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Abstract

The last two decades witnessed the fast development of parallel and distributed com-
puters, but their applications are still obstructed by the facts that the design and
implementation of a parallel program are very complex, and only a few of those who
have been well trained in this area can barely manage.

Programming languages play a vital role in program development and implemen-
tation. Although a plethora of concurrent, including both parallel and distributed,
programming languages and models have been proposed, the parallel programming is
still far more difficult than in the sequential case. We believe one of the most important
reasons is that the differences between the concurrent and sequential programming are
not lying in the single thread nature versus the multi-thread with communications but
a functionality program versus a reactive one, and therefore, concurrent programming
languages should be designed to reflect those new features.

In this thesis, we propose a new concurrent programming language—T-Cham. It
extends the Chemical Abstract Machine (Cham) with transactions. A Cham is an
mteractive computational model based on chemical reaction metaphor, where a com-
putation proceeds as a succession of chemical reactions. A transaction is a piece of
programming code which has the properties of ACID (Atomicity, Consistency, Isola-
tion, and Durability). A T-Cham program can be executed in a parallel, distributed,
or sequential manner based on the available computer resources. As a newcomer to the
crowded parallel and distributed programming language community, T-Cham empha-

sizes simplicity, efficiency, and a sound theoretical background.
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Chapter

Introduction

The last two decades witnessed a rapid development of parallel and distributed compu-
tation techniques, both in hardware and software. Many parallel computers have been
manufactured, and many parallel programming models, languages and development
environments have been proposed. The ever growing need for computational power
and the maturity of techniques for connecting computers together have given an impe-
tus to the rapid growth of parallel computer applications. In addition, widely installed
computer networks provide the opportunities for computers to work together, so called
distributed computation, to provide more power than any individual computer.

The computational power of sequential computers 1s approaching its limits because
of the maximum speed limit of electron transmission and the minimum feasible inte-
grated circuit chip size. An alternative way to achieve more computational power is to
use parallelism, i.e., to bind a number of sequential computers together and program
them to cooperate in solving a problem. The major obstacle that prevents parallel
computers from more general usage today is not the design and manufacturing of the
hardware but the design and implementation of parallel programs, i.e., the lack of
widely accepted methodologies, programming models and languages, and the related
supporting tools for parallel program development. These software techniques are still

under development and far from maturity.
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result. Denotational semantics [160, 82] is the formal description of the idea. where
each program statement transfers the program from the state before the execution of
itself to the state after it. The behaviour of the whole program is to map the initial
state to a final state.

The same conceptual model also exists in our daily life. For example, assembling
lines in the manufacturing industries, first-aid procedures, check list style work sheets
and so on are the examples of functional model. But the simple model fails in a more
complex situation. For example, when we drive a car approaching a roundabout, we
have to interact with other cars, the one on the right and the one in the opposite
direction (the car may stop the one on the right). An interactive model is necessary to
describe this kind of behaviour.

When more than one computer is put together to make a parallel computer system,
each component computer works on one thread. The multi-thread manner contributes
to the execution of a parallel program. At first, it is natural to think that the main task
of parallel programming is the thread control, e.g., thread fork, join and termination,
but with the increasing number of element computers, hundreds and thousands in
a massive parallel computer system, handling the threads becomes more and more
difficult.

A reactive system {?IIII)IIELHiH(‘H the interactions anong the components of a pro-
gram: different parts of a program interact with each other in response to stimuli from
the “outside” world. The intrinsic property of the systems 1s the interactions among
the components rather than the co-existing execution flows (or, multi-control-thread)
although the latter can also be observed from the outside of the systems,

The widely accepted object-oriented programming techniques [80, 132, 155] provide
auxiliary evidence that a program consists of interacting components. An object-
oriented program comprises a number of objects. Each of them has its interface to
communicate with other objects and some methods to conduct the required internal
operations. The interactions among those objects, not the control flows, are the primary
concern in the object-oriented programiing.

The concepts of sequential, parallel, or distributed belong to the execution of a pro-

gram on a particular computational resource rather than the program itself. There
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are no sequential, parallel, or distributed programs but only functionality ov interac-
tive programs. Accordingly, the programming language for concurrent activities should
not be judged only by its abilities of thread control and communications but also the
abilities to express the interactions. In other words, a concurrent programming lan-
guage should not be just an extension to an existing sequential programming language
with some thread control and communication facilities, but a new one based on an

interactive computation model.

1.1.2 Programming Language Design Criteria

There are many choices available when designing a programming language, and
there are also many selection criteria in making the choice. The three most important
criteria, we believe, are the programmability, execution efficiency, and provability of the
programming language. As a programming language is the tool for human beings to
instruct computers to work properly, it should be easy for human beings to manage
and use, by which we call it programmability. On the other hand, the programs written
in the programming language have to be executed on a real computer (or computers).
The execution efficiency is the ultimate goal for the overall performance. The most
efficient programming language is the assembly language of a particular computer, but
it is far from human-friendly (i.e., it has low programmability). The higher level a pro-
gramming language is, the less efficient it is, and most likely, the more human-friendly.
Some compromise between programmability and execution efficiency has to be made.
With the increasing use of computers in every aspect, including many mission-critical
applications, the correctness of a program is essential. If there is a rigid mathematic
reasoning process which could formally prove the correctness of the programs written in

a programming language, we say that the programming language has good provability.

1.1.3 Our Proposal

We propose a new programming language called T-Cham [123, 124]. It extends
the Chemical Abstract Machine (Cham) [29, 34] with (sequentially executed) transac-
tions [4]. A Cham is an interactive computational model based on the chemical reaction

‘It is a successor of our former programming langnage Multran [126, 127].
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1.2 Major Contributions

The research work undertaken in this thesis consists of three main parts: (i) the
design of the T-Cham programming language, (ii) the application of temporal proof sys-
tem to T-Cham program verification, and (iii) a prototype implementation of T-Cham

programs.

The Chemical Abstract Machine (Cham) is a mathematical model for computation.
It is to T-Cham what the Turing Machine [163, 114] is to an imperative programming
language, such as Fortran, Pascal, or C. To the best of our knowledge, T-Cham is the
first programmable language based on the chemical abstract machine. T-Cham also
introduces some new features, for example, termination conditions, bulk reaction oper-
ations (i.e., transactions), hierarchical chemical reaction sub-systems (i.e., hierarchical
tuple spaces and nested transactions), molecule mapping, and mapping mask etc., to
the original Cham model. They make the T-Cham programs more efficient and easier

to manage than the original model.

T-Cham semantics observes the same operational semantics of the Chemical Ab-
stract Machine [98]. We adopt a temporal logic proof system for T-Cham program
verification. The purpose of the verification system is to show programmers how easy
to prove the correctness of T-Cham programs. With the increasing use of computers in
every aspect, including many mission-critical applications, of modern society, the cor-
rectness of a program is essential. There are many proposals for using rigid mathematic
reasoning processes to prove the correctness of the programs, but they emphasize more
on the theoretical sides and, quite often, scare programmers away. In this thesis, we
will concentrate on the application of mathematic reasoning instead of the mathematic
theory itself. Similarly, in our daily life, we always say directly that “3+4 is 77 instead
of “the third successor of the number 0 plus the fourth successor of the 0 is proven to
be its seventh successor” as done in a rigid algebraic way; otherwise, it is very likely

that most of us cannot do calculation at all.

To justify our T-Cham programming language, we developed some prototype imple-
mentations. One implementation is on the top of the C-Linda programming language

[123], where there is a logically shared memory, and another is directly using the C
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effect of non-determinism is also discussed in this chapter.

Chapter 6 proposes an implementation model for T-Cham programs. It is a generic
model, called T-Cham Machine, for MIMD (Multiple Instruction streams over Multiple
Data streams) computer architectures. It is an extension to the master/worker parallel
computation model, where there could be more than one master. The prototype imple-
mentation on the AP1000 multicomputer is also discussed, and the basic performance
measurement data are also given.

Chapter 7 develops a basic temporal logic proof system for T-Cham programs. The
chapter first introduces a temporal logic system, and then proposes the temporal logic
model for T-Cham programs. A set of rules, which could translate T-Cham programs
into corresponding temporal logic formulae, is also developed. Finally, we give examples
of T-Cham program verification.

Chapter 8 deals with the advanced T-Cham notations. They are used to construct
hierarchically structured T-Cham programs. Program abstraction and refinement are
also considered. The central idea of this chapter is tuple mapping, which can be used
to decompose a large tuple into a number of smaller sub-tuples or vice versa. The
mapping applies hierarchical views to T-Cham tuples and provides a means of con-
structing subtransactions to T-Cham programs: a transaction consists of a number of
subtransactions (or sub-reaction-systems), which are isolated from the other systems.
When put together, they specify the whole reaction system, while any changes to a
transaction (or subtransaction) are transparent to the others.

Chapter 9 discusses the composition of the temporal logic proof systems. In this
chapter, we study the temporal logic theory of two kinds of transaction compositions,
union and superposition, and their effects on the T-Cham proof system. The techniques
developed in this chapter will help us to build a large proof system from a number of
small systems the same way as building a large transaction from a number of small
transactions in T-Cham programs.

Chapter 10 gives the final summary of our research work and suggests some future

work.



Chapter

Background and Related Work

The pursuit of high performance (automatic) computation tools has been driven by
the ever-increasing demand for computational power in real-life applications. In the
early days of human history, our ancestors used their own fingers, perhaps toes, as
well as pebbles and sticks to help them to count and calculate. The first human-made
sophisticated computational tool is the abacus [107], dated back to 5,000 years ago in
China. It dramatically increased the computational power of human beings in that
time and is still used in China and some other countries. Some thousands of years had
passed since the invention of abacus to the Mechanical Adder/Subtractor [15] of Blaise
Pascal in France in 1642 and to the Difference Engine for Polynomial Evaluation [36]
of Charles Babbage in England in 1827. The real breakthrough of computational tools
in human history is the invention of electronic computers. One of the first computers
is known as ENIAC [14], built at the Moore School of the University of Pennsylvania
in 1945. ENTAC was a giant monster: with 18,000 vacuum tubes, 70,000 resistors, and
5,000,000 soldered joints; weighing 30 tons, occupying a 30x50 square feet room, and
consuming 160 kilowatts of electrical power. But, an addition or subtraction operation
took as long as 200 pus.

A major drawback of ENIAC was that its programs were hard-wired; in other words,

the physical electronic circuit has to be changed if the program needs to be changed.
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The characteristic is always used by some people to deny that ENIAC was the first
modern computer, The first electronic (r()mpul.vrl which has the same architectures,

the so-called the von Neumann structure [101], as today’s computers is EDVAC [101].

Since then, computer hardware has advanced from vacuum tubes, discrete transis-
tor circuits, integrated circuits (1C), large scale integrated circuits (LSI), to very large
scale integrated circuits (VLSI), the so-called five hardware generations. Although their
underlying fundamental architectures are still of the von Neumann structure, the com-
putational power of computers has been rapidly developed.

