. The root transaction has the

largest gTanularity. Down the tuple space hierarchy, granularities become smaller and

smaller. Take the matrix snmmation problem for example again, if they are m dimen­

sional matrices , the problem can be solved by:

• simply adding the two matrices together , or

• m instances of two (m - 1) matrix s11mm ation, or

• m x m instances of two (m - 2) matrix si1mmation, or

• m 3 instances of two (m - 3) matrix summation) or

....
• mm instances of element s11mmation. or

J

148 Advanced Notations: Hierarchical Tuple Spaces and Tuple Mapping

• the mix of some above choices , for example, one instance of two (m - 1) matrix

summation and (m - 1) x m instances of two (m - 2) matrix summation.

There are some other Linda based multiple tuple space approaches [76 , 131], but

they are different from our proposal. Those approaches are mainly concerned with

creating and reclaiming tuple spaces. They do not have much effort on tuple map­

ping. In our approach, tuple spaces are automatically created and reclaimed whenever

necessary. Tuple mapping between tuple spaces is our main concern.

8.2 Tuple Mappings and Plain Masks

The mapping from one tuple to another (or others) provides different views on a

large tuple and different granularities to the transaction which operates on this tuple.

This mapping is achieved by a mask (or a window) on the tuple.

A mask is a group of mask elements. An element of the mask has its value in the

form of "coef *vis* type" or just "vis * type", where coef is a coefficient (coef E N) , vis is

the visibility flag (vis EI), and type the type of the hole (type E { char, int , float , ···} ,

i.e., the type system of T-Cham). N is the set of natural numbers , and I is the set

of integer numbers. The default value of coef is 1, which can be omitted; otherwise,

it means coef instances of "vis *type". "vis = 0" means the underlying data cannot be

seen, while "vis = 1" is a hole on the mask so that the underlying data can be read

out through it. The value of type tells the mask how large the hole is , or what kind of

data type can be seen through the hole. A mask whose vises only contain the Os and

ls as discussed in this section is called a plain mask.

Suppose we have a tuple x and a mask m,

tuple {

char name[] ="data";

int i=15;

float a[20]={76.8,3.5,4, ... };

} x;

mask {

{0,0,1,1}*char;

1*int;

{0,1,18*0}*float;

} m;

a new tuple, (11 ta 11
, 15, 3. 5) , is obtained by viewing the tuple x through the mask m,

written as "x\m" and read as "tuple x under mask m" .

8.2 Tuple Mappings and Plain Masks

I
I

:------ t

0
: ----------,GJ

- - - I - - - -

Trans. T X,Y leadsto Z by t

149

Trans. t xl,x2,yl leadsto zl
_ .. ···-._by tl

_.---·· ~xl ----,·.:.-,.__ __ - ----r-- ---------------------- - --- -c·~-- zl ·-.___ x3, y2 eadsto z2 .· -. f tl .· ·. 1
• ~ I • I . • b 2
: ' ·._ ' -···· (··: y t

@ /:
\ __ @) .-----·· uTI

•• .. I ## ··-. ,. _____ _

I
I
I
I
I
I @] __../

I
I

I •• • • , t2

...... ___ ~ _

• ... ft.

--

Figure 8.6: The Vertical Mappings of Tuples

The mappings among tuples establish the relations between the tuples on a tuple

space and its parent 's or child 's tuple space, Figure 8.6. They can be used to initialize

the child's tuple space, the down mapping (represented by <--), or return the result

tuples to the parent 's tuple space, the up mapping (-->).

Supposing in transaction T, we have a reaction rule of:

X,Y leadsto Z by t ;

while in the initialization section of transaction t , we have

[(x1\m1, x2\m2, x3\m3)] <-- X; [(y1\n1, y2\n2)] <-- Y;

and in the termination section of the transaction ,

on (term_cond) do [(z1 \s1, z2\s2)] --> Z;

To execute the action, a T-Cham sub-transaction t is invoked , and X and Y are

mapped (decomposed) into x1 , x2 , x3 , y1 , and y2 on a new tuple space according to

the specified relations between X, Y and x1 , x2 , x3 , y1 , and y2. After the execution of

t , i.e. , the reactions on x1 , x2 , x3 , y1 , and y2 yielding z1 and z2 , a new Z is generated.

Transaction T's tuple space could have tuples other than X, Y, and Z, but in t , only

those three can be seen. Of course, t may have its own private tuples on its tuple

space.

150 Advanced Notations: Hierarchical Tuple Spaces and Tuple Mapping

xi , x2 , x3 , yi, and y2 can be considered as a detailed view on X and Y. In trans­

action T, the tuples of X and Y are indivisible and one of each together can produce

an indivisible tuple Z by an atomic transaction t ; but from the point of view oft, the

structures of X, Y, and Z are revealed, and the indivisible action of

X, Y leadsto Z by t

is executed by some concurrently executed reactions, i.e., ti and t2 , which in turn

could also have their own sub-transactions, on the different parts of the three original

tuples.

8.3 Regular Masks

A regular mask is a kind of shorthand used in the decomposition and assembling

of array-like regular data structure. It realizes the distributed data structure in the

DINO programming language approach [154]. For example, we can have Block and

BlockOverlap masks for one dimensional arrays and BlockRow, BlockRowOverlap (see

Section 2.2. 7) for two dimensional arrays etc. If we decompose a one dimension array

of A[lOO] (float type) to 4 one dimension array of a[25] 's (Block), we can write

[(4*a)]<--A.

If without the shorthand, we have to define 4 masks for each of individual tuple a:

mask {

25*i*float;

} mi;

mask {

mask {

{25*0, 25*i}*float;

} m2;

{25*0, 25*0, 25*0, 25*i}*float;

} m4;

mask {

{25*0, 25*0, 25*i}*float;

} m3;

where mi picks up the first 25 elements of A[lOO], m2 the second 25 elements, m3 the

third 25 elements , and m4 the last 25 elements.

8.4 Matrix Multiplication: an Example of Using Masks 151

If we want some extent of overlap, say 4 elements (2 elements in each chunk) in

common, between the two adjacent chunks in the original t uple A (i .e., a Block Overlap

scheme), t he mapping can be written as

[(4 * a - 2)] < - - A.

Its corresponding plain masks are:

mask {

27*1*float;

} mi;

mask {

mask {

{23*0, 29*1}*float;

} m2;

{25*0, 25*0, 23*0, 27*1}*float;

} m4;

mask {

{25*0, 23*0, 29*1}*float;

} m3;

Higher dimensional array masks can be defined accordingly.

A large array can be broken into smaller pieces for parallel calculations. The parallel

calculations may happen in any order. We have to preserve the positions of those small

pieces in the original array; otherwise, we cannot assemble them back. A special

operator © is defined to keep the track of the order. For example, a©A= i (i = 1 if

the a is the first chunk of A, i = 2 for the second chunk, and so on) specifies that a

corresponds to the it h piece of A. This can be written as just a© if there is no confusion

on where a comes from. A dot prefix notation is used if the order is non-linear , for

example, a©T= 1.2.3 , where 1 means the first chunk of T, 2 means the second piece of

the chunk , and 3 means the third elements of the piece, see Figure 8. 7.

8.4 Matrix Multiplication: an Example of Using Masks

Example 12 (Matrix Multiplication) Supposing we have two N *N matrices A[N][N]

and B [N][JVL we calculate th eir product C[N][N]. A T-Ch am program is given in Fig-

ure 8.8. I

The program ha.s two layers in its transaction structure. The root transaction

ha.s one sub-transaction mul ti_matrix. ·where the down and up mappings with regular

152 Advanced Notations: Hierarchical Tuple Spaces and Tuple Mapping

I

t

I
I

I
I

I

L

• • •

'\
\

\

:!

a

I

I

Tuple T
• • •

I

j

a@T=l.2.3

Figure 8. 7: The Ordering Operator

masks are used to initialize the sub-transaction tuple space and bring the values back

respectively. On the sub-transaction's tuple space, tuple A is decomposed into N tuples

of x, each of which is one of the N rows of matrix A. p1 and p2 are pre-conditions (the

values of original matrices) , and q1 and q2 post-conditions:

p1 - A= (Aij) I\ B = (Bij) , q1 C = (Cij), where Cij = ~f 1 Aik x Bkj ;

p2 x = (Ai) l\y = (Bij) , q2 z = (Ci) where Ci= ~f 1 Ai x Bkj·

In comparison to other approaches, the program has a very nice and neat top view,

i.e., the root transaction. It specifies the basic criteria of the program: we have A and B

two matrices , and we want to make matrix C from them by transaction mul ti_matrix.

The pre- and post-conditions of transaction mul ti_matrix are pl and ql respectively.

At this stage, we do not care how this can be done so long as transaction mul ti_matrix

complies with its pre- and post-conditions.

There are several ways to implement transaction mul ti_matrix. In this example,

we break matrix A into rows, i.e., smaller pieces, but keep matrix B as it is. A row

of the matrix A and the whole matrix B can produce a row of the matrix C. The

real calculations are carried out by the transaction multi ply. Again, at this stage, we

don't care about the details of transaction multi ply so long as it complies with its

pre-conditions p2 and post-conditions q2.

8.4 Matrix Multiplication: an Example of Using Masks

#define N 128
transaction root

tuples
float A [NJ [NJ , B [NJ [NJ , C [NJ [NJ ;

initialization
init_A(); init_B();

reactionrules
A, B leadsto C by multi_matrix;

termination
on (IAl==O && IBl==O) do output_C();

subtransactions
multi_matrix: p1//q1

endtrans

transaction multi_matrix
tuples

endtrans

float x[NJ, y[NJ [NJ, z[NJ;
initialization

[(N*1*x)J <-- A; [(y)J <-- B;
reactionrules

x, !y leadsto z by multiply;
termination

on (lxl==O) do [(N*1*z)J --> C;
subtransactions

multiply: p2//q2

transaction multiply
#language C
#tuple float x[NJ, y[NJ [NJ, z[NJ;

multiply()
{ int i,j;

}

endtrans

for (i=O; i<N; i++) {
z [iJ =O;
for (j=O; j<N; j++) z[iJ += x[jJ*B[jJ [iJ;

}

z© = x©; I* z keeps the same order as x *I

Figure 8.8: The Multiplication of Two Matrices

153

154 Advanced Notations: Hierarchical Tuple Spaces and Tuple Mapping

The same idea applies to transaction multi ply as well.

