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Abstract

This thesis contributes to the acceptance of the reconfigurable mesh as the architecture

of the next generation massively parallel computer by focusing on programming, al-

gorithmic, scaling, and optimality issues. A new programming model is defined for

3-dimensional reconfigurable meshes which is capable of reusing programs as subrou-

tine calls in different axis-orientations within restricted regions. This programming

model is supported by a new serial simulator. By exploiting two unique properties of

the maximal contour, a number of constant time algorithms are developed to compute

the contour of maximal elements of a set of planar points on ordinary as well as re-

stricted and unrestricted reconfigurable meshes of various dimensions. A new generic

self-simulation algorithm is developed which can self-simulate some restricted mod-

els of the reconfigurable mesh with asymptotically optimal slowdown and for which

the constant factor associated with the optimal slowdown is much less than that of the

existing self-simulation algorithms. Self-simulation is then devalued as an efficient

strategy for solving the problem of scaling down algorithms by showing that even

with optimal slowdown, the resultant algorithms fail to remain AT2 optimal when a

large reconfigurable mesh is self-simulated on a smaller mesh for which AT2 optimal

algorithms exist. The idea of developing adaptive algorithms, which can run on re-

configurable meshes of variable sizes and aspect ratios, without compromising AT2

optimality, is introduced as an alternative strategy for solving the problem of scaling

down algorithms. Another frontier is opened up in the study of adaptive algorithms

by showing an example where a new efficient optimal algorithm on the ordinary mesh

is extracted from an adaptive algorithm on the reconfigurable mesh.
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Notation

The notation used in this thesis is similar to that used in most technical texts and

should not present any difficulty for readers with a modest technical background.

In accordance with most recent computer science texts, we use the following nota-

tions to describe the complexity bounds of algorithms:

I. f (N) = O(g(N)) denotes the fact that there exist constants c > 0 and N0 such that

f (N)≤ cg(N) for all N ≥ N0.

II. f (N) = Ω(g(N)) denotes the fact that there exist constants c > 0 and N0 such that

f (N)≥ cg(N) for all N ≥ N0.

III. f (N) = Θ(g(N)) denotes the fact that there exist constants c1 > 0, c2 > 0, and N0

such that c1g(N)≤ f (N)≤ c2g(N) for all N ≥ N0.

IV. f (N) = o(g(N)) denotes the fact that for any value of c > 0, there exist a value of

N0 such that f (N) < cg(N) for all N ≥ N0.

For example, if f (N) = 7N and g(N) = N2/3, then f (N) = O(N), g(N) = Ω(N2), g(N) =

Θ(( f (N))2), and f (N) = o(g(N)).
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Chapter 1

Introduction

It is well known that interprocessor communications and simultaneous memory ac-

cesses often act as bottlenecks in present-day parallel computers. Bus systems have

been introduced recently to a number of parallel architectures to address these issues.

Among these parallel architectures, the reconfigurable mesh (Section 2.2) has drawn

much attention because of its underlying mesh topology which is considered as one

of the simplest models of parallel computing because of the locality of the communi-

cation and the regularity of the design. This makes it ideally suitable for VLSI embed-

ding.

The fundamental advantage of the reconfigurable mesh over the ordinary mesh-

connected computer (Section 2.1) is the ability of any processor of the reconfigurable

mesh to act as an integral part of the bus system besides its normal computational

functions. In an ordinary mesh, a processor is connected to its neighbouring proces-

sors with fixed bus segments, and in unit time a processor can send a message only

to its neighbours. The case is quite different for the reconfigurable mesh where a pro-

cessor can reconfigure itself to act as switch to connect mutually exclusive subsets of

the fixed buses. Therefore, the reconfigurable mesh allows a message to propagate

through several processors in unit time.

Consider any possible communication path between two arbitrary processors PEi

and PE j of a reconfigurable mesh. If each processor along the path, except processors

PEi and PE j, acts as a switch to connect the fixed bus segments connected to the pro-

cessor along the path, processor PEi can transmit a message to processor PE j in unit

time regardless of the number of processors along the path. This key assumption of

unit-time delay in message propagation leads in achieving O(1) communication di-

1
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ameter (Definition 2.2) for the reconfigurable mesh. This has been exploited by many

researchers to develop constant time algorithms on this particular architecture.

Although the reconfigurable mesh appears to be a powerful contestant for the next

generation of massively parallel computers, most of the research works on it is still

at the pen and paper stage. A commercially viable parallel computer based on the

reconfigurable mesh architecture depends on solving the following problems arising,

ironically, from the strength of reconfiguration:

• Maresca [58] has expressed his concern that the reconfigurable mesh is so flex-

ible and powerful that it has turned out to be nearly impossible to derive high

level programming models preserving such flexibility and power.

• Consider the problem of scaling down algorithms where an algorithm written on a

virtual mesh of size αP×βQ is to be executed on a physically available mesh of

size P×Q, where α and β are integers greater than 1. Self-simulation is the obvi-

ous way to address this problem. A simulation program takes the responsibility

to execute each step of the original algorithm on the physical mesh which self-

simulates the virtual mesh through some sort of processor mapping. In ordinary

“non-reconfigurable” mesh architecture, self-simulation can be done with opti-

mal slowdown αβ by letting each processor of the physical mesh self-simulate

αβ processors. Self-simulation in the reconfigurable mesh architecture is not so

obvious [31]. The difficulty stems mainly from the fundamentally different way

in which some computations are performed, exploiting the strength of reconfig-

urability in a manner known as the configurational computing [115]. A configura-

tional computation, typical to many algorithms, is as follows:

1 Processors configure themselves locally to establish a global pattern of buses

interconnecting the processors;

2 A designated processor issues a special signal at a fixed position in the bus

structure;

3 The processors deduce an answer depending on where the signal arrives;

Note that the above configuration computation does not involve any computa-

tional functionalities of the processor.
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It is still an open problem whether self-simulation of the reconfigurable mesh

is possible with optimal slowdown unless the reconfiguring capability of the

processors is severely restricted. It is now widely accepted that an additional

polylogarithmic factor is inherent in the slowdown of self-simulating the unre-

stricted reconfigurable mesh [4].

The aim of this thesis is to contribute to the acceptance of the reconfigurable mesh

as the architecture of the next generation massively parallel computer. This thesis thus

focuses on the following seemingly loosely connected aims relevant to the reconfig-

urable mesh architecture:

• To develop a programming model, capable of reusing programs, for 3-dimen-

sional reconfigurable meshes by means of a suitable programming language,

and to construct a serial simulator to test programs written in that language.

Some serial simulation works [68, 99, 119] have been published for 2-dimensional

reconfigurable meshes but the extent of the programming models developed

there is in the vicinity of merely visualisation to aid in evaluation and debug-

ging of algorithms. These programming models lack the capability of reusing

programs, a key feature of any successful programming language.

• To develop constant time algorithms to compute the contour of maximal ele-

ments of a set of planar points [24] on reconfigurable meshes of various dimen-

sions. This is an important computational geometry problem and so far no work

has been done on reconfigurable meshes. The motivation for this work is the

work of Jang et al. [37] where a non-recursive generic algorithm (Section 5.1) is

used to solve a number of computational geometry problems in constant time

on reconfigurable meshes.

• To develop efficient optimal self-simulation algorithms for some restricted re-

configurable mesh models. Self-simulation algorithms [4] with optimal slow-

down have already been developed for some restricted reconfigurable meshes.

We believe that these self-simulation algorithms have high constants associated

with the highest order terms in their slowdown functions. Also, the simplicity of

configurational computing is sacrificed. We also believe that the self-simulation
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algorithms in [4] are unnecessarily complex if applied to self-simulate many fun-

damental algorithms like the prefix-sum computation. Our primary goal is to

develop simple self-simulation algorithms, preserving the beauty of configura-

tional computing and having lower constants associated with the highest order

terms in their slowdown functions. This may require even more restricted re-

configurable mesh models if not achievable for the restricted models used in

[4].

• Self-simulation is not necessarily the only way to solve the problem of scaling

down algorithms. An alternative solution lies in refining, if necessary redesign-

ing, the algorithm so that it can adapt to reconfigurable meshes of various sizes

and aspect ratios. We explore this idea of self-scalable algorithms with a compar-

ative study against the conventional self-simulation method. To our knowledge,

self-scalable algorithms have not been studied before as a prospective solution

to the problem of scaling down algorithms on the reconfigurable mesh. Similar

idea has recently been studied on linear arrays with reconfigurable pipelined

bus systems [111].

For the sake of completeness of this introductory chapter, the main contributions

of the thesis are outlined below:

i) Defining a programming model for 3-dimensional reconfigurable meshes by

means of a new programming language, Reconfigurable Mesh Parallel C (RMPC),

which has the unique capability of reusing programs in different axis-orientations

within restricted regions.

ii) Developing a full-scale serial simulator, Reconfigurable Mesh SIMulator (RMSIM),

which can execute RMPC programs.

iii) Introducing two unique properties of the maximal contour of a set of planar

points which are exploited to develop efficient optimal parallel algorithms to

compute maximal contours on the linear array, the ordinary mesh, and the re-

configurable mesh of various dimensions.
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iv) Presenting two new restricted models of the reconfigurable mesh, the Monotonic-

Bus (MB) model and the Piecewise-Monotonic-Bus (PMB) model, where restric-

tions are imposed on the global characteristics of the buses configured.

v) Developing a simple generic self-simulation algorithm which can self-simulate

the MB model optimally and the PMB model asymptotically optimally. Al-

though our algorithm self-simulates more restricted models, the constant as-

sociated with the optimal slowdown is much lower than that of any of the

previously developed self-simulation algorithms for restricted reconfigurable

meshes.

vi) Devaluing the self-simulation technique as an efficient method of scaling down

algorithms by pointing out that the resultant algorithms are not necessarily AT2

optimal when AT 2 optimal algorithms are self-simulated on reconfigurable meshes

even with optimal slowdown.

vii) Introducing the idea of developing adaptive algorithms, as an alternative method

to self-simulation for scaling down algorithms. The adaptive algorithms can run

on reconfigurable meshes of variable sizes and aspect ratios while maintaining

AT2 optimality.

viii) Developing adaptive algorithms for sorting items and computing the contour of

maximal elements of a set of planar points.

ix) Conjecturing that in developing adaptive algorithms, it is sufficient to configure

buses whose lengths are bounded solely by the parameter which represents how

much the mesh is filled with data initially. To support our conjecture our adap-

tive algorithms are successfully transformed on the constrained reconfigurable

mesh where buses of at most a fixed length are allowed to be formed.

x) Arguing that the study of adaptive algorithms on reconfigurable meshes for

solving any specific problem will lead in developing new efficient algorithms

on mesh-connected networks—reconfigurable or ordinary ones. This argument

is supported by extracting a new AT2 optimal maximal contour algorithm on

the ordinary mesh, from our adaptive maximal contour algorithm. The new
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algorithm has lower constant associated with the highest order term in the com-

plexity function than the existing optimal algorithm.

As mentioned in the beginning of this chapter, this thesis tries to weave a thread

across a number of partly-related and partly-independent themes presented in the

core chapters. Literature review, therefore, is distributed among the relevant chapters

to retain better cohesion. The thesis is organised as follows:

In Chapter 2 we present background material for the entire thesis. This includes

the computational models of the ordinary mesh, the reconfigurable mesh, the linear

array, and the reconfigurable linear array. We also provide detailed classification cri-

teria along with various models of the ordinary mesh as well as the reconfigurable

mesh. This chapter also discusses configurational computing and the relative power

of the reconfigurable mesh with an idealistic parallel computational model PRAM.

In Chapter 3 we define a new programming model for the general 3-dimensional

reconfigurable mesh model. The model is expressed by means of a new programming

language, named RMPC, which is further supported by a serial simulator, named

RMSIM, to simulate parallel algorithms written in RMPC on a 3-dimensional recon-

figurable mesh. The work of this chapter was presented in the International Symposium

on Audio, Video, Image Processing and Intelligent Applications, Baden-Baden, Germany,

1998 [75].

In Chapter 4 we provide a background in sorting on mesh-connected networks

including the linear array, the ordinary mesh, and the reconfigurable mesh. We con-

centrate mainly on optimal algorithms in the sense of limitations imposed by commu-

nication diameter as well as AT2 measure. Sorting algorithms discussed in this chapter

are used extensively in most of the algorithms developed in Chapters 5, 7, and 8.

In Chapter 5 we present two unique properties of the contour of the maximal el-

ements of a set of planar points which can be exploited to develop efficient parallel

maximal contour algorithms. This chapter discusses optimal maximal contour algo-

rithms on the linear array and the ordinary mesh. Three optimal maximal contour al-

gorithms are developed here on reconfigurable meshes of various dimensions. These

algorithms were published in [74] and also presented in the International Conference on
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Parallel and Distributed Systems, Seoul, Korea, 1997 [71].

In Chapter 6 we discuss self-simulation algorithms, for a number of restricted as

well as the “unrestricted” general reconfigurable mesh models, where the simulation

involves the problem of computing the connected components of graphs. This chap-

ter also defines two new restricted reconfigurable mesh models where restrictions are

imposed on the global, rather than the local, characteristics of the buses allowed to be

formed. We further develop a new generic self-simulation algorithm, avoiding any

computation of connected components, which can self-simulate the new models with

asymptotically optimal slowdown, and for which the constant factor associated with

the optimal slowdown is much less than that of the algorithms which exploit com-

putations of connected components. This generic self-simulation algorithm was pre-

sented in the 2nd International Conference on Computational Intelligence and Multimedia

Applications, Gippsland, Australia, 1998 [73]. Finally we devalue the self-simulation

technique as an efficient method of scaling down algorithms by pointing out that the

resultant algorithms are not necessarily AT2 optimal when AT2 optimal algorithms are

self-simulated on reconfigurable meshes even with optimal slowdown.

In Chapter 7 we introduce the idea of developing adaptive algorithms, as an al-

ternative method to self-simulation for scaling down algorithms. The adaptive al-

gorithms can run on reconfigurable meshes of variable sizes and aspect ratios while

maintaining AT2 optimality. Two adaptive sorting algorithms and an adaptive max-

imal contour algorithm are developed using the framework of a generic adaptive al-

gorithm. Two of these algorithms were presented in the 10th IASTED International

Conference on Parallel and Distributed Computing and Systems, Las Vegas, U.S.A., 1998

[72] and the remaining one will be presented in the International Symposium on Intel-

ligent Multimedia and Distance Education, Baden-Baden, Germany, 1999 [70]. In this

chapter we also propose a conjecture stating that it is sufficient to configure buses of

length O(k) in an arbitrary adaptive algorithm where k represents how much of the

mesh is filled with data initially, and the conjecture is then supported by transform-

ing our adaptive algorithms on k-constrained reconfigurable meshes. This work was

presented in the International Conference on Parallel and Distributed Processing Techniques

and Applications, Las Vegas, U.S.A., 1999 [69].
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In Chapter 8 we develop a new AT2 optimal maximal contour algorithm on the or-

dinary mesh, based on our adaptive maximal contour algorithm developed in Chap-

ter 7. The new algorithm has lower constant associated with the highest order term in

the complexity function than the existing optimal algorithm. This opens a new fron-

tier in the study of adaptive algorithms. This work was presented in the International

Conference on Computer and Information Technology, Dhaka, Bangladesh, 1998 [76].

In Chapter 9 conclusions are given with reference to possible future extensions of

the results.



Chapter 2

Background

The aim of this chapter is to define the computational model of the reconfigurable

mesh computer which is the fundamental parallel architecture on which this thesis is

based. To support our ideas and results on the reconfigurable mesh, we also make

extensive use of the ordinary mesh and the linear array of processors throughout the

thesis. This chapter, therefore, includes discussions on these mesh-connected comput-

ers as well.

Definitions of some fundamental properties of a network of processors (not nec-

essarily mesh-connected), which are widely used throughout the thesis, are given be-

low:

Definition 2.1 The bandwidth of a network is the maximum number of bits that can be

transmitted over any bus segment at a time. Although no upper limit exists (besides the

physical limitation) for the bandwidth of a network N of P processors, it is a common practice

to assume the bandwidth of N must be ≥ logP, number of bits necessary to distinguish P

processors. This is also referred to as the minimum bandwidth requirement of a network.

Definition 2.2 Consider a network N of M processors where processors are numbered from

0 to M−1. Let di, j denote the distance between the pair processors PEi and PE j which is the

smallest number of wires (fixed bus segments) that have to be traversed in order to get from

processor PEi to processor PE j for all 0≤ i, j < M−1. The communication diameter of N

is max∀i∀ j di, j .

The communication diameter of a network often gives a lower bound on the time

which it takes to perform a calculation where information in a processor might have

9
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to be used by some distant processor.

Definition 2.3 The bisection width of a network is the minimum number of wires that must

be removed from it so that the network becomes two disjoint subnetworks with identical (within

1) number of processors.

The bisection width of a network is also a critical factor in determining the time

with which the network can perform a calculation where the data contained in one

half of the network may be needed by the other half before the calculation can be

completed.

The organisation of this chapter is as follows. In Section 2.1 we describe the com-

putational model of the ordinary mesh parallel computer. Some models of the ordi-

nary mesh and a brief definition of the linear array of processors are also included in

Section 2.1. In Section 2.2 we give details of the reconfigurable mesh parallel com-

puter by defining its general computational model, discussing classification criteria,

presenting various models, discussing the power of reconfigurable computing, and

defining the reconfigurable array of processor.

2.1 The Ordinary Mesh

The mesh-connected computer (mesh) is one of the simplest models of parallel computers.

The locality of the communication, the simplicity of the interconnection pattern, and

the regularity of the design make it ideally suited to VLSI implementation, easy to

program and to scale up.

In many cases, throughout the thesis, we term the mesh as ordinary to distinguish

it from the reconfigurable mesh.

A mesh of size r× c is a parallel computer with rc processors which are arranged

in a r× c lattice. Let PEi, j denote the processor at row i and column j of a mesh of

size r× c for all 0≤ i < r, 0≤ j < c and let processor PE0,0 reside in the north-western

corner. Every processor PEi, j, for all 0≤ i < r, 0≤ j < c, is connected, via unit-time

communication links, to its four neighbours, processors PEi±1, j±1, assuming they exist

(Figure 2.1).
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Figure 2.1: An ordinary mesh of size r× c.

Each processor has a fixed number of registers (words) and can perform standard

arithmetic and logical operations in unit time. Each processor can also send or receive

a word of data from each of its neighbour in unit time.

The minimum bandwidth, the communication diameter, and the bisection width

of an ordinary mesh of size r×c are logrc, r+c−2, and min(r,c) or min(r,c)+1 respec-

tively.

In Section 2.1.1 we classify the ordinary mesh, on the directionality of the com-

munication links, which is extensively used in the discussion of algorithms and their

complexity bounds in Section 4.3.

2.1.1 Ordinary Mesh Models

Three models of the ordinary mesh, proposed so far based on the directionality of the

communication links, are as follows:

Bidirectional Model: Two neighbouring processors can exchange data simultaneous-

ly over the communication link connected between these processors. To achieve

this it is assumed that there are two links between every pair of neighbouring

processors.

Unidirectional Model: In this model two neighbouring processors cannot exchange

data simultaneously. Therefore, swapping of data between two neighbouring

processors takes at least two units of time.

Strict Unidirectional Model: In this unidirectional model, all processors that simul-
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taneously transfer data to a neighbouring processor do so to the same neigh-

bour, i.e., all active processors transfer data to their north neighbour, or all to

their south neighbour, etc.

2.1.2 The Linear Array

The easiest way to express the linear array is to define it as a dimensionally restricted

ordinary mesh. A linear array of N processors is an ordinary mesh of size 1×N or

N×1. In the first case, each processor has at most its east and west neighbours; while

in the second case, each processor has at most its north and south neighbours.

2.2 The Reconfigurable Mesh

This section is organised as follows. In Section 2.2.1 we define the general computa-

tional model. Classification criteria, based on which various models of the reconfig-

urable mesh are defined, are discussed in Section 2.2.2. In Section 2.2.3 we present

various models of the reconfigurable mesh in brief. The comparative power of the re-

configurable mesh architecture is evaluated in Section 2.2.4. In Section 2.2.5 we define

the reconfigurable linear array.

: switch

N

W

S

E

Figure 2.2: A reconfigurable mesh of size 3×4.

2.2.1 The General Computational Model

The reconfigurable mesh is primarily a two-dimensional mesh of processors connected

by reconfigurable buses. In this parallel architecture, a processor element is placed

at the grid points as in the usual mesh connected computers. Processors of a recon-

figurable mesh of size X ×Y are usually denoted by PEi, j, 0≤ i < X , 0≤ j < Y . Let

processor PE0,0 reside in the north-western corner of the mesh. As in the ordinary



§2.2 The Reconfigurable Mesh 13

mesh, each processor is connected to at most four neighbouring processors through

fixed bus segments connected to four I/O ports E & W along dimension x and N & S

along dimension y. These fixed bus segments are building blocks of larger bus com-

ponents which are formed through switching, decided entirely on local data, of the

six internal switches (see Figure 2.2) between the four I/O ports of each processor.

The fifteen possible interconnections of I/O ports through switching are shown in

Figure 2.3. The connection patterns are represented as {p1, p2, . . .}, where each of pi

represents a group of switches connected together such that
S
∀i pi = {N,E,W,S}. For

example, {E,W,NS} represents the connection pattern with ports N and S connected

and ports E and W unconnected.

{E,W,N,S} {EW,N,S} {E,W,NS} {EW,NS} {WN,E,S}

{WS,E,N} {EN,W,S} {ES,W,N} {ES,WN} {EN,WS}

{NWS,E} {ENW,S} {NES,W} {ESW,N} {EWNS}

Figure 2.3: All 15 Possible interconnections between the four I/O ports of a processor in the

reconfigurable mesh.

A reconfigurable mesh operates in the single instruction multiple data (SIMD)

mode. Besides the reconfigurable switches, each processor has a computing unit with

a fixed number of local registers. The processors of a reconfigurable mesh operate syn-

chronously and a single step of a reconfigurable mesh is composed of the following

four substeps in sequence:

BUS substep: Every processor switches the internal connectors between I/O ports by

local decision.

WRITE substep: Along each bus, one or more processors on the bus transmit a mes-

sage of length bounded by the bandwidth of the fixed bus segments as well as

the switches. These processors are called the speakers.

READ substep: Some or all the processors connected to a bus read the message trans-

mitted by a single speaker. These processors are called the readers.
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COMPUTE substep: A constant-time local computation is done by each processor.

The minimum bandwidth, the communication diameter, and the bisection width

of a reconfigurable mesh of size X ×Y are logXY , 1, and min(X ,Y ) or min(X ,Y ) + 1

respectively.

2.2.2 Classification Criteria

Various reconfigurable mesh models, as discussed in Section 2.2.3 are usually classi-

fied by the following key criteria:

Width: It refers to the data width of the processors and thus also refers to the register

capacity and bus/switch bandwidth. The two classes of models which have

been proposed are bit and word models. Consider a reconfigurable mesh of size

X×Y . In the word model [64–66] the width is assumed to be O(logXY ), a word,

while in the bit model [34] the width is considered to be O(1). Thus in the word

model, every processing element has a fixed number of O(logXY )-bit registers

and O(logXY )-bit ALU and the bandwidths of the switches as well as buses are

assumed to be O(logXY ) bits. In the bit model 1-bit ALUs are used on O(1)-bit

registers and the switches and buses operate with only O(1) bit bandwidth.

Delay: One critical factor in the complexity analysis of reconfigurable algorithms is

the time needed to propagate a message over a bus. In the unit-time delay model

(most common) it is assumed that in any configuration any message can be

transmitted along any bus in constant time, regardless of the bus length. This

assumption, based on which a large number of algorithms with constant time

complexity are developed, is theoretically false, as the speed of signals carrying

information is bounded by the speed of light. This partially explains why recon-

figurable meshes have not gained wide acceptance initially. Recently some VLSI

implementations of reconfigurable meshes have demonstrated that the broad-

cast delay, though not a constant, is nevertheless relatively small in terms of

machine cycles. For example, only 16 machine cycles are required to broad-

cast on a 106 processor YUPPIE (Yorktown Ultra Parallel Polymorphic Image
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Engine) [53, 59]. GCN (Gated-Connection Network) [104] has even shorter de-

lays by adopting precharged circuits. Broadcast delay can further be reduced by

using optical fibre for the reconfigurable bus system and electrically controlled

directional coupler switches as proposed in [6].

In the log-time delay model [66] it is assumed that each broadcast takes Θ(logs)

steps to reach all the processors connected to a bus, where s is the maximum

number of switches in a minimum switch path between two processors con-

nected on the bus. Although this assumption sacrifices the property of unit

communication diameter, it is also not realistic in terms of the speed of light.

Bus Access: At each step, a bus may take one of the following three state:

• Idle, no processor transmits;

• Speak, there is only one speaker;

• Ambiguous, there are more than one speakers.

In the most common exclusive-write model, the ambiguous state is considered to

be an error state. The common-write model [12, 66], handles the ambiguous state

in a different manner. It allows multiple processors to simultaneously broadcast

to the same bus so long as they all broadcast the same message. Otherwise

the ambiguous state is considered to be an error state. In both the models it is

assumed that the error state is detectable by the processors and the bus carries

arbitrary values. The concurrent-write model [120] assumes no ambiguous state at

all. It also allows multiple processors to simultaneously broadcast to the same

bus and the bus carries the wired-or of all the messages.

Bus Direction: The buses of reconfigurable meshes are generally assumed to be undi-

rected1 in the sense that data can move in both direction. In [4, 5, 8, 58] a differ-

ent model2 has been proposed where each undirected bus is replaced by two

directed buses of opposite directions. It can be easily seen that this directed

model can simulate any configuration of the undirected mesh. The opposite is

1Resembling the unidirectional mesh model.
2Resembling the bidirectional mesh model.
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not true [8]: a directed graph cannot be simulated by an undirected graph as sig-

nals will sometimes have to propagate backwards. For example, any undirected

graph that is used to simulate the directed graph x→ z, y→ z, must make x and

y connected, even though they were not initially connected.

Connection Patterns: Each processor can set the connection between its four ports

based on local data. There are a total of 15 different connection patterns possible

as shown in Figure 2.3. Different models have been proposed in [4–6, 31, 73, 116]

which differ mainly in the number of allowed connection patterns. In [56], the

reconfigurable mesh is divided into the cross-over and the non-cross-over models

based on whether the connection pattern {NS,EW} is allowed or not. In some

instances the cross-over model have been shown to be more powerful than the

non-cross-over model.

Mesh Dimension: A reconfigurable mesh is usually assumed to be two dimensional.

But reconfigurable meshes of higher dimensions can also be constructed in a

similar way. For example, in a 3-dimensional reconfigurable mesh of size X ×
Y ×Z, processors are denoted by PEi, j,k, 0≤ i < X−1, 0≤ j <Y −1, 0≤ k < Z−1.

Each processor of a 3-dimensional reconfigurable mesh has two additional ports

U and D along dimension z.

Throughout the thesis, we assume the following assumptions and notations, if not

stated otherwise:

• A reconfigurable mesh is a 2-dimensional undirected word model with unit-

time delay and exclusive-write bus access where each processor is allowed to

configure any of the fifteen possible interconnections.