At the very beginning, programs were coded in binary machine language (strings
of 0s and 15), and a program occupied the resource of the whole computer. Those
programs were very small. For example, the evaluation of a complex arithmetic ex-
pression was a big task at that time. Of course, on the other hand, the processing
speed of a CPU was very low during that time, and it could handle only one task at
a given time instant. With the increasing of processing speed and memory capacity,
a computer is to be expected to manage multi-tasks at the same time. Time-sharing
operating systems begin to appear, and multiprogramming, or concurrency, becomes
possible. A computer then could handle more than one task simultaneously. Those
tasks share the same physical computer in a time-sharing mode and work together in
an unpredictable order. To be executed, a task has to be on a quene to wait for CPU.
When its turn comes, the task receives a slice of CPU time. After it runs out of the
time, no matter whether it finishes or not, it gives up the CPU to the others. If it
needs more CPU tune to finish the job, 1t has to rejoin the queue and wait for another
turn. Because of the high CPU speed and the short period of the time slice, it seems
that the tasks are running concurrently. A major difficulty of multiprogramming is the
synchronization among those tasks, in a more technical term, processes. A fair sched-
uler is needed to schedule those processes; in addition, any of those tasks should be free
from interference from the others. Semaphores, conditional critical region protection,
and monitors [65, 86, 90| are the most important and also commonly used mechanisms
for process synchronization.

'There exists some dispute about which was the real first, but as this thesis is not on the history of

computers, we only take ENIAC and EDVAC as our examples.
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The demand for computational power has increased further nowadays. The areas
of computational fluid dynamics, subatomic string dynamics, high temperature super-
conductivity, astrophysical particle dynamic, plasma physics, computer chess, artificial
intelligence and so on [74] are among those which give a big challenge to computational
power of any single computer, because the development of the computer processing
speed is restricted by the bounded electron transmission speed, which is the same as
the speed of light, and the memory capacities are restricted by the integration density of
a VLSI chip. The only way to answer the challenge is to combine individual computers
and make them work together with the strength accumulated from each member of the
computer system. Thus, parallel computation made its debut to take the challenge. The
idea of parallel computation is, amazingly, very old. Hockney and Jesshope 192, pp 5-7]
credited the honor to General Menabrea’s publication in the Bibliothé que Universelle
de Gencve, October, 1842, It was still in the Charles Babbage eral However, it is only

the electronic computers that make the dream of parallel computation come true,

2.1 Parallel Computer Systems

The computer architectures can be roughly classified into four classes. SISD. SIMD.
MISD and MIMD, according to Flynn 168].

A single von Neumann computer is an SISD (Single Instruction stream over a Single
Data stream) architecture machine. Conventionally, it is called a sequential computer,

An SIMD (Single Instruction stream over Multiple Data streams) architecture ma-
chine is also known as a wvector computer or a data parallel computer, where a single
instruction stream controls a number of vector processors which execute the same in-
struction on different elements of a vector. A vector is often called an array in a
programiming language. A major application of SIMD computers is matrix calculation.

A well-known example of MISD ( Multiple Instruction streams over a Single Data
streamn) is the systolic arrays structure [106], where a same data stream flows through
an array of processors which execute different operations on the streams,

An MIMD (Multiple Instruction streams over Multiple Data streams) computer

system ('.()III[)l'i:-H‘.H of a number of individual computers, or computer HU(I(‘H1 which
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interact, i.e., communicate and synchronize, with each other and work concurrently.
Each computer node, also called processor element (PE), is autonomous and can execute
its own control thread independently. There may be some shared memory among
those PEs, or not. If there is, it is called a shared memory parallel computer system,
Figure 2.1(a), where the communication and synchronization are realised via the shared
memory. The concurrent processes on different nodes share a global address space.
Processes interact with each other by reading, writing, locking and unlocking a certain
piece of the shared memory. If there is no such kind of shared memory, it is called
a distributed memory computer system, Figure 2.1(b), where the communication and
synchronization are achieved by a message passing facility.

Of the four architecture models, SISD is just a sequential computer; SIMD and
MISD, parallel though, are more suitable for special purposes; only MIMD structure
can be considered for general purpose usage. MIMD structure machines are also the
most popular commercially available parallel computers. In this thesis, we constrain
our terminology of parallel computer to MIMD machine, if without explicit explanation.

One of the first MIMD computers was delineated in the paper of Slotnick et al [158],
where the authors described a new computer architecture: a 32x32 array of process-
ing elements, each with a memory of 128x32 bit numbers. A processing element is
an autonomous computer with its own CPU, arithmetic unit and memory. The new
computer was called SOLOMON. Although it was never built as the authors wished,
it catalysed ILLIAC IV [150)].

There are many commercially available MIMD computers nowadays. The two com-

puter systems we used to conduct our experimental implementation of T-Cham are

AP1000 [13] and CM-5 [55, 54].

2.2 Parallel Programming Models and Languages

Programming languages play a vital role in program development and implemen-
tation. On the one hand, a programming language provides a means of algorithm pre-
sentation; on the other hand, it reflects the underlying abstract computational model.

For example, an imperative programming language reflects the Turing machine, and a
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functional programming language reflects the A-calculus.

We give a brief introduction to parallel programming models and languages in this
section. The models and languages listed here are by no means exhaustive, but are all
directly related to our work. They are introduced in order to outline the background
of our research work. For a more comprehensive introduction of parallel programming

languages and paradigms, we refer readers to [103, 46, 18, 143, 144, 19].

2.2.1 Petri Nets

Petri nets [145, 147, 60] were first described by Petri in his PhD dissertation [146)]
in the 1960s and have been widely accepted since then.

The idea of Petri nets is very simple: a Petri net is a bi-partite directed graph,
where there are two types of nodes—places and transitions—and some arcs, each of
which connects either from a place to a transition or from a transition to a place.
There are a number (> 0) of tokens residing in each of the places. If each of the places
which have an arc pointing to the same transition contains at least one token, the
transition can be fired. As the result of the firing, it consumes one token from each
of the places mentioned above and produces one token to each of the places which are

connected to by an arc from the transition. An example of firing is in Figure 2.2.
fire
—»

Figure 2.2: The Firing of a Transition in a Petri Net

ORORJ

There is no restriction on the orders of transition firings; thus, a Petri net 1s an in-
herently concurrent model. A simple example of concurrency is the Producer-Consumer
problem: a producer produces a product—say, a message—at a time to a container,

while a consumer consumes a message, at a time, from the container. The producer
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constantly produces messages to the container until it is full. meanwhile the consumer
constantly consumes the messages from the container until it is empty. When it is full,
the producer suspends until there is more room available: similarly when the container
Is empty, the consumer is waiting for an available message. The producer and the con-
sumer are completely autonomous. The only restriction is the capacity of the container
and the number of the messages currently in the container. A Petri net version of the
Producer-Consumer is in Figure 2.3, where the capacity of message buffer is unlimited.
The two places and two transitions at left hand side of the figure operate as the pro-
ducer, the place in the middle (with four tokens at the moment) is the container, and
the two places and transitions at right hand side work as a consumer. It is quite easy
to see that a transition firing at the producer side adds one more token to the container

place, while the firing at consumer side takes one token from the container place.

Figure 2.3: Producer-Consumer in Petri Net

There exist many different interpretations of the places and transitions in a Petri
net. A straightforward interpretation is just places and transitions themselves, called
Place/Transition Nets, An alternative way considers places as conditions becanse they
decide which transitions can be fired, while transitions as events because firing a tran-
sition means a kind of event is happening. In this case. a Petri net is interpreted as
a Condition/Event System. A third way treats places as predicates, and thus, Predi-
cate/Event Nets [147].

There are also lots of extensions to the original Petri net. A most important one is
so-called Colored Petri nets [99], where tokens are not identical any more but belong

to different types or colors; transition firing conditions are composed by not only the
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numbers of tokens but also the types of tokens. The others, for example, assigning
a transition some actions, setting time restriction on tokens or transitions, or adding
extra conditions on each arc so that some tokens cannot pass through etc., cannot be
exhaustively listed in this thesis.

The most important contribution of Petri nets is the recognition of resource-like to-
kens, which can be consumed and produced like real resources. This property is lacking
in the conventional programming languages. We believe that there should be two kinds
of variables in a program: one is the normal “variable” and the other is “resource”.
Those two are equally important. The difference between them is not so significant in
a sequential program, but without fully understanding of the difference, a concurrent

program is very hard to harness (see Section 3.1.5 for the detailed discussion).

2.2.2 GAMMA Model and the Chemical Abstract Machine

GAMMA [21, 22, 23, 104, 20] model is based on a multiset data structure. A
multiset 1s the set except that there can be multiple occurrences of its elements. The
computational model of GAMMA resembles a succession of chemical reactions in which
some elements (aka molecules) of a multiset are consumed and then some new elements
are produced, just like the behaviours of molecules in chemical reactions. A distinguish-
ing property of GAMMA is the absence of control structures, which are prevalent in
the imperative programming paradigm. Compared to the logic and functional pro-
gramming paradigms, GAMMA model has a very simple structure, and it can reveal
parallelism easily.

A GAMMA program is a set of transformation rules, also known as reaction rules,
which transform the original multiset to a new multiset. Programmers need only to
consider the two possible states of a multiset: the original state (a multiset of tuples)
and the new state produced after the action. A GAMMA program is defined as the

function:
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(R, A(T) = if 3z, 2, - -2z, € T such that R(x,zo,--,2,)

then (T = {21, T2y, Zn}) + A2y, @000 )

.

else 7,

where T is the original multiset before the action, and the operators + and — denote
multiset union and difference. The boolean type function R is the reaction condition.
When it is evaluated to the value TRUE, the function A. known as an action tert. is
activated, and after its execution, it returns a multiset of elements as the result of the
action,

An example program is the sorting of an array A[1..N], which is decomposed into
a multiset of N elements, (1, A[1]), (2, A[2]), -+, (N, A[N]). Each of the multiset
clements has two components: the first is the index, which denotes the position of the
element in the array, and the second is its value. The idea of the sorting is very simple:
for any two elements chosen, if they are not in the right order. exchange their index.
[n multiset operational language, remove the two elements which have wrong indexes
from the multiset and then generate two new elements with the right indexes. The

GAMMA program of this example is illustrated in Figure 2.4.

R((iyz), (J,y)) =i >jAa <y
A((4,z), (4,) = T = {(i, ), (7,0} + {(G,v), (4,2)}

Figure 2.4: Sorting an Array in GAMMA

Although GAMMA model is powerful yet coneise in expressing program logic, its
implementation on today’s computers is not so efficient [21]. The major reason is,
ironically, due to the lack of control structures in GAMMA model. Take the sorting
program in Figure 2.4 for example: as there is no control on how to choose tuples (7, )
and (7. y) to evaluate the reaction condition R, it is highly possible that the two tuples
chosen are already in the right order, i.e., i < 7, and this may happen over and over.