Any changes to a transaction are isolated from other transactions on the same level

and the levels above. For example, if we change transaction mul ti__matrix to a different

algorithm, it does not have any impact on the logic and structure of transaction root.

Similarly, any changes to transaction multi ply, even radical changes, have no impact

on multi__matrix and root either.

Starting with the nice and neat top view of transaction root followed by carefully

designed transactions mul ti__matrix and multiply, we can achieve an efficient imple­

mentation of the program without losing programmability (i.e., easy to manage by

human beings).

8.5 Implementation Issues

We have not yet had a real implementation of those new mechanisms, i.e. , hierar­

chical tuple spaces and tuple mapping, developed in this Chapter (previous sections).

In this section, we briefly discuss some implementation issues raised by those new

mechanisms.

T-Cham Machine, developed in Chapter 6, cannot handle hierarchical tuple spaces

and tuple mapping. We envisage three extensions to the original T-Cham Machine

model to implement those new mechanisms.

The first approach keeps the single flat monolithic tuple space structure of the

T-Cham Machine and does not match the logic hierarchical tuple spaces of T-Cham

programs. It relies on reaction rule rewriting, tuple renaming, and tuple mapping

bookkeeping schemes to achieve the hierarchical tuple spaces and tuple mapping of the

original T-Cham programs.

Let's take the matrix multiplication program in Figure 8.8 as an example. There

are two layers of tuple spaces in this program. On the top layer, a tuple A and a tuple

B (i.e., matrices A and B) produce a tuple C, which is the product of the two matrices.

On the bottom layer, a tuple x, which is a row of the matrix A, and a tuple y (the same

as the matrix B) yield a tuple z. The relationships between tuple A and tuple x, tuple

B and tuple y , and tuple C and tuple z are defined in the program. To put the tuples of

8.5 Implementation Issues 155

different logic tuple spaces into a flat monolithic tuple space, we rename those tuples

and let them keep the information of their original logic tuple spaces. For example,

all the tuples of the top layer tuple space have the suffix ". root " appended, and all

the tuples on the bottom layer have " .root. mul t i_matrix" appended. Thus tuple A

becomes tuple A.root , B to B.root , x to x.root.multi__matrix , and so on. Under

the new names of the tuples, the reaction rules are rewritten accordingly. The new

reaction rules operate on the same tuple space. In addition to those tuple space name

suffixes, each tuple also has a flag which uniquely indicates the different instances of a

logic tuple space. For example, if we have two instances of tuple A and tuple B, we may

have two instances of the bottom layer tuple space. Three equivalent reaction rules are

automatically added to the system. They are

A.root leadsto N * x.root .mul t i__ma trix

B.root leadsto y.root.mul ti__matrix;

N * z.root.mul ti_matrix leadsto C.root ;

The tuple mapping relationships of the original program are associated with and real­

ized by the three reaction rules. Some basic performance measurements of the matrix

multiplication example under this implementation approach are given in Section 6.3.2.

As discussed in Chapter 6, T-Cham Machine scales well with large tuple space. We

believe that most T-Cham programs can be efficiently implemented with this approach.

When the number of tuple types (not the tuples themselves) gets very big, the test of

reaction rule conditions and the termination conditions will become less efficient. The

larger the number, the less efficient the test. Although we do not have experimental

data yet , we believe there exists a quantitative threshold on the number of tuple types

a T-Cham Machine can efficiently handle. The threshold is essential for T-Cham to

choose this flat monolithic tuple space implementation approach. It also serves as the

benchmark for the third approach to decide to what extent this monolithic tuple space

can be.

The second implementation approach matches the logic tuple space structures. The

operations inside each tuple space are conducted by individual T-Cham Machine. Keep­

ing using the matrix multiplication program example, under this approach, we will have

a T-Cham Machine for the root transaction and a T-Cham Machine for transaction

156 Advanced Notations: Hierarchical Tuple Spaces and Tuple Mapping

multi-1Ilatrix. If we have two instances of tuple A and tuple B, we will have a T-Cham

Machines for each of the two instances of transaction mul ti-1Ilatrix. The approach

keeps the hierarchical tuple space structures of the original T-Cham programs. Tuple

spaces are dynamically created and reclaimed. They are relatively small, and thus the

test of reaction rule conditions and the termination conditions will be more efficient.

The overhead of this approach comes from the creating and reclaiming of the hierar­

chical tuple spaces. It may be significant if the ratio of tuple space operations, which

relate to tuple space creation and reclaiming, to transaction operations is high. The

quantitative measurement of the ratio needs to be established. It will be the other

bench mark for the third approach.

The third approach is a mix of the first and second approaches. Hopefully, it could

properly balance their benefits and difficulties. The success of this approach will depend

on the experimental data and quantitative measurements of the other two approaches.

8.6 Summary

In this chapter, we first discussed internal tuple structure, hierarchical tuple space

and transaction granularity issues of T-Cham, and then, proposed the idea of tuple

mappings and mapping masks. Two kinds of masks- plain masks and regular masks­

are studied. A regular mask is just a shorthand of a plain mask. Masks play a central

role in revealing the internal tuple structures of tuples and providing hierarchical views

to T-Cham tuples and tuple spaces. Transactions at different levels of the hierarchi­

cal tuple spaces give T-Cham programs modularity and top-down abstraction. The

implementation of the hierarchical tuple space structure and tuple mapping is also

mentioned. Three approaches are suggested.

~9 ___________ _____,
A Compositional Proof System

In the last chapter, we discussed tuple mappings and subtransactions . Generally speak­

ing, a T-Cham program can be constructed by the union and/ or superposition of trans­

actions. In this chapter, we study the theory of those two kinds of transaction com po-

sitions and their effects on the T-Cham proof system. The union operation combines

two smaller transactions into a big one, while the superposition makes a transaction as

a sub-transaction of another one. In other words , union is used to juxtapose the corre­

sponding sections of two different T-Cham transactions together, while superposition

is responsible for the layers , or a hierarchical structures, of the result transactions.

There may have some other kinds of compositions, such as intersection and Carte­

sian product etc. As our main concern is to build a large transaction from a number of

smaller ones, we will not discuss them in this thesis.

9.1 Union of Transactions

The union of two transactions T1 and T2 is written as T1 IIT2. To be united, the two

transactions should be compatible, by which we mean that there are no inconsistencies

in their tuple declaration, tuple initialization, and termination condition sections.

158 A Compositional Proof System

Definition 7 (The Union of Transactions) The union of two transactions is ob­

tained by combining the corresponding sections of the two transactions together. I

Normally, there are five sections in a transaction specification. As the transac­

tions to be united are compatible, there are no problems in the combination of two

tuples sections. The initialization section creates the initial tuples in a tuple
.

space. After being united, the two transactions share one new tuple space, that is,

the two tuple spaces of these two transactions are also united. The initial tuples in

the new tuple space are the summation of each individual's initial tuples. The union

of two reactionrules sections simply juxtaposes the reaction rules in each section.

A reaction rule in T-Cham is actually a reaction rule schema and can have multiple

instances at a time; therefore, it is not necessary to keep multiple appearances of the

same reaction rules. The termination and the subtransaction sections are easy to

join given the two transactions are compatible.

Example 13 (Sleeping Barber: the union version) The Sleeping Barber problem

will be even clearer if we break it down into three pieces: transaction shop specifies the

activities related to the barber's shop, customer the activities of customers, and barber

the activities of the barber. The resulting T-Cham program is given in Figure 9.1. Each

of the three transactions takes care of its own activities, and the completed system is

the union of those three transactions, i.e., shop II customerllbarber. I

9.2 Union of Temporal Formulae

Recall that in Section 7.2, we discussed the temporal logic interpretation of a trans­

action. This section studies the effect of transaction union on these temporal logic

formulae.

Definition 8 (The Union of Two Temporal Formulae) Suppose that we have two

transactions T1 and T2 to be united, and II1 and II2 are the temporal logic formulae

translated from them respectively. The union of II1 and II2 juxtaposes the formulae

of them together, provided that the new united transaction is NR URC if it is under

9.2 Union of Temporal Formulae

transaction shop
tuples

endtrans

fifo boolean pin, pout;
boolean chair;

initialization
[i:1 .. NJ: :chair=TRUE;

reactionrules
nil leadsto pin;
pout leadsto nil;

a new customer is corning
a customer is leaving

transaction customer
tuples

endtrans

fifo boolean pin, pwt, pcut;
boolean bsp, bwk, chair;

reactionrules
pin, bsp leadsto pcut, bwk;
pin, chair leadsto pwt when (!bsp);

transaction barber
tuples

endtrans

fifo boolean pwt, pcut, pout;
boolean bsp, bwk, bfin, chair;

initialization
bsp=TRUE;

reactionrules
pcut, bwk leadsto pout, bfin;
pwt, bfin leadsto pcut, chair, bwk ;
bfin leadsto bsp when (lpwtl==O);

Figure 9.1: The Transactions of shop, customer, and barber

159

160 A Compositional Proof System

race condition: for those formulae which are assertions on th e initial tuple space state,

the new formula is the assertion on the the initial state of the new shared tuple space;

otherwise, the formula e are simply put together. •

Let's translate the transactions shop, customer, and barber to temporal logic

formulae and then study the union of these formulae.

The temporal logic formulae translated from transaction shop, referred as A shop,

are:

(a-, 0) F I chair I = N (shopO)

TURE =} • pin (shopl)

pout=} •TURE (shop2)

Those from transaction customer (Acust) are:

(a- , 0) F TRUE (custO)

pin/\ bsp =} •(pcut /\ bwk) (custl)

pin/\ chair/\ -,bsp =} •pwt (cust2)

and those from transaction barber (Abarb) are:

(a-, 0) F bsp {barbO)

pcut /\ bwk =} •(pout/\ bfin) (barbl)

pwt /\ bfin =} •(pcut /\chair/\ bwk) (barb 2)

bfin /\ -,pwt =} • bsp (barb3)

From the point of view of transactions , transaction root is the union of transactions

shop, customer, and barber, while from temporal logic formulae , A sb is the union of

A shop, A cust, and Abarb· For example, the formula (sbO) is the union of formulae of

(shopO), (custO), and (barbO).

If we add one more barber, i.e. , shop ll customerllbarberl lbarber, the assertion on

the number of the barbers (bsp) in the initial tuple space will be revised accordingly.