• We have used the labels “b:”, “w:”, “r:”, and “c:” to denote BUS, WRITE, READ,

and COMPUTE substeps respectively of a step in an algorithm on the reconfig-

urable mesh. For example see Algorithm 5.4.

• The word mesh is used to refer to both an ordinary mesh and a reconfigurable

mesh as long as no ambiguity arises.
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• For the sake of convenience, we have used the notation PE∗,i2,i3,...,ik to denote

the set of processors ∀i1 : PEi1,i2,i3,...,ik . Similarly PE∗,i2,∗,i4,...,ik denotes the set of

processors ∀i1∀i3 : PEi1,i2,i3,...,ik .

2.2.3 Reconfigurable Mesh Models

In this section we present a number of reconfigurable mesh models which have ap-

peared in the literature.

2.2.3.1 The PARBS Model

The Processor Array with a Reconfigurable Bus System (PARBS) [116] is the most gen-

eral and powerful model of the reconfigurable mesh. In fact, this is the de facto model

we use throughout the thesis. PARBS is defined for 2- and 3-dimensions with each

processor having 4 and 6 ports respectively. Processors are connected to a grid-shaped

reconfigurable bus systems. Any configuration of this bus system, that is derivable by

properly establishing the local connection among the ports within each processor, is

allowed. PARBS assumes unit-time delay, word data width and exclusive write on the

bus.

Figure 2.4: A 3×4 RMESH.

2.2.3.2 The RMESH Model

Reconfigurable MESH (RMESH) [65, 66] is a 2-dimensional mesh of processors which

differ from 2-dimensional PARBS in the placement of switches. In 2-dimensional

PARBS, six switches are used to connect four I/O ports internally in all possible 15
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configurations. But in the RMESH model, all the four ports are always connected in-

ternally and four switches are used, one with every port, simply to connect/disconnect

the fixed bus segment attached to a port as shown in Figure 2.4. Any two adjacent pro-

cessors can now be connected together if both the processors connect the switch at-

tached to the fixed bus segment between them while they can disconnected from each

other if any one of the processors disconnect its switch. Among the fifteen configura-

tions in Figure 2.3, the patterns {EW,NS}, {ES,WN}, and {EN,WS} are not achieve-

able in RMESH.

Li and Stout [54] have conjectured that PARBS is more powerful than RMESH

by showing the performance difference of the computation of exclusive-or (XOR) on

PARBS and RMESH models. On an n× n PARBS where each processor is holding a

single bit, the XOR of all the bits can be computed in O(1) time but an RMESH of

the same size takes O(log logn) time. The reason it is conjectured that PARBS is more

powerful than RMESH is the fact that RMESH does not allow cross-over connection

pattern {NS,EW}. Mackenzie [56] has proved a lower bound of Ω(logn) for comput-

ing parity of n bits on an RMESH of size k×n where 0 < k < n; while Li and Stout [54]

have shown that the problem can be solved in constant time on a PARBS of size k×n

where k ≥ 3.

Figure 2.5: An 8-connected RMESH of size 3×4.

To make RMESH as powerful as PARBS, Shi et al. [103] have suggested an 8-

connected RMESH, as shown in Figure 2.5, in place of usual 4-connected RMESH.

Shi et al. [103] have also shown that 8-connected RMESH is equivalent to a PARBS

by demonstrating that a PARBS can be simulated by an 8-connected RMESH and an

8-connected RMESH can be simulated by a PARBS without any increase in time com-
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plexity.

2.2.3.3 The HV-RM Model

In the HV-RM model [4], buses are formed either along rows (horizontally) or along

columns (vertically), but may not contain fixed bus segments from both dimensions.

The HV-RM model thus allows a processor to configure only the following four pat-

terns: {E,W,N,S}, {EW,N,S}, {E,W,NS}, and {EW,NS}.

2.2.3.4 The LRM Model

In the LRM model [4], a processor may partition the fixed bus segments connected

to it into any combination of connected pairs and singletons. Hence buses are only

linear (or just a cycle), i.e., a fixed bus segment is attached to at most one other fixed

bus segment at each end and the global configuration is a partition of the network into

a set of edge-disjoint linear buses. Thus among the fifteen configurations in Figure 2.3,

the patterns {NWS,E}, {ENW,S}, {NES,W}, {ESW,N}, and {EWNS} are not allowed.

2.2.3.5 The FR Model

The FR model [31] is a restricted version of the general model that allows only two

of the fifteen configurations in Figure 2.3, the fusing pattern {EWNS} and the cross-

over pattern {EW,NS}. Because of the above restriction in interconnecting ports of a

processor, it may be assumed without loss of generality that each processor of an FR

mesh has only two ports, the vertical port (NS) and the horizontal port (EW).

Figure 2.6: The Polymorphic Torus Network.
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2.2.3.6 The PTN Model

The Polymorphic Torus Network [53, 59] is identical to the 2-dimensional PARBS ar-

chitecture except that the rows and columns of the underlying mesh wrap around as

shown in Figure 2.6.

Memory Plane

Switch Plane

Processor Plane

Figure 2.7: The Polymorphic Processor Array.

2.2.3.7 The PPA Model

The logical architecture of the Polymorphic Processor Array (PPA) [58], as shown

in Figure 2.7, consists of a stack of three planes, respectively called processor plane,

memory plane and switch plane. The processor and memory planes are 2-dimensional

arrays of processors and registers respectively. The switch plane is a torus of switch

boxes. PPA assumes unit-time delay and word data width. To make PPA more realistic

and cost-effective, buses/switches are made directional and switch box implements

only the interconnections between opposite ports as shown in Figure 2.8. Except for

the directional buses, PPA is very similar to the HV-RM mesh model.

{E,W,N,S} {N->S,E,W} {S->N,E,W} {E->W,N,S} {W->E,N,S}

Figure 2.8: Possible 5 directional interconnections between the four I/O ports of a switch box

in PPA.
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2.2.3.8 The CAAPP Model

Content Addressable Array Parallel Processor (CAAPP) [120] is a square-grid array

of 1-bit serial processors intended to perform low-level image processing tasks. Each

processing element is linked through a four-way (E,W,N,S) switch which allows cer-

tain types of long-distance communication to take place quickly. One of the means

of communication among CAAPP processors involves the Coterie Network (Figure 2.9)

which is very similar to the RMESH in allowing specific connection patterns. CAAPP

allows multiple processors to write to the same isolated processor group, coterie, at

the same time and the collision on the bus is resolved by the logical OR of the output

bits.

Coterie 3

Coterie 1
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Figure 2.9: The Coterie Network.

2.2.3.9 The Bit Model

Jang et al. proposed a Bit Model [34] of the reconfigurable mesh which can simulate

most of the word based models of the reconfigurable mesh in asymptotically the same

amount of time using the same VLSI area. Each processor consists of six bit-level

switches, local bit storage and a 1-bit ALU. The switches can realize all of the possible

15 connection patterns shown in Figure 2.3. For obvious reason the buses can carry

only O(1) bits of data.
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2.2.3.10 The k-Constrained Model

It has already been stated in Section 2.2.2 that unit-time delay is a theoretically false

assumption. To account for this, the k-constrained reconfigurable mesh is proposed in

[10, 11] where buses of length at most k are allowed. Here k is assumed to be a con-

stant. The k-constrained reconfigurable mesh is quite different from the log-time delay

model. It can be argued that the k-constrained reconfigurable mesh model is asymp-

totically no faster than the ordinary mesh, since for large M and N, a k-constrained

reconfigurable mesh of size M×N is at best k times faster than an ordinary mesh of

the same size.

2.2.4 Power of the Reconfigurable Mesh

The power of the reconfigurable mesh is discussed here along two different perspec-

tives: configurational computing (Section 2.2.4.1) and relative strength of the recon-

figurable mesh over PRAM architecture (Section 2.2.4.2).

2.2.4.1 Configurational Computing

Certainly communication diameter 1, in assuming unit-time delay broadcast, and the

reconfigurability of processors into bus segments are the key powers of the recon-

figurable mesh. Based on this, a large number of highly efficient algorithms have

appeared in the literature with attainable optimal time complexities on mesh topol-

ogy. Constant time algorithms have been developed for sorting, routing, and rank-

ing [7, 10, 20, 26, 30, 36, 40, 44, 63, 83, 85, 97, 105, 118], computing arithmetic [27, 39, 79,

86, 87, 93, 94], solving computational geometry and graph problems [10, 13, 17, 18, 29,

37, 42, 48, 49, 64, 66, 81, 116], image processing [12, 22, 38, 41, 64, 66], and solving vari-

ous problems of interest [15, 19, 21, 78]. Reconfiguration of buses plays such an im-

portant role in these algorithms that Wang [115] uses a special name Configurational

Computing to denote the inherent strategy of these algorithms where computation is

done, as far as possible, exploiting network configurations rather than performing

arithmetic computations. The following example illustrates configurational comput-

ing:



§2.2 The Reconfigurable Mesh 23

s ’sjb ’s i

1 1 10

*

* *

*

*

1 2 31

Step 1 Step 2 Step 3

Figure 2.10: Three steps [79] in computing prefix-sum of 4 bits on a reconfigurable mesh of

size 5×4.

Given a binary sequence, b j, 0≤ j < N, the prefix-sum computation is to compute,

∀i : 0≤ i < N, si = b0+b1+ · · ·+bi. In Figure 2.10 prefix-sum of the binary sequence {1,

0, 1, 1} is computed on a reconfigurable mesh of size 5×4. The speakers and the buses

which carry the transmitted messages are shown in thick lines. Bits b j’s are assumed

to be distributed one bit per processor on the first row. In step 1, all the processors

on the first row broadcast b j’s along the column. In step 2, all the processors that

have just received the bit ‘1’, assume {ES,NW} configuration while the rest of the

processors assume {EW,N,S} configuration. Now, the left most processor on the first

row transmits a special message ‘*’ through port W and all the processors read in port

E. In step 3, only the processors which have just read in the special message ‘*’, exactly

one processor per column, transmit their row-index values along the columns to the

first row.

Note that in the above configurational computing of prefix-sum, no arithmetic

addition is performed.

2.2.4.2 Comparison With PRAM

In the literature, the power of reconfigurable mesh is usually compared with that of an

idealistic parallel computational model, widely known as the Parallel Random-Access

Machine (PRAM) [33]. A PRAM can contain an arbitrary number of synchronous pro-
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cessors, each of which is identified by a unique index. All the processors have unit-

time access to an arbitrary size shared memory. There are several variations of the

PRAM model based on the assumptions regarding the handling of the simultaneous

access of several processors to the same location of the shared memory. The Exclu-

sive Read Exclusive Write (EREW) PRAM does not allow any simultaneous access to

a single memory location. The Concurrent Read Exclusive Write (CREW) PRAM al-

lows simultaneous access for reading only. Access to a location for a read or a write

simultaneously is allowed in the Concurrent Read Concurrent Write (CRCW) PRAM.

The three principal varieties of CRCW PRAMs are differentiated by how concurrent

writes are handled. The common CRCW PRAM allows concurrent writes only when

all processors are attempting to write the same value. The arbitrary CRCW PRAM al-

lows an arbitrary processor to succeed. The priority CRCW PRAM assumes that the

indices of the processors are linearly ordered and allows the one with the minimum

index to succeed. Obviously the CREW is at least as powerful as the EREW, and the

CRCW is the most powerful model.

Simulating a priority CRCW PRAM of k processors and m memory locations in

constant time by a 2-dimensional reconfigurable mesh with the number of processors

polynomially bounded by k and m, Wang and Chen [117] (and independently Ben-

Asher et al. [6]) have established the following lemma:

Lemma 2.1 A 2-dimensional reconfigurable mesh is at least as powerful as a priority CRCW

PRAM. �

The claim in Lemma 2.1 can further be improved as follows:

Lemma 2.2 A 2-dimensional reconfigurable mesh is more powerful than a priority CRCW

PRAM.

Proof. As Lemma 2.1 is established, this proof needs only to show that a priority

CRCW PRAM is not as powerful as a 2-dimensional reconfigurable mesh which can

easily be concluded from the following two facts. 1) parity of n bits can be found in

constant time on a 2-D RM [86]; 2) to solve the same problem on a priority CRCW
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PRAM with polynomially bounded number of processors requires Ω
(

logn
log logn

)

time

[33, pp. 513]. �

Often, reconfigurable meshes seem to run O(logN) times faster than the CREW

PRAMs and O
(

logN
log logN

)

times faster than the CRCW PRAMs.

A detailed hierarchy of powers of the PRAM and reconfigurable bus-based models

can be found in [5, 109, 112].

2.2.5 Reconfigurable Linear Arrays

A reconfigurable linear array of N processors is a reconfigurable mesh of size 1×N or

N×1. In the first case, each processor has at most its east and west neighbours; while

in the second case, each processor has at most its north and south neighbours.



Chapter 3

A New Programming Model for the

Reconfigurable Mesh

In this chapter we define a new programming model for the general 3-dimensional

reconfigurable mesh model which is expressed by means of a new programming lan-

guage. The language, named RMPC, is further supported by a serial simulator, named

RMSIM, to simulate parallel algorithms written in RMPC on a 3-dimensional reconfig-

urable mesh. In the introductory Section 3.1, we discuss background of the program-

ming model as well as serial simulation and visualisation of reconfigurable meshes.

The programming model of RMPC is then developed in Section 3.2. In Section 3.3 we

present the technical details of the serial simulator RMSIM.

3.1 Introduction

Research on the reconfigurable mesh has concentrated mainly on the development of

computation models and on the implementation of experimental systems. The exper-

imental systems YUPPIE [53, 59] and GCN [104] have mainly focused on the efficient

implementation of the hardware supporting reconfigurability, and have not produced

any programming model.

The lack of a programming model makes the development of algorithms on recon-

figurable meshes very difficult; the algorithms are usually formulated as sequences of

steps involving the manipulation of switches that control reconfiguration and neither

automatic validation nor simulation can be done. A programming model supporting

a high level language and a simulator would allow for the automatic validation of the

26
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algorithms and for the automatic performance evaluation of the programs.

Maresca [58] has expressed his concern that the general reconfigurable mesh is

so flexible and powerful that it has turned out to be difficult to derive high level

programming models preserving such flexibility and power. Maresca, therefore, has

pruned the flexibility and power of the general reconfigurable mesh in defining a

new reconfigurable mesh architecture, Polymorphic Processor Arrays (PPA) (see Sec-

tion 2.2.3.7), for which a programming model has been proposed as a basis for the

design of a parallel programming language, called PPC (Polymorphic Parallel C), and

a compiler/simulator has been implemented [58]. PPC is a well defined programming

model but it addresses only issues concerning solely PPA.

Serial simulation of reconfigurable meshes has recently attracted considerable at-

tention in the form of developing efficient visualisation systems for algorithms on 2-

dimensional reconfigurable meshes. Sasada [99] has developed a visualisation system

in C which can simulate algorithms written in assembly language which is not very

user friendly. To overcome this limitation, Watanabe et al. [119] have developed a vi-

sualisation system in C which can simulate algorithms written in a C-like language.

Recently Miyashita et al. [68] have presented a visualisation system, written in Java

and therefore, it can be executed on various platforms, which also accepts algorithms

written in a C-like language.

The primary goal of all the three serial simulation papers [68, 99, 119] was to de-

velop efficient visualisation systems for algorithms on 2-dimensional general recon-

figurable mesh model so that algorithms can be constructed, evaluated, and verified.

Each of the visualisation systems in [68, 99, 119] has to define a specific programming

model of the reconfigurable mesh to represent parallel algorithms on 2-dimensional

reconfigurable meshes in the system. But the scope of these programming models re-

mains very limited in the vicinity of merely visualisation. These programming models

thus lack the capability of reusing programs, not related to visualisation but a key fea-

ture of any successful programming language. Moreover no light has been shed on

the simulation of multi-dimensional reconfigurable meshes.

Recently, Ben-Asher et al. [4–6] have proposed a systematic approach to express-

ing algorithms on reconfigurable meshes where each step of an algorithm is divided
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into four substeps in sequence as discussed in Section 2.2.1. This has motivated us to

define a programming model of the general reconfigurable mesh and to write a serial

simulator, RMSIM (Reconfigurable Mesh SIMulator) to support the model. The pro-

gramming model is expressed by means of a programming language, called RMPC

(Reconfigurable Mesh Parallel C).

RMPC and RMSIM are not merely limited only by 2-dimensional reconfigurable

meshes. RMPC is specially designed to write programs on a 3-dimensional reconfig-

urable mesh of any size. To support RMPC, RMSIM can simulate a 3-dimensional

reconfigurable mesh of size limited to only by the memory of the serial computer it

uses. It is true that RMSIM cannot simulate any arbitrary d-dimensional mesh but

it considers important issues concerning simulation of multi-dimensional meshes by

covering the 3-dimensional mesh model so that future extension can be made if nec-

essary. In defining RMPC, we concentrate on making the effort of transforming algo-

rithms into equivalent programs straightforward and easy. RMPC is also designed to

facilitate reusing of programs and in this direction we introduce the idea of executing

a program in different axis-orientations and/or within restricted regions here for the

first time (except for author’s paper [75]).

The main limitation of RMSIM is in its visualisation capabilities. To aid in visuali-

sation and debugging, RMSIM is only capable of generating a LATEX picture of any pla-

nar segment of the 3-dimensional mesh, at any step, while executing a program. The

reason for not providing any 3-dimensional visualisation tool lies in keeping the com-

plexity of writing RMSIM at minimum and also in realising that the complete power

of a 3-dimensional reconfigurable mesh has been rarely used in the literature [22]. In

most of the cases [6, 20, 63, 118] a weak 3-dimensional model, named mesh-of-meshes,

has been used in developing algorithms on 3-dimensional reconfigurable meshes and

a 2-dimensional visualisation tool is sufficient for debugging in such cases.

Each processor of a 3-dimensional reconfigurable mesh has six ports, N, S, E, W,

U, D, which can participate simultaneously in configuring dynamic interconnections.

A mesh-of-meshes is a weak 3-dimensional reconfigurable mesh where buses are only

allowed to be configured on either an XY -plane or a Y Z-plane or a ZX -plane as shown

in Figure 3.1. In a mesh-of-meshes, a processor is thus allowed to interconnect only
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Figure 3.1: A mesh-of-meshes of size 5×5×5.

the ports on the same plane and all the possible fifteen interconnections (Figure 2.3)

among each set of ports {E, W, N, S} on XY -plane, {E, W, U, D} on XZ-plane, and {N,

S, U, D} on Y Z-plane are allowed.

3.2 The Programming Model: RMPC

In this section, we define a programming model for the reconfigurable mesh-of-meshes

model by means of a programming language, called Reconfigurable Mesh Parallel C

(RMPC). RMPC is an extension of ANSI C. Like C, RMPC is designed to be small.

RMPC programs, therefore, are assumed to be dependent extensively on library pro-

grams which are not the integral part of the core of the language. Basic primitives

for global initialisation, data manipulation, data communication, and reusing of pro-

grams are provided in the form of library functions.

In Section 3.2.1 we provide the construct of the RMPC language. The internal

data structures and data manipulation primitives are presented in Section 3.2.2. Basic

primitives for data communication and some new concepts in reusing of programs

are discussed in Section 3.2.3 and Section 3.2.4 respectively.

3.2.1 The Program Construction

The construction of RMPC language in EBNF (Extended Backus Naur Form) [2] is

given in Figure 3.2. C-string, C-variable-declaration, C-identifier, and C-statement in Fig-

ure 3.2 represent an array of characters, a variable declaration (may be comma sep-

arated), an identifier, and a statement respectively which are valid in ANSI C. An
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program-file ::= { program | subprogram-file }
subprogram-file ::= “::input” file-name “\n”

file-name ::= C-string

program ::= “::” prog-name “\n”

{ C-variable-declaration“\n” }
statements

prog-name ::= C-identifier

statements ::= [Start-of-program-statement]

[beGin-of-step-statement]

essential-statements

[Finish-of-step-statement]

{ essential-statements }
[End-of-program-statement]

essential-statements ::= Bus-statement

Write-statement

Read-statement

[Compute-statement]

Start-of-program-statement ::= “S::” statement “\n”

beGin-of-step-statement ::= “G::” statement “\n”

Finish-of-step-statement ::= “F::” statement “\n”

End-of-program-statement ::= “E::” statement “\n”

Bus-statement ::= “B::” statement “\n”

Write-statement ::= “W::” statement “\n”

Read-statement ::= “R::” statement “\n”

Compute-statement ::= “C::” statement “\n”

statement ::= C-statement

| “{“ C-statement {statement} “}”

Figure 3.2: The construction of RMPC language.
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RMPC program is essentially a collection of BUS, WRITE, READ, and COMPUTE

substeps defined in Section 2.2.1. It is recommended that the statement tags S::, G::,

etc. should appear at the beginning of a line. It is also apparent from Figure 3.2 that

all types of statements need not necessarily be present in an RMPC program.

Although all types of statements appear to be very similar except for the statement

tags S::, G::, etc., a programmer should be aware of the importance of these state-

ments from the execution sequencing point of view. The Start-of-program-statement

and the End-of-program-statement are executed at the start and at the end of a pro-

gram execution respectively. A Bus-statement is responsible for reconfiguring buses

and thus it should use the Bus() primitive as explained in Section 3.2.3. Similarly

a Write-statement(Read-statement) is responsible for executing a WRITE(READ) sub-

step and therefore, it should use the Write()(Read()) primitive (see Section 3.2.3).

A Compute-statement is optional which is responsible for a COMPUTE substep. The

beGin-of-step-statement and the Finish-of-step-statement are executed at the start and at

the end of each lot of essential-statements.

Any of the above statements can be simple or complex. As in C, a complex statement

is recursively defined as a sequence of simple or complex statements enclosed in a pair

of curly braces. A statement can also be empty which is represented by a single “;”

only.

The Start-of-program-statement, the End-of-program-statement, the beGin-of-step-state-

ment and the Finish-of-step-statement provides debugging entries during program ex-

ecution. The Start-of-program-statement is also intended to be used in initialising the

dimension of the simulated mesh and number of registers available to each processor

in RMSIM. The following initialisation primitive is provided:

• SetGlobalDim(Nx, Ny, Nz, regN, write_mode, filename) – sets a

virtual reconfigurable mesh of size Nx× Ny× Nz with regN number of reg-

isters per processor and write_mode = (exclusive|common|concurrent)

bus write mode and opens filename file to write any LATEX pictures generated

during the execution.

Once initialisation is done, Nx, Ny, and Nz are considered as constants which are
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usually referred as the dimensional constants.

An RMPC program file can contain more than one programs and one of the pro-

grams must be named ::main from which the execution starts as in C and the remain-

ing programs act as subprograms. It is also possible to include additional programs

by the input command as long as exactly one program is named ::main. An exam-

ple of a complete RMPC programs set, divided into two separate files rank.rpc and

main.rpc, is presented in Figure 3.3.

3.2.2 Data Structures and Constants

RMPC assumes data width of the reconfigurable mesh to be the sizeof(double).

The registers are considered as double variables and the bandwidth of the buses and

ports are assumed to be the data width. It is programmer’s responsibility to interpret

the content of a register otherwise, if other simple data types e.g., int, char, etc. are

to be used. In a similar way complex data types can also be handled.

Three constants x, y, and z are available to the programmer as the 3-dimensional

Cartesian address of the processor executing the program. As a reconfigurable mesh is

operated in the single-instruction-multiple-data (SIMD) mode, a programmer should

assume that the constants x, y, and z will be replaced by values i, j, and k respectively

before a program is executed on the processor PEi, j,k, for all 0≤ i < Nx, 0≤ j < Ny, and

0≤ k < Nz.

An RMPC program also assumes that it is executed in a restricted region (Fig-

ure 3.5) of the original mesh of size Nx×Ny×Nz, defined by the boundary constants Sx,

Sy, Sz, Ex, Ey, and Ez, which includes only the processors PEi, j,k, min(Sx,Ex) ≤ i ≤
max(Sx,Ex), min(Sy,Ey)≤ j≤max(Sy,Ey), min(Sz,Ez)≤ k≤max(Sz,Ez). This strat-

egy enables more than one program to be executed simultaneously in different parts

of the mesh which also helps in program reusability as discussed in Section 3.2.4.2.

Registers are indexed from 0 to regN− 1. To enforce data hiding, registers are

accessed only through the following two data access primitives:

• SetReg(reg, val) – sets the content of register reg with val.
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::PrefixSum
B:: Bus("NS", "E", "W", "U", "D", "");
W:: if(y == Sy && z == Sz) Write(N, GetReg(0));
R:: Read(N, 0);

B:: if(GetReg(0) == 0) Bus("EW", "N", "S", "U", "D", "");
else Bus("WN", "ES", "U", "D", "", "");

W:: if(x == Sx && y == Sy && z == Sz)
if(GetReg(0) == 0) Write(E, 99);
else Write(N, 99);

R:: Read(E, 1);

B:: if(z == Sz) Bus("NS", "E", "W", "U", "D", "");
W:: if(z == Sz && GetReg(1) == 99) Write(S, y-Sy);
R:: if(y == Sy && z == Sz) Read(S, 1);

::Rank
B:: Bus("NS", "E", "W", "U", "D", "");
W:: if(y == Sy && z == Sz) Write(N, GetReg(0));
R:: Read(N, 0);

B:: Bus("EW", "N", "S", "U", "D", "");
W:: if(x == y && z == Sz) Write(E, GetReg(0));
R:: Read(E, 1);
C:: { SetReg(2, GetReg(0));

if(GetReg(0) > GetReg(1)) SetReg(0, 1);
else SetReg(0, 0); }

B:: ;
W:: ;
R:: ;
C:: if(y == Sy && z == Sz) {

Call(PrefixSum, YZ_X, Ey, Sy, Sz, Ez, x, x);
SetReg(0, GetReg(2)); }

File: rank.rpc

::input "rank.rpc"
::main
int n = 4, m = n-1;
::S SetGlobalDim(n, n, n, 3, exclusive, "rank.tex");

::B ;
::W ;
::R ;
::C if(y == Sy && z == Sz) {

switch( x ) {
case 0: SetReg(0, 14); break;
case 1: SetReg(0, 7); break;
case 2: SetReg(0, 15); break;
case 3: SetReg(0, 3); } }

::E Call(Rank, XY_Z, 0, m, 0, m, 0, m);

File: main.rpc

Figure 3.3: An RMPC program to compute the ranks of 4 distinct numbers (14,7,15,3) using

algorithms in [118].
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• GetReg(reg, val) – gets the content of register reg into storage denoted by

val.

Six ports of a processor are denoted, as usual, by aliases E, W, N, S, U, and D and

six different axis-orientations (see Section 3.2.4) are denoted by aliases XY_Z, YX_Z,

YZ_X, ZY_X, ZX_Y, and XZ_Y.

3.2.3 Data Communication

Data communication in RMPC is supported by the following four primitives:

• Bus(set_1, set_2, ...) – selects the connection pattern {set_1, set_2,

...} as the interconnection of I/O ports. There can at most be six parameters and

each parameter is a string of characters drawn from the alphabet {E, W, N, S, U,

D} such that
S
∀iset_i = {E,W,N,S,U,D} and ∀i : ∀ j 6= i : set_i∩set_ j = {}.