A lot of effort has been taken by the research community to improve the efficiency
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of the GAMMA model. Hankin et al. [84, 85] proposed a serial of refinement and
equivalence rules based on the IO behaviours of GAMMA programs. With the help
of the rules, a simple GAMMA program can be rewritten into an equivalent but less
nondeterministic (or more deterministic) program, therefore, increasing the efficiency
of the program. Ciancarini et al. [48] took a different approach by suggesting the
refinement and equivalence rules based on bisimulation of CCS [136]. Chaudron and
Jong [44], on the other hand, tried to impose some orders on the reactions of GAMMA
programs. They resort to an external schedule to reduce the nondeterminism of a
GAMMA program. Weichert [169] incorporate the approaches of both Hankin [84, 85]
and Chaudron [44] by proposing a “pipelining” technique to refine GAMMA programs.

In this thesis, we take yet another completely different approach to improve the
implementation efficiency of GAMMA model. By realizing the continuous dominance
of the von Neumann structure in modern computer architectures, we use self-contained
and atomic imperative program segments—transactions—to pack more operations into
reactions. Please see Chapter 3 for more detailed discussion.

Cham (Chemical Abstract Machine) [29, 34] is a theoretical refinement of GAMMA.
The rigid mathematical definitions of molecules, reactions and reaction rules are given,
and so are the structured molecules and their transformation rules. Recently, Cham

has also been used to specify a multi-phase compiler by Inverardi and Wolf [98].

2.2.3 The Linda Paradigm

Linda [42, 40, 7] is the first coordination parallel programming paradigm based on
a global tuple space. There are a couple of fully implemented Linda languages. The
most popular one is C-Linda [52]. Since its debut, Linda remains as an active research
area. For the history of Linda and its possible future development, we refer readers
to [30], and for the up to date research work on Linda, we refer readers to the Linda
Group at Yale University [64]. Coordination [77] is the basic idea promoted by Linda.
Instead of simply mixing different languages together, Linda provides a global shared
tuple space to coordinate the activities of each individual programming languages. We
will discus the idea of coordination in Section 3.2.3.

There are four tuple space operators in Linda:
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I. in: withdraws a tuple from the tuple space if it exists; otherwise the action is
blocked until the tuple is available. If there are more than one tuple of this type

available, one of them is chosen arbitrarily;

2. rd: has the same functionality as in except that the tuple is not deleted from

the tuple space;
3. out: outputs a tuple to the tuple space;

4. eval: outputs a tuple containing at least one field of active data, which needs to
be executed before the result can be reached. For example, we call “37 and “4”
passiwe data while “3 + 4”7 an active data. A tuple which contains active data is
called an active tuple; otherwise a passive tuple. Any active tuple will eventually

evolve to its passive form, for example, “3 + 4”7 to “77.

Linda is not a full-fledged programming language. It can only coordinate the activi-
ties written in other ordinary (sequential) programming languages. According to differ-
ent choices of underlying computational languages, we can get C-Linda, Fortran-Linda,
and Pascal-Linda etc. Taking C-Linda as an example, the activities, i.e., the chunks
of computation, are written in the C programming language. They interact and com-
municate with each other on the tuple space by the four Linda operators. A C-Linda
program of summing two arrays B[0--- N —1] and C[0--- N —1] to A[0--- N — 1] pair-
wise 1s given in Figure 2.5, where the elements of the two arrays are first injected into
the tuple space by the for loop, and then the summation function does the pair-wise
summation. If we have a function sum(x,y) which returns the summation of its two
arguments, the out statement of summation() can be replaced by “eval (ArrayA, i,
sum(x,y));”. The latter version reveals more parallelism.

The elegant idea of coordination becomes awkward when the four tuple space oper-
ators reside in a sequential host language. The sequential skeleton of the host language
forces programmers to consider its sequential control structures first instead of the con-
currently accessible tuple space. Furthermore, the syntax structure of an existing host
language also blurs the globality of the tuple space.

A better way to realise the idea of coordination is to view the tuple space operations
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main()

{
int BIN]={...}, CINI={...};
int A[N];
iRt 12

e G0 4@y 2
out (ArrayB, i, B[i]);
out (ArrayC, i, CELil);
} /* for */
summation() ;
} /* main */

summation()
{
e L
for (i=0; i<N; i++) {
in(ArxayB, 1, 2x);
in(AxrayC, i, 2y);
out (ArrayA, i, x+y);
} /* for */
} /* summation */

Figure 2.5: The Pairwise Summation of Two Arrays in C-Linda

as a skeleton with the computational chunks as pieces of flesh which are fitted onto
this skeleton. T-Cham promotes this approach. A comparison of Linda and T-Cham is
illustrated in Figure 2.6, where in Linda approach, the tuple space (the shadowed area)
can only be seen through the holes of a sequential programming language front-end,
while in T-Cham approach, the tuple space is in front of the computational chunks.
In short, rather than extending a sequential computational programming language by
adding a parallel tuple space, we attach the sequential computational chunks to a

concurrent accessible tuple space.

2.2.4 Unity and Swarm

Unity is based on Dijkstra’s do [66] structure and has no control statements: it re-

tains the assignment statement of the imperative programming paradigm but abandons
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Program sort3
assign
< 7 =g <15
<l 0 < WA — 7 meel Ae
Ale], Alz + 1] := Ale + 1], ARl if Al > Ali+ 1]
>
>
end {sort3}

Figure 2.7: Sorting an Array in Unity

its control part. The conflict between control statements and assignment statements is
the main problem for the formal correctness proof of the programs written in impera-
tive programming languages [16]. A Unity program consists of a group of assignment
statements which are executed infinitely and fairly. A statement can assign different

44“77

values to different variables in one step. i1s used as the sub-assignment separa-
tor, and “]” for assignment statements. An example of a Unity sorting program is in
Figure 2.7, adapted from [43, p. 33].

Unity also has an axiomatic proof system. It is a fragment of propositional temporal
logic with the basic operators of unless and ensure. Other operators, such as stable,
invariant, and leadsto (), are also defined based on those two operators. A fix point
operator, FP, is suggested to decide the termination point of a program, if it does
terminate.

One of the major contributions of Unity is separating programming notations from
its formal specification symbols (for program verification purposes), although there is a
one-to-one relationship between them. The verification is transparent to the program-
mers who do not like mathematical reasoning, but the correctness of a program can
still be proved by some other people who do like such reasoning.

Swarm [152, 153] improves Unity by introducing dataspace, transactions and syn-

chronous groups into the language. The name Swarm [152] evokes a swarm of

“large (number), rapidly moving aggregation of small, independent agents

cooperating to perform a task.”
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program ArraySum(N, A: [Ip: p> 0 :: N=2P || A(i: 1 < i< N))

tuple types
sen = g < N s N

transaction types
[j: 1<j< N
Sum(j) =
e sk e med (a2 =
vl,v2: z(k-j,vl)t, z(k,v2)t— z(k,vl+v2)
/

| 7 < N — Sum(j* 2)

/

initialization

Sum(@); [i: 1 <4< N :: z(i,A@) ]

end

Figure 2.8: A Parallel Array Summation Program in Swarm

committing or aborting. A committed action successfully finishes its operations and
brings the object to a new state, while an aborted action has no effect at all just as
if the action had never happened. The inside of any guardian is composed of some
private (i.e., for this guardian only) data and a number of processes which perform the
operations on the data. The operations are organized in procedures. There is a special
kind of procedure called a handler, which can be called by other guardians and provide
the operations on the data of this guardian on behalf of them. The handler calls are
the only channels of communication and synchronization among the guardians.

A guardian resides at a single computer node (not necessarily a physical one) and
can survive the crashes on this node because of its atomicity property. Guardians in
different nodes coordinate, communicate and synchronize via handler calls to work on
a computation task. In other words, guardians are logical computers, while handlers
are the communication network among them.

Argus was originally designed for the implementation and execution of distributed
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systems, like a bank system, on an unreliable computer network. Examples of Argus
programming can be found in papers [116, 117).

The atomicity property was originally defined in database management systems
(DBMS) to protect data from corruption caused by concurrently executed transactions.
From the point of view of a programmer, all the operations within a transaction are
executed in “exactly” one step without any interruption and molestation. The atomic-
ity property sets a clear boundary around a task. It is also proved to be a very useful
property for parallel programming: programmers can concentrate on atomic tasks of a
parallel job without worrying about the interferences among them. Every task begins
its execution as soon as its execution condition is satisfied. The concurrence among
those tasks is decided by the test of their execution conditions.

Atomicity is also a desirable property for program verification. Manna and Pnueli
use the concept of grouped statements to make a number of conventional programming
language statements in a program to be uninterruptable, i.e., atomic (130, Chapter 1].
By grouping some already grouped statements together, a larger grouped statement
15 constructed, and hence, different granularities of atomicity can be achieved, If the
atomicity property can be introduced into a programming language. there is no need
for grouping the statements, and it will be easier for both programming and program

verification.

2.2.6 Strand, PCN and Bilingual Programming Languages

Strand [73. 70, 72] (later PCN [71, 69]) is a bilingual programming language claimed
to solve the problems of portability, expressweness, efficiency, and compatibility with
existing software.

The motivation of Strand is based on a straightforward observation: a very-high-level?
programming language, such as a logic or functional one. or even higher, has two highly
desirable properties, scalability and portability, for parallel programs, as they free the
programs from the details of computer architectures. There are no concepts such

as variables (alias memory cells), control structures (alias the changing of program

“We use very-high-level to refer to languages which is in a level higher over the traditional imperative
programming languages, such as the C programming language, which is at a lower-level according to
Foster in the paper [72], but we'd like call it as a high-level programming language.
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counter  PC in the control unit of a computer), and assignment (alias the moving
of data among memory cells). A programmer thus can concentrate on the problem
solving strategies and does not have to have the knowledge of underlying computers
and the way of program execution.