An interesting observation is that the addition or removal of one barber transac­

tion has nothing to do with the other two, while the addition of one more customer

transaction has no effect on the system behavior.

9.3 Properties of the United Transactions 161

9.3 Properties of the United Transactions

The properties of a transaction can be studied directly by transforming the trans­

action into temporal logic formulae, or indirectly from the properties of its components

if it is obtained by the union of other transactions.

Definition 9 (Notations) Suppose that we have two transactions T1 and T2 to be

united. We use V1 and V2 to denote their representative tuple sets respectively. II1 and

II2 are the formulae translated from T1 and T2. 1/J1 and 'l/J2 are the temporal properties

satisfied by II1 and II2 , i.e., II1 ~ 1/J1 and II2 ~ 1/J21. 1/J1 and 'l/J2 are in their conjunctive

normal forms , e.g., 'ljJ1 cp1 /\ cp2 /\ · · · /\ cpn, where cpi (1 < i < n) is a asub-property?

1/J\ V means the conjunction of the left components of 'ljJ by deleting these components

which contain the variables in V. •

Take transactions shop and customer for example: T1 = shop, T2 = customer,

V1 = {pin, pout , chair} , V2 = {pin, pwt , pcut , bsp , bwk, chair} ; II1 is AU A shop; II2

is AU A cust; ¢1 and ¢2 are the temporal properties of the two transactions.

Definition 10 (Critical Tuples) For any two transactions T1 and T2 , the intersec­

tion set of their representative tuple sets, V1 and V2 , is called critical tuple set V ,

V = V1 n V2 , and the elements of the set called critical tuples. I

The critical tuple set of shop and customer is {pin, chair}. Tuple pout cannot be

seen from transaction customer. Similarly, tuples pwt , pcut , and bsp cannot be seen

by transaction shop.

If the tuples in the two transactions to be united are completely disjoint (subject

to renaming) , i.e. , V = 0, the union is trivial. The behavior of the composed one is

exactly the same as the behaviors of the two components; otherwise, the interference

between the two transactions needs to be considered .

For any two transactions T1 and T2, let T be their union, i.e. , T - T1 IIT2, V the

critical tuple set, and II the temporal interpretation of T. To prove the correctness

of the new transaction T , we need to proof that if V = 0, II ~ 'ljJ1 A 'ljJ2 ; otherwise,

1 II1 and II2 here mean II1 and II2 together with the general temporal logical axioms

162 A Compositional Proof System

II ~ ('ljJ1 \ V) !\ ('l/J2 \ V) I\ 'ljJ, where 'ljJ is the new property of T. It is introduced by the

union operation2 . In the case of V = 0 , i.e., no common tuples in the two transactions,

each of the two transactions will keep its behavior unchanged when put together. The

composition is trivial. The property of T1IIT2 is exactly those of T1's and T2's, i.e. ,

II ~ 'ljJ1 /\ 'ljJ2 . If V i- 0, there will be interference between the two transactions. The

interference comes from their critical tuples. For these properties which are not harmed

by the critical tuples, such as 'l/J1 \ V and 'l/J2 \ V , they are still held in the new transaction

T. The others, which are affected by the interferences, are not the properties of T any

more, except these happen to be implied by T again. As the result of the union, new

property 'ljJ is expected. Tl]-us, we get II ~ ('l/J1 \ V) I\ ('l/J2 \ V) I\ 'ljJ.

The properties of shop are S = S1 I\ S2:

1. S1 • •pin: there is always a new customer coming;

2. S2 pout • •TRUE: a customer will get out of the barber's shop after he has

his hair cut.

Similarly, the properties of customer are C = C1 /\ C2:

1. C1 - pin • •pcut EB •pwt: a new customer will wake up the sleeping barber

to have his hair cut, or wait if the barber is busy and there is a chair available;

2. C2 _ •D(I chair I = 0): the number of chairs will eventually become zero.

The property is true from the point of view of customer, as the chairs are

continuously consumed by new customers. It will be falsified by putting customer

and barber together.

Finally, the properties of the transaction barber are B = /\; 1 B i :

1. B1 - pcut • •pout: the barber will finish his service on the customer who is

having his hair cut;

2. B 2 - pwt • •pcut: a waiting customer will eventually have his hair cut;

2We won 't discuss how to generally find out what the 'lj; is. A real 'lj; formula depends on the real
transactions T1 , T2, and T. We leave the problem to whoever conducts the verification practice, as we
believe the property 'ljJ is expected before the union operation.

9.4 Superposition 163

3. B 3 - bwk /\ ,pwt • •bsp: the barber is going to sleep if there are no waiting

customers;

4. B4 V M, M > 0 : • (I chair I > M): the number of available chairs continuously

increases, where M is an integer. The property is the counterpart of C2.

The proof of these properties is not vary hard after we translate the transaction

shop, customer , and barber to temporal logic formulae.

Let transaction root be the union of these three transactions ,

root = shop II customer 11 barber,

which can be worked out by

(shop II customer) II barber or shop II (customer II barber).

As a result, the property C2 and B4 are refuted, because they are assertions on a critical

tuple chair. The interferences introduced by the union establish a new assertion on

the population of tuple chair- the number of the tuple chairs is between O and N ,

i.e., P5 in Section 7.4. In addition to C2 and B4 , all other properties of shop , customer,

and barber are also needed to be re-examined if they contain critical tuples.

9.4 Superposition

Superposition contributes the layers , or hierarchical structures , to a T-Cham pro­

gram. If transaction T1 is built on T2 , i.e., T2 is a sub-transaction of T1 , a superposition

occurs. It is written as T1 [T2].

Superposition does not cause any problem in T-Cham verification. T1 [T2] means

that there is at least one reaction rule in T1 which has the form of

• · · leadsto · · · by T2 ;

From the subtransact ions section of T1 , we know the pre-condition and post-condition

of T2, say p and q respectively. No matter what kind of internal structures of T2 is , the

conditions are always fulfilled. In other words , T2 has no effect in the temporal logic

interpretation of transaction T1 . The property of T1 , say 'lj;1 , can be proven on p and

164 A Compositional Proof System

q. No details of how to get q from p are needed. While the property of T2, '¢2, can be

proved within T2 itself by its own logic interpretation. To be fitted into T1 , one major

property of T2 should be "p • •q".

The hierarchical structure of T-Cham provides an abstract view to a T-Cham pro­

gram, and also an abstract view of the temporal logic interpretation of the program.

The Matrix Multiplication example in Section 8.4 has the hierarchical structure of

root[multi_matrix[multiply]]. The temporal logic interpretation of the root trans­

action in Figure 8.8 is Am:

(a, O) F AJ\B (mO)

A J\ BJ\ pi • •(CJ\ qi) (ml)

pi and qi are listed in Section 8.4. The verification of the program in Figure 8.8 is

straightforward: the condition that tuple C contains the matrix product of tuples A and

B is directly implied by (ml). In the proof, we do not need to consider the behavior

of transaction mul ti_matrix. No matter what it is , it fulfills its pre-condition pi and

post-condition qi ; besides, it should terminate so that qi can be expected in a finite

amount of time.

To ensure that transaction mul ti_matrix fulfills its pi and qi , we can translate

it into temporal logic formulae and then verify pi and qi against the formulae. The

verification is localized within the mul ti_matrix temporal proof system and does not

affect the temporal proof systems of root or multi ply.

9.5 Summary

In this chapter, we have discussed the issues of the compositional proof system of

T-Cham programs. Two kinds of composition operators- union and superposition­

and their effect on the T-Cham temporal logic proof system have been studied. As an

example, we developed a transaction union version T-Cham program of the Sleeping

Barber problem and studied its proof system under this union operation. In the real

world, it is always desirable, in both program development and verification practice,

to break down a large problem into a number smaller pieces, which would be much

easier to manage. This is so-called divide-and-conquer strategy (5, 95]. With those

9.5 Summary 165

two composition operators, T-Cham provides an easy way to realize the strategy. In

addition, as each of the transactions to be composed are autonomous, any of them

can be replaced by an equivalent transaction without the involvement of the others,

T-Cham has a strong ability of code re-using.

C: 1 O ___ _______,J

Conclusion and Future Work

In this thesis, we proposed a new programming language: T-Cham. It is based on

the Chemical Abstract Machine (Cham) model with the extension of transactions.

Our work was carried out in three different but closely related directions: the design

of the T-Cham programming language itself, its implementation prototype, and the

verification of T-Cham programs.

The T-Cham programming language design is the major work of the thesis. It

determines the other two directions. T-Cham is designed as a compromise between

three critical but not always compatible criteria of a programming language. They

are (i) programmability, (ii) efficient implementation, and (iii) a provable and simple

underlying computational model.

The underlying computational model is the foundation of a programming language.

It largely decides all the other aspects of the language. For example, the Turing ma­

chine decides that an imperative programming language, such as the C programming

language, has assignment statements and control statements; the first order predicate

logic decides that a Prolog program consists of facts and clauses; the ,\ calculus decides

that in Lisp , both program and data are all in the list format. Some computational

models are easier and more efficient to implement on a certain type of computer archi­

tectures than others, for example, the Turing machine on the von Neumann structure

168 Conclusion and Future Work

computers; while some other models have better provability, i.e. , the programs written

in those programming languages based on these kinds of models are easier to verify

their correctness than others, for example, the first order predicate logic model and the

>. calculus model. In the real world , unfortunately, a model which could be easily and

efficiently implemented does not necessarily mean it has a good provability, and vice

versa. Programmability is another very important issue. Taking the Turing machine

and imperative programming languages as an example, three language structures, se­

quence, branch and goto , are theoretically enough for any kind of programming [57],

but any practical programming language has much more features , for example, block

structure, procedure structure, data structure, and variable scope mechanism etc., by

which we call it good programmability. A good computational model itself does not

mean good programmability just like a good foundation does not mean a good build­

ing, but with a good model, it is possible to design a programming language with good

programmability.

T-Cham chooses the Chemical Abstract Machine (Cham) as its underlying com­

putational model. The basic idea behind the choice is our belief that the difference

between parallel and sequential programming does not lie on the single thread nature

versus the multi-thread with communications but a functionality program versus a re­

active one. T-Cham is an attempt to develop a programming language based on an

interactive computational model. It tries to abandon the old concepts of shared mem­

ory or message passing at the programming level. Those concepts actually come from

computer hardware architectures and should not play any roles at programming level.

To the best of our knowledge, T-Cham is the first programming language completely

built on an interactive underlying computational model.