• Write(prt, val) – writes the val on the bus connected to the port prt.

• Read(prt, reg) – reads the content of the bus connected to the port prt into

register reg..

• Error(prt) – returns 1 if the bus connected to the port prt is in error state;

returns 0 otherwise.

3.2.4 Program Reusage

Like most of the programming languages, RMPC is capable of using external pro-

grams into the current program through its Call() primitive. This is one of the

strength of RMPC which puts it ahead of other programming models for the reconfig-

urable mesh in [58, 68, 99, 119]. Many algorithms on reconfigurable meshes have ap-

peared in the literature containing references to other published algorithms which has

simplified the description of these algorithms significantly. The capability of reusing

programs enables a programmer not only to convert these algorithms into programs

in similar straightforward fashion but also write new programs based on modular

design.
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We introduce here two new concepts in reusing RMPC programs. In Section 3.2.4.1

we show a way of reusing a program in different axis-orientation and in Section 3.2.4.2

we show the mechanism of reusing a program in a restricted region.

3.2.4.1 Axis-Orientation Mapping

Let the PrefixSum program in Figure 3.3 be available to us which can compute the

prefix sums of some binary numbers stored in the processors PE∗,0,0 using the XY -

plane of processors PE∗,∗,0. Now, consider that we are solving a problem on reconfig-

urable mesh which requires at some stage to compute the prefix sums of some binary

numbers stored in the processors PE0,∗,0 using the YZ-plane of processors PE0,∗,∗. Can

this prefix sum computation be done reusing the PrefixSum program?

Yes, RMPC is capable of the above operation by its unique axis-orientation map-

ping which, in this particular case, will map x-axis to y-axis, y-axis to z-axis, and z-axis

to x-axis, in other words, after the mapping y-, z-, and x-axes will be assumed as x-, y-,

and z-axes respectively, before applying the PrefixSum program.

XY_Z YX_Z YZ_X

ZY_X ZX_Y XZ_Y

x

y

z

y

x

z

y

z

x

x

z

y

z

x

y

x

y

z

Figure 3.4: Possible six axis-orientations.

Any RMPC program assumes the natural XY Z to be the axis-orientation. But

through the Call() primitive, a program can be executed in any of the possible six

axis-orientations as shown in Figure 3.4. RMPC also allows nesting of the Call()

primitive and the axis-orientation is selected accordingly. Suppose the current axis-

orientation and the requested axis-orientation are YZ X and XZ Y respectively, RMPC

will then select YX Z as the resultant axis-orientation.
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Figure 3.5: A restricted region in a reconfigurable mesh of size 5×5×5.

The Rank program, in Figure 3.3, of computing the ranks of n distinct numbers on

a reconfigurable mesh of size n× n× n further exemplifies the axis-orientation map-

ping. Let the number ni be stored in PEi,0,0, 0≤ i < n. Now a row broadcast after

a column broadcast is done to distribute the numbers in the XY -plane so that PEi, j,0,

0≤ i, j < n, receives the pair (ni,n j) and then produces 1, if ni > n j, or 0, otherwise.

Ranks are now computed by simply Call()ing the program PrefixSum in YZ X

axis-orientation on every YZ-planes to add the comparison values along each column.

3.2.4.2 Region Mapping

The power of program reusability through axis-orientation mapping cannot be re-

alised completely if no way is allowed to Call() a program in a restricted region of

the original reconfigurable mesh e.g., in the Rank program in Figure 3.3, each Call()

of the program PrefixSum uses a specific 2-dimensional YZ-plane rather than using

the entire 3-dimensional mesh.

As mentioned in Section 3.2.2, an RMPC program always assumes that it is exe-

cuted in a restricted region of the original mesh of size Nx×Ny×Nz, defined by the

boundary constantsSx, Sy, Sz, Ex, Ey, and Ez as shown in Figure 3.5. Hence, defining

a restricted region in program Call()ing is as simple as assigning Sx= sx, Ex= ex,

and so on. By default, it is assumed in an RMPC program that Sx = 0, Ex = Nx−1,

Sy= 0, Ey= Ny−1, Sz= 0, and Ez= Nz−1.

The restricted region, defined by the boundary constants, has a direction, pointing

from Cartesian co-ordinate (Sx,Sy,Sz) to (Ex,Ey,Ez), which also plays an impor-

tant role in program reusage as evident in the RMPC programs in Figure 3.3. The
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program PrefixSum, in default XY Z axis-orientation, computes and then stores the

prefix sum ∑i
j=0b j in processor PEi,0,0, for all i : 0≤ i < Nx, where the binary value b j

is initially stored in processor PE j,0,0, for all j : 0≤ j < Nx. Let the sum ∑Nx−1
j=0 b j be

called the final sum. Now, the program Rank reuses the program PrefixSum in YZ X

axis-orientation within restricted region of distinct YZ-planes where the direction of

the regions is chosen opposite to the normal to allow the final sums to be stored in the

processors PE∗,0,0 in stead of the processors PE∗,Ny−1,0.

Finally, we provide the program reusage primitive as follows:

• Call(prog-name, axis-ori, sx, ex, sy, ey, sz, ez) – executes

the program prog-name in axis-ori axis-orientation within the region con-

sisting the processors PEi, j,k, min(sx,ex) ≤ i ≤ max(sx,ex), min(sy,ey) ≤ j ≤
max(sy,ey), min(sz,ez)≤ k ≤max(sz,ez) with the direction from (sx,sy,sz)

to (ex,ey,ez).

3.3 The Serial Simulator: RMSIM

RMSIM is a serial simulator written in ANSI C which can simulate a 3-dimensional

reconfigurable mesh of variable size. RMSIM supports the RMPC language by pro-

viding an execution mechanism to execute programs written in RMPC. In this section

we provide a brief description of the technical issues concerned in the development of

RMSIM. This software, along with a reasonable amount of technical details, is freely

available by ftp://cslab.anu.edu.au/pub/Manzur/RMSIM.

In Section 3.3.1 we present some important data structures we use in developing

RMSIM. Implementation of the axis-orientation mapping and the region mapping is

discussed in Section 3.3.2. In Section 3.3.3, some technical issues regarding execution

of an RMPC program on RMSIM are provided. We discuss the debugging and visual-

isation facilities of RMSIM in Section 3.3.4.
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3.3.1 Data Structure

Each processor of the simulated mesh is represented by an instance of the following

data structure PE:

typedef struct {

double *reg;

unsigned char port[6];

double port_val[6];

unsigned char port_flag[6];

} PE;

In the above data structure, port_val stores the values carried by the buses con-

nected to the ports and port_flag is used to store various decision flags required to

provide necessary functionalities. The simulated mesh is thus represented as

PE ***RM;

The second important data structure is the Call() stack which is necessary to

preserve the state of the system while execution is transferred to another program via

the Call() primitive. RMPC demands each processor to be equipped with its own

internal Call() stack, but as RMSIM is a serial simulator, a global Call() stack is

sufficient for the simulation. The state of the system includes the constants Sx, Sy, Sz,

Ex, Ey, and Ez, the current axis-orientation, and the step and the substep in which the

Call() is made.

3.3.2 Necessary Mappings

The axis-orientation mapping and the region mapping of RMPC language is simu-

lated in RMSIM through the mapping of the dimensional constants, the boundary

constants, the processors, and the ports of each processor. The mapping of the di-

mensional constants, the boundary constants, and the processors is guided entirely

by the requested axis-orientation in the Call() primitive. The mapping of ports,

however, depends on both the requested axis-orientation as well as the direction of

the requested restricted region in the Call() primitive.
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3.3.3 Serial Execution Order

RMPC assumes that a program will be executed on all the processors in parallel. But

being a serial simulator, RMSIM assumes the following order in accessing processors

sequentially:

Loop along 3rd axis

Loop along 2nd axis

Loop along 1st axis

Actual axes to be considered in place of 1st, 2nd, and 3rd axes are resolved accord-

ing to the current axis-orientation. In ZX Y axis-orientation 1st, 2nd, and 3rd axes are

taken as z, x, and y axes. The step of each loop is either 1 or -1 depending on associated

boundary constants. For example, the region defined in Figure 3.5 will generate the

following loop structure if the current axis-orientation is XY Z:

for z = 2 to 3 step 1

for y = 1 to 3 step 1

for x = 4 to 1 step -1

Although it is possible to take the advantage of the above serial order in designing

RMPC programs on RMSIM, it is highly undesirable and therefore, not recommended,

as it destroys the principle of parallel computing.

3.3.4 Debugging and Visualisation Facilities

RMSIM generates run time error codes while executing a program if a problem occurs

e.g., the Call() primitive requests a restricted region which is not confined within

the dimension of the simulated mesh. Besides this standard technique, RMSIM is also

equipped with visualisation tools to generate LATEX pictures of the bus configurations,

along any plane of the simulated mesh, at any step of program execution.
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The generated pictures are scalable and can show the content of at most two reg-

isters of each processor. The buses which carry data are drawn in thick lines to differ-

entiate these from the buses carrying no data.

Figures 3.6–3.11 are generated by RMSIM while executing the RMPC programs in

Figure 3.3 where the caption of a figure mentions the step number of the program at

the end of which the figure is captured.

As stated in Section 3.1, RMSIM is not equipped with any visualisation tool to gen-

erate 3-dimensional pictures of the simulated mesh. The reason for not providing any

3-dimensional visualisation tool lies primarily in keeping the complexity of writing

RMSIM at minimum. But we also realise that 2-dimensional visualisation tools are

sufficient for the mesh-of-meshes model on which most of the algorithms developed

so far on 3-dimensional reconfigurable meshes can be adapted directly without any

modification.

3.4 Conclusions

In this chapter we have defined a new programming model for the general 3-dimen-

sional reconfigurable mesh model which is expressed by means of a new program-

ming language, called RMPC (Reconfigurable Mesh Parallel C). We have also pre-

sented some technical issues involved in the development of a serial simulator, RM-

SIM (Reconfigurable Mesh SIMulator), which can execute any RMPC program on a

simulated 3-dimensional reconfigurable mesh.

The main purpose of defining a new programming model for the reconfigurable

mesh is to provide facilities for reusing programs, like subroutine calls, which are not

available in the existing programming models in [58, 68, 99, 119]. We have thus intro-

duced the idea of executing a program in different axis-orientations and/or within

restricted regions, which we believe are considered here for the first time (except for

author’s paper [75]).

A 2-dimensional visualisation tool has been developed as an integral part of RM-

SIM to assist in program debugging and validation.

In defining RMPC, we have concentrated on making the effort of transforming
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algorithms into equivalent programs straightforward and easy. Yet most of the algo-

rithms on reconfigurable meshes, discussed or developed in this thesis, are presented

in algorithmic form rather than using RMPC constructs because we believe that an

algorithmic presentation gives the reader a clearer intuitive understanding than a for-

mal RMPC-based presentation.
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Chapter 4

Sorting on Mesh-Connected

Networks

The aim of this chapter is to provide a background in sorting on mesh-connected

networks including linear arrays, ordinary meshes, and reconfigurable meshes. We

concentrate mainly on optimal algorithms in the sense of limitations imposed by com-

munication diameter as well as AT2 measure.

Some general assumptions on sorting as well as the capability of the networks are

discussed in the next introductory section. In Section 4.2 optimal sorting on linear ar-

rays of processors is addressed. A number of optimal sorting algorithms on ordinary

mesh are discussed in Section 4.3. In Section 4.4 we review AT 2 optimal constant time

algorithms on reconfigurable meshes including meshes with higher dimension.

4.1 Introduction

The problem of sorting needs no introduction. Undoubtedly, sorting is one of the

most widely researched topics. In this thesis, sorting plays a significant role in the

development of maximal contour algorithms on ordinary as well as reconfigurable

meshes (Chapter 5) and in the establishment of the idea of adaptive algorithms for

reconfigurable meshes (Chapter 7).

So much work has already been done on sorting that it is beyond the scope of

this thesis to cover all but a small part of it. Thus we consider only some specific

related topics of parallel sorting on inter-connected networks of processors. Many

sorting algorithms have so far been developed for these networks with a significant

43
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consideration being the input and output of data. Tasks involved with input and

output of data are not discussed in this chapter as the networks are considered to be

filled with data, to be sorted, at the start of any sorting algorithm.

To avoid unnecessary complication, the length of each item to be sorted on a net-

work will be assumed to be at most the bandwidth of the network. If necessary, the

algorithms can easily be extended to sort lengthy multi-item records as long as the

length of the key is within the above limit. Moreover, the items to be sorted are also

assumed to be distinct without any loss of generality as identical keys can be made

distinct by introducing a secondary key.

4.2 Sorting on Linear Arrays

Consider sorting of N items on a linear array of N processors where each processor

has exactly one item in a scrambled order at the start. Without any loss of generality,

it is assumed that, after sorting, each processor will again contain exactly one item in

a linear sorted order of processors such that the smallest item resides in the leftmost

processor and the largest item resides in the rightmost processor.

The lower bound of sorting on linear arrays is discussed in the next section. Sec-

tion 4.2.2 presents a sorting algorithm which almost achieves the lower bound.

4.2.1 Lower Bounds

In the worst case, the smallest item might start in the rightmost processor and thus we

would need N−1 steps to move it into the leftmost processor. Thus sorting of N items

on a linear array of N processors with bidirectional links requires at least N−1 steps.

Now, for the strict unidirectional model this lower bound can further be improved to

2N−2 based on the scenario where the smallest and the largest items are residing into

the rightmost and the leftmost processors respectively.

4.2.2 Odd-Even Transposition Sorting

Odd-even transposition sorting algorithm [51], which takes exactly N steps, almost

achieves the lower bound discussed above for bidirectional model. The algorithm
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Figure 4.1: Odd-even transposition sort.

is quite simple. At the odd steps, the items of processors 1 and 2, 3 and 4, etc. are

compared and, if necessary, these items are also swapped so that the smaller items

ends up in the left of the processor pairs. The same operations are performed for

processors 2 and 3, 4 and 5, etc. at even steps. For example, see Figure 4.1.

Theorem 4.1 N items on a linear array of N processors with bidirectional links, where each

processor has exactly one item, can be sorted in exactly N steps.

Proof. See [51, Section 1.6]. �

If the unidirectional model is considered, performing comparison as well as swap-

ping items residing in a pair of neighbouring processors requires two steps, instead of

one. Hence follows:

Theorem 4.2 N items on a linear array of N processors with unidirectional links, where each

processor has exactly one item, can be sorted in exactly 2N steps. �

4.3 Sorting on Ordinary Meshes

Consider sorting MN items on an ordinary mesh of size M×N where each processor

has exactly one item (in scrambled order) at the start. Also suppose that, after sorting,

each processor will again contain exactly one item in a prescribed order of processors.
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There is no single natural ordering of the processors of a mesh for sorting. The

order of the processors for sorting should not be confused with the Cartesian address-

ing of the processors. In fact, any one-to-one mapping from {1,2, . . . ,M}×{1,2, . . . ,N}
onto {1,2, . . . ,MN} can be used as the ordering of processors such that after the sort-

ing is done, the jth smallest (ascending lexicographical order) or largest (descending

lexicographical order) item will reside in the processor which is mapped to the in-

dex j according to the above mapping. Clearly the order of the processors should be

prescribed in advance, independent of the input data.

A number of orders of processors for sorting have so far been introduced in the

literature of which row-major, column-major, snake-like-row-major, and snake-like-column-

major orders are the most common. For examples of these orders of processors, see

Figure 4.2.
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Figure 4.2: Order of processors for sorting in ascending order on mesh. (a) row-major, (b)

column-major, (c) snake-like-row-major, and (d) snake-like-column-major orders.

In the next section the lower bound of sorting on ordinary meshes is discussed.

An optimal sorting algorithm by Schnorr and Shamir and an improved algorithm by

Nigam and Sahni are presented in Section 4.3.2. In section 4.3.3 we discuss Leighton’s

optimal columnsort algorithm. Rotatesort, an optimal sorting algorithm by Marberg

and Gafni, is presented in Section 4.3.4.

4.3.1 Lower Bounds

Whatever the order of processors in the final state of sorting, instances can be found

where two items, initially residing at diagonally opposite corner processors, have to

be transposed during the sorting. It is very easy to conclude that even for such a sim-

ple transposition we need at least M +N−2 and 2M +2N−4 steps for the bidirectional

and the strict unidirectional model respectively.
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Theorem 4.3 Sorting of MN items on an ordinary mesh of size M×N, where the final output

can reside in any arbitrary order of processors, cannot be done in less than M + N−2 steps

with bidirectional links and 2M +2N−4 steps with strict unidirectional links. �

Not surprisingly, optimal sorting on ordinary meshes have been studied exten-

sively [51, 52, 57, 82, 84, 92, 101, 107]. In many of the above cases, sorting has been

studied primarily on square meshes. For consistency, we have adapted those works

for rectangular meshes. Thompson and Kung [107] have developed a sorting algo-

rithm with complexity 2M + 4N + o(M + N) on the strict unidirectional mesh model.

Leighton [52] has presented his 7M +4N order columnsort algorithm on a bidirectional

mesh where M ≥ 2(N−1)2. Schnorr and Shamir [101] have published a sorting algo-

rithm with complexity M +2N +o(M +N) where M2 > N. In [101] Schnorr and Shamir

also claimed that sorting in row-major final order on the bidirectional mesh model,

even with no penalty for excessive computational and/or storage, requires at least

M +2N−o(M +N) steps.

Very recently, Nigam and Sahni [84] have disproved the lower bound of [101] by

presenting an M + N + o(M + N) order sorting algorithm on the same powerful mesh

model used in [101]. Nigam and Sahni [84] have also disproved Schnorr and Shamir’s

lower bound even on the basic bidirectional mesh model with limited computational

power and storage by developing a sorting algorithm with complexity M + 1.5N +

o(M +N). In [101] Nigam and Sahni have also considered the strict and the non-strict

unidirectional mesh models.

All the above algorithms proceed by dividing the mesh into submeshes, working

on the submeshes recursively in parallel, then combining the results in some fash-

ion. In [57] Marberg and Gafni have presented an optimal 7M + 7N order rotatesort

algorithm on the bidirectional mesh involving transformations (sorting and rotation)

alternatively along only rows and columns where M ≥ N1/2.

For the sake of completeness, the algorithms developed by Schnorr and Shamir

[101], Nigam and Sahni [84], Leighton [51, 52] and Marberg and Gafni [57] are dis-

cussed briefly in the following sections.
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Whenever the expression Nα/β, where α and β are integers and α < β, is encoun-

tered hereafter in this chapter it is assumed to be an integer for the sake of simplicity

in presenting algorithms.

N
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Figure 4.3: Definition of blocks (a), vertical slices (b), and horizontal slices (c) in the sorting

algorithm of Schnorr and Shamir.

4.3.2 Schnorr and Shamir’s Algorithm

Schnorr and Shamir [101] have assumed the simplest bidirectional mesh model where

each processor has very limited computational power and storage. The order of pro-

cessors in the final output is assumed to be the snake-like-row-major order. To keep

the algorithm correct for the entire range of values of M and N, it is also assumed that

N ≤M2. We further assume that M = 24s, N = 24t , and 4s≥ 3t, which implies M ≥ N3/4,

for the sake of simplicity in presentation.

Algorithm 4.1 Schnorr and Shamir’s Algorithm [101]

1 Sort all the blocks (Figure 4.3(a)) in snake-like-row-major order;

2 Permute the columns so that the N3/4 columns in each block are distributed

evenly among the N1/4 vertical slices; (For example of vertical slices, see

Figure 4.3(b).)

3 Sort all the blocks in snake-like-row-major order;

4 Sort all the columns of the mesh downwards;

5 Collectively sort blocks 1 and 2, blocks 3 and 4, etc., of each vertical slice in

snake-like-row-major order;



§4.3 Sorting on Ordinary Meshes 49

6 Collectively sort blocks 2 and 3, blocks 4 and 5, etc., of each vertical slice in

snake-like-row-major order;

7 Sort all the rows of the mesh into alternating left-to-right and right-to-left

order;

8 Perform 2N3/4 steps of the odd-even transposition sort (Section 4.2.2) along

the snake;

Lemma 4.4 Sorting MN items on a bidirectional mesh of size M×N, N ≤M2, in snake-like-

row-major final order, can be done in M +2N +o(M +N) steps.

Proof. See the complexity analysis of the above algorithm in [101]. �

In spite of its asymptotic optimality, the above algorithm of Schnorr and Shamir

is not likely to be very practical, since for moderate values of N the low order term,

O(N3/4), remains significant.

In [101], Schnorr and Shamir not only have presented the above algorithm but also

have claimed the complexity of their algorithm to be very close to the lower bound. In

the process of claiming this, they have assumed a stronger bidirectional mesh model

where each processor can have unlimited computational power and storage and then

they have argued that any row-major (normal or snake-like) sorting algorithm must

take M +2N−o(M +N) steps.

N (   - 1)k

2 k

N
N

k

M

(a) (b)

Figure 4.4: Folding (a) and unfolding (b) of data in the sorting algorithm of Nigam and Sahni.

Nigam and Sahni [84] have successfully disproved the lower bound claim of

Schnorr and Shamir by developing an algorithm which requires less steps. Nigam
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and Sahni have assumed the same stronger bidirectional mesh model used in estab-

lishing the lower bound of Schnorr and Shamir. For some integer k, a power of 2,

the data are folded (Figure 4.4(a)) to the N/k columns in the centre so that each col-

umn of processors contains k successive columns of data. Some steps of Schnorr and

Shamir’s algorithm have then be modified to sort MN items on the central submesh

of size M×N/k where at the start and at the end of sorting each processor contains k

items. Finally the data are unfolded as in Figure 4.4(b).

Lemma 4.5 Sorting MN items on a bidirectional mesh model of size M × N,

with no penalty for excessive computation and storage, can be done in

M +N(1+1/k)+o(M +N) steps.

Proof. See [84]. �

If k = Ω(N) then Nigam and Sahni’s algorithm takes only M + N + o(M + N) steps

which is extremely close to the general lower bound of the bidirectional mesh model

in Theorem 4.3.

As Nigam and Sahni [84] have assumed a strong bidirectional mesh model where

each processor can store up to k items, their sorting algorithm is not applicable to mesh

models where computing and storage capability of each processor is very limited as

assumed in Algorithm 4.1 by Schnorr and Shamir.
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Figure 4.5: Permutation of matrix in various phases of columnsort. For simplicity, we have

chosen a 6×3 matrix which does not satisfy the M ≥ 2(N−1)2 constraint.
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4.3.3 Leighton’s Columnsort Algorithm

In the original columnsort algorithm by Leighton [52], an M×N matrix of items is

sorted in column-major order. It can be shown that if M ≥ 2(N−1)2 and M modN = 0

then the following eight phases are sufficient to sort the items:

Algorithm 4.2 Columnsort [52]

1 Sort all the columns downward;

2 Transpose (Figure 4.5) the matrix by picking up the items in column-major

order and setting them in row-major order, preserving the shape of the ma-

trix;

3 Sort all the columns downward;

4 Reverse the permutation applied in phase 2 (Figure 4.5);

5 Sort all the columns downward;

6 Shift all the items M/2 positions as shown Figure 4.5;

7 Sort all the columns downward;

8 Shift all the items back M/2 positions as shown Figure 4.5;

The above algorithm can be ported into a mesh of size M×N by keeping the extra

column at phases 6, 7, and 8 in the last column. A careful scrutiny reveals that the

above algorithm can be executed on the M×N bidirectional mesh model in 7M + 4N

steps.

In [51, pp. 261], Leighton has improved his columnsort algorithm with resulting

complexity 6M + 4N. In phase 5, columns are alternately sorted in downward and

upward directions. The requirement of an extra column is eliminated by replacing

phases 6 and 7 with two steps of odd-even transposition sort along each row in phase

6 only.
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4.3.4 Marberg and Gafni’s Rotatesort Algorithm

Most of the sorting algorithms on meshes involve recursion on submeshes as a natu-

ral divide-and-conquer technique. In the quest for sorting algorithms without involv-

ing any recursion on submeshes, Scherson et al. [100] (and independently Sado and

Igarashi [98]) have published the following algorithm where the rows and columns

are alternately sorted:

Algorithm 4.3 Shearsort [100]

1 Repeat for ⌈logM⌉+1 times the following:

1.1 Sort all the rows alternately to the right and to the left;

1.2 Sort all the columns downward;

The above sorting algorithm requires (M + N)(⌈logM⌉+ 1) steps which is clearly

non-optimal.

Schnorr and Shamir [101] have modified the shearsort algorithm to achieve a sub-

logarithmic nearly-optimal algorithm revsort by introducing cyclic rotation of rows in

addition to sorting of rows.

Marberg and Gafni [57] have developed their algorithm rotatesort where a con-

stant number of linear transformations is made alternately to rows and columns. Like

revsort, rotatesort also uses cyclic rotation of rows in addition to sorting of rows. In-

terestingly a cyclic rotation of rows can easily be emulated by sorting of rows. Hence,

it can be claimed that rotatesort involves only sorting of rows and columns in alternate

steps. For simplicity, it is assumed in defining the rotatesort that M = 2s and N = 22t ,

where s≥ t.

Algorithm 4.4 Rotatesort [57]

1 Balance each vertical slice of size M×N1/2 (Figure 4.6(b)) in parallel:
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1.1 Sort all the columns downward;

1.2 Rotate each row of the slice i, (i modN1/2) positions to the right;

1.3 Sort all the columns downward;

2 Unblock the entire mesh:

2.1 Rotate each row i, (iN1/2 modN) positions to the right;

2.2 Sort all the columns downward;

3 Balance each horizontal slice of size N1/2×N (Figure 4.6(c)) in parallel:

3.1 Sort all the columns of the slice downward;

3.2 Rotate each row of the slice i, (i modN) positions to the right;

3.3 Sort all the columns of the slice downward;

4 Repeat phase 2;

5 Do the following steps for three times:

5.1 Sort all the rows alternately to the right and to the left;

5.2 Sort all the columns downward;

6 Sort all the rows to the right to obtain row-major order, or alternately rows

in opposite directions to obtain snake-like-row-major order;

1/2
N

1/2
N

1/2
N

1/2
N

M

N

(a) (b) (c)

Figure 4.6: Definition of blocks (a), vertical slices (b), and horizontal slices (c) in the rotatesort

algorithm.
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It is easy to conclude that for the bidirectional mesh model the above algorithm

requires 7M +7N steps.

4.4 Sorting on Reconfigurable Meshes

Consider sorting of N items on an ordinary mesh of size N×N with unidirectional

links where each processor in the bottom row contains an item at the start and at

the end. It is very easy to argue that even though the bisection-width of the mesh,

N, matches number of items to be sorted, we cannot expect to sort these numbers in

less than N−1 steps, which is the minimum communicational distance between the

leftmost and the rightmost processors at the bottom row.