[11 contrast to those nice properties, on the other side, these kinds of very-high-level
languages are normally poor, at least, related to a high-level one, in implementation

efficiency.  There is no theoretical reason which accounts for the phenomenon but

today’s techniques favour the high-level programming language because it is closer to
the current computer structures. Efficient as a high-level programming language is, it
imvolves too many details of underlying computer hardware. This reduces the scalability
and portability of a program, especially in the parallel programming situation.
Naturally, we may ask if we can combine a very-high-level programming language
with one or more high-level languages, which together can make a new programming
paradigm. The very-high-level language would be responsible for the logic of a program
while the high-level language(s) would be responsible for the computationally intensive
tasks of the program. In this way, we can keep the scalability and portability without
sacrificing much of efficiency. The Strand approach gives a yes answer to the question

as put by Foster and Overbeek [72]:

“The key wdea in bilingual programming is to construet the upper level of ap-
plications in a high-level language while coding selected low-level components
in low-level languages. This approach permits the advantages of a high-level
notation (erpressiveness, eleqance, conciseness) to be obtained without the
cost in performance normally associated with high-level approaches. In ad-

dition, ot provides a natural framework for reusing exiting codes.”™

Four basic ideas contribute to the design of Strand. They are single-assignment
variables, concurrent processes, non-deterministic choices and the separation of sequen-
tial code. A single-assignment variable can be assigned and referred to, respectively,
once and only once. It can be used to synchronize two concurrent processes which

share the same single-assignment variable, or do the communication between the two

processes’. A running Strand program has a number of concurrent processes, which

*This kind of variables is known as resources in a T-Cham program. We will discuss the benefit of
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stream_comm(n)

{
| | stream_producer(n,x), stream_consumer (x)
}
stream_producer (n,out)
{
7
a2 0 =2
{|| out=[Messageloutl], stream_producer(n-1,outl)
I
n == 0 —> out=[1
}
stream_consumer (in)
{
?
in ?= [Message|inl] ->
stdio:printf ("%s\n", Message), stream_consumer(inil),
in 7= [l => stdio:printf("“STOP\n!)
}

Figure 2.9: Producer-Consumer Program in PCN
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a set of identical procedures, each of which resides in an environment.

A simple example of matrix-vector multiplication is in Figure 2.10. The matrix in
the example is partitioned, or distributed, by rows and each processor calculates one
element of the result vector.

There are three kinds of distributed data in the node environment: BlockRow, A1l
and Block. The first one, BlockRow, maps one row of the matrix M[n] [n] to each of the
n node environments, the second maps the whole vector v to each node environment,
and the third maps one element of the vector a to each node environment. BlockRow,
A1l and Block are the pre-defined DINO mapping functions. The main function in
the host environment calls function MatVec, which is a composite procedure defined in
environment node[n:id], to fork the same process on each of the environments. The
suffix # symbol indicates a remote name reference as MatVec is not defined within the
host environment itself. The MatVec in each environment is a row-wise algorithm to
calculate the production of matrix M and vector v.

A major contribution of DINO is its distributed data structures, or the environ-
ments, and the mappings between them. They provide abstract data structures to a
parallel program. A programmer can define the abstract structures which fit exactly
the problem to be solved. The problems with DINO are that the mapping to a real
computer is not going to be easy; it is also hard for DINO to manage the data which
are not Im array structures, and finally, the new distributed data structures are mixed
together with the data structures of the C programming language itself, which makes

the programming even harder and more confusing.

2.2.8 Others

There are many other approaches that we have not mentioned in the previous
sections. It does not mean that they are not important, but are not directly related
to our work. This section gives a brief introduction to some other very important
achievements in this area.

In 1978, Hoare introduced the idea of CSP (Communicating Sequential Pro-
cesses) [91]. Originally, CSP was not intended to be used as a programming language

but as a medium to study a system with co-existing, i.e., concurrent, activities. Three
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#define n 5l 2
#include tdine "

environment node[n:id]

it
composite MatVec(in M, in v, out a)
float distributed M[n] [n] map BlockRow;
float distributed v[n] map All;
float distributed a[n] map Block;
{
lidiE 9 8
al[id]=0;
for(j=05 ji<n;iy++)alladl] s += M fatdl i 1 =l gl
+
Js
environment host
i
main ()
{
Longs dnt 4,9
flloat Min|ini [ni;
float vin[n];
float aout[n];
MatVec (Min[] [],vin[] ,aout[])#;
i
+

Figure 2.10: Matrix-Vector Multiplication Program in DINO
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clusive Read) model, EWCR (Exclusive Write and Concurrent Read) model, CWER
(Concurrent Write and Exclusive Read) model, and CWCR (Concurrent Write and
Concurrent Read) model. The concepts of EWER, EWCR, CWER, and CWCR help
a programmer to be aware of the concurrent nature of read and write activities in a
parallel program. However, PRAM is less useful in the context of parallel programming
languages because it ignores communication costs. The main contribution of PRAM

was 1n the complexity analysis of parallel algorithms.

2.3 Conclusion

In the parallel software development environment, there is a plethora of parallel
programming paradigms, models, languages which have been proposed by research
communities and computer manufacturers, yet few of them has been widely accepted.
Parallel programming techniques are still in the same situation as sequential program-
ming in the early days of computer history: relatively powerful hardware versus clumsy
programs of assembly programming languages. The research communities and manu-
facturers are aware of this situation, but still cannot get rid of the dilemma of efficiency
vs manageability. If the programming language is too close to a parallel computer hard-
ware structure, we get efficiency but lose manageability. Programming becomes noto-
riously hard to handle, and it is impossible to port any of this kind of programs across
different platforms. While on the other hand, if the programming language structure
is far higher than the parallel computer hardware structures, the programs can be easy
to write—an extreme example is a super-compiler which can extract parallelism from
an existing sequential program—but it may not always be easy to be implemented effi-
ciently. It is sometimes even worse than the performance of a sequential program on a
sequential computer. The major research in this area is to find a balance point, where
the programming is manageable by ordinary programmers, while not sacrificing much
efficiency. It is this goal that motivated our proposal of T-Cham. In the next chapter,

we will discuss our observations and motivations.



Chapter

Motivation

The basic idea behind T-Cham is very simple. We believe that the GAMMA model
(or Chemical Abstract Machine) is an ideal underlying computational model for broad-
band computer programs, especially for the so-called! parallel and distribution prob-
lems. But due to the lack of control structures (although it is the feature which makes
GAMMA model concise and powerful), it is very difficult to efficiently implement the
programs based on GAMMA model. To improve the implementation efficiency, the
research community has proposed different ways of program transformation, which
rewrite a program into different formats or structures. The later version of the pro-
gram is equivalent to the original one, but more efficient. Section 2.2.2 has more
detailed discussion about the latest research work in this area. In this thesis, we pro-
pose a different approach to attack the implementation efficiency problem. We realise
the predominance of the von Neumann structure computer architectures nowadays,
and the trend may still be kept for another decade or so. We believe it is not wise to
completely abandon the imperative structures in programs. As long as we are aware of
the problems caused by imperative programming structures [16] and try to avoid the

problems as much as possible, we shall be able to enjoy the efficiency of implementation

'We believe that the concepts of sequential, parallel, or distribution programming do not belong to
programming language level. GAMMA model has no mention of the concepts either.
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while still preserve the essential properties of GAMMA. Based on the belief, we propose
using imperative program segments, which are self-contained and atomic, to pack up
more operations into the reactions of GAMMA model. This kind of program segments
are called transactions. As a transaction can have more or less operations and exe-
cutes in an atomic manner, 1.e., like a single basic operator, we can enjoy the efficient
immplementation of transactions without destroying the beauty of GAMMA model. By
combining GAMMA model (Chemical Abstract Machine) and transactions together,

we propose the T-Cham programming language.

Essentially, a T-Cham program is just a group of transactions wrapped by the
reaction rules of GAMMA model. In other words, the top level of the program belongs
to GAMMA model, while the lower level of the program consists of transactions. The
top level is responsible for the coordination of the reactions (i.e., the transactions of the
lower level) and the logical correctness of the program. The lower level is responsible
for the computationally intensive tasks. The portion of the top level and the lower
level in a T-Cham program can vary from no transactions at all (a pure GAMMA
model program) to a program with a trivial top level which consists of a reaction rule
with only a one-off reaction and a big single transaction. The purpose of the only
reaction on the top level is to start the big single transaction. Virtually, the later
program 1s just a conventional imperative program. Figure 3.1 gives a diagram of
the spectrum of T-Cham programs, which spread from GAMMA to a conventional

immperative programming language (the C programming language).

e ([i-@hamii=t =t L
GAMMA 0 = L Shtiact e ey C
e
L0 ;\
GAMMA part Q C part

Figure 3.1: The Spectrum of T-Cham between GAMMA and C
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The idea of combining different programming paradigms or languages into one pro-
gramming language to enjoy the benefit from each of the paradigms or languages, for
example, easy to program, simple to prove the correctness of the programs, and good
performance ete., can also be found in [115, 72, 73, 71]

[1n the rest of the chapter, we will discuss the motivation of our work in more
details. The proposal of the T-Cham programming language is initially motivated by
our observations on programming models and languages. The components of T-Cham
are chosen as the result of those observations. We first discuss those observations and

then answer questions on the choice of T-Cham components.

3.1 Observations on Parallel Programming

3.1.1 Functionality versus Interaction

A functionality program? is the one which maps an input into an output. Function-
ality is the traditional way of thinking about the behaviour of a sequential program.
The Turing machine [163, 114], which is the foundation of all the imperative program-
ming languages, works in this way. A program starts from the starting point of the
program with initial data and then halts at the ending point with the resulting data of
this computation. Functional programming [16, 88, 96] and logic programming [93, 118]
carry out the same idea. A functional program is a mathematical mapping, which maps
a type of data to another type of data, while a logic program starts from a query and
ends with an answer (or answers) to the query. Although in functional and logic pro-
gramming situations, the execution order is not necessarily sequential, the basic idea
is still of functionality.

A functionality program fits well in a sequential computer. When it comes to a
parallel computer, which is built by connecting sequential computers together with a
communication network, the idea of functionality still dominates the method of pro-
gramming, because it is straightforward to think that the difference between a sequen-
tial program and a parallel one is in the number of control threads, A parallel program
has more than one control thread so that it can reach the termination point and get

‘A functionality program is distinct from a functional program based on A caleulus,
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the results faster than a sequential program. In practice, the approach emphasizes the
design of control threads, see Section 3.1.2 for more details. The synchronisation and
data exchange among those control threads are implemented by message passing or the
shared memory, see Section 3.1.3. The implementation of this idea, in both theory and
practice, becomes awkward when there are tens of thousands of control threads.

A reactive program emphasizes the interactions among the components of a pro-
gram: different parts of a program interact with each other in response to the stimuli
from outside world. The phenomenon was noticed as early as the beginning days of
concurrent programming and operating system design. That is why Dijkstra introduced
the Dining Philosophers problem, but it takes a very long time for computer scientists

to accept the “new” idea in the parallel programming area, according to Lamport [111]:

“Computer scientists originally believed that the big leap was from sequen-
tiality to concurrency. ... We have learned that, as far as formal methods

are concerned, the real leap is from functional to reactive systems.”

where the honour of this discovery was credited to Harel and Pnueli [87].

Milner [136] also realised the problem in his CCS, where “interaction or communi-
cation is the central idea”. Ciancarini [47] has the same observation by distinguishing
a closed program from an open one. Abramsky’s Game Semantics [2, 3, 1] is another
theory emphasizing the interactive actions of a system. Wegner [168] also advocates
this idea.