T-Cham is also designed as an open paradigm programming language, 1.e. , more

than one programming paradigm can be orthogonally integrated together (called co­

ordination) , to take the advantage of the current computer architectures. While the

underlying skeletons of any T-Cham programs reflect the Chemical Abstract Machine

model, the computational units (or chunks) of the programs can be written in any pro­

gramming languages, which fit the situation best. Those computational units are not

just normal functions or procedures, but with the enhancement of ACID (atomicity,

169

consistency, isolation, and durability) properties to make them transactions. In other

words, T-Cham can, on the one hand, take the advantage of the simplicity of Cham

control structures, and on the other hand, with the help of conventional programming

languages, be efficiently implemented on the current computer architectures. Transac­

tions are the keys to simplify the coordination. A programmer does not have to worry

about the order of the transactions to be executed, the places where the executions are

carried out , nor the interference among those transactions.

In this thesis , we also proposed a T-Cham implementation model, the T-Cham

Machine. It is an extension to the master/worker model. AT-Cham Machine can have

more than one master to alleviate the communication congestion between the single

master and the workers. Four basic algorithms, Tuple Space Partition, Tuple Migration,

Task Bid Handling , and Task Bidding and Receiving, are developed to balance the task

loads among the masters and guide task distributions to the workers. We undertook

a prototype implementation of the T-Cham Machine on the APl000 multicomputers

and acquired some basic performance measurement data. The initial experience is very

encouraging.

T-Cham implementation is a big job in the future. A full-fledged compiler and the

related tools are expected to be developed as the next step. In addition, Y. P. Boglaev's

chemical kinetics model [32, 31] may serve as a theoretical model for T-Cham Machine

performance analysis and also worth further investigation.

The automatic verification of program correctness is always desirable. T-Cham

is carefully designed to meet the requirement of easy formal verification. The ACID

properties , the pre- , and post-conditions of transactions and the hierarchical transaction

structures are among the considerations. With the understanding that a programmer

may not be necessarily the same person who does the correctness verification, T-Cham

keeps the theoretical part of the language in background. It can be ignored, but it is

there and ready to use.

In this thesis , we also applied a formal temporal logic proof system to T-Cham

program verification. The proof system was also tested on some examples. It demon­

strated the significance of transactions and their pre- and post-conditions in the formal

proof system. Meanwhile, we also realise that linear logic [79, 78 , 166, 10] is a very

170 Conclusion and Future Work

hopeful candidate in dealing with the resource-like nature of T-Cham and should be

seriously investigated.

In summary, as a newcomer to this crowded parallel programming language com­

munity, T-Cham has the following distinguishing characteristics:

1. T-Cham uses tuple spaces to coordinate a number of transactions. With this

approach, parallel structures are a programmer's primary focus and then sequen­

tial tasks instead of, like most of other approaches, adding parallel facilities to a

sequential structure. If we draw an analogy between programming and painting

a picture, there are two radically different approaches. The first approach starts

with the basic pieces of the picture and then put them together, like playing jig­

saw games. The other approach starts from a big picture and then divides it to

smaller pieces. Each of those pieces is refined independently. T-Cham belongs to

the second approach. We believe it reveals more parallelism, and it also makes

the synchronization among the pieces easier.

2. Hierarchical transaction and tuple space structures provide dynamic and abstract

views to transactions and their tuple spaces. They mean program modular­

ity. Keeping the analogy we discussed previously, the big picture is divided into

smaller pieces. Each of the pieces is treated the same way as we treat the big pic­

ture itself. In other words, those pieces are continuously divided into even smaller

pieces until they reach the right sizes. Different layers give different details of the

picture, in programming language terminology, different abstract views. Taking

the daily news as an example, the level could be the global news , national news,

local news, or even the news of a particular family talking at their dining table.

3. In T-Cham, the issues of sequential, parallel, or distributed are not at the pro­

gramming language level because we believe they belong to the issues of a program

implementation on different computation resources. From the point of view of a

T-Cham program, only reactions exist. A program is a kind of logic specifica­

tion. It describes the logic relations among its components. How to realize the
,I

relations is a matter of implementation and has nothing to do with the relations

themselves. For example, the course dependence in a university 's curriculum

171

is the logic relations and is related to programming level, while the order of a

particular student taking those courses belongs to the implementation issues.

4. T-Cham is a high-level portable programming language: a programmer does not

have to know the architecture of the underlying computer: parallel, sequential, or

networked. Taking the university curriculum example again, when specifying the

course dependence relations, there is no need to know the case of each individual

student.

5. Multi-lingual transactions make T-Cham multi-paradigm. A programmer can

take the advantages of different program languages without worrying about their

interferences as they are integrated orthogonally by the tuple spaces.

6. Transaction granularity can be easily adjusted by changing the number of opera­

tions contained in the transaction. For example, a transaction can be a very com­

plex function (coarse-grain) , or only a simple summation operation (fine-grain).

The changing of one transaction is isolated from the others.

7. The temporal logic proof system provides a formal tool for T-Cham program

verification. We keep this proof system in the background. It can be ignored if a

programmer does not like this theoretical part, but if he/she does want to formally

verify the programs, it can be used. The translation of a T-Cham transaction

to its correspond temporal logic formulae is straightforward and can be achieved

semi-automatically by algorithms.

The work presented in the thesis is only the first step towards this direction. More

research work and investigation should be done in the future. But , we do expect that

T-Cham can lead us to a new way of separating (i) the logic of a program from its

implementation, (ii) correctness from efficiency, and (iii) the rigid formal reasoning

aspect from a comfortable intuitive presentation, without heavy penalties on execution

efficiency.

I A Appendix _________ _J

The BNF Definition of T-Cham Syntax

Program ---+ {NonLeafTrans I LeafTrans }+

NonLeafTrans ---+ transaction NNam e NBody endtrans

NN ame ---+ Plain! dentity

NBody ---+ Tuples !nit R eact [Term] [SubTrans]

Tuples ---+ tuples TupleDcl { TupleDcl I MaskDcl}

TupleDcl ---+ [DclHead] DclBody

DclHead ---+ f ifo I filo I random

DclBody ---+ Type Nam eList ;

Type ---+ [tuple] Simple Type I StructType

SimpleType ---+ integer I real I boolean I char

StructType ---+ tuple "{" { Compon entDcl } + "}"
Compon entDcl ---+ DclBody

174 The BNF Definition of T-Cham Syntax

NameList • Name { , Name}

Name • SimpleName I ArrayName

SimpleName • Plain! dentity

ArrayName • Plainldentity Dimension

Dimension • "[" Digits "]" { "[" Digits "]" }

MaskDcl • mask "{" { MaskComponent } + "}" MaskName

MaskComponent • "{" Mask Window {, Mask Window } "}" "*" Simple Type

Mask Window

MaskName

!nit

InitList

Actvlnit

Pass/nit

IdxRange

M appinglnit

DataMask

• { 0 I 1 I Digits "* " (0 I 1) }

• Plainldentity

• initialization InitList

• {Actvlnit I Pass/nit I Mapping/nit}

• LName

• [I dxRange : :] SimpleN ame Value

• "[" Digits .. Digits "]"

• DataMask < - - SimpleName

• "[(" PlainMask I Regular Mask")]"

PlainMask • SimpleName \ MaskName {, SimpleName \ MaskName}

RegularMask • MappingPattern "* "SimpleName[~ Digits]

MappingPattern • Digits {" *" Digits}

Value • Simple Value I ValueList

Simple Value

ValueList

ValueExp

• ValueExp

• "{" ValueExp {, ValueExp} "}"

• ValueExp Op ValueExp I ValueExp ROp ValueExp I
ValueExp BOp ValueExp I "-" ValueExp I "!" ValueExp

Simple Value

175

Simple Value ---+ Integer Valu e I R eal Valu e I Boolean Value I Char Value

Integer Value ---+ [+ I -] Digits

R eal Value ---+ [+ I -] Digits [. Digits [E [+ I -] Digits]]

Boolean Value ---+ TRUE I true I FALSE I false I 1 I 0

Char Value ---+ "'" (Letter I Digit) "' "

R eact ---+ reactionrules { R eactRule }+

R eactRule ---+ LHS leadsto RHS [by Trans] [when BExp] ;

LHS ---+ Simple TupleList

RHS ---+ Simple TupleL ist

Simple TupleList ---+ Tuple{ , Tuple}

Tuple ---+ Plain! dentity

Trans ---+ Simple TransN ame I OnLine Trans

SimpleTransName ---+ Plainldentity

OnLine Trans ---+ "{" { AssignmemtStmt} + "}"

AssignmemtStmt ---+ VarName = Exp ;

---+ Simple VarName I Array VarName

---+ Fullldentity

---+ Fullldentity Dimension

VarName

Simple Var Name

Array VarName

Exp ---+ Exp Op Exp I Exp ROp Exp I Exp BOp Exp I "- " Exp

BExp

Function Call

VarNameList

Term

TermStmt

AssembleData

"!" Exp I Var Name I ValueExp I I Fullldentity I [']

---+ BExp ROp BExp I BExp BExp BExp

"!'' BExp I FunctionCall I VarName

---+ Plainldentity ({ VarNameList})

---+ VarName { , VarName }

---+ terminination {TermStmt}+

---+ on (BExp) do (Trans I AssembleData);

---+ DataMask - - > SimpleName

176

Sub Trans

TransStmt

PreCond

PostCond

Lea/Trans

LName

LBody

Micros

Op

ROp

BOp

Fullldentity

Qualifiedldentity

Plain! dentity

Letter

Digits

Digit

The BNF Definition of T-Cham Syntax

-+ subtransactions { TransStmt }+

-+ Trans : PreCond I I PostCond ;

-+ Plain! dentity

-+ Plain! dentity

-+ transaction LName LBody endtrans

-+ Plain! dentity

-+ Micros BodyCode

-+ #language LangName [#tuplein SimpleTupleList]

[#tuple out Simple TupleList]

-+ + I - I "*" I I
-+ > I < I >= I <= I !=

-+ && I "I I"

-+ Plainldentity I Qualifiedldentity

-+ Plainldentity $ D igits

-+ Letter { Letter I Digit}

-+ A I B l···I Z l a l b l···l z
-+ {Digit}+

-+ o I 1 I · · · I 9

I . B
Appendix _________ _J

The APl000 Multicomputer

This chapter is adapted from the CAP (Collaborative Research Project) documents.