Now the information content of sorting N items is Ω(N) [113, pp. 58]. Let us assume

that sorting N items on an area of N×N takes O(T ). By Ullman [113, pp. 56], the

AT2 lower bound of the above sorting problem is Ω(I2(n)) = Ω(N2) from which we

can easily conclude that AT 2 optimal sorting of the above configuration should take

constant time, i.e., O(1) steps, which is far beyond the reach of any of the ordinary

mesh models.

The communication diameter of any reconfigurable mesh of any arbitrary size is 1

as discussed in Section 2.2.1. Many researchers [6, 18, 20, 36, 40, 44, 55, 63, 80, 83, 85, 87,

88, 97, 118] have exploited this fundamental property of reconfigurable mesh to design

efficient sorting algorithms.

Consider sorting n≤MN items on a reconfigurable mesh of size M×N where M ≥
N. If we are interested in developing AT2 optimal algorithms with complexity O(1)

then according to equation (7.1, pp. 104) we get the following:

MN×12 = n2×M
N
⇒ n = N .

This suggests that to develop constant time AT2 optimal algorithms to sort N items,

we must consider a reconfigurable mesh of size at least N ×N. A number of such

algorithms have already been published and for the sake of completeness some of

these algorithms will be discussed in Sections 4.4.1–4.4.4, grouped according to the

basic methodologies. Many non-optimal sorting algorithms have also been developed
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on reconfigurable meshes but these will be intentionally omitted from our discussion

to keep the thesis brief and precise.

The following two results have played a significant role in the development of

constant time sorting algorithms:

Lemma 4.6 N items on a reconfigurable mesh of size MN ×N, M ≤ N, can be sorted in

O(logN) time if M = 1, and in O(logN/ logM) time if M > 1.

Proof. See [55]. �

Lemma 4.7 Given N items on the bottom row of a reconfigurable mesh of size N×N, any

permutation of these items can be done in constant time provided the destination of an item is

known to the processor containing the item.

Proof. See [40]. �

Some constant time sorting algorithms where columnsort is adapted are discussed

in next section. In Section 4.4.2 a constant time adaptation of rotatesort is presented.

We discuss some constant time sorting algorithms based on bucket and/or radix sort

in Section 4.4.3. In Section 4.4.4 we present constant time sorting algorithms on higher

dimensional reconfigurable meshes.

4.4.1 Algorithms Based on Columnsort

Jang and Prasanna [40] have adapted Leighton’s columnsort to develop a constant

time sorting algorithm on reconfigurable mesh. The N items are considered to be ar-

ranged in a virtual matrix of size N3/4×N1/4. Now it is assumed that the leftmost N3/4

processors at the bottom row contains the first column of the virtual matrix, the next

N3/4 processors at the bottom row contains the second column of the virtual matrix,

and so on. Now, phases 1, 3, 5, and 7 are done in constant time by Lemma 4.6 using a

submesh of size N×N3/4 for each column. Phases 2, 4, 6, and 8 can be considered as

pure permutation problems and thus can also be done in constant time by Lemma 4.7.

Later Nigam and Sahni [83] have adapted Leighton’s columnsort to develop a

constant time sorting algorithm with a smaller number of broadcasts. They assume
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a different virtual matrix of size 1
2N3/4×2N1/4. The sorting of each column of 1

2N3/4

items in phases 1, 3, 5, and 7 is performed by implementing a second columnsort in

a submesh of size N× 1
2N3/4. The 1

2N3/4 items in each submesh are assumed to be

arranged in another virtual matrix of size N1/2× 1
2N1/4.

4.4.2 Algorithms Based on Rotatesort

In [83], Nigam and Sahni have also adapted Marberg and Gafni’s rotatesort algorithm

to design a constant time sorting algorithm. Here, the N items are considered to be

arranged in a virtual matrix of size N1/2×N1/2. During the row phases, the N items

are stored in row-major order. During the column phases, the items are stored in

column-major order in the bottom row of the mesh. Obviously these rearrangements

are purely permutations of the N items and hence can be done in constant time by

Lemma 4.7. Now, by Lemma 4.6, sorting of N1/2 columns or N1/2 rows of N1/2 items

each can easily be done in O(1) time using N1/2 submeshes of size N×N1/2 each in

parallel. Again, cyclic rotation of a row can be considered as a permutation problem

and therefore, such rotations of N1/2 rows of N1/2 items each can be performed in

constant time using N1/2 submeshes of size N1/2×N1/2 each.

4.4.3 Algorithms Based on Bucket Sort and Radix Sort

A few constant time sorting algorithms have been developed on reconfigurable

meshes by adapting “bucket sort” [45] and/or “radix sort” [45]. In [55], Lin et al.

have considered bucket sorting by multi-selection in designing their algorithm. First

the iN2/3-th, 1≤ i ≤ N1/3, smallest items amongst the N given items are computed in

O(1) time. Once these iN2/3-th smallest items are found then N1/3 implicit buckets of

exactly N2/3 items each can easily be obtained in constant time. It is now a straightfor-

ward operation to sort the N2/3 items in every bucket using a submesh of size N×N2/3

in O(1) time by Lemma 4.6.

Kapoor et al. [43] have pointed out that a large constant factor is associated with

the above constant time sorting algorithm in [55] because the multi-selection problem

is solved completely before the original unsorted list is divided into smaller lists for
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sorting. A modified version of the sorting algorithm in [55] has thus been presented

in [43] with smaller constant factor.

Olariu and Schwing [85] have presented a constant time sorting algorithm based

on bucket sorting by a novel deterministic sampling scheme. N items are divided into

N3/8 groups of exactly N5/8 items each. Each of these groups is sorted in parallel using

a submesh of size N×N5/8 in O(1) time. A sample A of N3/8 items is drawn by taking

the largest item in each group. The rank, among the entire given N items, of each item

∈ A is computed in constant time using a submesh of size N1/4×N. Let the sample A

in sorted order be q1, q2, . . . , qN3/4. Now, N3/8 implicit buckets are obtained by using

qN3/8, q2N3/8, . . . ,qN3/4 as the selection pivots in constant time. In has been proved by

Olariu and Schwing that such a bucketing will produce buckets of size at most 2N5/8

items. It is now a straightforward operation to sort each bucket using a submesh of

size N5/8×N in O(1) time by adapting Lemma 4.6.

In [87], Olariu et al. have published a constant time sorting algorithm which is a

hybrid between bucket sort and radix sort. They have considered sorting of integers

in the range 0 to Nc−1 for an integer constant c. An integer a < Nc can be written in

radix N1/2 as follows:

a = a2c−1N(2c−1)/2+ · · ·+a3N3/2+a2N +a1N1/2+a0

where 0≤ a0,a1, . . . ,a2c−1 < N1/2.

In the first iteration all the given integers are separated into N1/2 buckets of length

at most N according to the value of a2c−1 in the radix N1/2 representation of each inte-

ger. Cardinality of each bucket is computed in parallel using a submesh of N1/2×N in

constant time. All the N integers are then rearranged in bucket-major order preserving

the order of items within a bucket.

A similar iteration is done using ai, 2c−1 > i≥ 0, in the radix N1/2 representation

of each integer. Clearly the complexity of this algorithm is O(c), i.e., O(1).

The following lemma follows from any of the above constant time algorithms:

Theorem 4.8 Sorting of N items in a row of a reconfigurable mesh of size N×N can be done

in O(1) time. �
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4.4.4 Sorting on Multi-Dimensional Reconfigurable Meshes

Chen and Chen [20] have considered sorting of N items in a hyperplane of processors

of a k-dimensional reconfigurable mesh of size N1/(k−1)×N1/(k−1)×·· ·N1/(k−1) where

k is an integer constant, independent of N. Leighton’s columnsort has been adapted

to solve this problem. N items are assumed to be arranged in a virtual matrix of

size N(k−2)/(k−1)×N1/(k−1). Each column of N(k−2)/(k−1) items is recursively sorted on

a k− 1-dimensional submesh of size N1/(k−1)×N1/(k−1)× ·· ·N1/(k−1) in parallel. The

recursion stops at the case when N1/(k−1) items are to be sorted on a submesh of size

N1/(k−1)×N1/(k−1) which can be done in constant time by Theorem 4.8. It can be easily

verified that permutation of N items can be done in constant time on a k-dimensional

reconfigurable of mesh of size N1/(k−1)×N1/(k−1)×·· ·N1/(k−1).

Leighton’s columnsort remains valid on the above virtual matrix as long as

N(k−2)/(k−1) ≥ 2(N1/(k−1)− 1)2, i.e., k ≥ 4. Even for K ≥ 4, the claim of constant time

complexity of the above method depends on the availability of a constant time algo-

rithm on a reconfigurable mesh of size N1/2×N1/2×N1/2 to sort N items on a plane of

processors.

In fact Chen and Chen [20] have developed the abovesaid sorting algorithm. First

they have adapted the columnsort algorithm on a reconfigurable mesh of size r× s× r

to sort N items in constant time, where rs = N, r mods = 0, r ≥ 2(s−1)2, and N items

are physically arranged in an r× s matrix of processors PE∗,∗,0. This algorithm is then

further adapted, without any slowdown, to a reconfigurable mesh of size r/m× sm×
r/m, where 2m3≤ r, m2≤ r/s, and N items are now virtually arranged in an r×s matrix

where each column of items is stored in m columns of the submesh PE∗,∗,0. Therefore,

we have the following theorem assuming r = 2N2/3, s = 1
2N1/3, and m = 2N1/6:

Theorem 4.9 Sorting of N items in a plane of a reconfigurable mesh of size N1/2×N1/2×N1/2

can be done in O(1) time. �

Hence, follows the following theorem:

Theorem 4.10 Sorting of N items in a hyperplane of processors of a k-dimensional reconfig-

urable mesh of size N1/(k−1)×N1/(k−1)×·· ·N1/(k−1), k ≥ 4, can be done in O(4k) time. �
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Nigam and Sahni [83] and Jang and Prasanna [35] have also claimed that their

constant time sorting algorithms on 2-dimensional reconfigurable meshes can be ex-

tended to sorting on multi-dimensional reconfigurable meshes in a similar fashion.

Now a k-dimensional reconfigurable of mesh of size N1/(k−1)×N1/(k−1)×·· ·N1/(k−1)

can be laid out in Ω(N2) area according to Lemma 6.1. Hence the above algorithms on

multi-dimensional reconfigurable meshes are all AT 2 optimal.

4.5 Conclusions

In this chapter we have discussed optimal sorting algorithms on linear arrays, ordi-

nary meshes and reconfigurable meshes.

In Chapter 7 we introduce the concept of developing adaptive algorithms for re-

configurable meshes which will remain AT2 optimal even if the size and aspect ra-

tio of the meshes are not fixed. Sorting is used as the first problem to establish this

idea. A significant portion of results including the algorithms presented in this chap-

ter are used in developing adaptive AT 2 optimal sorting algorithms on reconfigurable

meshes. The developments have demanded not only the existing optimal sorting

algorithms on reconfigurable mesh but also optimal sorting algorithms on ordinary

meshes and linear arrays.

We have given the results for sorting on ordinary meshes to the detail of getting

the exact constant associated with the highest order term in the complexity analysis

in order to compare two optimal maximal contour algorithms in Chapter 8.

In the next chapter we develop optimal algorithms on reconfigurable meshes to

compute the contour of maximal elements of a given set of planar points. These algo-

rithms extensively use various results for sorting on reconfigurable meshes described

in this chapter.



Chapter 5

Computing M -Contour on

Mesh-Connected Networks

In this chapter we present two unique properties (Lemmas 5.1 and 5.2) of the contour

of the maximal elements of a set of planar points which can be exploited to develop

efficient parallel maximal contour algorithms. These properties are indeed used here

to develop optimal maximal contour algorithms on mesh-connected networks e.g.,

linear arrays, ordinary meshes, and reconfigurable meshes. A generic constant time

algorithm to solve a large number of computational geometry problems is discussed

in Section 5.1. In Section 5.2 we define the maximality problems and give some lower

bounds. Optimal maximal contour algorithms on linear arrays and ordinary meshes

are discussed in Sections 5.3 and 5.4 respectively. In Section 5.5 we develop three

constant time maximal contour algorithms on reconfigurable meshes of various di-

mensions.

5.1 Introduction

Computational geometry problems are a recurring theme in a large number of con-

texts in computer science. It comes as no surprise, therefore, that these problems

received a great deal of attention [96, 108]. In particular, computational geometric al-

gorithms on the reconfigurable mesh and its variants have been widely proposed in

the literature [10, 13, 14, 18, 28, 29, 37, 48, 49, 66, 77, 81, 89].

Computational geometry problems, in general, can be solved best by divide-and-

conquer strategy. Jang et al. [37] have recently developed a number of constant

60
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time computational geometry algorithms on the reconfigurable mesh by applying the

divide-and-conquer strategy. In [37] it has been realised that to achieve constant time

complexity, the number of levels, in recursively dividing the problems into smaller

subproblems, must be a constant. Moreover the atomic subproblems must be solved

in constant time in parallel and merging of subsolutions at each level must also be

done in constant time. In fact Jang et al. [37] have proposed the following non-

recursive generic algorithm, where the problem is divided into subproblems only

once, in developing new constant time algorithms to solve computational geometry

problems of size N on a reconfigurable mesh of size N×N:

Algorithm 5.1 Generic Constant Time Algorithm [37]

1 Divide a given problem of size N into Nε subproblems of size N1−ε, where

0 < ε < 1. Solve each subproblems in constant time, using a mesh of size at

most N×N1−ε;

2 Merge the solutions to the Nε subproblems in constant time using the entire

mesh;

Using the above technique Jang et al. [37] have developed constant time algorithms

to solve convex hull, smallest enclosing box, triangulation, all nearest neighbour, two-

set dominance counting, and three dimensional maxima problems.

In this chapter we explore one further computational geometry problem from a

similar point of view. The problem is to compute the contour of the maximal elements

of a given set of planar points (see Section 5.2). We present three constant time al-

gorithms to compute the contour of the maximal elements of N planar points on the

reconfigurable mesh. The first algorithm in Section 5.5.1 employs a reconfigurable

mesh of size N×N while the second one in Section 5.5.2 uses a 3-dimensional recon-

figurable mesh of size N1/2×N1/2×N1/2. In Section 5.5.3 the second algorithm is then

further extended on a k-dimensional reconfigurable mesh of size N1/(k−1)×N1/(k−1)×
·· ·×N1/(k−1), where k ≥ 4.
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Whenever necessary N1/(k−1) is assumed to be an integer where k is the dimension

of the reconfigurable mesh under consideration. This implies k ≤ log2N +1.

In Chapter 7 we use the problem of computing the contour of the maximal el-

ements of a given set of planar points to establish our idea of developing adaptive

algorithms. In this process we use optimal algorithms to solve the above problem on

linear array of processors as well as ordinary meshes. For the sake of completeness,

these optimal algorithms are discussed in Sections 5.3 and 5.4.

5.2 Problem Definition

In this section we formally introduce maximality problems on a partially ordered set.

The next section defines the problem of computing the M -contour of a set of planar

points. In Section 5.2.2 maximality is defined for multi-dimensional space. An alter-

native definition of maximality is given in Section 5.2.3. In Section 5.2.4 we present

some lower bounds on M -contour computations.

5.2.1 M -Contour of a Set of Planar Points

Let the planar point at coordinate (i, j) be defined as P(i, j). For any point p, let x(p)

denote the x-coordinate and y(p) denote the y-coordinate of p, e.g., x(P(i, j)) = i and

y(P(i, j)) = j.

Definition 5.1 A point p dominates a point q (denoted by q≺ p) if and only if x(q) ≤ x(p)

and y(q) ≤ y(p). (The relation “≺” is naturally called dominance.)

Let S be a finite set of planar points. To simplify the exposition of our algorithms,

the points in S are assumed to be distinct.

Definition 5.2 A point p∈ S is maximal if and only if there is no point q∈ S such that p≺ q

and p 6= q.

The definition above actually defines maximality w.r.t. the northeast(NE) direction

as depicted in Figure 5.2. The definitions of maximality w.r.t. other directions are then

obvious.
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non-maximal point
maximal point

x

y

Figure 5.1: Maximal contour of a set of planar points.

Definition 5.3 Let the set of all the maximal elements of S be denoted by m(S). We are inter-

ested in the contour spanned by the maximal elements of S, called the M -contour of S which

can be obtained by sorting the maximal elements in ascending order of their x-coordinates (see

Figure 5.1). Let m̃(S) denote theM -contour of S. Then both m(S) and m̃(S) represent the same

set except that m̃(S) is ordered.

Computation of maximal elements is important in solving the Largest Empty Rect-

angle Problem [1, 16, 23, 25, 90, 91, 95] where a rectangle R, and a number of planar

points S ∈ R, are given and the problem is to compute the largest rectangle r ⊆ R that

contains no point in S and whose sides are parallel to those of R. If R is divided into

four quadrants then the maximal elements w.r.t. the northeast(NE), northwest(NW),

southwest(SW), and southeast(SE) directions as depicted in Figure 5.2 remain the only

candidates to be the supporting elements of the empty rectangles lying in all the four

quadrants. The largest empty rectangle problem arises naturally in a number of ap-

plications including VLSI layout design [3], design rule checking [106], routing and

testing [121], among many others.

We now present two important properties of the maximal contours, based on

which efficient algorithms are developed in this chapter and in Chapters 7 and 8.

Lemma 5.1 Every M -contour is sorted in descending order of the y-coordinates.

Proof. Suppose the contrary holds. Then there exists at least one pair of maximal

elements p and q such that y(p) < y(q) while x(p) ≤ x(q), which contradicts with the
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SW

NW

SE

NE

Figure 5.2: Importance of maximal elements in computing largest empty rectangle.

assumption that point p is maximal. �

For any set P of planar points, let functions minx(P) and maxx(P) denote the min-

imum and maximum x-coordinates in the set respectively. Let two more functions

miny(P) and maxy(P) be defined similarly w.r.t. the y-coordinate.

M

M

non-maximal point
maximal point in entire set

-contour in entire set

-contour in a subset

maximal point in a subset

y

x
Subset 1 Subset 2 Subset 3 Subset 4

Figure 5.3: A property of M -contour which aids in parallelisation.

Lemma 5.2 Given K sets S0, S1, . . . SK−1 of planar points such that

maxx(St)≤ minx(St+1), t = 0, . . . ,K−2
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then, for every p ∈ m(Si), i = 0, . . . ,K−1,

p ∈ m

(
K−1[
t=0

St

)

if and only if

y(p) > maxy(m(S j)), for all j = i+1, . . . ,K−1.

Proof. The sufficiency part can be proved by arranging a contradiction of Lemma 5.1.

To prove the necessity part we consider, for some i : 0≤ i < K, a point p∈m(Si) such that

p 6∈ m(
SK−1

t=0 St). Then by the definition of maximality there exists some q ∈ SK−1
t=i+1 St

such that p≺ q, i.e., y(p)≤ y(q). �

The property of M -contour described in Lemma 5.2 has been illustrated in Fig-

ure 5.3 with K = 4.

5.2.2 Definition in Multi-Dimensional Space

The definition of dominance can be extended to a set Sk of k-dimensional points. Let

a point at coordinate ( j1, j2, . . . , jk) be defined as P( j1, j2, . . . , jk). Again, for any point p,

let xi(p) denote the coordinate along the i-th axis. Thus for 1≤ i≤ k, xi(P( j1, j2, . . . , jk))=

ji.

Definition 5.4 In k-dimensional space, a point p dominates a point q (denoted by q ≺ p) if

and only if xi(q)≤ xi(p) for all i, 1≤ i≤ k.

The definition of maximality in k-dimensional space remains the same as Defini-

tion 5.2:

Definition 5.5 A point p ∈ Sk is maximal if and only if there is no point q ∈ S such that

p≺ q and p 6= q.

The concept of contour is not applicable for k ≥ 3 as the maximal points can only

be partially ordered.
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5.2.3 An Alternative Definition

The problem of finding maximal points in k-dimensional space is also known as the

problem of finding the maxima of a set of k-dimensional vectors [46, 47, 122] as given

below:

Let U1,U2, . . . ,Uk be totally ordered sets and let V be a set of k-dimensional vectors

in the Cartesian product U1×U2×·· ·×Uk. For any vector v∈V , let xi(v) denote the i-th

component of v. A partial ordering≺ is defined on V in a natural way, i.e., for u,v ∈V ,

v≺ u if and only if xi(v)≤ xi(u) for all 1≤ i ≤ k. For v ∈V , v is defined to be a maximal

element of V if there does not exist u ∈V such that v≺ u and v 6= u.

5.2.4 Lower Bound

Theorem 5.3 The problem of sorting distinct numbers can be transformed into anM -contour

problem of the same size.

Proof. Consider sorting of N distinct integers d1,d2, . . .dn. Construct a set S of N planar

points {P(d1,−d1),P(d2,−d2), . . . ,P(dn,−dn)}.

Lemma 5.4 Each point ∈ S is a maximal element of S.

Proof. Let the point P(di,−di) ∈ S dominate the point P(d j,−d j) ∈ S for some i and

j. Then we find di ≥ d j and −di ≥ −d j which contradict unless i = j which is not

considered. �

Let the M -contour of S w.r.t. the northeast(NE) direction be the ordered set

{P(di1,−di1),P(di2,−di2), . . . ,P(din ,−din)}where (i1, i2, . . . , in) is a permutation of the set

{1,2, . . . ,n}. Obviously we can conclude that di1 < di2 < · · ·< din , i.e., the sorting order

of the integers can be inferred from the M -contour of S. Hence the proof of Theo-

rem 5.3 is completed. �

Therefore, we can conclude that the time complexity for computing the contour of

the maximal elements of N planar points is Ω(N logN) on a serial computer and the

AT2 lower bound of an M -contour problem of size N is Ω(N2). Kung et al. [47] have
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given a direct proof of an Ω(N logN) lower bound on a serial computer for finding the

maxima of N k-dimensional vectors for any k ≥ 2.

Dehne [24] has published an AT2 optimal algorithm for solving an M -contour

problem of size N on an ordinary mesh of size N1/2×N1/2 in O(N1/2) time. In Chapter 8

we present a new optimalM -contour algorithm on ordinary meshes which has better

coefficient with the highest order term in the complexity than that in the complexity of

Dehne’s algorithm. We develop three constant time M -contour algorithms on recon-

figurable meshes of various dimensions in Section 5.5. Using Lemma 6.3 of optimal

simulation of a multi-dimensional reconfigurable mesh by a 2-dimensional reconfig-

urable mesh, it can easily be shown that all the three algorithms in Section 5.5 are

AT2 optimal. An adaptive optimal M -contour algorithm on reconfigurable meshes

is presented in Chapter 7. In Chapter 7 we also extend our results on constrained

reconfigurable meshes.

To avoid unnecessary complication, we assume that the bandwidth of any net-

work considered in this chapter is wide enough to transmit two coordinates of a point

simultaneously.

5.3 Computing M -Contour on Linear Arrays

Consider computing of the M -contour of a set S of N planar points on a linear array

of N processors where each processor contains exactly one point at the start and at the

end. We are interested in sorting the points w.r.t. the x-coordinate in ascending order

from leftmost to the rightmost processors with the maximal elements tagged. Hence

the output preserves the order of the maximal elements in the M -contour of the set

but these maximal elements are not necessarily contained in consecutive processors.

By Theorem 5.3 in the light of Section 4.2, it can be concluded that the above com-

puting must take at least N−1 steps if the communication links are bidirectional and

2N−1 steps if the links are strictly unidirectional. An upper bound of the same order

is achieved in the following algorithm by applying Lemma 5.2 with K = N:
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Algorithm 5.2 Computing M -contour on a Linear Array

1 Sort S w.r.t. the x-coordinate of the points in ascending order from leftmost

to the rightmost processors;

2 Each processor sets the variable M to be the y-coordinate of the point it con-

tains;

3 Processor PEN−1 tags the point in it as a maximal element;

4 For i = N−1,N−2, . . . ,1 do the following:

For j = 0,1, . . . , i−1 do the following in parallel:

Processor PE j updates M with that of processor PE j+1;

If M ≥ the y-coordinate of the point then

Processor PE j tags the point in it as a maximal element;

Theorem 5.5 M -contour of N planar points on a linear array of N processors, where each

processor has exactly one point, can be done in exactly 2N−1 steps if the communication links

are bidirectional and in exactly 3N−1 steps if the links are strictly unidirectional.

Proof. Phase 1 of Algorithm 5.2 takes exactly N steps by Theorem 4.1 if the communi-

cation links are bidirectional and 2N steps by Theorem 4.2 if the communication links

are strictly unidirectional. Both phases 2 and 3 can be done in constant time without

any communication. Phase 4 takes exactly N−1 steps. �

5.4 Computing M -Contour on Ordinary Meshes

Consider computing of the contour of maximal elements of a set S of N planar points

on an ordinary mesh of size N1/2×N1/2 where each processor contains exactly one

point at the start and at the end. We are interested in sorting the points w.r.t. the x-

coordinate in snake-like order with the maximal elements tagged. Hence the output

preserves the order of the maximal elements in the M -contour of the set but these

maximal elements are not necessarily contained in consecutive processors.
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In [24] Dehne has developed an optimal algorithm to compute the M -contour of

N planar points on an N1/2×N1/2 mesh. Dehne has applied Lemma 5.2 with K = 2 for

computing the maximal elements using the well-known binary divide-and-conquer

approach. For the sake of simplicity we assume S = 2q for some integer q.

Algorithm 5.3 Dehne’s Algorithm [24]

1 Sort S in snake-like order w.r.t. the x-coordinate of the points;

2 Divide S into two disjoint subsets L and R of equal size with x(l) ≤ x(r) for

all l ∈ L and r ∈ R;

3 Shift all points of L and R, respectively, to the left and right half of the mesh;

4 Recursively compute m(L) and m(R) in parallel;

5 Set m(S)←m(R);

6 Get maxy(m(R)) in the right half of the mesh;

7 Broadcast maxy(m(R)) to all the processors in the left half of the mesh;

8 For all l ∈ m(L): if y(l)≥ maxy(m(R)) then set m(S)← m(S)∪{l};

9 Only at the first level of recursion, sort all the points in snake-like order

w.r.t. the x-coordinate of the points to get m̃(S);

In [24] Dehne has shown that the complexity of Algorithm 5.3 satisfies

T (N) = T

(
N
2

)

+ c
√

N

where c is a constant and thus Dehne concludes T (N) = O(
√

N).

Theorem 5.6 TheM -contour of N planar points on an ordinary mesh of size N1/2×N1/2 can

be computed in O(N1/2) time. �

Dehne has not provided any scheme of dividing the mesh into halves, which we

show, in Chapter 8, plays an important role in achieving optimality as shown in the
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above analysis. In Chapter 8 we carry out detailed analysis of Dehne’s algorithm to

obtain the minimum possible coefficient of the highest order term in the complexity

which the Big-Oh expression hides. There we also develop a new optimal algorithm

to compute theM -contour of N planar points on an N1/2×N1/2 mesh and we compare

these two asymptotically optimal order algorithms by evaluating the exact coefficient

of the highest order term in the complexity and the new algorithm comes out far better

than Dehne’s algorithm.