The concepts of sequential, concurrent, parallel, or distributed should belong to the
execution of a program on particular computational resource instead of the program it-
self, Figure 3.2. At the programming language level, we should not focus on sequential,
concurrent, parallel, or distributed programs but only functional and wnteractive pro-
grams. Accordingly, any non-sequential programming language should not be judged
only by its abilities of thread control and communications but also the abilities to
express the interactions. In other words, a concurrent programming language should
not be just an extension to an existing sequential programming language with some
thread control and communication facilities but a new one based on an interactive

computation model.
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language level

: . . . | rogramming
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Figure 3.2: The Conceptual Levels of Programming

3.1.2 Single Thread, Multi-thread and Non-thread

Control flow and control thread are two different concepts in the description of
a program. Control flow relates to a static program. It can be built on three basic
constructs, sequence, branch and goto®. During execution, only one branch of a branch
construct can be chosen at any time on a given set of data. The operation sequence of
the execution of a program is unrolled by control thread. Control thread is a concept

related to the execution of the program.

A sequentially executed program has only one control thread, which unrolls the
control flows of a program step by step in a sequential manner. When the program
goes to a parallel machine, more than one control thread may exist concurrently. It is
possible to unroll the operations of a program in a parallel manner. To achieve this
goal, a programmer needs to consider and write down the strategies of thread control,
for example, the creation, termination, and join etc. of threads. At the first sight,
multi-threading is a natural way to go from sequential to parallel programming, but
when the number of processing elements in a parallel computer scales up, the physically

availlable threads become very large; therefore, thread control becomes very difficult for

The three basic constructs are the complete set for programming [57].
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with bread, we have to use another variable, say loaves, to record how many loaves
of bread we have. For example, after you bake a loaf of bread, the variable loaves
is increased by 1, and after you eat one, the variable loaves is decreased by 1. This
variable works well in a sequential execution situation. In other words, you are just
yourself in a closed world and isolated from others. You bake and you eat.

In the concurrent case, using a simple variable to hold a resource-like thing is

troublesome. For example, if we have two processes (persons) to consume the bread:

Process_1: Process_2:
A bO:
al: if (loaves>0) bl: if (loaves>0)
az2: loaves := loaves-1; b2 loaves := loaves-1;
QISEAN b3:

when loaves=1, a possible execution path may be alb1a2a3b2b3, which consumes two
loaves of bread from one!

To avoid this unreal outcome, the visit to a shared variable, loaves in this case, is
regarded as a critical section and is indivisible. No other actions are allowed to cut into
the sequence of ala2a3 or b1b2b3. Some techniques, such as semaphores and monitors
etc., were developed to protect the sections from the intervention of other co-existing
processes.

By introducing the resource concept, where a resource can be produced and con-
sumed, to a programming language, programs will be much easier to be written and
understood. We believe that Petri net [145, 147, 60] is the first one to study the con-
sumption and production of resources. Linda [42, 40, 7] and PCN [71] (the so-called
single-assignment programming language) are among the other very few programming
languages which have the mechanism to deal with resources.

Coincidentally, the same observation on the importance of resources in a logic sys-
tem? was spotted by Girard when he studied the classical logic. Even more interesting,
the report [79] of this discovery, known as linear logic, was not published in a logic or

a philosophy journal but in the Theoretical Computer Science, which suggests that it

“The traditional logic system does not have the concept of resources, either.
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run-time behavior of a parallel program [151, [3@-;]. Bearing the uncertainty mentioned
before in mind, an extra instruction may change the starting time of a communica-
fion session, cause more CPU and cache time, and even trigeer chain reactions from
other processes. All in all, it is extremely difficult to locate and fix a bug in a parallel
progran.

Automatic program verification is a long desired goal in the program development
community. We wish that one day, after we finish the programming work, a mathe-
matical system could prove the program is correct. A great deal of achievement has
been made in this area. Some of them become more and more mature and applicable
to real applications. A good example is that Clark, Grumberg and et al using temporal
logic model checking method proved the correctness of a couple of IEEE communica-
tion protocol standards and found a few bugs in IEEE Futurebus+ standard (IEEE
Standard 896.1-1991) [49, 50]. Given the fact of that IEEE standards are carefully de-
signed and well debugged by the élite of the related areas, bugs are still not avoidable.
To conclude, we'd like to cite Dijkstra’s famous words: “program testing can be quite

effective for showing the presence of bugs, but is hopelessly inadequate for showing their

absence” (66, p. 20]. In contrast, a formal verification system can prove the absence of

any bugs.

3.2 Motivation: Questions Answered

Programs should be judged by their logic operations instead of the execution order
of these operations. In other words, the concepts of sequential, parallel, or distributed
should not be a main issue of programming. They are the issues of program nmple-
mentation on a particular computer system. We believe that a program should only

contain the description of the logic of the program.

3.2.1 Why Yet Another Parallel Programming Language?

A large number of parallel programming languages have been proposed in the last
two decades. Why do we suggest yet another parallel programming language? As dis-

cussed in Section 3.1.1, parallel activities have inherently interactive nature, and hence
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previous sections, interactions are the central focus of a parallel programming language.
Given the interactive nature of a Cham, it is the most qualified candidate to be the

abstract computation model for parallel programming languages.

3.2.3 Why Coordination?

We always try to assemble well-behaved constructs together to build better tools,
but a simple assembling method introduces interference among these different compo-
nents and is liable to create untamed complex “monsters”, such as PL/I [12] and the
Algol68 [35, 161] programming language as well as the Multics [67] operating system.

The basic idea of coordination [77] is orthogonally gluing together: different parts
are orthogonally glued together to let the final product take advantage of each individual
part while without suffering from interference among the parts.

Orthogonal coordination maintains the independence of each component. Adding

or removing one component has no effect on the others.

3.2.4 Why Tuple Space?

A tuple space is a logically shared memory used for data exchange and synchroniza-
tion control among the interactive components of a program. Unlike traditional data
structures, a tuple space is inherently distributed and naturally offers parallel access.
Parallelism specification and implementation thus become much easier.

A hierarchical tuple space structure provides different abstract views and a means of
refinement to a T-Cham program. It can be used to localise a group of tuples and their
reactions, i.e., dividing a global tuple space to a number of smaller sub-tuple-spaces.
Each of the sub-tuple-spaces is relatively independent to the others.

The tuple mapping mechanism transforms one tuple (or a group of tuples) to an-
other (or another group of tuples). With tuple masks, a tuple can have many different
appearances to meet different requirements.

Unlike the tuples in a general tuple space, where they are of the same generic data
type (just known as tuples), in T-Cham, the tuples in a tuple space belong to different
types, for example, an integer tuple, a real number tuple, or a tuple of a compound

structure. For the detailed discussion about tuple types and their declaration, we refer
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readers to Section 4.3.1. T'he purpose of introducing types to the tuples is twofold. On
the one hand, it makes the optimisation of tuple spaces easier, and hence, better imple-
mentation efficiency. On the other hand, the typed tuples can reduce some potential
programiming errors. R. van der Goot et al. made the same arguments when proposing

Blossom [165], a strongly typed tuple space C++ version of Linda.

3.2.5 Why Transactions?

A transaction” is a piece of self-contained program code which has the properties
of ACID (Atomicity, Consistency, Isolation, and Durability) [4] and executes sequen-
tially on a computer node. The atomicity property of a transaction means that the
transaction is regarded as an un-dividable single step operator, no matter how big it
may be. Consistency and isolation actually stand for the same property: a transaction
15 a closed system and won’t be affected by the change of the context it is in. Dura-
bility means that the effect of the transaction, when it is committed, won’t be rolled
back. If we only look at a single transaction, the property seems so obvious. When
talking about many transactions running concurrently, durability is essential for the
correctness of the transaction system and their efficient implementation.

Just as a parallel computer system is a number of sequential computer nodes, which
are suitable for the efficient execution of program code in a sequential manner, bundled
together by a communication network, a T-Cham program is a number of sequential
tasks (transactions) bundled together by a chemical abstract machine.

With the concept of transactions, task granularity can be easily adjusted by chang-
ing the operators contained in the transactions, for example, a transaction can do
a very complex function (coarse-grain), or only a simple summation operation (fine-
grain). The changing of one transaction is isolated from the others: furthermore, the

orthogonally integrated transactions can be re-used from program to program.

3.2.6 Why Theoretical Background?

Although mathematics and logic are the better way to achieve a correct prograin

as discussed in Section 3.1.6, most programmers are not so comnfortable with the Ii[—'yi(l

It is a leaf transaction. See Chapter 4 for more precise definition,
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process of mathematical reasoning. People tend to use a natural and intuitional wily
to express their ideas.  For example, people prefer the Venn Diagrams [53] to the
mathematical definitions of the set operations.

Formal temporal logic semantics provides a means of correctness proof for T-Cham
programs, but the proof system is separated from programming, or kept in the back-
ground. T-Cham programming notations serve as the Venn Diagrams in set theory,
while the temporal logic interpretation of a T-Cham program is like the mathematical

definitions, by which the reasoning is carried out,

3.2.7 Why Program Composition?

The experience of program development suggests that a large program should be
constructed from a number of smaller components. The formal proof systems for pro-
gram verification also prefer this kind of composition property [24]. Like in Unity, we
consider two kinds of transaction (program) compositions, union and superposition.
The union is used to juxtapose the corresponding sections of two different T-Cham
transactions, while the superposition is responsible for the layers, or a hierarchical
structure, of the final transaction. We also study their effects on the T-Cham proof
systerm.,

A T-Cham program can be constructed by the union and/or superposition of trans-
actions, The union combines two small transactions into a big one, while the super-
position makes a transaction to be a sub-transaction of another one. With union and
superposition composition, a large T-Cham Program can be built from a number of
small transactions; besides, the composition also provides the modular and abstract

views to T-Cham proprams.
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Basic T-Cham Notations

A T-Cham program consists of a number of transactions. A transaction which does not
have any sub-transactions is called a leaf transaction; otherwise, a non-leaf transaction.

A leaf transaction could be a C function (or other programming language units) with
the enhancement of the transaction concept made it ACID (Atomicity, Consistency,
Isolation, and Durability) [4]. The execution of a T-Cham program starts from a
special non-leaf transaction root, called main transaction of the program. It is the
only transaction which may not terminate. The transactions referred to by the reaction
rules in a transaction are called sub-transactions of it. From the point of view of any
transaction, its sub-transactions are atomic operators.

The chapter first gives a brief introduction to the extended BNF (Backus-Naur
Form) conventions, and then the syntax and semantics of the basic T-Cham program-
ming language. We use extended BNF for the syntax description of the T-Cham
programming language, while plain English for its semantics. We conclude this chap-

ter with a simple example showing how to program in T-Cham and how a T-Cham

program works.
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Basic T-Cham Notations

4.1

Notational Conventions

In the thesis, we adopt the following notational conventions [6]:

Strings and characters with typewriter fonts, for example, if, then and else,
are terminals, and a double-quoted string or symbol, e.g., “{”, means the string

itself.