For more details , please look at http:// cafe. anu. edu. au.

The APl000 is an experimental large-scale MIMD parallel computer developed by

Fujitsu Laboratories, Japan. Configurations range from 64 to 1024 individual proces­

sors or cells, connected by three separate high-bandwidth communications networks:

the B-net, T-net and S-net, Figure B.1. The cells do not share memory. The APl000 is

connected to and controlled by a host computer which is typically a Sun SPARCServer.

Each cell consists of a SPARC processor running at 25MHz with 16MB of RAM

(four-way interleaved, with ECC), 128KB of direct-mapped cache memory, floating­

point unit , a message controller, and interfaces to the three communications networks.

The cells have no address translation hardware, but they do have a memory-protection

table (MPT) which provides access and caching control for 4KB pages. The message

controller provides DMA facilities for sending and receiving messages.

The B-net is a 32-bit , 50MB/sec broadcast network which connects all cells and the

host, and is used for communication between the host and the cells. Using the B-net ,

the host can transmit data to one cell or to all cells simultaneously, and each cell can

transmit data to the host. The B-net also supports scatter/gather operations.

The T-net provides cell-to-cell communication. It is arranged as a two-dimensional

178

,. Cell

The APl000 Multicomputer

Synchronisath,n network Host

Sun 4/390

Cell C 11· 1:
1: .. . e .1

2.,...,, ,0 toru~ network

Cell,.

N1onitor
HD'rV

Video and
parallel disk

Figure B.l: The Architecture of the APl000 Multicomputer

torus in which each cell has links to its four neighbours in a rectangular grid. The

T-net is controlled by a Routing Controller (RTC) chip in each cell; its bandwidth is

25MB / sec on each link. Wormhole routing is used, with a structured buffer pool in each

RTC to avoid deadlock. Each RTC will forward messages on toward their destinations

without requiring any action by the cell CPU.

The S-net supports synchronization and status checking. It carries 40 signals which

are ANDed together over all cells: all cells output a value for each signal, and receive

the AND of the values output by all cells. To achieve synchronization, each cell sets a

particular output to 1 and then waits until it sees the corresponding input at a 1. The

S-net also allows the cells to synchronize with the host.

Programs for the APl000 are written in either C or FORTRAN. Library calls

are used for communication over the networks described above. Run-time control is

provided in the cells by CellOS, the cell operating system, and on the host by the

CAREN (Cellular Array Runtime ENvironment) program. CAREN provides facilities

for run-time monitoring of cell activity, performance measurement , error logging and

debugging. Symbolic debugging of cell tasks is provided through the use of GDB.

- --~~-~i

Bibliography

[1] S. Abramsky. The collection works of s. Abramsky.

http://www.dcs.ed.ac.uk/home/samson.

[2] S. Abramsky. Game semantics for programming languages. In I. Privara and

P. Ruzicka, editors, Proceedings of the 22nd International Symposium on Math­

emtical Foundations of Computer Science, LNCS 1295, pages 3- 4. Springer­

Verlag, 1997.

[3] S. Abramsky, K . Honda, and G. McCusker. A fully abstract game semantics for

general references. In Proceedings of the Thirteenth International Symposium on

Logic in Computer Science, pages 334- 344. IEEE Computer Society Press, 1998.

[4] D. Agrawal and A. El Abbadi. Transaction management in database systems.

In Ahmed K . Elmagarmid, editor, Database Transaction Models: For Advanced

Applications, pages 1- 32. Morgan Kaufmann Publishers , San Mateo, California,

USA, 1992.

[5] A. V. Aho. Th e Design and Analysis of Computer Algorithm. Addison-Wesley,

1974.

[6] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley, 1986.

[7] S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. IEEE Computer,

pages 26- 34, August 1986.

180 Bibliography

[8] H. Ait-Kaci. The WAM: A (real) tutorial. Technical report , digital , Paris

Research Laboratory, 85 A venue Victor Hugo, 92563 Rueil Malmaison Cedex,

France, January 1990.

[9] S. G. Aki. Th e D esign and Analysis of Parallel Algorithms. Prentice-Hall, 1989.

[10] V. Alexiev. Applications of linear logic to computation: An overview. Bull. of

the IGPL, 2(1):77- 107, 1994.

[11] G. R. Andrews. Concurrent Programming: Principles and Practice. The Ben­

jamin/Cummings Publishing Company, Inc. , 1991.

[12] ANSI. American National Standard Programming Language: PL/I. ANSI, 1976.

[13] ANU and Fujitsu. CAP homepage. http:// caf e. anu. edu. au.

[14] W. B. Arthur and R. Alice. The ENIAC: First general-purpose electronic com­

puter. Annals of the History of Computing, 3(4):310- 399, October 1981.

[15] W. Aspray. Computing before computers. Iowa State University Press , 1990.

[16] J. Backus. Can programming be liberated from the von neumann style? Comm .

. the ACM, 21(8):613- 641 , August 1978.

[17] J. Bacon. Concurrent Systems: An Integrated Approach to Operating Systems,

Database, and Distributed Systems. Addison-Wesley, 1993. ·

[18] H. E. Bal. A comparative study of five parallel programming languages. Future

Generation Computer Systems, 8:121- 135, 1992.

[19] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Programming languages for dis­

tributed computing systems. A CM Computing Surveys, 21 (3) :261- 322, Septem-

ber 1989. ,,

[20] J .-P. Banatre. Parallel multiset processing: From explicit coordination to chem­

ical reaction. In P. Ciancarini and C. Hankin, editors, Coordination Languages

and Models , First International Conference, COORDINATION'96, LNCS 1061 ,

pages 1- 11. Springer-Verlag, 1996.

Bibliography 181

[21] J.-P. Banatre, A. Coutant, and D. Le Metayer. A parallel machine for multiset

transformation and its programming style. Future Generation Computer System,

4:133- 144, 1988.

[22] J .-P. Banatre and D. Le Metayer. The GAMMA model and its discipline of

programming. Science of Computer Programming, 15:55- 77, 1990.

[23] J .-P. Banatre and D. Le Metayer. Programming by multiset transformation.

Comm. ACM, 36(1):98- 111 , January 1993.

[24] H. Barringer. The use of temporal logic in the compositional specification of con­

current systems. In A. Galton, editor, Temporal Logics and Their Applications,

pages 53- 90. Academic Press, 1987.

[25] A. Beguelin, J. Dongarra, A. Geist, and V. Sunderam. Visualization and debug­

ging in a heterogeneous environment. Computer, pages 88- 95 , June 1993.

[26] A. Beguelin and G. Nutt. Visual parallel programming and determinacy: A

language specification, an analysis technique, and a programming tool. Journal

of Parallel and Distributed Computing, (22):235- 250, 1994.

[27] T. Bemmerl and P. Braun. Visualization of message passing parallel programs

with the TOPSYS parallel programming environmanet. Journal of Parallel and

Distributed Computing, (18):118- 128, 1993.

[28] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and

recovery in database systems. Addison-Wesley Publishing Company, 1987.

[29] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer

Science, 96:217- 248, 1992.

[30] R. Bjornson, N. Carriero, and D. Gelernter. From weaving threads to untangling

the web: A view of coordination from Linda's perspective. In D. Garlan and D. Le

Metayer, editors, Coordination Languages and Models, Second International Con­

ference, COORDINATION'97, LNCS 1282, pages 1- 17. Springer-Verlag, 199t.

182 Bibliography

[31] Y. P. Boglaev. Exact dynamic load balancing of MIMD architectures with linear

programming algorithms. Parallel Computing, 18:615- 523, 1992.

[32] Yuri P. Boglaev. Chemical kinetics structure of parallel computing. In S. K.

Aityan, L. T. Hathaway, et al., editors, Proceedings of the First International

Conference on Neural, Parallel, and Scientific Computations, pages 53-58. Dy­

namic Publishers, Inc., Atlanta, Georgia, USA, 1995.

[33] A. P. W. Bohm and R. R. Oldehoeft. Two issues in parallel language design.

ACM Transactions on Programming Languages and Systems, 16(6):1675- 1683,

November 1994.

[34] G. Boudol. Some chemical abstract machines. In J.W. de Bakker, W.P. de Roever,

and G. Rozenberg, editors, A Decade of Concurrency: . R efl ections and P erspec­

tives, LNCS 803, pages 92- 123. Springer-Verlag, 1993.

[35] P. Branguart, J. Lewis , M. Sintzoff, and P. L. Wodor. The composition of se­

mantics of Algol68. Comm. A CM, 16, 1971.

[36] A. G. Bromley. Difference and analytical engines. In W. Aspray, editor, Com­

puting Before Computers. Iowa State University Press , 1990.

[37] BSP. The collection works related to BSP. http:/ /web. comlab. ox. ac. uk.

[38] J. P. Burgess. Basic tense logic. In D. M. Gabbay and F. Guethner, editors,

Handbook of Philosophical Logic, Vol. II, pages 89- 134. D. Reidel Publishing

Company, 1984.

[39] P. Butcher, A. Wood, and M. Atkins. Global synchronisation in Linda. Concur­

rency: Practice and Experience, 6(6):505- 516, September 1994.

[40] N. Carriero and D. Gelernter. Linda in context. Comm. ACM, 32(4):444- 458,

1989.

[41] N. Carriero and D. Gelernter. How to Write Parallel Program: A First Course.

The MIT Press, 1990.

Bibliography 183

[42] N. Carriero, D. Gelernter, T. Mattson, and A. Sherman. The Linda alternative

to message-passing systems. Parallel Computing, 20:632- 655 , 1994.

[43] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison­

Wesley, 1988.

[44] M. Chaudron and E. Jong. Towards a compositional method for coordinating

Gamma programs. In P. Ciancarini and C. Hankin, editors, Coordination Lan­

guages and Models, First International Conference, COORDINATION'96, LNCS

1061, pages 107- 123. Springer-Verlag, 1996.

[45] B. F. Chellas. Modal Logic: An Introduction. Cambridge University Press, 1980.

[46] D. Y. Cheng. A survey of parallel programming languages and tools. Technical

Report RND- 93- 005, Computer Sciences Corporation, NASA Ames Research

Center, Moffett Field, CA 94035-1000, USA, March 1993.

[47] P. Ciancarini. Distributed programming with logic tuple spaces. New Generation

Computing, 12:251- 283, 1994.