5.5 Computing M -contour on Reconfigurable Meshes

Given a binary sequence, b j, j = 0,1, . . . ,N − 1, the and computation is to compute

b0∧ b1∧ ·· · ∧ bN−1. Similarly the or computation computes b0∨ b1∨ ·· · ∨ bN−1. These

computations play a significant role in developing our algorithms in this section.

Lemma 5.7 Given a binary sequence of length N in the only row of a reconfigurable mesh of

size 1×N, both the and and the or of the elements in the sequence can be computed in O(1)

time.

Proof. The proof adapts the technique of bus splitting [66]. First consider the and

computation. Every processor connects port E with W if the processor carries a 1;

otherwise it disconnects the ports. Now a specific message # is written to port E of

the rightmost processor. If this message is read from port W of the leftmost processor

then the result is 1; otherwise the result is 0.

The or computation can be done similarly. Every processor connects port E with W

if the processor carries a 0; otherwise it disconnects the ports. Now a specific message

# is written to port E of the rightmost processor. If this message is read from port W

of the leftmost processor then the result is 0; otherwise the result is 1. �

We develop three constant time algorithms for computing the M -contour of a

set of N planar points. The first algorithm MAXIMAL1, in Section 5.5.1, uses a 2-

dimensional reconfigurable mesh of size N ×N while the second algorithm MAXI-

MAL2, in Section 5.5.2, requires a 3-dimensional reconfigurable mesh of size N1/2×
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N1/2×N1/2. The third algorithm MAXIMAL3, in Section 5.5.3, is an extension of algo-

rithm MAXIMAL2 to higher dimensions. An algorithm similar to algorithm MAXI-

MAL1 appears in [37] to compute three dimensional maxima. In fact algorithm MAX-

IMAL1 can also be used to compute multi-dimensional maxima in constant time.

5.5.1 A Brute Force Algorithm

Consider computing the M -contour of N planar points on a 2-dimensional reconfig-

urable mesh. Using the same arguments as in Section 4.4 and Theorem 5.3 it can be

proved that to develop constant time AT2 optimal algorithm to solve the above prob-

lem, the size of the reconfigurable mesh must be at least N×N.

We develop an AT2 optimal constant time algorithm on a square mesh in a very

straightforward way. It is not difficult to realise that a brute force algorithm can be

designed to compute theM -contour of N planar points using O(N2) comparisons. We

distribute these comparisons among N2 processors to achieve constant time complex-

ity.

N planar points are given in the row of processors PE∗,0. These points, after sorting,

are distributed over the reconfigurable mesh through column and row broadcast in

such a way that each column of processors PEi,∗, 0≤ i,< N, computes the dominance

of all other points over the i-th point. Then each column computes the logical and

of the previous dominance decision to assert whether the point represented by that

column is a maximal point or not. As all the points are already sorted, theM -contour

is obtained simply by following this sorted sequence. The detailed description of the

algorithm is given below.

Algorithm 5.4 MAXIMAL1

Precondition: Registers r0 and r1 hold x- and y-coordinates respectively.

Postcondition: Register r2 holds the decision of maximality.

1 Sort the given N points in the row of processors PE∗,0 in ascending order of

register r0, i.e., in ascending order of the x-coordinates. The sorted list also
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resides in the row of processors PE∗,0 in ascending row-major order;

2 b: Every processor connects port N with S;

w: Every processor ∈ PE∗,0 writes register r0 to port N;

r: Every processor reads port N into register r0;

3 b: Every processor connects port N with S;

w: Every processor ∈ PE∗,0 writes register r1 to port N;

r: Every processor reads port N into register r1;

4 b: Every processor connects port E with W;

w: Every processor PEi,i, 0≤ i < N, writes register r0 to port E;

r: Every processor reads port E into register r2;

5 b: Every processor connects port E with W;

w: Every processor PEi,i, 0≤ i < N, writes register r1 to port E;

r: Every processor reads port E into register r3;

6 b: Every processor PEi, j, 0≤ i, j < N, does the following:

If i 6= j and P(r0,r1)≺ P(r2,r3) then

disconnect all the ports;

Else

connect port N with S;

w: Every processor ∈ PE∗,N−1 writes an arbitrary constant # to port N;

r: Every processor ∈ PE∗,0 reads port S into register r2;

c: Every processor ∈ PE∗,0 does the following:

If r2 = # then

set register r2 = 1;

Else

set register r2 = 0;

Theorem 5.8 Given N planar points in a row of processors, the M -contour of these points

can be obtained in O(1) time using a reconfigurable mesh of size N×N.
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Proof. Phase 1 of algorithm MAXIMAL1 can be computed in constant time using

Lemma 4.8. Phases 2–5 require O(1) time. Phase 6 is an elaboration of computing the

and operation on a binary sequence and thus requires constant time by Lemma 5.7. �

5.5.2 A Divide-and-Conquer Algorithm

In this section we consider computing the M -contour of N planar points on a 3-

dimensional reconfigurable mesh of size N1/2×N1/2×N1/2. We use an N1/2-ary divide-

and-conquer approach to compute the M -contour. N points are given in the plane of

processors PE∗,∗,0. These points are sorted in order of x-coordinate to divide them

into N1/2 disjoint sets of length N1/2 each. This division complies with the first condi-

tion in Lemma 5.2. Now the M -contour of the i-th smaller set is computed using the

2-dimensional submesh of processors PEi,∗,∗, 0≤ i < N1/2. Merging of the solutions

of these smaller problems is then done by carefully utilising Lemma 5.2. Lemma 5.1

helps in getting the maxy of each smaller M -contour in constant time (phase 3). The

i-th maxy is then distributed over the plane of processors PE∗,∗,i (phases 4–6). Every

point in each smaller M -contour then computes its overall maximality using the pro-

cessors along the z-axis (phase 7–8). The detailed description of the algorithm is given

below.

Algorithm 5.5 MAXIMAL2

Precondition: Registers r0 and r1 hold x- and y-coordinates respectively.

Postcondition: Register r2 holds the decision of maximality.

1 Sort the given N points in the plane of processors PE∗,∗,0 in ascending order

of register r0, i.e., in ascending order of the x-coordinates. The sorted list also

resides in the plane of processors PE∗,∗,0 in ascending column-major order;

2 For every column i, 0≤ i < N1/2, the M -contour of the N1/2 points re-

siding in the i-th column of processors PEi,∗,0 is computed using the al-

gorithm MAXIMAL1 on the 2-dimensional submesh of processors PEi,∗,∗.

Here phase 1 of algorithm MAXIMAL1 should be ignored;
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3 b: Every processor ∈ PE∗,∗,0 does the following:

If r2 = 0 then

connect port N with S;

Else

disconnect all the ports;

w: Every processor ∈ PE∗,∗,0 does the following:

If r2 = 1 then

write register r1 to port S;

r: Every processor ∈ PE∗,0,0 reads port S into register r3;

4 b: Every processor ∈ PE∗,0,∗ connects port U with D;

w: Every processor ∈ PE∗,0,0 writes register r3 to port U;

r: Every processor PEi,0,i, 0≤ i < N1/2, reads port U into register r3;

5 b: Every processor ∈ PE∗,0,∗ connects port E with W;

w: Every processor PEi,0,i, 0≤ i < N1/2, writes register r3 to port E;

r: Every processor ∈ PE∗,0,∗ reads port E into register r3;

6 b: Every processor connects port N with S;

w: Every processor ∈ PE∗,0,∗ writes register r3 to port N;

r: Every processor reads port N into register r3;

7 b: Every processor connects port U with D;

w: Every processor ∈ PE∗,∗,0 writes register r1 to port U;

r: Every processor reads port U into register r4;

8 b: Every processor PEi, j,k, 0≤ i, j,k < N1/2, does the following:

If k > i and r4≤ r3 then

disconnect all the ports;

Else

connect port U with D;

w: Every processor ∈ PE∗,∗,N1/2−1 writes an arbitrary constant # to port U;

r: Every processor ∈ PE∗,∗,0 reads port D into register r4;

c: Every processor ∈ PE∗,∗,0 does the following:

If r2 = 1 and r4 6= # then
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set register r2 = 0;

Theorem 5.9 Given N planar points in a plane of processors, the M -contour of these points

can be obtained in O(1) time using a 3-dimensional reconfigurable mesh of size N1/2×N1/2×
N1/2.

Proof. Phase 1 of algorithm MAXIMAL2 can be computed in constant time using

Theorem 4.9. By Theorem 5.8 phase 2 can also be done in constant time. It is obvious

that the remaining steps require O(1) time. �

5.5.3 Extension to Higher Dimensions

Based on Lemma 5.1 and Lemma 5.2, the M -contour problem can be solved in a re-

cursive way. We derive the M -contour algorithm on a k-dimensional reconfigurable

mesh from the M -contour algorithm on a (k−1)-dimensional reconfigurable mesh.

The size of the k-dimensional reconfigurable mesh adopted here is N1/(k−1)×N1/(k−1)×
·· ·×N1/(k−1). The algorithm developed for k-dimensional reconfigurable mesh is very

similar to algorithm MAXIMAL2. In fact the technique applied in algorithm MAXI-

MAL2 is simply extended to higher dimensions. This extension is made possible by

the availability of the sorting algorithm stated in Theorem 4.10. The detailed descrip-

tion of the algorithm is given below.

Algorithm 5.6 MAXIMAL3

Precondition: Registers r0 and r1 hold x- and y-coordinates respectively.

Postcondition: Register r2 holds the decision of maximality.

1 Sort the given N points in the hyperplane of processors PE∗,∗,...,∗,0 in ascend-

ing order of register r0, i.e., in ascending order of the x-coordinates. The

sorted list also resides in the hyperplane of processors PE∗,∗,...,∗,0;



§5.5 Computing M -contour on Reconfigurable Meshes 76

2 For every (k−2)-flat i, 0≤ i < N1/(k−1), the M -contour of the N(k−2)/(k−1)

points residing in the i-th (k−2)-flat of processors PEi,∗,...,∗,0 is computed

on the (k−1)-dimensional submesh of processors PEi,∗,...,∗,∗. If k− 1≥ 4

we simply recursively use the algorithm MAXIMAL3 else algorithm MAX-

IMAL2 is used. Here phase 1 of algorithms MAXIMAL2 and MAXIMAL3

should be ignored;

3 Using k−2 bus splittings based on register r2, one along each axis except

the 1st and the k-th axes, the maxy of theM -contour of the i-th subset, which

is the first maximal element according to Lemma 5.1, is read into register r3

of the processor PEi,0,...,0,0, 0≤ i < N1/(k−1);

4 Using a single broadcast along the k-th axis transfer the content of register

r3 of the processor PEi,0,...,0,0 into register r3 of the processor PEi,0,...,0,i, 0≤
i < N1/(k−1);

5 Using k− 1 broadcasts, one along each axis except the k-th axis, transfer

the content of register r3 of the processor PEi,0,...,0,i into the register r3 of the

hyperplane of processors PE∗,∗,...,∗,i, 0≤ i < N1/(k−1);

6 b: Every processor connects ports along the k-th axis;

w: Every processor ∈ PE∗,∗,...,∗,0 writes register r1 to the top port along the

k-th axis;

r: Every processor reads the top port along the k-th axis into register r4;

7 Using a single bus splitting along the k-th axis, based on registers r3 and r4,

compute the overall maximality decision into register r2 of all the processors

∈ PE∗,∗,...,∗,0;

Theorem 5.10 Given N planar points in a hyperplane of processors, the M -contour of these

points can be obtained in SORT (N,k)+O(k2) time using a k-dimensional reconfigurable mesh

of size N1/(k−1)×N1/(k−1)×·· ·×N1/(k−1), k≥ 4 where SORT (N,k) denotes the time required

by the sorting algorithm used in phase 1 of algorithm MAXIMAL3.



§5.6 Conclusions 77

Proof. Phase 1 of algorithm MAXIMAL3 is used only once. Phases 3–7 take only

O(k) time. Considering the recursion in phase 2, the overall complexity of algo-

rithm MAXIMAL3 then can be expressed as SORT (N,k)+O(k)+O(k−1)+ · · ·+O(1)∼=
SORT(N,k)+O(k2). �

From Theorem 4.10, SORT (N,k) = O(4k). Thus, Theorem 5.10 gives constant time

complexity for any fixed k ≥ 4.

5.6 Conclusions

In this chapter we have developed AT2 optimal constant time algorithms to solve

M -contour problems on 2-dimensional, 3-dimensional, and k-dimensional reconfig-

urable meshes, where k ≥ 4. To our knowledge this problem on the reconfigurable

mesh has been examined here for the first time (except for the author’s papers [71, 74]).

Our algorithm on 2-dimensional reconfigurable meshes can also be easily adapted

to compute maximal elements of a set of points in multi-dimensional space AT2 opti-

mally. It is still an open problem whether AT 2 optimal algorithm exists for solving the

above problem on higher dimensional reconfigurable meshes.

In Chapter 7 we develop an AT 2 optimal adaptiveM -contour algorithm to support

our idea. Optimal M -contour algorithms presented in this chapter on linear arrays,

ordinary meshes, and reconfigurable meshes play significant roles in the development

of the above algorithm.

Self-simulation of various reconfigurable meshes is the topic of the next chapter.



Chapter 6

Self-Simulation of Reconfigurable

Meshes

Can the reconfigurable mesh be the basis for the design of next generation of mas-

sively parallel computers? Perhaps the answer significantly depends on solving the

most fundamental problem of scaling down algorithms: Given an algorithm which is

designed for a large reconfigurable mesh, can it be executed efficiently on a smaller

reconfigurable mesh? As mentioned in Chapter 1, the scaling down problem can be

solved in more than one way of which self-simulation appears to be the obvious one

where a simulation program takes the responsibility to execute each step of the origi-

nal algorithm on the smaller mesh which self-simulates the larger mesh through some

sort of processor mapping.

The aim of this chapter is to develop efficient optimal self-simulation algorithms

on some restricted reconfigurable mesh models. A literature review on self-simulation

of reconfigurable meshes is presented in the next section. In Section 6.2 we establish

that it is sufficient to consider self-simulating only for 2-dimensional reconfigurable

meshes. The problem of self-simulation and some relevant terminologies are defined

in Section 6.3. In Section 6.4 we discuss a number of processor mapping schemes used

in self-simulating various reconfigurable mesh models. Self-simulation algorithms

based on contraction mapping are included in Section 6.5. In Section 6.6 we discuss a

number of self-simulation algorithm where simulation is transformed into the prob-

lem of computing the connected components of graphs. In Section 6.7 we develop a

simple generic self-simulation algorithm SIMPLE using only window traversal and

avoiding any computation of connected components. Two new reconfigurable mesh

78
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models are also proposed in this section and it is shown that algorithm SIMPLE can

provide optimal (in some cases asymptotically optimal) self-simulation for these mod-

els. In Section 6.8 we devalues the concept of self-simulation of reconfigurable meshes

by showing that even with optimal slowdown, the resultant algorithms fail to remain

AT2 optimal when a large reconfigurable mesh is self-simulated on a smaller mesh for

which AT2 optimal algorithms exist.

6.1 Introduction

Although efficient self-simulation carries crucial responsibilities in making the recon-

figurable mesh widely acceptable, very few works have so far been directed on the

reconfigurable mesh along this direction. Maresca and Li [60] have shown for the first

time that optimal (see Definition 6.4) self-simulation is not possible for the general

model of reconfigurable meshunder the contraction mapping (Section 6.4.1) of proces-

sors. Maresca [58] has then proposed a new architecture polymorphic processor arrays,

which is identical to the HV-RM model, for which optimal self-simulation exists.

Ben-Asher et al. [4] have addressed the self-simulation issues of reconfigurable

meshes with in-depth and rigorous analysis for the first time. They have developed

optimal self-simulation algorithms for the HV-RM and the LRM models. A weak (see

Definition 6.4) self-simulation algorithm for the general model has also been devel-

oped in [4].

Fernández-Zepeda et al. [31] have developed a strong (see Definition 6.4) self-

simulation algorithm for the FR model. They have also presented a weak self-simula-

tion algorithm for the general model with smaller slowdown than that of the weak

self-simulation algorithm in [4]. Very recently, Matsumae and Tokura [62] have de-

veloped a new weak self-simulation algorithm for the general model with slowdown

similar to that of the algorithm in [31].

In Section 6.7.2 we propose two new reconfigurable mesh models MB and PMB,

within the LRM model, where restrictions are imposed on the global characteristics

of bus reconfigurations. In Section 6.7.1 we present a simple generic self-simulation

algorithm which remains optimal and asymptotically optimal while self-simulating
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the MB and the PMB models respectively.

Some works have been carried in the direction of simulating higher dimensional

reconfigurable mesh using a larger 2-dimensional reconfigurable mesh. It has been

shown that any constant degree reconfigurable mesh can be simulated with no slow-

down by a 2-dimensional reconfigurable mesh, paying by a quadratic blow-up of the

number of processors, which in fact is the lower bound [102, 114].

Matias and Schuster [61] have proposed a randomised self-simulation algorithm

for the general model with optimal slowdown. Recently self-simulation algorithms

on undirected reconfigurable networks are presented in [9].

6.2 Dimensional Choice in Self-Simulation

Definition 6.1 Let M1 and M2 denote two parallel computational models. Model M1 is con-

sidered as powerful as model M2 if and only if each step in M2 with P processors can be

simulated in constant time by M1 with O(Pε) processors where ε is a small constant ≥ 1.

Model M1 is considered more powerful than model M2 if and only if M1 is as powerful as M2

but M2 is not as powerful as M1.

In this section we establish that it is sufficient self-simulating only 2-dimensional

reconfigurable meshes. One of the most attractive features of a 2-dimensional recon-

figurable mesh, as opposed to a d-dimensional reconfigurable mesh, where d > 2, is

that it has a simple and straightforward VLSI layout. In Section 6.2.1 it is established

that not only a 2-dimensional reconfigurable mesh is as powerful as a d-dimensional

reconfigurable mesh but also any d-dimensional reconfigurable mesh, where d > 2,

can be simulated by a 2-dimensional reconfigurable mesh within a constant factor of

VLSI area. In Section 6.2.2 we show that a 2-dimensional reconfigurable mesh is more

powerful than a 1-dimensional reconfigurable mesh (reconfigurable linear array).

6.2.1 2-Dimensional vs Higher Dimensional Meshes

Lemma 6.1 For any constant d ≥ 2, a d-dimensional reconfigurable mesh of size P0×P1×
·· ·×Pd−1, where Pd−1≥ P0, P1, . . . , Pd−2, requires Ω

(

∏d−2
i=0 Pi

2
)

VLSI layout area.
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Proof. See [114]. �

It is not hard to realise why the above theorem holds. The bisection width of a

d-dimensional mesh of size N×N×·· · ×N is at least Nd−1 [51, pp. 223–226] and the

area needed to lay out a network with bisection width B is Ω(B2) [50, pp. 67].

Based on the above theorem a lower bound on the number of processors required

by a 2-dimensional reconfigurable mesh to simulate a higher dimensional reconfig-

urable mesh in constant time can be given as follows:

Corollary 6.2 Any 2-dimensional reconfigurable mesh that simulates a d-dimensional recon-

figurable mesh of size P0×P1×·· ·×Pd−1, where d > 2 is a constant and Pd−1 ≥ P0, P1, . . . ,

Pd−2, in constant time must have Ω
(

∏d−2
i=0 Pi

2
)

processors.

This lower bound has indeed been achieved, within a constant factor if P0 and Pd−1

are assumed to be the largest two dimensions and of the same order, by Vaidyanathan

and Trahan [114] as shown in the following lemma:

Lemma 6.3 For any constant d > 2, a d-dimensional reconfigurable mesh of size P0×P1×
·· ·×Pd−1 can be simulated by a 2-dimensional reconfigurable mesh of size

(

2d
d−1

∏
i=1

Pi

)

×
(

(2d +1)P0 +
d−2

∑
i=0

i

∏
j=0

Pj

)

in constant time.

Proof. See [114]. �

In [102] Schuster has presented a similar simulation which requires Θ
(

∏d−1
i=0 Pi

2
)

processors.

Based on the above discussion we may conclude the following:

Theorem 6.4 A 2-dimensional reconfigurable mesh is as powerful as a d-dimensional recon-

figurable mesh, for any constant d > 2. �
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6.2.2 2-Dimensional vs 1-Dimensional Meshes

By showing that a priority CRCW PRAM with P2 processors can simulate 1-dimensio-

nal reconfigurable array of P processors in constant time [114], Vaidyanathan and Tra-

han have shown that

Lemma 6.5 A priority CRCW PRAM is at least as powerful as a 1-dimensional reconfig-

urable array. �

Hence, the following theorem can be concluded from Lemmas 2.2 and 6.5:

Theorem 6.6 A 2-dimensional reconfigurable mesh is more powerful than a 1-dimensional

reconfigurable array. �

Based on Theorems 6.4 and 6.6, it can be easily concluded that it is sufficient to

self-simulate only 2-dimensional reconfigurable meshes.

6.3 Definitions and Terminologies

Let RMA×B denote a reconfigurable mesh of A rows and B columns.

Definition 6.2 The self-simulation problem of reconfigurable mesh is to step-by-step simu-

late RMM×N (simulated mesh) by RMP×Q (simulating mesh) where P ≤ M, Q ≤ N, and the

computing power of the processors and the bus bandwidth (not less than logMN) are assumed

to be equivalent in both the meshes. Moreover it is assumed that a processor of the simulat-

ing mesh has Θ
(⌈

M
P

⌉⌈
N
Q

⌉)

times more registers (memory locations) than those of a processor

of the simulated mesh and this will be referred to as the optimal space assumption of self-

simulation.

To simplify the exposition M
P and N

Q are assumed to be integers. If the memory

requirement of the simulating mesh is bounded as defined in the above definition

then the slowdown remains as the key issue.
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Definition 6.3 We say that the simulating mesh simulates the simulated mesh with slow-

down S if the result for any arbitrary algorithm A on the simulated mesh is achieved through

the execution of a step-by-step simulation algorithm B on the simulating mesh in which each

step of A is simulated with at most S steps.

Clearly, the slowdown of simulating RMM×N by RMP×Q will be Ω
(

M
P

N
Q

)

as the

work of MN processors will be performed on only PQ processors.

Definition 6.4 For any P ≤ M and Q ≤ N, let RMP×Q simulates RMM×N with slowdown

O
(

M
P

N
Q f (M,N,P,Q)

)

where f (M,N,P,Q)≥ 1.

1. The above simulation is optimal if and only if f (M,N,P,Q) = O(1).

2. The above simulation is strong if and only if f (M,N,P,Q) is a function of only P and

Q.

3. The above simulation is weak if and only if it is neither optimal nor strong.

An ordinary mesh can always be self-simulated optimally as the links of a proces-

sor are used only for exchanging data among neighbouring processors. It is still an

open problem whether optimal self-simulation exists for the general reconfigurable

mesh model where the links of a processor can act as computing elements besides

their normal data transmission usage.

6.4 Processor Mapping

Mapping of processors of the simulated mesh onto the processors of the simulating

mesh plays a significant role in self-simulation. In Sections 6.4.1–6.4.3 three types of

mapping used so far in the literature are discussed.

Let the processors of the simulated mesh RMM×N and the simulating mesh RMP×Q

be denoted by the matrices R[0 : M−1,0 : N−1] and S[0 : P−1,0 : Q−1] respectively.

Let R(x,y), 0≤ x < M and 0≤ y < N, denote the processor at the intersection of row

x and column y of the simulated mesh. Similarly let the processor at the intersection

of row x and column y of the simulating mesh be denoted by S(x,y), 0≤ x < P and

0≤ y < Q.
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Figure 6.1: Contraction mapping of RM9×8 onto RM3×4 where number-pairs indicate proces-

sors of the simulating mesh.

6.4.1 Contraction Mapping

The most obvious approach to mapping processors of RMM×N to those of RMP×Q is

to let processor S(x,y) simulate the submesh of processors R[xM
P : (x + 1)M

P − 1,yN
Q :

(y + 1)N
Q − 1] for 0≤ x < P and 0≤ y < Q. Ben-Asher et al. [4] have named this the

contraction mapping and an example of this mapping is given in Figure 6.1.

Now each processor of the simulating mesh simulates M
P

N
Q processors of the sim-

ulated mesh. Let the processors of the simulated mesh have r registers each. Sup-

pose an extra ε, independent of r, M, N, P, Q, registers are required per simulated

processor for simulation purpose. An obvious mapping of registers under optimal

space is that the k-th register of the simulated processor R(x,y) is mapped onto the
(((

x mod M
P

)
N
Q +

(

y mod N
Q

))

(r + ε)+ k
)

-th register of the corresponding simulating

processor S
(⌊

x/M
P

⌋
,
⌊

y/N
Q

⌋)

where 0≤ x < M, 0≤ y < N, 0≤ k < r.

6.4.2 Windows Mapping

Let the simulated mesh RMM×N be divided into M
P

N
Q non-overlapping submeshes (win-

dows) Ri, j of size P×Q containing the processors R[iP : (i+1)P−1, jQ : ( j+1)Q−1] for

0≤ i < M
P and 0≤ j < N

Q . In windows mapping [4] the simulated mesh is mapped into the
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Figure 6.2: Windows mapping of RM9×8 onto RM3×4 where number-pairs indicate processors

of the simulating mesh.

simulating mesh RMP×Q in such a way that R(x,y) is simulated by S(x modP,y modQ)

for 0≤ x < M and 0≤ y < N. This ensures one-to-one processor mapping of each simu-

lated submesh Ri, j onto the simulating mesh and whenever the simulating mesh sim-

ulates the submesh Ri, j the processor S(x,y) simulates the processors R(iP+ x, jQ + y)

for 0≤ i < M
P , 0≤ j < N

Q , 0≤ x < M and 0≤ y < N. An example of windows mapping

is given in Figure 6.2.

As in the contraction mapping, each processor of the simulating mesh simulates

M
P

N
Q processors of the simulated mesh. Let the processors of the simulated mesh have r

registers each. Suppose an extra ε, independent of r, M, N, P, Q, registers are required

per simulated processor for simulation purpose. An obvious mapping of registers un-

der optimal space is that the k-th register of the simulated processor R(x,y) is mapped

onto the
((

⌊x/P⌋N
Q + ⌊y/Q⌋

)

(r + ε)+ k
)

-th register of the corresponding simulating

processor S(x modP,y modQ) where 0≤ x < M, 0≤ y < N, 0≤ k < r.
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Figure 6.3: Folded-windows mapping of RM4P×4Q onto RMP×Q

6.4.3 Folded-Windows Mapping

The following two functions [4] play an important role in folded-windows mapping of

the simulated mesh onto the simulating meshes:

FOLD(a,b) =







a modb if a div b is even

b−1− (a modb) otherwise

UNFOLD(a,b,c) =







bc+a if c is even

b(c+1)−1−a otherwise







(6.1)

As in the windows mapping, the simulated mesh RMM×N is divided into M
P

N
Q

non-overlapping submeshes (windows) Ri, j of size P×Q containing the processors

R[iP : (i+1)P−1, jQ : ( j +1)Q−1] for 0≤ i < M
P and 0≤ j < N

Q . Now, in folded-windows

mapping [4] the simulated mesh is mapped into the simulating mesh RMP×Q in such a

way that R(x,y) is simulated by S(FOLD(x,P),FOLD(y,Q)) for 0≤ x < M and 0≤ y < N.