Strings and characters with Roman (italic) fonts and beginning with capital let-

ters, for example, Fzpr and Stmt, are nonterminals.

Lower-case Greek letters, for example, «, # and ~, represent strings of grammar

symbols.
A= a, A= ag, -+, A — « are all productions with the same nonterminal
A on the left, they can be written as A — a1 | as | --- | ay for short.

. Square brackets denote an optional part of a production, for example,

Stmt — if Expr then Stmt [else Stmit]

Braces denote a phrase which can be repeated zero or more times, for example,

Stmt — begin Stmt {; Stmt} end

Braces followed by a + denote a phrase which can be repeated one or more times,

for example,

St = U < Sl “T

Under the convention, the grammar of simple one digit arithmetic (plus and minus)

expressions can be specified as follows:

F - E+F
Ev = el — B
E — 0|1]2|3|4|5]|6]|7]|8]|9

A T-Cham program consists of a number of leaf and non-leaf transactions. The

grammar is
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Program ——  {NonLeafTrans | LeafTrans }+

where Program is the start symbol, and NonLeafTrans and LeafTrans are nonterminals
standing for non-leaf transactions and leaf transactions respectively. We will discuss
the details of them in the consequent sections. For the complete definition of T-Cham

syntax, we refer readers to Appendix A.

4.2 The Essential Components of a Chemical Abstract

Machine

T-Cham is a programming language based on the Chemical Abstract Machine 29,
34]. where a computation proceeds as a succession of chemical reactions in a chemical
reaction system. In T-Cham, a program can be considered as the specification of
4 “chemical reaction system”. To be able to describe a chemical reaction system,
T-Cham has to have the ability of specifying the essential components of a Chemical
Abstract Machine.

Take an ordinary chemical reaction system' as an example:

two hydrogen molecules and one ozygen molecule make two water molecules:

Let’s study the essential components a chemical reaction system must have. For exam-
ple, a certain amount of hydrogen molecules and oxygen molecules are in a container,
a reaction happens whenever the reaction condition is satisfied, and the reaction stops
when there are no hydrogen molecules (at least two of them) or oxygen molecule left,
When we introduce this chemical reaction system to computers as a model for compu-

tation, the essential components include:

e a container, which contains all the molecules of this chemical reaction system:

[he details of a chemical system and chemical reactions are certainly not the focus of this thesis.

We only discuss them based on the common sense for analogy purpose only.
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e the types of molecules possibly appearing in the reaction system, e.g., hydrogen,

oxygen, and water molecules;

e the initial status of the container, i.e., how many of each type of molecules, and

the status of those molecules before any reaction;

e a number of reaction rules, which specify how and when a reaction proceeds

and the impact of the reaction on the molecules;

e the termination conditions, i.e., when the reactions stop. The hydrogen and
oxygen reaction example above terminates when there are no hydrogen molecules

(at least two of them) or oxygen molecule left.

If we look at a reaction from different points of view, such as those of atoms, electrons,
and so on, different actions can also be spotted. For example, in the hydrogen and
oxygen reaction system, at the electron level, we can see how the outer layer electrons
of the two hydrogen molecules and one oxygen molecule react to each other. In other

words, a chemical reaction system may also have
e multiple views of a reaction from different levels.

To be able to specify the programs of the Chemical Abstract Machine model, the
T-Cham programming language has the corresponding components as well.

The tuple space of the T-Cham is actually the “container”, which contains all the
molecules, called tuples in T-Cham.

A T-Cham program consists of a number of leaf and non-leaf transactions (chemical
reaction systems). Inside of a non-leaf transaction, there are tuples, initialization,
reactionrules, termination, and sub-transactions sections. They are, in turn,
corresponding to the types of molecules possibly appearing in a reaction system, the
initial status of the container (tuple space), the reaction rules, the termination

conditions, and the different views of this reaction system discussed above.

4.3 Non-leaf transactions

Syntactically, a non-leaf transaction is composed of (i) the specification of its tuple

space, including the types of tuples and the initial state, (ii) reaction rules, and (iii)
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sub-transaction interfaces—pre-conditions and post-conditions of its sub-transactions.
The tuple space specified is visible to the transaction and its sub-transactions only.

A non-leaf transaction consists of a name and a body:

NonLeafTrans —» transaction NName NBody endtrans

NName »  Plainldentity

NBody = Tuples Init React [Term] [SubTrans)

The keywords transaction and endtrans are used to encapsulate this non-leaf trans-
action. The NBody is the transaction body and contains information about partici-
pating molecules (Tuples), the initial state of those molecules (Init). the reaction rules
(Keac), termination conditions (Term), and the actions carried out by those rules
(SubTrans)*. We call each of them a section. The last two sections. i.e.. termination

and sub-transaction, are optional.

4.3.1 Tuples

The tuples section declares all possible tuple types (inolecules) which may appear in
the tuple space of this transaction. The declaration only specifies the type of possible
tuples. How many of the declared tuples, when, and where they enter the tuple space
depend on a particular execution and cannot be predicted in advance. In general. the
specification starts with a keyword tuples followed by a list of tuple declarations. The
keywords fifo, filo and random are used to specify the order of tuple consumption
(the default is random), and tuple is used to declare a tuple. If a tuple has ouly one

field, the key word tuple can be omitted.

Tuples — tuples TupleDecl { TupleDel | MaskDel}
TupleDcl —  [DelHead] DelBody

DelHead —  fifo ‘ filo ‘ random

DelBody - Type NamelList :

Y e, . { . " ' im 4 , .
From now on, a sub-transaction is called a transaction for brevitv if there i1s no confusion.
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We use a type system similar to that of the C programming language for these decla-
rations. Tuple names are visible to the transaction and its sub-transactions. A tuple
in T-Cham corresponds to a struct in the C programming language or a record in

Pascal, for example,

tuples
tuple {
int A[100];
int gridsieved;
} num;
boolean token;

fifo char msg[256];

The keyword tuple is omitted if the tuple has only one field. The above declaration
defines three tuple names: num, token, and msg. The tuple num has two fields; msgs
are consumed in first-in-first-out (fifo) order.

The consumption order of a certain type of tuples is quite interesting, because those
tuples may be distributed to and consumed by different computer nodes.

Theoretically, a tuple is randomly chosen for a reaction, and the choice is fair.
It means that any available tuple will be eventually chosen. This kind of fairness is
called weak fairness because the time when a particular tuple is chosen might be
indefinitely far away [75]. Weak fairness works fine in a theoretical setting, where the
time needed to get to a result is not the primary concern. However, in the most cases
of real programs, results should be worked out in a limited time period. Take Producer-
Consumer problem for example. If the Producer generates a message, say msgi, at a
time while the Consumer does not consume the message immediately. After this time
instance, every produced message will be consumed immediately. It can be claimed
that the message msgl will be eventually consumed, provided time is unlimited, but
nobody, although he/she is interested in this message but with limited life span, has
the chance to see the message.

A first-in-first-out (fifo) or first-in-last-out (filo) ordering is used to enhance the

fairness of a T-Cham program in the choices of tuples. As we know, a T-Cham program
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The initialization of token is passive, while the call to init_num(), which is a leaf-
transaction, to initialize tuple num is active. “[1:0..9]::token={i*2}” means that
for every i from 0 to 9, token={i*2}, i.e., there are ten tokens in the initial tuple
space and their values are even numbers from 0 to 18 respectively. The i is called an
index variable.

A third initialization method (MaplInit) is the mapping of some tuples to the tuples
in the tuple space of its parent transaction or of one of its children’s. See Section 8.2

for details.

4.3.3 Reactionrules

The reactionrule section consists of a number of reaction rules. The rules operate on

the tuple space of a transaction and coordinate its computational actions—transactions.

React — reactionrules { ReactRule }+

ReactRule — LHS leadsto RHS [by Trans] [when ReactBEzp] ;
LHS —  SimpleTupleList

RS —  SimpleTupleList

Trans —  SimpleTransName | OnLineTrans
SimpleTupleList —  Tuple{, Tuple}

Tuple —  Plainldentity

Informally, a reaction rule looks like

L1 B2y B Leadsto Wi, ¥z, o lYm by T when: f(@®9, @)

where z1, z9, - -+, z,, (i.e., LHS), y1, y2, - - -, ym (i.e., RHS) are tuples whose types are
declared in the tuples section, 7' (i.e., Trans) is the name of a transaction (known
as a sub-transaction to this transaction), and f(z1,z2, -, 2p),p < n—ie., Cond—is
a boolean expression. The rule means that whenever the tuples z;, z2, ---, and z,
are all currently in the tuple space and the function f(z,,z9,---z,) evaluates to TRUE,
(i) the tuples z1, z9, ---, and z,, are selected and consumed, (ii) the transaction 7T is

executed, and (ii1) new tuples y1, y2, - - -, and y,, are generated and injected back into
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the tuple space. From the point of view of the transaction which contains the reaction
rule, these three actions are indivisible. Both by and when qualifiers of a reaction rule
can be omitted if the transaction used is null and/or the condition is trivially TRUE.

There may be some common tuples among x1, x9, -+, Tp, Y1, Y2, - - -, and y,,,. This
means that more than one tuple of a certain type is needed for the reaction and/or
some selected tuples are sent back to the tuple space (with or without changes), for
example, “x,x leadsto x,y.” To distinguish the different appearances of tuples in the
body of a sub-transaction and the when condition part, the “$” operator is used with
a constant integer index (called instance reference), e.g., “when (x$1==x$2-10)”

A pair of curly-brackets on a tuple name, say {x}, means all tuples of this type
together, i.e., selecting them all, and a pair of |’s (vertical bars), |x|, means the number
of this kind of tuples currently in the tuple space. Furthermore, a transaction does not
have to consume all the tuples on the left-hand-side of its reaction rule. We use “!” to
denote that the tuple is just read by the rule but not consumed, i.e., it is still available

in the tuple space.

4.3.4 Termination

The termination section gives conditions such that whenever any of them is satisfied,

the corresponding final action is committed and the transaction then terminates.

Term — terminination { TermStmt}+

TermStmt — on ( ReactBEzp ) do (Trans | AssembleData):

A termination specification looks like this:

termination

on (|token|==0) do output;

A transaction automatically enters termination status when there is no more reac-
tion available, no matter whether the transaction has termination section or not. For
an interactive program, which may never terminate, there is no termination section.

It always has reactions.
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4.3.5 Sub-transactions

The sub-transaction section specifies the pre-conditions and the post-conditions of
the sub-transactions referred to by the reaction rules defined in the reactionrules

section of a non-leaf transaction.

SubTrans

— subtransactions { TransStmt }+

—  Trans : PreCond // PostCond :
PreCond — BEzxp

—

BEzp

TransStmt

PostCond

For example,

subtransactions

prod: |token|>0 // |token|’=|token|-1;

where prod is the name of the transaction referred to by a reaction rule, “|token|>0”
is the pre-condition of the transaction, and “|token| ’=|token|-1” the post-condition.