[48] P. Ciancarini, R. Corrieri, and G. Zavattaro. An alternative semantics for the

calculus of Gamma programs. In J.-M. Andreoli, C. Hankin, and D. Le Metayer,

editors, Coordination Programming: Mechanism, Models and Semantics, pages

224- 247. IC Press, London, 1996.

[49] E. Clarke, 0. Grumberg, and D. Long. Verification tools for finite-state concur­

rent systems. In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors , A

Decade of Concurrency: Reflections and Perspectives, LNCS 803 , pages 125- 175.

Springer-Verlag, 1993.

[50] E. M. Clarke, 0. Grumberg, H. Hiraishi, et al. Verifying of the Futurebus+

cache coherence protocol. In L. Claesen, editor, Proceedings of the Eleventh In­

ternational Symposium on Computer Hardware Description Languages and Th eir

Applications. North-Holland, 1993.

[51] N. Cohen. Ada as a Second Language. McGraw-Hill, Inc., 1986.

184 Bibliography

[52] R. Cohen and B. Molinari. Implementation of C-Linda for the APl000. In The

Proceedings of the Second ANU /Fujitsu CAP Workshop. 1991.

[53] D. J. Cooke and H. E. Bez. Computer Mathematics. Cambridge University Press,

1984. Cambridge Computer Science Texts- 18.

[54] Thinking Machines Corporattion. CMMD reference manual. Technical report,

Thinking Machines Corporation, Cambridge, Massachusetts , USA, 1993.

[55] Thinking Machines Corporattion. CMMD user's guide. Technical report, Think­

ing Machines Corporation, Cambridge, Massachusetts , USA, 1993.

[56] H. B. Curry. Foundations of mathematical logic. McGraw-Hill, 1963.

[57] 0.-J. Dahl, E. W. Dijkstra, and C.A.R. Hoare. Structured Programming. Aca­

demic Press, 1972.

[58] C. J. Date. An introduction to database systems, volume 1. Addison-Wesley

Publishing Company, 1990.

[59] C. J. Date. An introduction to database systems, volume 2. Addison-Wesley

Publishing Company, 1990.

[60] R. David and H. Alla. P etri N ets and Grafcet: Tools for modelling discrete event

systems. Printice Hall, 1992.

[61] J. B. Dennis. Machines and models for parallel computing. International Journal

of Parallel Programming, 22(1):47- 77, 1994.

[62] J. B. Dennis , G. R. Gao, and K. W. Todd. Modeling the weather with dataflow

supercomputers. IEEE Transa ctions on Computer, 33:592- 603 , 1984.

[63] J. B. Dennis and D. P. Misunas. A preliminary architecture for a basic dataflow

processor. In Proceedings of 2nd Symposium on Computer Architectures, pages

126- 132, 1975.

[64] Yale University Department of Computer Science. Linda group homepage.

http://WWT,J.cs.yale.edu/Linda/linda.html.

Bibliography 185

[65] E. W. Dijkstra. Co-operating sequential processes. In F. Genyus, editor, New
)

Programming Languages, pages 43- 112. Academic Press , 1968.

[66] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[67] I. 0. Elliot. Th e Multics System - An Examination of its Structure. The MIT

Press, 1972.

[68] M. J. Flynn. Some computer organizations and their effectiveness. IEEE Trans­

actions on Computer, 21:948- 960, 1972.

[69] I. Foster and C Kesselman. Language constructs and runtime systems for compo­

sitional parallel programming. In B. Buchberger and J. Volkert , editors, Parallel

Processing: CONPAR 94 - VAPP VI, LNCS 854, pages 5- 16. Springer-Verlag,

1994.

[70] I. Foster, C. Kesselman, and S. Taylor. Concurrency: Simple concepts and pow­

erful tools. Th e Computer Journal, 33 (6) :501- 507, 1990.

[71] I. Foster, R. Olson, and S. Tuecke. Productive parallel programming: the PCN

approach. Scientific Programming, 1(1):51- 66 , 1992.

[72] I. Foster and R. Overbeek. Bilingual parallel programming. In A. Nicolau, D. Gel­

ernter, T. Gross , et al. , editors, Advances in Languages and Compilers for Parallel

Processing, pages 24- 43. The MIT Press, 1991.

[73] I. Foster and S. Taylor. Strand: New Concepts in Parallel Programming. Prentice­

Hall, 1990.

[74] G. C. Fox. Applications of parallel supercomputers: Scientific results and com­

puter science lessons. In M. A. Arbib and J. A. Robinson, editors, Natural and

Artificial Parallel Computation, pages 47- 90. The MIT Press, 1990.

[75] N. Francez. Fairness. Springer-Verlag, 1986.

[76] D. Gelernter. Multiple tuple spaces in Linda. In E. Odijk, M. Rem, and J.-C.

Syre, editors, PARLE'89, Parallel Architectures and Languages Europe, LNCS

366, pages 20- 27. Springer-Verlag, 1989.

186 Bibliography

[77] D. Gelernter and N. Carriero. Coordination languages and their significance.

Comm. ACM, 35:96- 107, 1992.

[78] J. Girard. Linear logic: A survey. In F. L. Bauer, W. Brauer, and H. Schwichten­

berg, editors, Logic and Algebra of Specification, pages 63- 112. Springer-Verlag,

1991.

[79] J .-Y. Girard. Linear logic. Theoretical Computer Science , 50:1- 102, 1987.

[80] A. Goldberg and D. Robson. Smalltalk80: The Language and its Implementation.

Addison-Wesley, 1983.

[81] A. J. Goldberg and L. Hennessy. Mtool: An integrated system for performance

debugging shared memory multiprocessor applications. IEEE Transactions on

Parallel and Distributed Systems, 4(1) :28-40, January 1993.

[82] M. J. C. Gordon. Th e Denotational Description of Programming Languages: An

Introduction. Springer-Verlag, 1979.

[83] R. Gotzhein. Temporal logic and application - A tutorial. Computer N etworks

and ISDN systems, 24:203- 218 , 1992.

[84] C. Hankin, D. Le Metayer, and D. Sands. A calculus of GAMMA programs.

LNCS 757. Springer-Verlag, 1992.

[85] C. Hankin, D. Le Metayer, and D. Sands. Refining multiset transformers. Th eo­

retical Computer Science, 192:233- 258 , 1998.

[86] P. B. Hansen. Operating Systems Principles. Prentice-Hall, Inc., 1973.

[87] D. Harel and A. Pnueli. On the development of reactive systems. In K. R. Apt ,

editor, Logics and Models of Concurrent Systems, pages 477- 498. Springer-Verlag

1985.

[88] P. Henderson. Functional Programming, Application and Implementation.

Prentice-Hall, Inc .. 1980.
I

Bibliography 187

[89] J.M. D. Hill and D. B. Skillicorn. Lessons learned from implementing BSP. Tech­

nical Report Technical Report TR-96-21 , Oxford University Computing Labora­

tory, 1996.

[90] C. A. R. Hoare. Monitors: An operating system structuring concept. Comm. the

ACM, 17(10):549- 557, October 1974.

[91] C. A. R. Hoare. Communicating sequential processes. Comm. ACM, 21(8):666-

677, August 1978.

[92] R. W. Hockney and C. R. Jesshope. Parallel Computers: architecture, program­

ming and algorithms. Adam Hilger Ltd, Techno House, Redcliffe Way, Bristol

BSl 6NX, UK, 1981.

[93] C. J. Hogger. Introduction to Logic Programming. Academic Press, 1984.

[94] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,

and Computations. Addison-Wesley, 1979.

[95] E. Horowitz. Fundamentals of Computer Algorithm. Computer Science Press,

1978.

[96] P. Hudak. The conception, evolution, and application of functional programming

languages. ACM Computing Surveys, 21(3):359- 411, September 1989.

[97] K. Hwang. Advanced Computer Architecture: Parallelism, Scalability, Pro­

grammability. McGraw-Hill , Inc., 1993.

[98] P. Inverardi and A. L. Wolf. Formal specification and analysis of software ar­

chitectures using the chemical abstract machine model. IEEE Transactions on

Software Engineering, 21 (4) :373- 386, April 1995.

[99] K. Jensen. An introduction to the theoretical aspects of coloured Petri nets.

In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, A Decade of

Concurrency: Reflections and Perspectives, LNCS 803, pages 230- 272. Springer­

Verlag, 1993.

188 Bibliography

[100) C. W. Johnson. personal communication.

[101) D. E. Knuth. Von Neumann's first computer program. ACM Computing Surveys ,

2(4):247- 260, December 1970.

[102) P. M. Kogge. The Architecture of Symbolic Computers. McGraw-Hill, Inc., 1991.

[103) J. S. Kowalik and K. W. Neves. Software for parallel computing: Key issues and

research directions. In J. S. Kowalik and L. Grandinetti, editors, Software for

Parallel Computation, pages 3- 33. Springer-Verlag, 1993.

[104) E. V. Krishnamurthy and V. K. Murthy. Parallel programming paradigm based

on multiset transformation. In David Arnold, Ruth Christie, et al., editors, Paral­

lel Computing and Transputers, PCAT- 93, pages 43- 51. IOS Press, Amsterdam,

Netherlands, 1993.

[105) F. Kroger. Temporal Logic of Programs. Springer-Verlag, 1987.

[106) H. T. Kung and C. E. Leiserson. Systolic arrays (for VLSI). In Duff and Stewart ,

editors, Sparse Matrix Proceedings, pages 47- 90. Knoxville, TN, SIAM, 1978.

[107) C. LaMorte and J. Lilly. Computers: History and development.

In Jones Telecommunications and Multimedia Encyclopedia. 1997.

http://www.digitalcentury.com/encyclo/update/comp-hd.html.

[108) L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Comm. ACM, 21(7):558- 565, July 1978.

[109) L. Lamport. What good is temporal logic. In R. E. A. Mason, editor, Information

Processing, IFIP 83, pages 657- 668. Elsevier Science Publishers B. V. , North­

Holland, 1983.

[110) L. Lamport. A simple approach to specifying concurrent systems. Comm. ACM,

32(1):32- 45, January 1989.

[111] L. Lamport. Verification and specification of concurrent programs. In J. W.

de Bakker, W. P. de Rover , and G. Rozenberg, editors, A Decade of Concurrency:

R eflections and P erspectives, LNCS 803, pages 347- 374. Springer-Verlag, 1993.

Bibliography 189

[112] L. Lamport. The temporal logic of actions. ACM Trans. on Programming Lan­

guages and Systems, 16(3):827- 923, May 1994.