Like the windows mapping, folded-windows mapping also ensures one-to-one pro-

cessor mapping of each simulated submesh Ri, j onto the simulating mesh and when-

ever the simulating mesh simulates the submesh Ri, j the processor S(x,y) simulates the
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processors R(UNFOLD(x,P, i),UNFOLD(y,Q, j)) for 0≤ i < M
P , 0≤ j < N

Q , 0≤ x < M and

0≤ y < N. An example of folded-windows mapping is given in Figure 6.3.

The folded-windows mapping differs from the windows mapping for its unique

characteristics that the external neighbours of a boundary processor, p of the submesh

Ri, j are mapped in the same simulating processor where p is also mapped, 0≤ i < M
P

and 0≤ j < N
Q . This keeps the broadcasts of simulation data low at the expense of

the introduction of a mapping of the ports due to the change in the direction of x-

and/or y-axes in some of the mapped submeshes. For the submesh Ri, j, 0≤ i < M
P and

0≤ j < N
Q , the ports are mapped as follows:

MAP(π, i, j) =







π if ( π ∈ {E,W}∧ i even ) ∨ ( π ∈ {N,S}∧ j even )

π̃ otherwise

where π̃ denotes the opposite port of π, e.g. Ẽ is W.

The register mapping in the folded-windows mapping, assuming optimal space

self-simulation, can be assumed identical. If register is considered as the third axis then

the register mapping stacks the submeshes Ri, j over the simulating mesh in column-

major order as shown in Figure 6.3.

6.5 Simulation by Contraction Mapping

Ben-Asher et al. [4] have presented an optimal self-simulation algorithm for the HV-

RM model based on the contraction mapping. A similar approach has also been pro-

posed independently by Maresca [58] in self-simulating the PPA model which is iden-

tical to the HV-RM model from a self-simulation point of view.

Now simulation of RMM×N by RMP×Q can be done by the following algorithm:

Algorithm 6.1 Optimal Self-Simulation of the HV-RM Model [4]

1 Every simulating processor simulates the simulated submesh it contains;

2 Data for the bus segments, which are contained in two or more simulating

processors, are transmitted to all the corresponding simulating processors;
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3 A single pass for each row and column of the simulated submesh in individ-

ual simulating processors completes the simulation;

Lemma 6.7 In the HV-RM model, RMM×N can be optimally simulated by RMP×Q with slow-

down 6M
P

N
Q +O

(
M
P + N

Q

)

.1

Proof. A single processor can simulate a reconfigurable linear array of l processors

in exactly 2l steps. In the first pass of l steps, processors are simulated from left-to-

right direction and the data for each bus segment is stored in the rightmost simulated

processor connected to that bus segment. In the second pass, processors are simulated

from right-to-left direction and the data stored in the previous pass is dispersed to the

rest of the processors.

A single processor simulating a M
P × N

Q submesh of HV-RM model can equivalently

be considered as simulating independently M
P reconfigurable row arrays of N

Q pro-

cessors each and N
Q reconfigurable column arrays of M

P processors each. Therefore,

phase 1 of the simulation can be done in 4M
P

N
Q steps. Now phase 2 can be achieved

by O(M
P ) steps for row buses and O(N

Q) steps for column buses. Finally phase 3 takes

2M
P

N
Q steps. �

A detailed description of Algorithm 6.1 and the proof of Lemma 6.7 can be found

in [4].

A careful observation reveals that in phase 1 of Algorithm 6.1, the second pass of

simulating linear arrays as described in the proof of Lemma 6.7 can be discarded if the

data for each bus segment is stored in both the leftmost and the rightmost simulated

processors connected to that bus segment.

Theorem 6.8 In the HV-RM model, RMM×N can be optimally simulated by RMP×Q with

slowdown 4M
P

N
Q +O

(
M
P + N

Q

)

. �

1Ben-Asher et al. [4, pp. 5] have mistakenly computed the slowdown to be 5M
P

N
Q +O

(
M
P + N

Q

)

.
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It can easily be shown that the contraction mapping method fails to provide any

strong self-simulation in stronger models e.g., the LRM and the FR models; let alone

any optimal self-simulation [4, 31].

6.6 Simulation by Computing Connected Components

In this section we discus some self-simulation algorithms where the simulation is

transformed into the problem of labelling connected components of a graph. An

optimal self-simulation algorithm for the LRM model is discussed in Section 6.6.1.

Section 6.6.2 presents a strong self-simulation algorithm for the FR model. Two weak

simulations of the general reconfigurable mesh model are discussed in Section 6.6.3.

6.6.1 Self-Simulation of the LRM Model

Ben-Asher et al. [4] has developed an optimal self-simulation algorithm for the LRM

model using folded-windows mapping of processors. Their algorithm is very com-

plex to describe and, therefore, a very rough sketch is given below:

Algorithm 6.2 Optimal Self-Simulation of the LRM Model [4]

1 (Component determination phase) Traverse the simulated mesh with the

simulating mesh in snake-like order. The simulating mesh moves from one

window Ri, j to the next one, keeping track of all necessary bus information.

At every window position, the following phases occur:

1.1 Every bus segment that is encountered is given some unique id;

1.2 When bus segments join in some previously visited windows, the com-

bined segment is given a single id;

2 (Data delivery phase) At this point, all the separate buses and the broadcast

information on each bus have been detected. A traversal in opposite order

thus completes the simulation;
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Undirected Buses

Equivalent Double Directed Buses

Figure 6.4: Representation of undirected buses by the double directed buses

Phase 1.1 of Algorithm 6.2 can be done through leader election by taking the maxi-

mum of the addresses of the two processors, where a bus segment terminates within

a window, as the id of that bus segment. If each processor of the simulating mesh is

replaced by a 2×2 square of processors and every bus is thus simulated by a double

directed bus as shown in Figure 6.4, leader election can be done in O(1) time [4].

Phase 1.2 of Algorithm 6.2 can also be solved in O(1) time by a linear connected

component algorithm [4] provided that a submesh of size (P+Q)× (P+Q) is provided

for each window of size P×Q.

Thus, to implement phases 1.1 and 1.2 for a window of size P×Q, a larger mesh of

size 2(P+Q)×2(P+Q) is required. But we are limited by the physical size P×Q of the

simulating mesh. Now for the sake of simplicity, if we assume P = Q = 4δ, where δ is

an integer, then the effective window size becomes P
4 ×

Q
4 . Considering two complete

traversals in phases 1 and 2, the following can be concluded:

Theorem 6.9 The slowdown of the optimal self-simulation Algorithm 6.2 for the LRM model

is at least 32M
P

N
Q . �

6.6.2 Self-Simulation of the FR Model

Fernández-Zepeda et al. [31] have recently published a strong self-simulation algo-

rithm for the FR model using windows mapping of processors. Their algorithm fol-

lows the same structure of Algorithm 6.2 where the component determination phase
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uses a different technique of prefix assimilation while the data delivery phase is identi-

cal.

Theorem 6.10 In the FR model, RMM×N can be strongly simulated by RMP×Q with slow-

down O
(

M
P

N
Q log(P+Q)

)

.

Proof. See [31]. �

6.6.3 Self-Simulation of the General Model

Ben-Asher et al. [4] has presented a weak self-simulation of the general reconfigurable

mesh using folded-windows mapping of processors. A rough sketch of this extremely

complex algorithm is given below:

Algorithm 6.3 Optimal Self-Simulation of the General Model [4]

1 (Component determination phase) For i = 0,1, . . . ,
(

log M
P

N
Q

)

do the follow-

ing:

1.1 Collect information on bus segments that are contained in windows of

size 2iP×2iQ;

2 (Data delivery phase) At this point, all the separate buses and the broadcast

information on each bus have been detected. A traversal in opposite order

thus completes the simulation;

Labelling the connected components of a graph is among the problems for which

constant time algorithms on reconfigurable mesh are not yet available. The best known

algorithm [12, 66] has the running time O(logn) for an n node graph. As non-linear

buses are allowed in the general model, joining connected bus segments during sim-

ulation requires logarithmic time instead of constant time.

Theorem 6.11 The slowdown of the self-simulation Algorithm 6.3 for the general reconfig-

urable mesh is O
(

M
P

N
Q log(M +N) log

(
M
P + N

Q

))

.
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Proof. See [4]. �

Fernández-Zepeda et al. [31] have improved the slowdown of self-simulation of

the general model to O
(

M
P

N
Q log(P+Q) log

(
M
P + N

Q

))

by adapting their strong self-

simulation algorithm for the FR model as discussed in Section 6.6.2.

Recently, Matsumae and Tokura [62] have developed a new weak self-simulation

algorithm for the general model with slowdown O
(

M
P

N
Q log(P+Q) log(M +N)

)

which

is equivalent to the slowdown achieved by Fernández-Zepeda et al. in [31], if P << M

and Q << N, which is a desirable property in self-simulation.

Very recently, Fernández-Zepeda et al. [32] have further improved the slowdown

of self-simulation of the general model to O
(

M
P

N
Q log(M +N)

)

.

Theorem 6.12 In the general model, RMM×N can be simulated by RMP×Q with slowdown

O
(

M
P

N
Q log(M +N)

)

.

Proof. See [32]. �

It is still an open problem whether self-simulation of the general reconfigurable

mesh is possible with optimal slowdown unless the reconfiguring capability of the

processors is severely restricted. It is now widely accepted that an additional polylog-

arithmic factor is inherent in the slowdown of self-simulating the unrestricted recon-

figurable mesh [4].

6.7 Simulation by Simple Window Traversal

In Section 6.6.1 an optimal self-simulation algorithm for LRM model is presented by

computing the connected components of graphs. Theorem 6.9 reveals that fairly large

constant is associated with the optimal slowdown factor.

Is it possible to obtain optimal self-simulation algorithms by a sequence of simple

windows traversals? In this section we answer to this question affirmatively for two

restricted models within the LRM model. A generic self-simulation algorithm SIMPLE

based only on windows traversal is presented in Section 6.7.1. In Section 6.7.2 we

propose two restricted models within the LRM model and show that the algorithm

SIMPLE is asymptotically optimal.
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6.7.1 SIMPLE: a Self-Simulation Algorithm

We assume the common-write model where each processor on a bus can also detect

whether one or more processors have transmitted or not. We also assume the folded-

windows mapping of processors during the simulation.

Let B denote the set of all the boundary processors of the simulating mesh, i.e.,

B = {S(x,y) | x = 0∨x = P−1∨y = 0∨y = Q−1}. Let a port, t of a boundary processor, p

be called *port if t is not connected to any port external to p. Every boundary processor

has exactly one *port except S(0,0), S(0,Q−1), S(P−1,0), and S(P−1,Q−1) which

have two *ports each. Whenever the submesh Ri, j is simulated, for each boundary

processor, two registers from the ε extra registers are allocated for each *port. Let

these special registers be called *reg1 and *reg2.

For each step s of any reconfigurable-mesh-algorithm A , let b(s), r(s), w(s), and c(s)

denote the BUS, READ, WRITE, and COMPUTE substeps respectively. In the remain-

der whenever we mention that some steps or substeps are executed in the simulating

mesh while simulating a specific submesh, it is assumed that the references to any

register, to any port and to the coordinates of any processor are mapped accordingly

as discussed in Section 6.4.3.

We now present a generic self-simulation algorithm without considering any spe-

cific model in mind. In Section 6.7.2 we show that this algorithm can optimally self-

simulate some reconfigurable mesh models where restrictions are imposed over the

global characteristics of bus reconfigurations.

Algorithm 6.4 SIMPLE( reconfigurable-mesh-algorithm: A )

1 For each step s ∈ A do the following

1.1 For each boundary processor ∈ B do the following in parallel

For each *port t do the following

For each mapped submesh Ri, j, 0≤ i < M
P and 0≤ j < N

Q , set

*reg1 to 0;
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1.2 Generate a finite sequence Ws of pairs (i1, j1),(i2, j2), . . . ,(iLs , jLs) of

length Ls where ∀k : 0≤ ik < P and 0≤ jk < Q;

1.3 For each pair (ik, jk) do the following on the mapped submesh Rik, jk

1.3.1 Execute b(s);

1.3.2a Execute w(s);

1.3.2b For each boundary processor ∈ B do the following in parallel

For each *port, t do the following

if *reg1 = 1 then write *reg2 to port t;

1.3.3a Execute r(s);

1.3.3b For each boundary processor ∈ B do the following in parallel

For each *port, t do the following

if t senses signal then set *reg1 to 1 else set *reg1 to 0;

if *reg1 = 1 then read port t into *reg2;

1.3.4a Execute c(s);

1.3.4b For each boundary processor ∈ B do the following in parallel

For each *port, t do the following

Copy *reg1 and *reg2 into the similar registers, allocated for t,

of the neighbouring mapped submeshes;

Phase 1.2 is a crucial part of the above algorithm. Generating the sequence W of

length L which leads to correct self-simulation depends on many factors which are

discussed in the next section.

Phase 1.1 of algorithm SIMPLE can be done in M
P

N
Q steps. Let the cost of generat-

ing the sequence Ws of Ls pairs in simulating step s in phase 1.2 is Gs. Phases 1.3.2a

and 1.3.2b can be done in a single WRITE substep. Similarly phases 1.3.3a and 1.3.3b

can be done in a single READ substep while phases 1.3.4a and 1.3.4b can be done in

a single COMPUTE substep. So all the substeps of phase 1.3 can be executed in order

O(1). Hence the order of phase 1.3, in simulating step s, is O(Ls).
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Lemma 6.13 Slowdown of algorithm SIMPLE is max
(

M
P

N
Q ,max∀s(Gs,O(Ls))

)

. �

R3,2R3,1R

2,3R2,2R2,1R

1,3R1,2R1,1R

3,3

Figure 6.5: Trajectory of the only linear bus is (1,1), (1,2), (1,3), (1,2), (2,2), (2,3), (2,2), (2,1), (3,1),

(2,1), (3,1).

Definition 6.5 Let the trajectory of a linear bus in the simulated mesh be the sequence of

pairs (i1, j1), (i2, j2), . . . , (it , jt) such that the bus starts and finishes in the windows Ri1, j1

and Rit , jt respectively and for k = 1,2, . . . ,t−1, a portion of the bus contained in the window

Rik, jk is directly connected to the portion of bus contained in the window Rik+1, jk+1. Note that a

window may contain one or more portions of the same linear bus as shown in Figure 6.5.

Definition 6.6 Let S denote the sequence S in reverse order, S1 + S2 + · · ·+ Sn denote the

concatenation of sequences S1, S2, . . . , Sn in order and Sk denote the sequence S+S+ · · ·+S
︸ ︷︷ ︸

k times

.

Theorem 6.14 Let T be the trajectory of a linear bus V in the simulated mesh during simu-

lating step s. If the sequence Ws of pairs in algorithm SIMPLE contains the sequence T + T ,

preserving the order but not necessarily in consecutive positions, then algorithm SIMPLE can

self-simulate the bus V in step s.

Proof. We use the following lemma which follows from substeps 1.3.2b and 1.3.3b of

algorithm SIMPLE:
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Lemma 6.15 Algorithm SIMPLE ensures that whenever a portion of the bus V in some win-

dow Ri, j, where (i, j) ∈ T , is simulated, any message that has been transmitted through this

portion of the bus is carried to both the neighbouring windows Ra,b and Rc,d w.r.t. the trajec-

tory of the bus V , i.e., the sequence of pairs (a,b), (i, j), (c,d) is contained in T in consecutive

positions. �

Now consider the pair (p,q) ∈ T such that one or more processors of window Rp,q

on the bus V write a message on a portion Bu of bus V . As T is contained in Ws, by using

Lemma 6.15 iteratively, it can be shown that the entire segment of bus B on the right

of the bus portion Vu is simulated when phase 1.3 of algorithm SIMPLE completes the

portion of sequence Ws which contains T . Similarly, it can also be shown that the rest

of the bus is simulated when phase 1.3 of algorithm SIMPLE completes the rest of

sequence Ws which contains T . This completes the proof of Theorem 6.14. �

6.7.2 Optimal Self-Simulation of Some Restricted Models

All of the models of reconfigurable mesh, discussed in Section 2.2.3, depend solely on

local configurations of ports. Here we present two additional models where restric-

tions are imposed on the global characteristics of the buses.

Definition 6.7 A function f (x) is called positive monotonic w.r.t. x if f (x1)≥ f (x2) when-

ever x1≥ x2. Similarly a function f (x) is called negative monotonic w.r.t. x if f (x1)≤ f (x2)

whenever x1 ≥ x2. A function f (x) is monotonic w.r.t. x if it is either positive or negative

monotonic w.r.t. x.

Definition 6.8 A function f (x) is called piecewise-monotonic w.r.t. x if axis-x can be di-

vided into successive ranges such that f (x) is positive monotonic in alternate ranges and neg-

ative monotonic in the other ranges.

The Monotonic-Bus (MB) Model: Each bus represents a monotonic function w.r.t. ei-

ther row and/or column index within a range. For example, all the buses in Fig-

ure 6.6 are monotonic while the only bus in Figure 6.5 is not monotonic. Note

that Ben-Asher et al. [6] has defined a non-monotonic model where processors can
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R

3,3R3,2R3,1R

2,3R2,2R2,1R

1,3R1,2R1,1

Figure 6.6: Monotonic buses.

invert signals at the ports. This non-monotonic model should not be confused

with the MB model presented here.

The Piecewise-Monotonic-Bus (PMB) Model: Every bus represents a piecewise mo-

notonic function w.r.t. either row or column index within a range. Moreover in

any step all buses represent functions w.r.t. same index. For example, all the

buses in Figure 6.7 are piecewise monotonic.

Observe that both the models are included in the LRM model. Also observe that

the HV-RM model is included in the MB model which is again included in the PMB

model.

We believe that the MB and PMB models are defined here for the first time (except

for the author’s paper [73]) but many published algorithms for the LRM model can

readily be used in these models without any modifications or with very small modifi-

cations. Among them PARITY algorithms [56, 86], conversion between number repre-

sentations algorithms [40], prefix-sums algorithm [79], sorting algorithms [83, 85] etc.

can be adapted into the MB as well as the PMB models and prefix-remainders algo-

rithm [79], integer summing algorithms [40, 79], integer multiplication algorithm [39],

sorting algorithm [40] etc. can be applied into the PMB model only. Moreover it is

quite obvious that all the algorithms suitable for the HV-RM model are applicable to
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both the models.

Let CSEQ( j) denote the sequence of pairs (0, j), (1, j), . . . , (M
P −1, j).

Theorem 6.16 Algorithm SIMPLE can self-simulate the MB model optimally.

Proof. Let us consider the sequences of pairs, S+ = CSEQ(0) + CSEQ(1) + · · ·+
CSEQ(N

Q −1) and S− = CSEQ(0)+CSEQ(1)+ · · ·+CSEQ(N
Q −1). Let S = S+ + S−. Let

A be an arbitrary algorithm on the simulated MB reconfigurable mesh. We now show

that the sequence S+S = S+ +S−+S−+S+ of length 4M
P

N
Q can be used in the phase 1.2

of algorithm SIMPLE for each step of A to achieve a correct self-simulation.

First consider only the positive monotonic buses. Let any arbitrary positive mono-

tonic bus u terminate in the submeshes Ra,b and Rc,d . Now assume a ≤ c and this im-

plies b ≤ d as u is positive monotonic. Based on the characteristics of positive mono-

tonic bus we can say that the trajectory of the bus through various submeshes Ri, j

follows the sequence of pairs Su = (a,b), (a+1,b), . . . , (kb,b), (kb,b+1), (kb +1,b+1),

. . . , (kb+1,b+1), . . . , (kd−1,d), (kd−1 +1,d), . . . , (c,d) where 0≤ kb ≤ c and kl−1≤ kl ≤ c,

b < l < d.

It is very easy to show that Su and Su are contained in S+ and S+ respectively

preserving the order but not necessarily as contiguous pairs. Then by Theorem 6.14,

every monotonic bus is simulated by algorithm SIMPLE.

The sequences of pairs S− and S− play similar role in simulating negative mono-

tonic buses correctly.

Now the generation of the sequence of pairs S + S is independent of any step of

the arbitrary algorithm A . Hence, for each step s of A , Gs can be considered as O(1)

and thus by Lemma 6.13 the slowdown of Algorithm SIMPLE in self-simulating MB

model is 4M
P

N
Q +O

(
M
P + N

Q

)

which is optimal. �

Note that the prefix-sum computation in Section 2.2.4.1 configures only linear

buses and therefore, can be executed on the LRM model without any modification.

As claimed in the beginning of this section, this computation can also be carried out,

without any modification, on the MB model as each of the linear buses configured

in the computation can be viewed as a representation of a monotonic function w.r.t.
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either row and/or column index. Even if the computation is performed in the gen-

eral “unrestricted” model, efficiency in self-simulation of this computation depends

on the virtual restrictions imposed while selecting suitable self-simulation algorithms.

If we consider the above computation is done on the LRM model then the constant as-

sociated with the highest order term in the slowdown of the optimal self-simulation

Algorithm 6.2 is 32 while the same of our algorithm SIMPLE is only 4.

As a general solution to handle all linear bus configurations, including the spirals,

Algorithm 6.2 becomes inefficient in handling some specific linear bus configurations

e.g., the configurations covered by the MB and the PMB models.

Theorem 6.17 Algorithm SIMPLE can self-simulate the PMB model correctly.

Proof. Let A be an arbitrary algorithm on the simulated PMB reconfigurable mesh.

Without any loss of generality we assume that the buses of any particular step of A be

piecewise-monotonic w.r.t. column index.

∆3
+

∆5
+

-∆3 -∆5

-∆11
13

12

11

10

9

8 7

6

5

4

3

2

1

14

Figure 6.7: Configuration of buses in a step of an algorithm [40] for adding two integers of 3

bits each on a reconfigurable mesh of size 6×12. Among the 14 buses, only ∆+
3 , ∆−1 , ∆+

5 , ∆−5 ,

and ∆−11 exist. Obviously ∆ = 3.

Let ∆+
u denote the minimum of the minimum processor-distance along the row

axis of any two successive positive monotonic segments of bus u. Similarly let ∆−u
denote the minimum of the minimum processor-distance along the row axis of any

two successive negative monotonic segments of bus u. As a horizontal bus segment

can be considered as both positive and negative monotonic, for the same bus u, ∆+
u
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and ∆−u can be varied depending on the point where a horizontal segment is assumed

divided into positive and negative monotonic segments. In such case, the division

point is considered in the position where ∆+
u = ∆−u . Let ∆ = min∀u(min(∆+

u ,∆−u )) and

K =
⌈

Q
2∆

⌉

.

Consider the sequence of pairs S = ∑
N
Q
j=0

(

CSEQ( j)+CSEQ( j)
)K

. We now show

that the sequence S +S of length 4K M
P

N
Q can be used in the step 1.2 of Algorithm SIM-

PLE for each step of A to achieve a correct self-simulation.

Let any arbitrary piecewise-monotonic bus u terminates in the submeshes Ra,b and

Rc,d . Now assume a ≤ c. Let the trajectory of the bus through various submeshes Ri, j

follow the sequence of pairs Su. As this trajectory Su passes through any submesh Ri, j

at most K times as positive monotonic segment and at most K times as negative mono-

tonic segment, it is easy to show that Su and Su are contained in S and S respectively

preserving the order but not necessarily consecutively.

By Theorem 6.14, every bus is thus simulated by algorithm SIMPLE. �

In Theorem 6.17 nothing is stated about the slowdown of the self-simulation. In

general cases the slowdown will not be optimal. However we can achieve optimal

slowdown for instances where Q
∆ = O(1) which is possible if N

Q is very large, a desirable

property for self-simulation and ∆ is a function of N.

6.8 AT 2 Optimality Issues in Self-Simulation

Is the resultant algorithm in self-simulation of a reconfigurable mesh with optimal

slowdown AT2 optimal?

To our knowledge, this question is raised here for the first time (except for author’s

paper [72]) and we have a negative answer. Consider any problem of size N with

AT2 = Ω(N2) e.g., sorting of N items of size logN bits each. Now, in Sections 4.4.1–

4.4.3 we have discussed a number of sorting algorithms which can sort N items on a

reconfigurable mesh of size N×N in constant time (Theorem 4.8). Obviously the AT2

measures of these algorithms are Θ(N2) and thus these algorithms are AT 2 optimal.

Suppose one of this AT2 optimal sorting algorithm is self-simulated, with optimal
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Mesh Type Method Size Time AT2 AT 2 Optimal?

reconfigurable direct N×N O(1) O(N2) yes

reconfigurable self-simulation M×M O
(

N2

M2

)

O
(

N4

M2

)

reconfigurable self-simulation N1/2×N1/2 O(N) O(N3)
NO

ordinary direct N1/2×N1/2 O(N1/2) O(N2) yes

Table 6.1: Sorting of N items on various types of meshes—directly or by self-simulation.

slowdown Θ
(

N2

M2

)

, on a reconfigurable mesh of size M×M where M < N. The AT2

measure of the resultant sorting algorithm then becomes Θ
(

N4

M2

)

which is not optimal

for M = o(N).

Consider M = N1/2. Then we cannot achieve an optimal sorting algorithm to sort

N items on a reconfigurable mesh of size N1/2×N1/2 by self-simulating one of the AT2

optimal constant time sorting algorithms on a reconfigurable mesh of size N×N. On

the other hand, in Section 4.3 we have presented a large number of AT2 optimal sorting

algorithms to sort N elements on an ordinary mesh of size N1/2×N1/2 in O(N1/2) time.

Self-simulation makes the powerful reconfigurable mesh weaker than even the

ordinary mesh. The strength of configurable computing is seriously weakened by the

introduction of self-simulation as summarised in Table 6.1.

Theorem 6.18 The resultant algorithms are not necessarily AT2 optimal when AT2 optimal

algorithms are self-simulated on reconfigurable meshes even with optimal slowdown. �

Does Theorem 6.18 imply that scaling down of algorithms on large reconfigurable

meshes is inefficient?

Fortunately we also have a negative answer to the above question. Self-simulation

is not the only way to scale down algorithms on reconfigurable meshes. In fact, in-

tent of developing self-simulation algorithms is precisely to preserve AT product, and

certainly not AT2, by design. Self-simulation algorithms preserve efficiency, which is

all they can do for arbitrary algorithms because the simulating machine must perform

the same work as the simulated machine. Many reconfigurable mesh algorithms sac-
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rifice efficiency to achieve constant time. Self-simulation scaling of these algorithms

naturally retains the burden of their inefficiency. In the next chapter we introduce

the idea of developing smart self-scalable algorithms which not only run on reconfig-

urable meshes of various sizes and aspect ratios but also retain AT2 optimality.

6.9 Conclusions

In this chapter we have proposed two new reconfigurable mesh models MB and PMB,

within the LRM model, where restrictions are imposed over the global characteristics

of bus reconfigurations. A simple generic self-simulation algorithm has been devel-

oped which remains optimal and asymptotically optimal while self-simulating the

MB and the PMB models respectively. It can easily be shown that for self-simulating

a large number of algorithms on the MB and the PMB models, our self-simulation al-

gorithm SIMPLE requires fewer steps than the optimal self-simulation Algorithm 6.2

for the LRM model by Ben-Asher et al. [4].