The > postfix operator means the values after the execution of the transaction.

4.4 Leaf Transactions

A leaf transaction contains no reaction rules and subtransactions. It is merely a

group of operations.

LeafTrans — transaction LName LBody endtrans

LName —  Plainldentity

LBody —  Maicros BodyCode

Micros — #language LangName [#tuplein Simple TupleList]

[#tupleout Simple TupleList]

where LName is the name of this leaf transaction. It abides by the same rule as

that of a non-leaf transaction name. LBody is the body of this leaf transaction, which



4.5 A Small Example 57

consists of a Micros part and a BodyCode part. The Micros part provides the necessary
information concerning the resources passed to and the language used to write this
leaf transaction to the BodyCode part, which is written in the programming language
declared in the Micros part and carried out the operations of this transaction.

A leaf transaction looks like this:

transaction my_name
#language my_language
#tuplein tuple_desp
#tupleout tuple_desp
my_body

endtrans

where my_language, known as a guest language, is the programming language used to
code this transaction, tuple_desp provides the type information of the tuples to the
transaction, and my-body is the programming units written in “my_language”. There
could be none or many “#tuplein” and “#tupleout” lines. The tuples described
In “#tuplein” line are resources passed to this transaction before its execution and
consumed by it during its execution. They are not parameters or arguments in the sense
of being passed by call-by-value, call-by-reference, and/or call-by-name mechanism as
in an ordinary programming language. T-Cham tuples are resources and can only be
consumed and generated but not copied. Similarly, the tuples described in “#tupleout”
line are those generated by the transaction. They are not the value returned to the
“caller” but new resources injected back to the tuple space. The “#tuplein” and
“#tupleout” lines serve as the interface between a conventional programming language

“my_language” and T-Cham.

4.5 A Small Example

Example 1 (Element Summation) Figure /.1 is a T-Cham program which calcu-

lates the summation of all tuples in a tuple space of integers. 2
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transaction root
tuples
dnitmi:
initialization

m=10, m=20, m=30, m=50, m=15;

reactionrules

m, m leadsto m by sum2up;

termination
on (|m|==1) do out_sum;

subtransaction
sum2up: p//q;
endtrans

transaction sum2up
#language C
#tuplein int m$1, m$2;
#tupleout int m$3;
sum2up () {
m$3 = mP1+m$2;
I;

endtrans

transaction out_sum

#language C

#tuplein int m;
out_sum() {

-- the main transaction
—— tuple declaration

—-- there are five tuples in
-- the initial tuple space

=~ the only reaction rule

-- when only one tuple left,
== outpuththe result

=—pre and post conditions

—- a leaf transaction

-- the guest language

-- the input resource \
—— the generated resource
-- the real function body

-- another leaf transaction

printf ("The summation = %d\n", m);

J;

endtrans

Figure 4.1: The T-Cham Program of Element Summation
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The T-Cham program has three transactions: a main transaction root and two leaf
transactions, sum2up and out_sum. The tuple section of the root transaction declares
only one kind of tuples named m. Each of the tuples has only one field, which is an
integer.

The initialization section of the program sets up the initial state of the tuple space.
In this example, there are five tuples in the initial tuple space. They are 10, 20, 30,
50, and 15.

The only reaction rule says that any two tuples in the tuple space can be replaced
by a new tuple which is the sum of the two. The reaction for the replacement is carried
out by the leaf transaction sum2up. At the first step, there could be up to |5 | reactions
depending on the available computer resources, where n is the number of tuples in the
initial tuple space, and then |33], |35, ---. When there is only one tuple left in the
tuple space, we output the result according to the termination condition section of the
transaction.

The effect of sum2up upon the tuple space can be found in the subtransaction
description section of this root transaction. If the values of the two input tuples to the

transaction sum2up are z and y respectively, the value of result tuple generated by the

transaction should be x 4 y. Thus, the pre- and post-condition of sum2up are:
p = true, q = m$3 = m31l + m$2

The post-condition here syntactically resembles the assignment statement of the trans-
action sum2up, but it carries different meaning. It is a logic assertion, which can
be either true or false. A nice property of subtransaction description is that sub-
transaction behavior can be figured out without knowing the details of its code, and
also, the pre- and post-conditions can be used to build a constructive proof system for
the program verification. The subtransaction section serves as the interfaces between

transactions so that each of them can be treated in isolation.

4.6 The Execution of a T-Cham Transaction

The execution of a T-Cham transaction proceeds as follows: until a termination

condition is satisfied, all of its reaction rules are fairly chosen and tested. Whenever
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20
\ 55
L5
50 ——
\ 80
10 \
L
=50

Figure 4.2: A Possible Computation Process of Element Summation

the reaction condition of a reaction rule holds, i.e., the tuples needed by the reaction rule
are all currently in the tuple space and the boolean function of its when qualifier—if it
exists—evaluates to TRUE, the corresponding sub-transaction (the by part of a reaction
rule) is eligible to be invoked. By fairly, we mean that a reaction will eventually happen
if its reaction condition is continuously satisfied. The pictorial description of a possible
execution path of the Figure 4.1 program is in Figure 4.2, where arrows indicate the

tuple space state changes.

If a sub-transaction to be executed is written in T-Cham, a new tuple space is
established according to the specification of this sub-transaction. The relations between
the tuples of the two level tuple spaces are also established. The simplest relationship is
to project a subset of the tuples from a parent transaction to its sub-transaction. More
complex mappings are described in Chapter 8. All the actions of the sub-transaction
operate on the new tuple place, which will be destroyed after the execution. The tuple
space of a T-Cham transaction corresponds to the run time environment of a function
or a procedure in an imperative programming language. From the point of view of a

transaction, each of its sub-transactions is an “operator” and is executed atomically.
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4.7 Summary

The chapter discussed the basic T-Cham notations and a small example. The
basic idea is that a T-Cham program consists of a number of transactions. Each
of them is an autonomous operation unit and imitates an isolated chemical reaction
system. Transactions are categorized into two classes: leaf transactions and non-leaf
transactions. A leaf transaction is written in a language other than T-Cham and does
not spawn any sub-transactions in the sense of T-Cham. A non-leaf transaction is
written in T-Cham itself.

A transaction is an autonomous operation unit, but it does communicate with oth-
ers. A large T-Cham system consists of a number of transactions. As those transactions
are from the same system, each of them may be designed to solve part of the same
problem. They cooperate with each other to solve the problem and achieve the ulti-
mate goal. A transaction communicates with the others via its interfaces. which are
specified as its initialization section, termination section, and subtransaction section.
The initialization section sets the initial tuple space status of a transaction according to
the current tuple space configuration of its parent transaction. The termination section
brings the result (return value in terms of an imperative programming language) of a
transaction to its parent transaction. Finally, the subtransaction section describes the

behaviors and attributes of sub-transactions.
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Chapter

Programming in T-Cham

In this chapter, we use some examples to illustrate the T-Cham programming style.
Different programming languages have different programming styles. For example, if
we are asked to calculate the summation of n numbers Nj, N,, ---, and N,, in an
unperative programming language, the n numbers may be assigned to an array, and a
loop which repeats n times accumulates the result by adding from N; to N,,, but in
T-Cham, the result is achieved by simulating the process of a chemical reaction system:
the n numbers are represented by n tuples in a tuple space, and those tuples react to
each other—any two tuples can be transformed to a new tuple with the value of their
summation—Ilike molecules in a chemical reaction system.

This chapter mainly concentrates on the programming style of the T-Cham pro-
gramming language. Some of the examples used in this chapter are computation
oriented programs, including the sieve of Eratosthenes, the Dutch flag, the Fibonacci
numbers, and the calculation of the value of ™ problems, and the others are interac-
tive ones, such as vending machine, producer-consumer, sleeping barber, and meeting
scheduler problems. In this chapter, we also discuss the effect of non-determinism on
programming and program execution.

All the leaf transactions of the examples in this chapter are written in the C pro-

gramming language except the calculation of the value of 7 (Section 5.8), whose leaf
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transactions are written in Java [133] to show the ability of T-Cham to adopt different

programming languages.

5.1 The Sieve of Eratosthenes

Example 2 (Eratosthenes Sieve) Eratosthenes Sieve is one of the oldest methods
to find prime numbers. The basic idea is very simple: we put all (in a particular
program, some) the natural numbers in a sieve. In the first round, all the multipliers
of the number 2 are sieved out, and then the multipliers of 3, 5, ---. Finally, only the
prime numbers left. The program of Figure 5.1 finds all prime numbers in a segment

of natural numbers beginning with the smallest prime number 2. 3

transaction root

tuples
int n;
initialization
HE2 05000001 :n=1"
reactionrules
n, n leadsto n$2 when (n$1 mod n$2 == 0);
endtrans

Figure 5.1: The T-Cham program of Eratosthenes Sieve

The tuple space in this example only has one type of tuples. Each individual
tuple has one field of integer. Initially, the tuple space has (500000 — 1) tuples which
represent the natural numbers from 2 to 500, 000 according to the initialization section.
The reaction rule says that every number (tuple) destroys its multipliers; thus, only
prime numbers are left until no reaction rules can be applied.

We have prototype implementation experience (on CM-5) of this example [126].
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#define R 500000 -- the total number to be sieved
#define M 20000 -- the size of data chunks

transaction root

tuples

tuple { == data chunksi: "2-M, M+1-2xM" ..

int A[20000];
int gridsieved; -- sieved by this number

} num;

dmst RN -- the number of chunks

int grid, nextgrid;

boolean done;
initialization

grid=2; nextgrid=3; N=R/M;

inat num)
reactionrules

num, !grid leadsto num, done, nextgrid by sieve

when (num$l.gridsieved != grid);
{done}, nextgrid, grid leadsto grid by {grid$2 = nextgrid;}
when (|done|==N);

termination

on (|lnextgrid|==0 && |done|==N) do out_prime;
subtransactions

sieve: |dome|==k // i:1-M:: num$2.A[i] = (num$1.A[i]%grid) ?

num$1.A[i]:0 and |done|==k+1
endtrans

Figure 5.2: Another T-Cham program of Eratosthenes Sieve
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Our experience reveals that although the T-Cham program is very concise and straight-
forward, its implementation is not so efficient. We observed that sometimes, though
implemented on a 64 node CM-5 parallel computer, it is even slower than a sequential
program written in the C programming language running on a SUN station. The cul-
prit here is the so-called non-determinism. The reaction rule in this example is very
simple: every number destroys its multipliers. For example, the number 2 destroys the
numbers of 4, 6, 8, ---, and the number 3 destroys the numbers of 6, 9, 12. --- etc.
The 1dea is clear, but the order of the process is not given. In a completely chaotic
situation, the possibility exists that when the number 2 is destroying the number 4,
the number 6 is trying to destroy 12, and 9 is trying 33, while the number 25 just
failed to destroy 5. This experience suggests that while the non-determinism is good
for algorithm expression, determinism is good for efficiency.