[113] J. V. Leeuwen. Handbook of Theoretical Computer Science: Formal Models and

Semantics, volume B. Elsevier, The MIT Press, 1990.

[114] H. R. Lewis and C. H. Papadimitrion. Elements of the Theory of Computation.

Prentice-Hall, 1981.

[115] C. Lin and L. Snyder. Data ensembles in orca c. In U. Banerjee, D. Gelern­

ter, A. Nicolau, and D. Padua, editors, Languages and Compilers for Parallel

Computing, LNCS 757, pages 112- 123. Springer-Verlag, 1992.

[116] B. Liskov. Distributed programming in Argus. Comm. the ACM, 31(3):300- 312,

March 1988.

[117] B. Liskov and R. Scheifler. Guardians and actions: Linguistic support for robust ,

distributed programs. A CM Trans. on Programming Languages and Systems,

5(3) :381- 404, July 1983.

[118] J. W. Lloyd. Foundations of Logic Programming. Springer Verlag, second edition,

1987.

[119] Inmos Ltd. Reference Manual of Transputer. Prentice-Hall, 1987.

[120] Inmos Ltd. A Tutorial Introduction to Occam Programming. Prentice-Hall, 1987.

[121] Inmos Ltd. Occam 2 R ef erence Manual. Prentice-Hall, 1988.

[122] W. Ma, , M. A. Orgun, and C. W. Johnson. Towards a temporal semantics

for Frame. In Proceedings SEKE'98, Tenth International Conference on Soft­

ware Engineering and Knowledge Engineering, pages 44- 51. Knowledge Systems

Institute, 3420 Main Street , Skokie, IL 60076 , USA, 1998.

[123] W. Ma, C. W. Johnson, and R. P. Brent. Concurrent programming in T-Cham.

In Kotagiri Ramamohanarao, editor, The Proceedings of the 19th Australasian

Computer Science Conference (ACSC'96), pages 291- 300. 1996.

190 Bibliography

[124] W. Ma, C. W. Johnson, and R. P. Brent. Programming with transactions and

chernical abstract machine. In Guo-Jie Li, D. F. Hsu, S. Horiguchi , and B. Maggs ,

editors, Proceedings of Second Int ernational Symposium on Parallel Architectures,

Algorithms, and Networks (I-SPAN'96), pages 562- 564. 1996.

[125] W. Ma, E. V. Krishna1nurthy, and M. A. Orgun. On providing temporal se­

mantics for the GAMMA programming model. In C. Barry Jay, editor, CATS:

Proceedings of Computing: the Australian Th eory S eminar, pages 121- 132. Uni­

versity of Technology, Sydney, Australia, 1994.

[126] W. Ma, V. K. Murthy, and E. V. Krishnamluthy. Multran - A coordination

programming language using multiset and transactions. In S. K. Aityan, L. T.

Hathaway, et al., editors, Proceedings of the First Int ernational Conference on

N eural. Parallel, and Scientific Computations, pages 301- 304. Dynamic Publish­

ers, Inc., Atlanta, Georgia, USA, 1995.

(127] W. Nia and NL Orgun. Verifying Niultran programs with temporal logic. In

NL Orgun and E. Ashcroft , editors , Intensional Programming I , pages 186- 206.

World-Scientific, 1996.

[128] A. D. Malony, D. A. Reed, and H. A. G. Wijshoff. Performance measurement in­

trusion and pertlubation analysis. IEEE Transactions on Parallel and Distributed

Systems, 3(4):433- 450, July 1992.

(129] Z. Manna and A. Pnueli. How to cook a ten1poral proof system for yolu pet

language. In Proc. 10th Ann. AGNI Symp. on Principles of Programming Lang. ,

pages 141- 154. ACM Press, 1983.

(130] Z. Manna and A. Pnueli. The Temporal Logic of R eactive and Concurrent Sys­

terns: Spec'ification. Springer-Verlag, 1992.

[131] G. Matos and J. Purtilo. Reconfiguration of hierarchical tuple space: Experiments

with linda polylith. Technical Report CS-TR-3153, Department of Computer

Science, University of :tviaryland, Maryland, USA, 1993.

[132] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.

Bibliography 191

[133) Sun Microsystems. J ava homepage. http://www. j avasof t. com/ .

[134) M. P. Miller. What to draw? When to draw? An essay on parallel program

visualization. Journal of P arallel and Distributed Computing, (18):265- 269, 1993.

[135) R. Miller and Q. F. Stout. P arallel Algorithms for R egular Architectures. The

MIT Press, 1989.

[136) R . Milner. Communication and Concurrency. Prentice-Hall, Inc., 1989.

[137) R. Milner. The polyadic 1r-calculus: a tutorial. Technical Report Technical Report

ECS-LFCS-91-180, Department of Computer Science, University of Edinburgh,

1991.

[138) R. Milner. The polyadic 1r-calculus: a tutorial. In F. L. Bauer, W. Brauer, and

H. Schwichtenberg, editors, Logic and Algebra of Specification, NATO ASI Series,

pages 203-246. Springer-Verlag, 1993.

[139) R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and IL

Information and Computation, 100:1- 77, 1992.

[140) US Department of Defence. Reference Manual for the Ada Programming Lan­

guage. US Department of Defence, 1983.

[141] M. Orgun and W. Ma. An overview of temporal and modal logic programming. In

Dov M. Gabbay and H. J. Ohlbach, editors, The First International Conferenc

on Temporal Logic, LNAI 827, pages 445-479. Springer-Verlag, 1994.

[142] C. M. Pancake. Software support for parallel computing: Where are we headed.

Comm. the ACM, 34(11):53-64, November 1991.

[143] G.-R. Perrin and J.-P. Finance. Communication relations: a paradigm for parallel

program design. Science of Computer Programming, 19:25-59, 199L.J.

[144] R. H. Perrott. Parallel languages and parallel programming. In D . .J. Evans,

G. R. Joubert, and F. J. Peters, editors, Parallel Computing 89, pages 47- 58.

Elsevier Science Publishers B. V., 1990.

192 Bibliography

[145] J. L. Peterson. P etri N et Th eory and the Modelling of Systems. Prentice-Hall,

1981.

[146] C. A. Petri. K ommunikation mit A utomaten. PhD thesis, Schriften des Institutes

fur Instrumentelle Mathematik, Bonn, German, 1962.

[147] W. Reisig. P etri N ets. Springer-Verlag, 1985.

[148] N. Rescher and A. Urquhart. Temporal Logic. Springer-Verlag, 1971.

[149] M. Reynolds. Temporal semantics for Gamma. In J.-M. Andreoli , C. Hankin,

and D. Le Metayer, editors , Coordination Programming: Mechanism, Models and

Semantics, pages 141- 170. IC Press , London, 1996.

[150] E. S. Richard. A history overview of computer architectures. Annals of the

History of Computing, 10:277- 303, 1988.

(151] G.-C. Roman and K. C. Cox. A taxonomy of program visualization system.

Computer, pages 11- 24, December 1993.

[152] G.-C. Roman and H. C. Cunningham. Mixed programming metaphors in a shared

dataspace model of concurrency. IEEE Transactions on Software Engineering,

16(12) :1361- 1373, December 1990.

(153] G.-C. Roman and H. C. Cunningham. Reasoning about synchronic groups. In

J. P. Banatre and D. Le Metayer, editors , R esearch Directions in High-Level

P arallel Programming Languages, LNCS 574, pages 21- 38. Springer-Verlag, 1991.

[154] M. Rosing, R. B. Schnabel, and R. P. Weaver. The DINO parallel programming

language. Journal of Parallel and Distributed Computing, (13):30- 42, 1991.

(155] J. Rumbaugh, M. Blaha, W. Premerlani , et al. Object-Oriented Modeling and

Design. Prentice Hall, 1991.

[156] T. Shimizu, T. Rorie, and H. Ishihata. Low-latency message communication sup­

port for the APl000. In Proceedings of the Second Fujitsu-ANU CAP Workshop,

pages 1- 14. The Australian National University, 28- 29 , November 1991.

Bibliography 193

[157] D. B. Skillicorn. Models for practical parallel computation. International Journal

of Parallel Programming, 22(2):133- 158, 1992.

[158] D. L. Slotnick, W. C. Borek, and R. C. McReynolds. The SOLOMON computer.

In AFIPS Conj. Proc. , 22, pages 97- 107. 1962.

[159] V. P. Srini. An architecture comparison of dataflow systems. Computer, pages

68- 88, March 1986.

[160] J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Program­

ming Language Th eory. The MIT Press, 1977.

[161] A. S. Tanenbaum. A tutorial on Algol68. ACM Computing Surveys, 8(2), 1970.

[162] E. Tick. Parallel Logic Programming. The MIT Press , 1991.

[163] A. Turing. On computable numbers , with an application to the entscheidungs

problem. In Proceedings of the London Math ematical Soceity, volume 42, pages

230- 265. 1936. reprinted in M. David (ed.), The Undecidable, Hewlett, NY, Raven

Press, 1965.

[164] L. G. Valiant. A bridging model for parallel computation. Comm. the ACM,

33(8):103-111, August 1990.

[165] R. van der Goot , J. Schaeffer, and G. V. Wilson. Safer tuple spaces. In D. Garlan

and D. Le Metayer , editors, Coordination Languages and Models, Second Interna­

tional Conference, COORDINATION'91, LNCS 1282, pages 289- 301. Springer­

Verlag, 1997.

[166] P. Wadler. A taste of linear logic. In A. M. Borzyszkowski and S. Sokoloski,

editors, Mathematical Foundations of Computer Science, LNCS 714, pages 185-

210. Springer-Verlag, 1993.

[167] D. H. D. Warren. An abstract Prolog instruction set . Technical Report Technical

Note 309, SRI International, Menlo Park , CA, USA, October 1983.

[168] P. Wegner. Why interaction is more powerful than algorithm. Comm. A CM,

40(5) :89- 91 , May 1997.

194 Bibliography

[169] M. Weichert. Pipelining the molecule soup: A plumber 's approach to Gamma.

In P. Ciancarini and A. L. Wolf, editors, Coordination Languages and Models,

Third International Conference, COORDINATION'99, LNCS 1594, pages 69- 84.

Springer-Verlag, 1999.