In future we are interested in applying our algorithm SIMPLE on some special

instances of the tree-RM mesh model [4]. The tree-RM mesh model is similar to the

general model, except that no cycles are allowed in the configuration. Note that this is

a global restriction and hence tree-RM mesh model seems to have similarity with the

MB and the PMB models for which algorithm SIMPLE has been a success.

What is the relationship between the term optimality in self-simulation and area-

time tradeoff of reconfigurable meshes? In Section 6.8 we have shown that self-simula-

tion, even with optimal slowdown, compromises the AT2 optimality of the resultant

algorithms and in the course of finding a remedy, in the next chapter we introduce

the idea of adaptive algorithms which remain AT2 optimal regardless of the size and

aspect ratio of the reconfigurable mesh.



Chapter 7

Adaptive Algorithms

Self-simulation is the obvious but not necessarily the only way to solve the problem of

scaling down algorithms on the reconfigurable mesh as defined in Chapter 1. An al-

ternative solution lies in developing self-scalable algorithm which can adapt to recon-

figurable meshes of various sizes and aspect ratios. In Section 6.8 we have successfully

argued that self-simulation methods compromise with AT2 optimality of the resultant

algorithms. Writing self-scalable algorithms is itself a challenging task but it would be

far more appealing if we can develop self-scalable algorithms which not only adapts

to a reconfigurable mesh of arbitrary size and aspect ratio but also retains AT2 op-

timality during this adaptation process. Let these smart self-scalable algorithms be

called adaptive algorithms.

The aim of this chapter is to develop a systematic approach to design efficient

adaptive algorithms. In Section 7.1 the characteristics of adaptive algorithms are for-

mally defined and a generic adaptive algorithm to solve an arbitrary problem is pre-

sented. An adaptive sorting algorithm is developed in Section 7.2 based on rotatesort

Algorithm 4.4. In Section 7.3 we present another adaptive sorting algorithm based

on the sorting Algorithm 4.1 of Schnorr and Shamir on ordinary meshes. An adap-

tive M -contour algorithm is developed in Section 7.4. In Section 7.5 we propose a

conjecture stating that it is sufficient to configure buses of length O(k) in an arbitrary

adaptive algorithm where k represents how much of the mesh is filled with data ini-

tially, and the conjecture is then supported by transforming our adaptive algorithms

on k-constrained reconfigurable meshes.

103
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7.1 Design of Adaptive Algorithms

Let a problem P of size n have I(n) information content [113, pp. 51–54]. If this problem

P is realized in a VLSI circuit with aspect ratio α≥ 1 then, by Ullman [113, pp. 57], the

AT2 lower bound of P will be

Ω(αI2(n)) . (7.1)

Now, consider a reconfigurable mesh of size p×q where pq = kI(n), 1 < p≤ q≤ I2(n),

and k ≥ 1.

Throughout this chapter we assume that initially each item of I(n) information

content is contained in a distinct processor. In such case k = pq
I(n) has a physical inter-

pretation too. It represents how much of the mesh is filled with data.

Let P be solved, AT2 optimally, on a reconfigurable mesh of size p×q in O(T ) time.

Then

pqT 2 =
q
p

I2(n) .

This implies

T =
I(n)

p
=

q
k

. (7.2)

Observe that T is independent of q, the length of the larger side of the VLSI circuit.

Now,

T = 1⇔ p = I(n) .

Thus, development of a constant time algorithm is feasible whenever p = I(n) for any

q ≥ p. As we are interested in keeping the area at minimum, the minimum possible

value of q should be considered. So, with the minimum area constraint,

T = 1⇔ p = q = k = I(n) . (7.3)

Lemma 7.1 To solve a problem P of size n with I(n) information content AT 2 optimally in

constant time, a reconfigurable mesh of size at least I(n)× I(n) is required. �

From equation (7.2),

k = 1⇔ T = q .

This implies that whenever the area of the VLSI circuit equals the information content
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of the problem to be solved, the time of solution depends only on q, the length of the

larger side of the VLSI circuit. As we are interested in keeping the time at minimum,

the minimum possible value of q should be considered. So, pq = I(n) and p≤ q imply

the following with the minimum time constraint,

k = 1⇔ p = q = T =
√

I(n) . (7.4)

Lemma 7.2 To solve a problem P of size n with I(n) information content AT2 optimally on a

reconfigurable mesh of size
√

I(n)×
√

I(n) requires Ω
(√

I(n)
)

time. �

Lemma 7.2 has extra significance. The communication diameter of an ordinary

mesh of size
√

I(n)×
√

I(n) is Θ
(√

I(n)
)

. Thus, reconfigurability is of no assistance

in solving problem P AT 2-optimally on a reconfigurable mesh of size
√

I(n)×
√

I(n).

Definition 7.1 Consider an arbitrary problem P of size n with information content I(n). An

algorithm A is called adaptive if A takes O
(

I(n)
p

)

≡O
(q

k

)
time to solve P on a reconfigurable

mesh of size p×q, where
√

I(n)≤ p≤ q≤ I(n) and k = pq
I(n) .

Now, from equation (7.2) we find that p
k = I(n)

q . From Definition 7.1 we also find

that q≤ I(n). We thus can conclude that

k ≤ p (7.5)

which is an important relation assumed in Algorithm 7.1 below.

The study of adaptive algorithms on reconfigurable meshes reveals that the dis-

cussion of optimality issues in mesh-connected networks should not be limited to

any specific class or model. It is obvious that existing AT2 optimal algorithms on re-

configurable mesh will play significant role in the development of future adaptive

algorithms but we must consider optimal algorithms on linear arrays and ordinary

meshes as well.

Adaptive algorithms can be developed from scratch. But we are interested in de-

signing adaptive algorithms mainly by threading optimal algorithms on linear arrays,

ordinary meshes, and reconfigurable meshes. We use the following algorithmic struc-

ture in developing adaptive algorithms for specific problems:
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Figure 7.1: Physical division of a reconfigurable mesh in the principal module (a) and the

supporting module (b).

Algorithm 7.1 Generic Adaptive Algorithm

Principal Module: Here P of size n is solved on a reconfigurable mesh of size

p× q where p ≤ q and pq = kI(n). It is assumed that I(n) items of information

are contained in the first I(n)
p columns where each processor PEi, j, 0≤ i < p and

0≤ j < I(n)
p , contains exactly one item of information.

1p Divide the mesh of size p×q into q
k submeshes of size p× k each;

2p Distribute the I(n) information content equally among the submeshes in

such a way that each processor PEi, jk of the main mesh, 0≤ i < p and 0≤
j < q

k , receives one item of information. This ensures that each submesh of

size p× k now contains exactly p items of information in its first column;

3p Solve the subproblem with p items of information in each submesh of size

p× k using the algorithm of the supporting layer in parallel;

4p Merge the solutions of the q
k subproblems using the entire mesh of size p×q;

Supporting Module: Here P of size at most p is solved on a reconfigurable mesh

of size p× k where k ≤ p. It is assumed that p items of information are contained

in the first column where each processor contains exactly one item of information.

1s Divide the mesh of size p× k into p
k submeshes of size k× k each;

2s Distribute the p items of information equally among the submeshes in such

a way that each submesh of size k×k contains exactly k items of information
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in its top row;

3s Solve the subproblem with k items of information in each submesh of size

k× k in parallel;

4s Merge the solutions of the p
k subproblems using the entire mesh of size p×k;

The above generic Algorithm 7.1 assumes p
k and q

k to be integers for the sake of

simplicity.

As mentioned in Definition 7.1, the main goal of Algorithm 7.1 is to achieve O
( q

k

)

run time. Phases 1p and 1s of Algorithm 7.1 need no inter-processor communication

and thus these can be done in constant time.

As I(n)
p = q

k by equation (7.2), phase 2p can be considered as a problem of transfer-

ring column j to column k j for all j : 0≤ j < q
k . Now each of the column transfer can

be done in constant time by p row broadcasts in parallel. So, phase 2p can be done in

O
(q

k

)
time.

Phase 1s not only divides the mesh of size p× k into p
k submeshes of size k× k

but also distributes p items of information equally among these submeshes such that

every submesh contains k items of information in its first column. Hence, phase 2s can

be done in two steps. In the first step, the item of information in processor PEi,0 of each

submesh of size k×k is transferred to processor PEi,i in parallel by row broadcasts for

all i : 0≤ i < k. In the second step, the item of information in each processor PE j, j is

transferred to processor PE0, j in parallel by column broadcasts for all j : 0≤ j < k. So,

it can be concluded that phase 2s takes O(1) time.

If we can fairly assume by equation (7.3) that a constant time algorithm exists to

solve phase 3s then the only challenge that remains in designing an adaptive algo-

rithm for any specific problem is to solve phases 4p and 4s in O
(q

k

)
time as phase 3s

degenerates to phases 1s–4s.

The following interesting observations can be made from Algorithm 7.1:

• When p = q = k = I(n), the only nontrivial phase is phase 3s, which degenerates

into solving P AT2-optimally in constant time on a reconfigurable mesh.
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• When p = q =
√

I(n) and k = 1, phases 2p, 1s, 2s, and 3s disappear and phases 3p

and 4p degenerates into solving P AT 2-optimally on an ordinary mesh while

phase 4s degenerates into solving P AT2-optimally on a linear array of proces-

sors.

Phases 3p and 4p and phases 3s and 4s should not necessarily be simple implemen-

tations of the many-way divide-and-conquer strategy as mentioned in Algorithm 7.1.

In many cases, it is more efficient to replace these phases by complex iteration if the

motivation is to solve a large problem instance with the solution of smaller problem

instances (Sections 7.2 and 7.3).

To our knowledge, the idea of developing adaptive algorithms, as opposed to inef-

ficient method of scaling down AT 2 optimal algorithms by optimal self-simulation, is

presented here for the first time (except for the author’s paper [72]). In fact very little

work has so far been done in the direction of adapting algorithms on meshes whose

size and aspect ratio can vary according to the availability of a physical implemen-

tation. Jang and Prasanna [40] have developed a sorting algorithm which can sort N

numbers in O(T ) time on a reconfigurable mesh of size N
T × N

T , for 1≤ T ≤ N1/2. Pre-

serving AT 2 values while scaling is also demonstrated by Park et al. [93] in multiplying

matrices and Trahan et al. [110] in multiplying matrices with vectors.

7.2 An Adaptive Sorting Algorithm Based on Rotatesort

In this section we develop an adaptive sorting algorithm, using the framework of

generic adaptive Algorithm 7.1, to sort n items AT 2 optimally on a reconfigurable mesh

of size p× q, p ≤ q and pq = kn, by connecting the AT2 optimal rotatesort algorithm

of Marberg and Gafni (Section 4.3.4) on ordinary meshes to any constant time sorting

algorithm discussed in Sections 4.4.1–4.4.3 on reconfigurable meshes. The algorithm

presented in this section was developed in [10, 11] for k-constrained reconfigurable

meshes (Section 2.2.3.10) with a different objective.

The links of a reconfigurable linear array can be considered as unidirectional. In

this section we use the following corollary of Theorem 4.2 on reconfigurable linear

arrays:
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Corollary 7.3 Given s items in some s processors of a reconfigurable linear array of m ≥ s

processors, these items can be sorted in O(s) time.

Proof. By connecting port N with S of all the processors which do not contain any

of the given s items, the reconfigurable linear array of m processors can simulate an

ordinary linear array of s processors. �

As mentioned in Section 4.3.4, Algorithm 4.4 of Marberg and Gafni uses a constant

number of linear transformations (sorting and cyclic rotation), made alternately to

rows and columns, to sort MN items in O(M + N) time on an ordinary mesh of size

M×N where M ≥ N1/2. If M 6≥ N1/2 then N > M2≥M1/2 and thus sorting can be done

simply by transposing all row(column) operations into column(row) operations in

Algorithm 4.4.

In this section we further assume k = r2, p = ks2, and q = kt2 where r, s, and t are

integers and s≤ t for the sake of simplicity.

The principal module and the supporting module of this adaptive algorithm are

presented in Sections 7.2.2 and 7.2.1 respectively.

7.2.1 The Supporting Module

In this section we develop an adaptive algorithm to sort p items on a reconfigurable

mesh of size p× k, k ≤ p, following the supporting module of Algorithm 7.1. We

assume that phases 1s and 2s of Algorithm 7.1 are already completed, i.e., the mesh is

divided into p
k submeshes of size k× k each and the given p items in the first column

are distributed in such a way that each processor PEik, j, 0≤ i < p
k and 0≤ j < k, receives

an item. This distribution of items transformed the column of p items into an array

of p
k × k items where each row is separated by k rows. Now, phases 3s and 4s of

Algorithm 7.1 emulate Algorithm 4.4 of Marberg and Gafni. This emulation requires

only the following basic operations in various phases of Algorithm 4.4:

If k ≥
( p

k

)1/2

1. Sort k items in a row using a submesh of size k× k.

2. Rotate
( p

k

)1/2
items using a submesh of size k

( p
k

)1/2×1.
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3. Sorting p
k items using a submesh of size p×1.

4. Rotate p
k items using a submesh of size p×1.

5. Sort
( p

k

)1/2
items in a row using a submesh of size k×

( p
k

)1/2
.

Else (⇒ p
k > k1/2)

6. Sort p
k items using a submesh of size p×1.

7. Rotate k1/2 items in a row using a submesh of size k× k1/2.

8. Sort k items in a row using a submesh of size k× k.

9. Rotate k items in a row using a submesh of size k× k.

10. Sort k1/2 items using a submesh of size kk1/2×1.

The problem of rotation can always be transformed into a sorting problem without

any slowdown. A rotation, therefore, takes no more time than it does to sort.

Now, operations 1, 5, 7, 8, and 9 can be done in O(1) time by Theorem 4.8. Using

Corollary 7.3 it can be shown that operation 2 can be done in O
(( p

k

)1/2
)

time, opera-

tions 3, 4, and 6 can be done in O
( p

k

)
time, and operation 10 can be done in O

(
k1/2

)

time.

Theorem 7.4 Given p items in the first column of a reconfigurable mesh of size p× k, k ≤ p,

these items can be sorted in O
( p

k

)
time, which is AT 2 optimal. �

7.2.2 The Principal Module

In this section we develop an adaptive algorithm to sort n items on a reconfigurable

mesh of size p×q, p≤ q and pq = kn, following the principal module of Algorithm 7.1.

We assume that phases 1p and 2p of Algorithm 7.1 are already completed, i.e., the

mesh is divided into q
k submeshes of size p× k each and the given n items in the

first n
p columns are distributed in such a way that each processor PEi, jk, 0≤ i < p and

0≤ j < q
k , receives an item. This distribution of items transformed the given n items

into an array of p× q
k items where each column is separated by k columns. Now,

phases 3p and 4p of Algorithm 7.1 emulate Algorithm 4.4 of Marberg and Gafni as
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done in Section 7.2.1. This emulation requires only the following basic operations in

various phases of Algorithm 4.4:

If p≥
(q

k

)1/2

1. Sort p items in a column using a submesh of size p× k.

2. Rotate
(q

k

)1/2
items using a submesh of size 1× k

(q
k

)1/2
.

3. Sort q
k items using a submesh of size 1×q.

4. Rotate q
k items using a submesh of size 1×q.

5. Sort
(q

k

)1/2
items in a column using a submesh of size

( q
k

)1/2× k.

Else⇒ q
k > p1/2

6. Sort q
k items using a submesh of size 1×q.

7. Rotate p1/2 items in a column using a submesh of size p1/2× k.

8. Sort p items in a column using a submesh of size p× k.

9. Rotate p items in a column using a submesh of size p× k.

10. Sort p1/2 items using a submesh of size 1× kp1/2.

From equation (7.5) we get k ≤ p. Hence, operations 1, 8, and 9 can be done in

O
( p

k

)
time by Theorem 7.4.

If k ≥
( q

k

)1/2
then operation 5 takes O(1) time by Theorem 4.8 else it takes

O
(
q1/2/k3/2

)
time by Theorem 7.4. Similarly, if k ≥ p1/2 then operation 7 takes O(1)

time else it takes O
(

p1/2/k
)

time.

Using Corollary 7.3, operation 2 can be done in O
(( q

k

)1/2
)

time, operations 3, 4,

and 6 can be done in O
(q

k

)
time and operation 10 can be done in O

(
p1/2

)
time.

Since p≤ q, it follows from the above argument that:

Theorem 7.5 Given n items in the first n
p columns of a reconfigurable mesh of size p× q,

p≤ q and pq = kn, these items can be sorted in O
(q

k

)
time, which is AT 2 optimal. �
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7.3 An Adaptive Sorting Algorithm Based on Algorithm 4.1

In this section we develop another adaptive sorting algorithm, using the framework of

generic adaptive Algorithm 7.1, to sort n items AT 2 optimally on a reconfigurable mesh

of size p×q, p≤ q and pq = kn, based on the efficient AT2 optimal sorting Algorithm 4.1

of Schnorr and Shamir on ordinary meshes.

As mentioned in Section 4.3.2, Algorithm 4.1 of Schnorr and Shamir uses a con-

stant number of linear transformations in the form of sorting and cyclic rotation along

rows or columns. Besides these, Algorithm 4.1 also recursively degenerates into sort-

ing problems on smaller meshes.

Algorithm 4.1 sorts MN items in O(M +N) time on an ordinary mesh of size M×N

as long as M2 ≥ N. As mentioned in Section 4.3.2 we further assume M ≥ N3/4 for

the sake of simplicity. On the contrary, if M 6≥ N3/4 then N > M4/3 ≥M3/4 then Algo-

rithm 4.1 can easily be adapted by considering blocks (Figure 4.3(a)) of size M3/4×M3/4

instead and transposing all row(column) operations into column(row) operations.

In this section we further assume k = 24r, p = 24s, and q = 24t where r, s, and t are

integers and r ≤ s≤ t for the sake of simplicity.

The principal module and the supporting module of this adaptive algorithm are

presented in Sections 7.3.2 and 7.3.1 respectively.

7.3.1 The Supporting Module

In this section we develop an adaptive algorithm to sort p items on a reconfigurable

mesh of size p× k, k ≤ p, according to the supporting module of Algorithm 7.1. We

assume that phases 1s and 2s of Algorithm 7.1 are already completed, i.e., the mesh is

divided into p
k submeshes of size k× k each and the given p items in the first column

are distributed in such a way that each processor PEik, j, 0≤ i < p
k and 0≤ j < k, receives

an item. This distribution of items transformed the column of p items into an array of

p
k × k items where each row is separated by k rows. Now, phases 3s and 4s of Algo-

rithm 7.1 emulate Algorithm 4.1 of Schnorr and Shamir. As phase 2 of Algorithm 4.1

can be obtained by cyclic rotation of each row in parallel, this emulation requires only
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the following basic operations in various phases of Algorithm 4.1:

If k ≥
( p

k

)3/4

1. Sort
( p

k

)3/4×
( p

k

)3/4
items using a submesh of size k

( p
k

)3/4×
( p

k

)3/4
.

2. Rotate p
k items using a submesh of size p×1.

3. Sort k items in a row using a submesh of size k× k.

4. Sort
( p

k

)3/4×2
( p

k

)3/4
items using a submesh of size k

( p
k

)3/4×2
( p

k

)3/4
.

5. Sort p
k items using a submesh of size p×1.

6. Perform 2
( p

k

)3/4
steps of the odd-even transposition sort.

Else (⇒ p
k > k3/4)

7. Sort k3/4× k3/4 items using a submesh of size kk3/4× k3/4.

8. Rotate k items in a row using a submesh of size k× k.

9. Sort p
k items using a submesh of size p×1.

10. Sort 2k3/4× k3/4 items using a submesh of size 2kk3/4× k3/4.

11. Sort k items in a row using a submesh of size k× k.

12. Perform 2k3/4 steps of the odd-even transposition sort.

As mentioned in Section 7.2.1, the problem of rotation can always be transformed

into a sorting problem without any slowdown. Now operations 3, 8, and 11 can be

done in O(1) time by Theorem 4.8. Using Corollary 7.3, operations 2, 5, and 9 can be

done in O
( p

k

)
time.

Algorithm 4.1 of Schnorr and Shamir can be applied, by treating the reconfigurable

mesh as an ordinary mesh, to solve operation 1 and 4 in O
(( p

k

)3/4
)

time, operation 7

and 10 in O
(
k3/4

)
= O

(( p
k

)3/4
)

time.

So the above algorithm can be considered as another proof of Theorem 7.4. As Al-

gorithm 4.1 of Schnorr and Shamir has lower constant with the highest order term in

the complexity bound than rotatesort algorithm of Marberg and Gafni, the algorithm

developed in this section is a more efficient implementation supporting Theorem 7.4

than the algorithm in Section 7.2.1.
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7.3.2 The Principal Module

In this section we develop an adaptive algorithm to sort n items on a reconfigurable

mesh of size p× q, p ≤ q and pq = kn, according to the principal module of Algo-

rithm 7.1. We assume that phases 1p and 2p of Algorithm 7.1 are already completed,

i.e., the mesh is divided into q
k submeshes of size p× k each and the given n items in

the first n
p columns are distributed in such a way that each processor PEi, jk, 0≤ i < p

and 0 ≤ j < q
k , receives an item. This distribution of items transformed the given

n items into an array of p× q
k items where each column is separated by k columns.

Now, phases 3p and 4p of Algorithm 7.1 emulate Algorithm 4.1 of Schnorr and Shamir

which requires only the following basic operations in various phases of Algorithm 4.1:

If p≥
(q

k

)3/4

1. Sort
(q

k

)3/4×
(q

k

)3/4
items using a submesh of size

( q
k

)3/4× k
(q

k

)3/4
.

2. Rotate q
k items using a submesh of size 1×q.

3. Sort p items in a column using a submesh of size p× k.

4. Sort 2
( q

k

)3/4×
(q

k

)3/4
items using a submesh of size 2

( q
k

)3/4× k
(q

k

)3/4
.

5. Sort q
k items using a submesh of size 1×q.

6. Perform 2
( q

k

)3/4
steps of the odd-even transposition sort.

Else (⇒ q
k > p3/4)

7. Sort p3/4× p3/4 items using a submesh of size p3/4× kp3/4.

8. Rotate p items in a column using a submesh of size p× k.

9. Sort q
k items using a submesh of size 1×q.

10. Sort p3/4×2p3/4 items using a submesh of size p3/4×2kp3/4.

11. Sort p items in a column using a submesh of size p× k.

12. Perform 2p3/4 steps of the odd-even transposition sort.

From equation (7.5) we get k ≤ p. Hence, operations 3, 8, and 11 can be done in

O
( p

k

)
time by Theorem 7.4. Using Corollary 7.3, operations 2, 5, and 9 can be done in

O
( p

k

)
time.
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Algorithm 4.1 of Schnorr and Shamir can be applied, by treating the reconfigurable

mesh as an ordinary mesh, to solve operation 1 and 4 in O
(( q

k

)3/4
)

time, operation 7

and 10 in O
(

p3/4
)

= O
(( q

k

)3/4
)

time.

So the above algorithm can be considered as a second proof of Theorem 7.5. As

Algorithm 4.1 of Schnorr and Shamir is more efficient than rotatesort algorithm of

Marberg and Gafni, the algorithm developed in this section is a more efficient imple-

mentation supporting Theorem 7.5 than the algorithm in Section 7.2.2.

7.4 An Adaptive M -Contour Algorithm

In this section we develop an adaptive algorithm, using the framework of generic

adaptive Algorithm 7.1, to compute the M -contour of n planar points AT2 optimally

on a reconfigurable mesh of size p× q, p ≤ q and pq = kn, based on our AT2 optimal

M -contour Algorithm 5.5 on 3-dimensional reconfigurable meshes.

As mentioned in Section 5.5.2, Algorithm 5.5 is primarily based on our observation

on M -contour as stated in Lemmas 5.1 and 5.2.

In this section we further assume k = r2, p = k2s2, and q = k2t2 where r, s, and t are

integers and s≤ t for the sake of simplicity.

The principal module and the supporting module of this adaptive algorithm are

presented in Sections 7.4.2 and 7.4.1 respectively.

7.4.1 The Supporting Module

In this section we develop an adaptive algorithm to compute M -contour of p planar

points on a reconfigurable mesh of size p×k, k ≤ p, according to the supporting mod-

ule of Algorithm 7.1. We assume that phases 1s and 2s of Algorithm 7.1 are already

completed, i.e., the mesh is divided into p
k submeshes of size k× k each and the given

p points in the first column are distributed in such a way that each processor PEki, j,

0≤ i < p
k and 0≤ j < k, receives a point.

In addition to the distribution of given points in phase 2s, we also sort the points

w.r.t. x-coordinate in row-major order by the sorting algorithm in Section 7.2.1, omit-
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ting phases 1s and 2s of the sorting algorithm, in O
( p

k

)
time.
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Figure 7.2: All the iterations to eliminate points based on Lemma 5.2. Here p = 27, k = 3,

and the propagation of maxy(m(Si)) is represented by integer i for 0 ≤ i < 9. Note that for

simplification, k is not considered as r2 for some integer r as assumed in this section.

Let the points residing in row ki be denoted by the set Si, 0≤ i < p
k . Clearly these

p
k sets of planar points follow the condition of Lemma 5.2, i.e., for all i : 0≤ i < p

k −1,

maxx(Si)≤minx(Si+1). TheM -contour m(Si) is now computed in parallel using the i-th

submesh of size k×k containing processors PEr,∗, ki≤ r < k(i+1), for all i : 0≤ i < p
k . By

Theorem 5.8 this operation takes only O(1) time. Using Lemma 5.1 we now transfer

the maxy(m(Si)) values to the first column of the mesh of size p× k by the following

single step:

1. b: Any processor in row ki containing a point ∈ m(Si) disconnects all port in-

terconnections while the rest of the processors connect port E with W for

all 0≤ i < p
k ;
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w: Any processor in row ki containing a point ∈m(Si) now writes the y-coordi-

nate of the point to port W for all 0≤ i < p
k ;

r: Every processor PEki,0 in the first column reads port W in for all 0≤ i < p
k ;

The M -contour of the all p points can now be computed in the following phases

using Lemma 5.2:

1. Iterate the following for t = 0,1, . . . , p
k2 −1:

1.1 Copy maxy(m(Skt+u)) to processors PEu+kr, j, 0≤ j < k, r = 0,1, . . . ,kt +u, us-

ing a row broadcast then a column broadcast and finally a row broadcast

for all u : 0≤ u < k; An example is shown in Figure 7.2.

1.2 Copy the y-coordinate of the point residing in processor PEki, j to the pro-

cessors PEki+r, j, 0≤ r < k, using a column broadcast for all 0≤ i < k(t + 1),

0≤ j < k;

1.3 Now in the i-th submesh of size k× k, the j-th column contains at most

k maxy-values paired with the y-coordinate of a particular point, say d.