A more efficient and also more difficult to understand program is in Figure 5.2,
where the sequence of the natural numbers from 2 to 500, 000 is broken down into sub-
sequences (called chunks), e.g., 2-20000, 20001-40000, and so on. We sieve the chunks
with grid concurrently (reaction rule 1). After every chunk has been sieved by grid,
which is indicated by the number of done tuples in the tuple space, grid is replaced
by one of nextgrid tuples and all done tuples vanish at the same time (reaction rule
2), and then the next round of sieving. The program will be easier to understand if
you come back after the subsequent sections.

As T-Cham relies on the transactions written in imperative programming languages
for its efficiency, automatic program transformation is not our primary concern in this
thesis, although it can further increase the efficiency of T-Cham implementation. We

refer the interested readers to [84, 48, 44, 85, 169].

5.2 Vending Machine

Example 3 (Vending Machine) There is a vending machine which sells chocolate
bars: a large bar costs $2, and a small one costs $1; furthermore, we assume that only

these two kinds of coins' can be used. Two buttons on the vending machine are large

"We have $1 and $2 coins in Australia.
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and small, which are used by a customer to choose a chocolate bar. The program is in

Figure 5.3. B

transaction root

tuples
boolean ausdl, ausd?2; -- $1 and $2 coins
boolean small, large; -- the two buttons
boolean LargeBar, SmallBar; -- the two kinds of choc bars
initialization
[1..M]::LargeBar=TRUE; -- M large bars
[1..N]::SmallBar=TRUE; -— N small bars
[1..S]::ausd2=TRUE; —— S number of $2
[1..T]: :ausd1=TRUE; -— T number of $1
small=TRUE, large=TURE; == theltwotbuttons
reactionrules
ausd2, large leadsto LargeBar, large;
ausd?2, small leadsto SmallBar, ausdl, small;
ausdl, ausdl leadsto ausd2;
ausdl, small leadsto SmallBar, small;
endtrans

Figure 5.3: The T-Cham Program of Vending Machine

The tuple space of the problem simulates the vending machine. It has M large
chocolate bars, N small ones, and two buttons (small and large) at the beginning.
Coins and the buttons pressed are the stimuli from the outside world. The vending
machine responds to the stimuli according to the reaction rules: a $2 coin with a button
large pressed gives out a large chocolate bar (reaction rule one), or a small chocolate
bar and a $1 coin change if the button small is pressed (reaction rule two). By reaction
rule three, two $1 coins makes one $2 value, and by rule four, a $1 coin and pressing
button small produce a small chocolate bar. In the reaction rule 1. we can see that

the tuple large, which stands for the button for a large chocolate bar, appears on both
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side of the reaction rules. It means the tuple is a re-usable resource, and it can be
recycled after “being used”.

We use the “!” operator before the tuples of small and large because they can
never be consumed.

To manage the re-charge of chocolate bars, we can use termination section:

termination

on (|LargeBar|==0 || |SmallBar|==0) do wait_for_recharging;

As the transaction wait_for_recharging is in the termination section, a re-start of the
program is necessary. The arrangement is fine with this particular application. In real
world, we do see vending machines being shut down for re-charging. For some other
applications, which may have to keep running all the time, we cannot rely on termi-
nation section to handle exceptional events. Exception handlers should be introduced
into T-Cham. As it is not the core components of T-Cham, we leave it as future work

for the time being.

5.3 The Producer-Consumer Problem

Example 4 (The Producer-Consumer Problem, with bounded buffer) The pro-
ducer produces one message, a string of at most MAX characters, at one time and the
consumer consumes one message at another time. Both producer and consumer are
autonomous. The only constraint on them is the capacity of the repository where the
messages are temporarily stored. We assume the capacity is N in our ezample. The
producer will continue producing messages as long as the total message number is less
then N, and the consumer will consume messages whenever they are available. The

T-Cham program is given in Figure 5.4. i

The first two lines define two constant MAX and N. They are substituted by 1024
and 100 respectively before the program is passed to a T-Cham compiler.

There are two kinds of tuples in this program. They are token and msg. The
number of tuple tokens denotes the current capacity of the message container in this

example. If there are n (0 < n < N) tokens currently in the tuple space, it means that
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#define MAX 1024 -- the max length of a message
#define N 100 -- the max number of messages

transaction root

tuples
boolean token; -- a place-holder for a message
char msg[MAX]; -- a message
initialization
[i:1..N]::token=1;
reactionrules
token leadsto msg by prod; == producer’s rule
msg leadsto token by cons; == consumer’s rule
subtransaction

prod: |token|>0 // (|token|’=|token|-1)&&(|msg|’=|msg|+1);
cons: |msg|>0 // (|token|’=|token|+1)&&(|msg|’=|msgl|-1);

endtrans

transaction prod
#language C

#tuplein boolean token;
#tupleout char msg[];

prod() A
/* some C code writing messages to the msg tuple */

}

endtrans

transaction cons

#language C

#tuplein char msg[];

#tupleout boolean token;
cons() {

/* some C code reading the content of the msg tuple */

endtrans

Figure 5.4: The T-Cham Program of Producer-Consumer Problem
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the producer still can produce n messages without any consumption by the consumer.
The tuple msgs simply hold the messages. At the very beginning, there are N tuple
tokens and no msg.

The first reaction rule says that the leaf transaction prod consumes (thinking as
occupies) one token tuple and generates one message msg. The reaction cannot happen
if there are no tokens left. The second reaction rule says that the leaf transaction
cons consumes one message, and as the result of the consumption, one more token is
available. Similarly, the consumption reaction could not happen if there is no message
currently in the tuple space.

The subtransaction description section gives the pre- and post-conditions of the two
leaf transactions: prod and cons. They actually specify the population of token and
msg in the tuple space before and after the execution of the leaf transactions.

There is no termination section in this example because this is a non-terminating
program.

We do not give the details of the C codes of the two leaf transactions. They are
not relevant to T-Cham.

Finally, in this example, we do not care about the order of the consumed messages.

That any message will be eventually consumed is guaranteed by the fairness principle

o - @llvam:

5.4 The Dutch Flag Problem

Example 5 (Dutch Flag) We have an array of n elements, each of which is either
Red, White, or Blue. A program is needed to re-arrange their positions so that all Red
elements come before White ones, which are in turn before Blue ones. The n elements
are represented by n tuples in the tuple space. Every tuple has the form of (x,y), where
x 15 the sequence number of the element in the original array and y is the color of the

element. The T-Cham program is in Figure 5.5. il

The idea of the program is very simple. Pick up any two tuples of two different
colours. If their relative position indexes are not right, exchange the two indexes, and

then put the two new tuples back to the tuple space. Repeat the procedures until no
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transaction root

tuples
tuple {
int order;
enum color {r,w,b};
ik strips -- one element

initialization
init_element;

reactionrules
strip(i,r), strip(j,w) leadsto strip(i,w), strip(j,r)
when (strip.i > strip.j);
strip(i,w), strip(j,b) leadsto strip(i,b), strip(j,w)
when (strip.i > strip.j);
strip(i,r), strip(j,b) leadsto strip(i,b), strip(j,r)
when (strip.i > strip.j);

termination
on'(f oralileu(G  HIREI( W n (kb )i - i <lo) idosloutput _Strip;

endtrans

transaction init_element
#language C
init_element () {
/* put n strip tuples into the tuple space */
by

endtrans

transaction output_strip
#language C
output_strip() {
/* code for strip tuples output */
J

endstran

Figure 5.5: The T-Cham Program of Dutch Flag
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such tuples exist.
[ this example, we use the internal structures (with some values) of tuples as part
of the selection criteria to choose tuples for reactions. The first reaction rule of the

program in Figure 5.5 18 equivalent to:

strip, strip leadsto strip, strip by index_exchange
when (strip$l.color=='r’ && strip$2.color==’w’ &&

strip$l.i > strip$2.j);

where the transaction index exchange exchanges the index value of strip$1l and

strip$2.

5.5 Sleeping Barber

The Sleeping Barber problem is actually an abstraction of the client/server pro-

gramming model, which is widely used in programming for computer networks.

Example 6 (Sleeping Barber) * A barber provides hair-cutting service in his shop,
where there are two doors—one for entrance and the other for exit—and N chairs for
waiting customers. Only one customer can receive the service on the barber’s chair at
a time. When there are no customers in the shop, the barber will fall asleep on his
chair; otherwise, he continuously provides hair-cutting service until no customers are
left. The barber spends all his life serving customers or sleeping.

When a customer arrives and finds the barber sleeping, he wakes up the barber and
has his hair cut on the barber’s chair. After the service, the customer gets out of the
shop by the exit door. If the barber is busy when a customer comes, the customer will
take a seat, provided that there s an empty chair, and wait for the barber. If all chairs
are occupied, the new customer has to wait until a chair is available. The T-Cham

program is i Figure 5.6. l

The tuple space of this program simulates the barber’s shop. The tuples in the

fuple space denote the states of each customer, each chair, and the barber. A pin in

i I,. P s 1 ' X |
“We simply assume that the barber and all his customers are male for description brevity.
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transaction root

tuples
boolean pin, pwt, pcut, pout; —— the states of
e rarcustomer
boolean bsp, bwk, bfin; -- the states of the barber
boolean chair;
initialization
FiRE SN chiai=TRUE —-— There are N chairs.
bsp=TRUE; —- The barber is asleep.
reactionrules
pin, bsp leadsto pcut, bwk;
pin, chair leadsto pwt when (!bsp);
pcut, bwk leadsto pout, bfin by cutting;
pwt, bfin leadsto pcut, chair, bwk;
bfin leadsto bsp when (|pwt|==0);
subtransaction

cutting: pcut&&bwk // pout&&bfin;

endtrans
transaction cutting

/* some operations here */
endtrans

Figure 5.6: The T-Cham Program of Sleeping Barber
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the tuple space means that a new customer is coming, pwt a customer is waiting on a
chair, pcut a customer is sitting in the barber’s chair and having his hair cut, and pout
means a customer leaving the barber’s shop. bsp denotes that the barber is sleeping,
bwk the barber is working, and bfin the barber has just finished cutting the hair of a
customer. A tuple chair in the tuple space means that the chair is available for a new
customer.

Initially, there are IV chairs available in the tuple space (i.e., barber’s shop) and the
barber is sleeping.

The first reaction rule says that if a customer finds the barber is sleeping when he
1s coming, he wakes the barber up and has his hair cut, i.e., makes the barber busy,
and the second, that if a new customer finds that the barber is busy (or not sleeping)
and a chair is available, he will sit down on the chair and wait for the barber. By
the reaction rule three, the busy barber will finish his service to the customer who is
having his hair cut so that the customer is ready to go. A waiting customer is asked to
sit down on the barber’s chair to have his hair cut according to reaction rule four; as
the consequence, an occupied chair is available again. By the reaction rule fi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>