[170] S. E. Zenith. A rationale for programming with ease. In J. P. Banatre and

D. Le Metayer, editors, R esearch Directions in High-Level Parallel Programming

Languages, LNCS 574, pages 147- 156. Springer-Verlag, 1991.

[171] K. Zhang and W. Ma. Graphical assistance in parallel program development.

In Allen L. Ambler and Takayuki Dan Kimura, editors, Proceedings of IEEE

Symposium on Visual Languages, pages 168- 170. IEEE Computer Society Press,

1994.

Index

F function , 96

G function, 96

1r-calculus, 31

abacus, 9

ACID, 45

Argus , 23

axiom, 111

bid hit rate, 98

bid-choice function , 96

Blaise Pascal , 9

ccs, 31

Cham, 4, 16, 18 , 43

Charles Babbage, 9

Chemical Abstract Machine, see Cham

Communicating Sequential Processes , see

CSP

Communication and Concurrent System,

see CCS

completeness, 111

control flow , 3 7

control thread, 37

coordination, 5, 44

CSP, 29

deductive system, 111

DINO, 27

direct bid, 92

distributed memory, 38

duplication (tuple space), 88

EDVAC , 10

ENIAC, 9

event interleaving, 135

example

Dining Philosophers , 126

Dutch Flag, 70

Element Summation, 57

Eratosthenes Sieve, 64

Fibonacci Number, 75

Matrix Multiplication, 151

Meeting Scheduler, 74

Producer-Consumer Problem, 68

Sleeping Barber, 72

Sleeping Barber: the union version,

158

The Calculation of the Value of 1r ,

79

196

Vending Machine, 66

executor, see task executor

F function, 99, 102

fair , 59

fairness , 52, 135

functional programming, 35

functionality program, 2, 35

G function, 99

GAMMA Model, 16

granularity, 39

coarse-grain, 39

fine-grain, 39

grain packing, 39

hierarchical tuple space structure, 141

inference rules, 111

instance reference, 55

isoefficiency, 98

Linda, 18

linear logic , 40

logic programming, 35

logical shared memory, see tuple space

manager, see task manager

mask, 148

plain mask, 148

regular mask, 150

maximum common tuple group, 122

MCTG, 122

MIMD , 11

INDEX

MISD, 11

modal logic , 108

no race under race condition, 123

NRURC, 123

Occam, 31

Parallel Random Access Memory, see PRAM

partition (tuple space), 88

passing bid, 92

PCN, 25

Petri Nets , 14

PRAM, 31

processes, 10

race , 117

maximum common tuple group, 122

MCTG , 122

no race under race condition, 123

NRURC, 123

race (the definition) , 123

race condition, 122

reactive program, 36

reactive system, 3

representative set, 115

resources , 3 9

return-choice function , 96

satisfy, 111

shared memory, 38

SIMD , 11

SISD, 11

soundness, 111

INDEX

state formulae, 109

state predicate, 109

state term, 109

Strand, 25

stuttering, 116

Swarm, 20

T-Cham, 4- 6, 20, 26, 42- 46

T-Cham Machine, 85

task bid, 90

task bid handling algorithm, 94

task bidding and receiving algorithm, 95

task distribution, 95

task executor, 86

task manager, 86

TaskBidHist array, 92, 96 , 98 , 99, 101

temporal formula , 109

temporal logic, 46, 108

temporal operators, 109

temporal property, 108

liveness , 128

safety, 128

theorem, 111

thread, 2

time-stamps, 53

transaction, 5, ~

leaf transaction, 45, 47, 56

body, 57

guest language, 57

main transaction, 5, 4 7

non-leaf transaction, 4 7, 50- 56

body, 51

initialization, 53

reaction rules, 54

sub-transaction, 56

termination, 55

tuples, 51

sub-transaction, 5, 47

197

transaction superposition, 46, 157, 163

transaction union, 46, 157

transputers , 31

tuple mapping, 141 , 148

down, 149

up, 149

tuple migration, 90

tuple migration algorithm, 93

tuple space, 5, 38, 44

tuple space partition algorithm, 89

tuples , 5, 16, 44

Turing machine, 35

Unity, 20

valid, 111

weak fairness, 52

x-type multiset , 115

x-type tuples , 115

y-type multiset, 115

y-type tuples , 115

	b20833003_0_003_R
	b20833003_0_004_L
	b20833003_0_004_R
	b20833003_0_005_L
	b20833003_0_005_R
	b20833003_0_006_L
	b20833003_0_006_R
	b20833003_0_007_L
	b20833003_0_007_R
	b20833003_0_008_L
	b20833003_0_008_R
	b20833003_0_009_L
	b20833003_0_009_R
	b20833003_0_010_L
	b20833003_0_010_R
	b20833003_0_011_L
	b20833003_0_011_R
	b20833003_0_012_L
	b20833003_0_012_R
	b20833003_0_013_L
	b20833003_0_013_R
	b20833003_0_014_L
	b20833003_0_014_R
	b20833003_0_015_L
	b20833003_0_015_R
	b20833003_0_016_L
	b20833003_0_016_R
	b20833003_0_017_L
	b20833003_0_017_R
	b20833003_0_018_L
	b20833003_0_018_R
	b20833003_0_019_L
	b20833003_0_019_R
	b20833003_0_020_L
	b20833003_0_020_R
	b20833003_0_021_L
	b20833003_0_021_R
	b20833003_0_022_L
	b20833003_0_022_R
	b20833003_0_023_L
	b20833003_0_023_R
	b20833003_0_024_L
	b20833003_0_024_R
	b20833003_0_025_L
	b20833003_0_025_R
	b20833003_0_026_L
	b20833003_0_026_R
	b20833003_0_027_L
	b20833003_0_027_R
	b20833003_0_028_L
	b20833003_0_028_R
	b20833003_0_029_L
	b20833003_0_029_R
	b20833003_0_030_L
	b20833003_0_030_R
	b20833003_0_031_L
	b20833003_0_031_R
	b20833003_0_032_L
	b20833003_0_032_R
	b20833003_0_033_L
	b20833003_0_033_R
	b20833003_0_034_L
	b20833003_0_034_R
	b20833003_0_035_L
	b20833003_0_035_R
	b20833003_0_036_L
	b20833003_0_036_R
	b20833003_0_037_L
	b20833003_0_037_R
	b20833003_0_038_L
	b20833003_0_038_R
	b20833003_0_039_L
	b20833003_0_039_R
	b20833003_0_040_L
	b20833003_0_040_R
	b20833003_0_041_L
	b20833003_0_041_R
	b20833003_0_042_L
	b20833003_0_042_R
	b20833003_0_043_L
	b20833003_0_043_R
	b20833003_0_044_L
	b20833003_0_044_R
	b20833003_0_045_L
	b20833003_0_045_R
	b20833003_0_046_L
	b20833003_0_046_R
	b20833003_0_047_L
	b20833003_0_047_R
	b20833003_0_048_L
	b20833003_0_048_R
	b20833003_0_049_L
	b20833003_0_049_R
	b20833003_0_050_L
	b20833003_0_050_R
	b20833003_0_051_L
	b20833003_0_051_R
	b20833003_0_052_L
	b20833003_0_052_R
	b20833003_0_053_L
	b20833003_0_053_R
	b20833003_0_054_L
	b20833003_0_054_R
	b20833003_0_055_L
	b20833003_0_055_R
	b20833003_0_056_L
	b20833003_0_056_R
	b20833003_0_057_L
	b20833003_0_057_R
	b20833003_0_058_L
	b20833003_0_058_R
	b20833003_0_059_L
	b20833003_0_059_R
	b20833003_0_060_L
	b20833003_0_060_R
	b20833003_0_061_L
	b20833003_0_061_R
	b20833003_0_062_L
	b20833003_0_062_R
	b20833003_0_063_L
	b20833003_0_063_R
	b20833003_0_064_L
	b20833003_0_064_R
	b20833003_0_065_L
	b20833003_0_065_R
	b20833003_0_066_L
	b20833003_0_066_R
	b20833003_0_067_L
	b20833003_0_067_R
	b20833003_0_068_L
	b20833003_0_068_R
	b20833003_0_069_L
	b20833003_0_069_R
	b20833003_0_070_L
	b20833003_0_070_R
	b20833003_0_071_L
	b20833003_0_071_R
	b20833003_0_072_L
	b20833003_0_072_R
	b20833003_0_073_L
	b20833003_0_073_R
	b20833003_0_074_L
	b20833003_0_074_R
	b20833003_0_075_L
	b20833003_0_075_R
	b20833003_0_076_L
	b20833003_0_076_R
	b20833003_0_077_L
	b20833003_0_077_R
	b20833003_0_078_L
	b20833003_0_078_R
	b20833003_0_079_L
	b20833003_0_079_R
	b20833003_0_080_L
	b20833003_0_080_R
	b20833003_0_081_L
	b20833003_0_081_R
	b20833003_0_082_L
	b20833003_0_082_R
	b20833003_0_083_L
	b20833003_0_083_R
	b20833003_0_084_L
	b20833003_0_084_R
	b20833003_0_085_L
	b20833003_0_085_R
	b20833003_0_086_L
	b20833003_0_086_R
	b20833003_0_087_L
	b20833003_0_087_R
	b20833003_0_088_L
	b20833003_0_088_R
	b20833003_0_089_L
	b20833003_0_089_R
	b20833003_0_090_L
	b20833003_0_090_R
	b20833003_0_091_L
	b20833003_0_091_R
	b20833003_0_092_L
	b20833003_0_092_R
	b20833003_0_093_L
	b20833003_0_093_R
	b20833003_0_094_L
	b20833003_0_094_R
	b20833003_0_095_L
	b20833003_0_095_R
	b20833003_0_096_L
	b20833003_0_096_R
	b20833003_0_097_L
	b20833003_0_097_R
	b20833003_0_098_L
	b20833003_0_098_R
	b20833003_0_099_L
	b20833003_0_099_R
	b20833003_0_100_L
	b20833003_0_100_R
	b20833003_0_101_L
	b20833003_0_101_R
	b20833003_0_102_L
	b20833003_0_102_R
	b20833003_0_103_L
	b20833003_0_103_R
	b20833003_0_104_L
	b20833003_0_104_R
	b20833003_0_105_L
	b20833003_0_105_R
	b20833003_0_106_L
	b20833003_0_106_R
	b20833003_0_107_L
	b20833003_0_107_R
	b20833003_0_108_L
	b20833003_0_108_R
	b20833003_0_109_L
	b20833003_0_109_R