Now, apply Lemma 5.2 to eliminate d by computing the and over the com-

parison values of at most k pairs using a single step similar to the only

step in phase 8 of Algorithm 5.5 in constant time by Lemma 5.7 for all

i : 0≤ i < k(t +1);

It is easy to show that the above iteration takes O
( p

k2

)
time and thus it can be con-

cluded that:

Theorem 7.6 Given p planar points in the first column of a reconfigurable mesh of size p×k,

k≤ p, the M -contour of these points can be computed in O
( p

k

)
time, which is AT2 optimal. �

7.4.2 The Principal Module

In this section we develop an adaptive algorithm to compute M -contour of n planar

points on a reconfigurable mesh of size p× q, p ≤ q and pq = kn, according to the

principal module of Algorithm 7.1. We assume that phases 1p and 2p of Algorithm 7.1

are already completed, i.e., the mesh is divided into q
k submeshes of size p× k each
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and the given n points in the first n
p columns are distributed in such a way that each

processor PEi,k j, 0≤ i < p and 0≤ j < q
k , receives a point.

In addition to the distribution of given points in phase 2s, we also sort the points

w.r.t. x-coordinate in column-major order by the sorting algorithm in Section 7.2.2,

omitting phases 1p and 2p of the sorting algorithm, in O
( q

k

)
time.

Let the points residing in column k j be denoted by the set S j, 0≤ j < q
k . Clearly

these q
k sets of planar points follow the condition of Lemma 5.2, i.e., ∀ j : 0≤ j < q

k −1,

maxx(S j) ≤ minx(S j+1). The M -contour m(S j) is now computed in parallel using the

j-th submesh of size p× k containing processors PE∗,r, k j ≤ r < k( j + 1), for all j : 0≤
j < q

k . By Theorem 7.6 this operation takes only O
( p

k

)
time. Using Lemma 5.1 we

now transfer the maxy(m(S j)) values to the first row of the mesh of size p× q by the

following single step:

1. b: Any processor in column k j containing a point ∈ m(S j) disconnects all port

interconnections while the rest of the processors connect port N with S for

all 0≤ j < q
k ;

w: Any processor in column k j containing a point ∈ m(S j) now writes the y-

coordinate of the point to port S for all 0≤ j < q
k ;

r: Every processor PE0,k j in the first row reads port S in for all 0≤ j < q
k ;

The M -contour of the all n points can now be computed in the following phases

using Lemma 5.2 as done in Section 7.4.1:

1. Iterate the following for t = 0,1, . . . , q
k2 −1:

1.1 Copy maxy(m(Skt+v)) to processors PEi,v+kr, 0≤ i < p, r = 0,1, . . . ,kt +v, using

a column broadcast then a row broadcast and finally a column broadcast for

all v : 0≤ v < k;

1.2 Copy the y-coordinate of the point residing in processor PEi,k j to the proces-

sors PEi,k j+r, 0≤ r < k, using a row broadcast for all 0≤ i < p, 0≤ j < k(t +1);

1.3 Now in the j-th submesh of size p× k, the i-th row contains k maxy-values

paired with the y-coordinate of a particular point, say d. Now, apply
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Lemma 5.2 to eliminate d by computing the and over the comparison val-

ues of at most k pairs using a single step similar to the only step in phase 8

of Algorithm 5.5 in constant time by Lemma 5.7 for all j : 0≤ j < k(t +1);

It is easy to show that the above iteration takes O
( q

k2

)
time and thus it can be con-

cluded that:

Theorem 7.7 Given n planar points in the first n
p columns of a reconfigurable mesh of size

p×q, p≤ q and pq = kn, theM -contour of these points can be computed in O
( q

k

)
time, which

is AT 2 optimal. �

7.5 A Conjecture

Is it possible that the parameter k = pq
I(n) in Definition 7.1 has extra significance?

In Lemma 7.1, k = I(n)I(n)
I(n) = I(n) and the reconfigurable mesh of size I(n)× I(n)

must form some buses of length Ω(I(n)), i.e., Ω(k) so that unit virtual communication

diameter is achieved which is vital in getting constant time solution. In Lemma 7.2,

k =

√
I(n)
√

I(n)

I(n) = 1. We already pointed out in Section 7.1 that the power of recon-

figurability becomes absolutely useless as buses of length O(1), i.e., O(k) is enough,

when problem P is tried to be solved AT 2 optimally on a reconfigurable mesh of size
√

I(n)×
√

I(n).

The following conjecture is plausible:

Conjecture 7.1 To obtain an AT2 optimal algorithm to solve a problem of size n with I(n)

information contents on a reconfigurable mesh of size p×q where
√

I(n) ≤ p≤ q≤ I(n) and

k = pq
I(n) , it is sufficient to form buses of length O(k).

Does Conjecture 7.1 imply that the concept of adaptive algorithm on a reconfig-

urable mesh compromises with the power of reconfigurability as the unconstrained

reconfigurable mesh can be considered as a k-constrained reconfigurable mesh? The

answer is no. It is true that a k-constrained reconfigurable mesh is asymptotically no

faster than an ordinary mesh as mentioned in Section 2.2.3.10 if and only if k is a con-
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stant. Whereas in Conjecture 7.1, k is a function of I(n) and k is a constant only in the

extreme case when q = O
(√

I(n)
)

.

To support Conjecture 7.1, we show in the next section that the adaptive algo-

rithms developed so far in this chapter can also be transformed on k-constrained re-

configurable meshes.

7.5.1 Adaptive Algorithms on Constrained Reconfigurable Meshes

Note that by the definition of k-constrained reconfigurable meshes in Section 2.2.3.10,

a message on a bus of length l can propagate at most k length of the bus in unit time

and, therefore, it requires Ω
(

l
k

)
time to transmit a message over the entire length of

the bus.

Lemma 7.8 Phase 2p of Algorithm 7.1 can be done in O
(q

k

)
time on a k-constrained recon-

figurable mesh.

Proof. For 0≤ j < q
k , let C j denote the contents of column j in the initial condition.

As mentioned in page 107 of Section 7.1, phase 2p can be considered as a problem of

transferring C j from column j to column k j using j steps while each step can be done

in constant time by p broadcasts in parallel for all j : 0≤ j < q
k . If the columns are

transferred one at a time, phase 2p takes O
(( q

k

)2
)

time which is unacceptable.

However, as all the C js are to be transferred in one direction, we can easily start to

transfer these simultaneously using ideas of pipelining in the following way:

As we assume k = r2 and q = k2t2 where r and t are integers in Section 7.4, we

may conclude that q
k = kt2. In the first pass, every C j moves from column j to column

j + 1, for 1≤ j < q
k −1 and C q

k−1 moves from column q
k −1 to column kt2 as shown in

Figure 7.3(pass 1). In the second pass, every C j moves from column j + 1 to column

j +2, for 1≤ j < q
k −2, C q

k−2 moves from column q
k −1 to column kt2 and C q

k−1 moves

from column kt2 to column k(t2 + 1) as shown in Figure 7.3(pass 2) and so on. There

should be at most q
k −1 passes and whenever any of C js reaches its destination column

in some pass, it will not take part in any of the remaining passes.
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Figure 7.3: All the passes of the pipelining in the proof of Lemma 7.8. Here p = 4, q = 16, and

k = 4 and C j is represented by a column of integer j for 0≤ j < 4.

As none of the passes configures buses of length more than k, the above pipelining

can be done in O
( q

k

)
time. �

Lemma 7.9 Phase 2s of Algorithm 7.1 can be done in O(1) time on a k-constrained reconfig-

urable mesh.

Proof. As mentioned in page 107 of Section 7.1, phase 2p can be done in two steps

where buses of length at most k are constructed. �

Lemma 7.10 Given s items in processors PEk j, 0≤ j < s, of a k-constrained reconfigurable

array of ks processors, these item can be sorted in O(s) time.

Proof. As successive items are separated by exactly k processors, Corollary 7.3 on

unconstrained reconfigurable arrays is still applicable without any modification. �

Lemma 7.11 Sorting of s items in a row of a k-constrained reconfigurable mesh of size t× s

can be done in O(1) time as long as t ≥ s and s = O(k).
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Proof. It can be easily shown that all the algorithms discussed in Sections 4.4.1–4.4.3

configure buses of length at most O(s) = O(k) to sort s items on a reconfigurable mesh

of size s× s. �

The following two theorems provide adaptive sorting algorithms on k-constrained

reconfigurable meshes:

Theorem 7.12 Given p items in the first column of a k-constrained reconfigurable mesh of

size p× k, k ≤ p, these items can be sorted in O
( p

k

)
time, which is AT2 optimal.

Proof. Consider the supporting module in Section 7.2.1 on a k-constrained reconfig-

urable mesh of size p× k where k ≤ p. Operations 1, 5, 7, 8, and 9 can be done in O(1)

time by Lemma 7.11. Using Lemma 7.10 it can be shown that operation 2 can be done

in O
(( p

k

)3/4
)

time, operations 3, 4, and 6 can be done in O
( p

k

)
time, and operation 10

can be done in O
(
k3/4

)
time as in each case items are separated by exactly k processors.

Then Lemma 7.9 completes the proof. �

Theorem 7.13 Given n items in the first n
p columns of a k-constrained reconfigurable mesh of

size p×q, p≤ q and pq = kn, these items can be sorted in O
(q

k

)
time, which is AT2 optimal.

Proof. Consider the principal module in Section 7.2.2 on a k-constrained reconfig-

urable mesh of size p×q where p≤ q. Operations 1, 8, and 9 can be done in O
( p

k

)
time

by Theorem 7.12.

If k ≥
(q

k

)3/4
then operation 5 takes O(1) time by Lemma 7.11 else it takes

O
(
q1/2/k3/2

)
time by Theorem 7.12. Similarly, if k ≥ p3/4 then operation 7 takes O(1)

time else it takes O
(

p1/2/k
)

time.

Using Lemma 7.10, operation 2 can be done in O
(( q

k

)3/4
)

time, operations 3, 4, and

6 can be done in O
(q

k

)
time and operation 10 can be done in O

(
p3/4

)
time. Lemma 7.8

completes the proof as p≤ q. �

Theorem 7.12 first appeared in [10, 11]. Theorem 7.13 also first appeared in [10] but

the proof presented in [10] is incomplete as Lemma 7.8 is not established which is an

important part of our proof. In fact Theorem 7.13 has been removed from [11] which

is an refined version of [10].
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Lemma 7.14 Computing theM -contour of k planar points in a row of a k-constrained recon-

figurable mesh of size k× k can be done in O(1) time.

Proof. It can be easily shown that Algorithm 5.4 configures buses of length at most k.
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Figure 7.4: All the passes of the pipelining in the proof of Theorem 7.15. Here p = 27, k = 3,

and the propagation of maxy(m(Si)) is represented by integer i for 0 ≤ i < 9. Note that for

simplification, k is not considered as r2 for some integer r as assumed in Section 7.4.

The next two theorems provide adaptive M -contour algorithms on k-constrained

reconfigurable meshes:

Theorem 7.15 Given p planar points in the first column of a k-constrained reconfigurable

mesh of size p×k, k≤ p, theM -contour of these points can be computed in O
( p

k

)
time, which

is AT 2 optimal.

Proof. Consider the supporting module in Section 7.4.1 on a k-constrained reconfig-

urable mesh of size p× k where k ≤ p. Additional sorting in phase 2s can be done in

O
( p

k

)
time by Theorem 7.12. The M -contours m(Si), 0≤ i < p

k , can be computed in
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parallel using a submesh of size k× k for each computation; this takes constant time

by Lemma 7.14. The single step to transfer the maxy(m(Si)) values to the first column

of the mesh of size p× k configures buses of length at most k.

Now consider the p
k2 iterations to eliminate points by comparing them with the

maxy(m(Si)) values. The length of the buses in the row broadcasts of phase 1.1 is

k while the same in the column broadcasts is k2(t + 1) in the t-th iteration. Thus,

phase 1.1 takes O(k(t +1)) steps. Phases 1.2 and 1.3 configure buses of length at most

k. So the entire iteration takes O
( p

k2
p
k

)
steps which is unacceptable.

Again, the ideas of pipelining as used in the proof of Lemma 7.8 can be applied to

the above iteration to achieve optimal time. Observe that in the t-th iteration, data

are moved from the u-th submeshes of size k× k each, kt ≤ u < k(t + 1), to all the v-

th submeshes of size k× k each, 0≤ v < k(t + 1). So, we can start all the iterations

simultaneously without making any bus-access conflict by pipelining data as shown

in Figure 7.4. Obviously such pipeline emulation of the above iteration takes only

O
( p

k

)
steps as buses of length at most k are configured.

Lemma 7.9 completes the proof. �

Theorem 7.16 Given n planar points in the first n
p columns of a k-constrained reconfigurable

mesh of size p×q, p≤ q and pq = kn, theM -contour of these points can be computed in O
( q

k

)

time, which is AT2 optimal.

Proof. Consider the principal module in Section 7.4.2 on a k-constrained reconfig-

urable mesh of size p× q where p ≤ q. Additional sorting in phase 2p can be done

in O
( q

k

)
time by Theorem 7.13. The M -contours m(S j), 0≤ j < q

k , can be computed

in parallel using a submesh of size p× k for each computation in O
( p

k

)
time by Theo-

rem 7.15. The single step to transfer the maxy(m(S j)) values to the first row of the mesh

of size p×q configures buses of length at most k.

Now consider the q
k2 iterations to eliminate points by comparing them with the

maxy(m(S j)) values. The length of the buses in the column broadcasts of phase 1.1 is k

while the same in the row broadcasts is k2(t + 1) in the t-th iteration. Thus, phase 1.1

takes O(k(t + 1)) steps. Phases 1.2 and 1.3 configure buses of length at most k. So the

entire iteration takes O
( q

k2
q
k

)
steps which is unacceptable.
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Again, the ideas of pipelining can be applied to the above iteration to achieve

optimal time. Observe that in the t-th iteration, data are moved from the u-th sub-

meshes of size p× k each, kt ≤ u < k(t +1), to all the v-th submeshes of size k× k each,

0≤ v < k(t +1). So, we can start all the iterations simultaneously without making any

bus-access conflict by pipelining data in a similar way as done in the proof of Theo-

rem 7.15. Obviously such pipeline emulation of the above iteration takes only O
( q

k

)

steps as buses of length at most k are configured.

Lemma 7.8 completes the proof. �

7.6 Conclusions

In Chapter 6 we have shown that even with optimal slowdown, the resultant algo-

rithms fail to remain AT2 optimal when a large reconfigurable mesh is self-simulated

on a smaller mesh for which AT2 optimal algorithms exist. Although this observation

devalues, if not rejects, the concept of self-simulation of reconfigurable meshes, for-

tunately the problem of efficient scaling down algorithms on reconfigurable meshes

escapes the blow as we have introduced in this chapter the idea of developing adap-

tive algorithms which can run on reconfigurable meshes of variable sizes and aspect

ratios without compromising AT 2 optimality. We have supported this idea by devel-

oping adaptive algorithms for sorting items and computing theM -contour of a set of

planar points on reconfigurable mesh.

We have also proposed a conjecture which relates normal unrestricted reconfig-

urable meshes to constrained reconfigurable meshes in the process of designing adap-

tive algorithms. To substantiate this conjecture we have successfully transformed our

adaptive algorithms on constrained reconfigurable meshes.

Adaptive algorithms make efficient use of optimal algorithms not merely on re-

configurable meshes but on ordinary meshes and linear arrays as well. We believe

that the study of adaptive algorithms on reconfigurable meshes for solving any spe-

cific problem will enable researchers to develop better understanding of the problem

across the a ranges of mesh-connected networks and ultimately this may lead to de-

veloping new efficient algorithms which are better than the existing ones.
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In particular, we have been able to develop, in Chapter 8, a new AT2 optimal M -

contour algorithm on ordinary meshes, by putting k = 1 in Theorem 7.16, with lower

constant associated with the highest order term in the complexity order. This algo-

rithm is then compared with the existing AT2 optimal M -contour Algorithm 5.3 of

Dehne in Chapter 8.



Chapter 8

A New Asymptotically Optimal

M -Contour Algorithm on Ordinary

Meshes

We believe that the study of adaptive algorithms on reconfigurable meshes for solv-

ing any specific problem will lead to developing new efficient algorithms on mesh-

connected networks—reconfigurable or ordinary ones. The aim of this chapter is to

illustrate our belief by developing a new AT2 optimal M -contour algorithm on ordi-

nary meshes, based on the adaptive algorithm reflected in Theorem 7.16, with lower

constant associated with the highest order term in the complexity order.

This chapter is organised as follows. The motivation of this chapter is given in

the next introductory section. In Section 8.2 we present some relevant results and

algorithms on transposing, broadcasting, and finding maxima on ordinary meshes.

The minimum achievable constant factor in the highest order term in the complexity

of Algorithm 5.3 is worked out in Section 8.3. In Section 8.4 we present a new optimal

M -contour algorithm and it is shown that the constant factor of the highest order term

in the complexity of this algorithm is much lower than that of Dehne’s Algorithm 5.3.

8.1 Introduction

Dehne [24] has presented an optimal Algorithm 5.3 to compute the M -contour of N

planar points on an ordinary mesh of size N1/2×N1/2. The exact constant factor of

the highest order term in the complexity of Algorithm 5.3, which O(N1/2) expression

hides, is not given in [24]. In this chapter we estimate that the straightforward imple-

127
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mentation of the recursive binary divide-and-conquer Algorithm 5.3 requires 23N1/2

steps. We then reduce the required steps to 19N1/2 through pre-sorting and using an

efficient strategy in dividing the mesh into halves. A lower bound is also established:

any implementation of Dehne’s Algorithm 5.3 requires at least 14N1/2 steps. In order

to further reduce the constant factor in the complexity, we develop a new optimal non-

recursive N1/2-ary divide-and-conquer algorithm which requires only 7N1/2 steps.

8.2 Preliminaries

In most of the cases, throughout this chapter, we consider the constant factor of the

highest order term but ignore the lower order additive terms in the complexity func-

tions.

As stated in Section 5.4 we also assume that the output of an M -contour compu-

tation preserves the partial ordering of the maximal elements w.r.t. x-coordinates but

these maximal elements are not necessarily contained in consecutive processors.

For simplified exposition, we further assume N = 22r for some integer r.

This section is organised as follows. In Section 8.2.1 we discuss optimal transpos-

ing of N
2 items on a mesh of size N1/2× 1

2N1/2. Shuffled order, an interesting order

of the processors for sorting, is discussed in Section 8.2.2. In Section 8.2.3 some rele-

vant results on broadcasting and finding the maximum among a set of data items on

ordinary meshes are presented.

8.2.1 Transposing on Specific Rectangular Meshes

Consider a mesh of size N1/2× 1
2N1/2 where N

2 items are stored one item per processor.

Definition 8.1 Let a specific problem of permutation be called transposing a mesh if and only

if the items of the mesh are rearranged in such a way that if the items are initially assumed

in snake-like-column-major order, after the permutation these are now arranged in snake-like-

row-major order as shown in Figure 8.1. The rearrangement sequence in transposing can

start either from the top-left processor or from the top-right processor, Let these be denoted as

normal and inverted transposing respectively (Figure 8.1).
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Throughout this chapter, if not stated otherwise, transposing will always be as-

sumed to be normal on a rectangular mesh where the height is twice the width.
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Figure 8.1: Transposing of an ordinary mesh.

In normal transposing the item in the top-right processor is moved to the bottom-

left processor and in inverse transposing the item in the bottom-left processor is moved

to the processor just below the top-right processor. Hence we may conclude the fol-

lowing lemma:

Lemma 8.1 Transposing of N
2 items on an ordinary mesh of size N1/2× 1

2N1/2 takes at least

3
2N1/2−2 and 3

2N1/2−3 steps for normal and inverted transposing respectively. �

The general problem of permutation, which includes transposing as a simple case,

can be solved in 3
2N1/2 steps (the fewest possible) using a greedy algorithm where at

each step, each item that still needs to move does so first along the column then along

the row provided there is no contention for the same edge. Contention is resolved

by the farthest-first protocol [51, Section 1.7.1]. The only problem with such a greedy

algorithm is the development of queues in the processors while resolving edge con-

tentions. For solving the general problem of permutation, the queue size can become

as large as 1
3N1/2−3 [51, Section 1.7.1]. The maximum queue size in transposing can

be computed as follows:

Consider the column i where N1/2 items are stored from top to bottom order and

also consider that after transposing the first 1
2N1/2 items are stored from left to right

in the row 2i and the rest of the items are stored in the row 2i + 1 from right to left.

Now, the items in processors PEi,i, PEi+1,i, . . . , PE 1
2N1/2−1,i will all be contending for
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i

2i

Figure 8.2: Development of queues in greedy transposing.

the east-bound link of the processor PE2i,i as shown in Figure 8.2 and this contention

will form a queue of size min
(

1
2N1/2−2i, i−1

)
in the processor PE2i,i. The maximum

queue size in transposing then will be

1
2N1/2−1
max
i=0

min

(
1
2

N1/2−2i, i−1

)

=
1
6

N1/2−1 .

Lemma 8.2 N
2 items on an ordinary mesh of size N1/2× 1

2N1/2, with no penalty for excessive

storage per processor, can be transposed in 3
2N1/2 steps while forming queues of maximum

1
6N1/2−1 items in the processors during the process. �

The general problem of permutation can be easily transformed into the problem

of sorting where keys will be the rank of the destination processor in some specific

ordering of the processors. The above Lemma 8.2 thus can also be realised by putting

k = 1
6N1/2−1 in Lemma 4.5.

8.2.1.1 Transposing Without Forming Queues

As mentioned in Section 4.3.2, Lemma 4.5 is not applicable to a mesh where comput-

ing and storage capability of each processor is very limited. The general problem of

permutation can certainly be realized on an ordinary mesh of size M×N, with lim-

ited storage per processor, in max(M,N) + 2min(M,N) routing steps, by Lemma 4.4.

We may conclude the that an ordinary mesh of size N1/2× 1
2N1/2 with N

2 items can be

transposed in 2N1/2 steps, without forming any queues, by transforming the problem

of transposing to a problem of sorting.
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Transposing a mesh by means of sorting is not likely to be very efficient in practice,

since for moderate values of N, the lower order term in the complexity of sorting is

significant. Moreover the above technique also fails to achieve the lower bound in

Lemma 8.1.

In this section we develop a queue-free transposing algorithm on ordinary meshes,

the complexity of which is extremely close to the lower bound in Lemma 8.1.

Algorithm 8.1 Transposing Without Forming Queues

1 Transpose N
4 items normally on the upper square submesh of size 1

2N1/2×
1
2N1/2 and N

4 items invertedly on the lower square submesh of size 1
2N1/2×

1
2N1/2 in parallel;

2 Perform 1
2N1/2 steps of the odd-even transposition sort (Section 4.2.2) along

each column in parallel;

Correctness of this algorithm can be established easily using the fact that every col-

umn is transposed into two successive rows which are arranged in mutually inverted

order and after phase 1, each of the rows needs to be moved at most 1
2N1/2 positions

in the upward or downward directions.

i

i

Figure 8.3: Greedy transposing of square meshes is queue free.

To show that Algorithm 8.1 is queue-free, it is sufficient to prove that the greedy

algorithm for transposing square meshes never forms any queue. Consider column i

which will be transposed into row i. Now every item in column i will be forwarded

to the processor PEi,i but these will never contend for the same edge as the items
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above the processor PEi,i will be taking the west-bound link and the items below the

processor PEi,i will be taking the east-bound link as shown in Figure 8.3.

Lemma 8.3 Algorithm 8.1 transposes N
2 items on an ordinary mesh of size N1/2× 1

2N1/2 in

exactly 3
2N1/2 steps without forming any queue.

Proof. It is obvious that the greedy algorithm, where at each step every item that still

needs to move does so first along the column then along the row, takes at most N1/2

steps to transpose N
4 items, normally or invertedly, on an ordinary square mesh of

size 1
2N1/2× 1

2N1/2. Hence, phase 1 of Algorithm 8.1 can be done in exactly N1/2 steps.

Clearly phase 2 takes 1
2N1/2 steps. �
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Figure 8.4: Shuffled row-major (a) and shuffled column-major (b) ordering of the processors

of mesh for sorting.

8.2.2 Shuffled Sorting Orders

As mentioned in Section 4.3, there is no single natural ordering of the processors of a

mesh for sorting. An unnatural ordering, named shuffled ordering [67], has been found

to be very useful in many applications of divide-and-conquer approach. Shuffled

ordering has the property that the first quarter of the processors form one quadrant,

the next quarter form another quadrant, etc., with this property holding recursively

within each quadrant. Based on the ordering of the quadrants, there can be many

types of shuffled ordering; of these shuffled row-major (Figure 8.4(a)) and shuffled

column-major (Figure 8.4(b)) orderings are most common.
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Lemma 8.4 Sorting of N items in shuffled row(column)-major order on an ordinary mesh of

size N1/2×N1/2 can be done in 6N1/2 +O(logN) steps.

Proof. First the items are sorted in snake-like order in 3N1/2 steps by Lemma 4.4 and

then each processor computes the rank of the item it contains from the address of the

processor. Now, in each processor, the destination processor, in shuffled order, for

each item is computed from it’s rank in O(logN) time by the binary search technique.

The snake-like order rank of the destination processor of each item is then computed

in constant time and the items are then sorted again in snake-like order using this rank

as the key in 3N1/2 steps by Lemma 4.4. �

An algorithm that directly sorts items in shuffled row(column)-major order may

take fewer steps and to our knowledge, it still remains an open problem.

8.2.3 Broadcasting and Finding Maximum Item on Ordinary Meshes

The following lower bounds have been used in this chapter to analyse the complexity

of theM -contour algorithms:

Lemma 8.5 Broadcasting some data contained in some processor PEi, j on an ordinary mesh

of size M×N can be done in M +N−2 steps.

Proof. First broadcast along row i and then broadcast along all the columns in parallel.

�

Lemma 8.6 The maximum item on an ordinary mesh of size M×N can be accumulated into

the processor PE0,0 in M +N steps.

Proof. Accumulate the maximum of each column into the processors at row 0 by

sorting each column in parallel in M steps by Theorem 4.1. Then accumulate the max-

imum of these maximums into the processor PE0,0 by sorting row 0 in N steps by

Theorem 4.1. �
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(c)(b)(a)

Figure 8.5: Different ways of dividing a square mesh into halves recursively.

8.3 Complexity Analysis of Dehne’s Algorithm 5.3

In [24] Dehne develops an optimal Algorithm 5.3 to compute the M -contour of N

planar points on an ordinary mesh of size N1/2×N1/2. The exact constant factor of

the highest order term in the complexity of Algorithm 5.3, which O(N1/2) expression

hides, is not given in [24]. In this section we compute the lower bound of the constant

factor of the highest order term in the complexity of Algorithm 5.3 to compare it with

our new optimal M -contour algorithm on ordinary meshes presented in Section 8.4.

If the recursive division of the mesh into halves, in Algorithm 5.3, is made only

along columns as shown in Figure 8.5(a), phases 6 and 7 require N1/2 + o(N1/2) steps

(Lemmas 8.5 and 8.6) as long as a half contains a full column and the optimality will

then be lost as Algorithm 5.3 will take O(N1/2 logN) time. Hence, the recursive division

of the mesh into halves must be made as either Figure 8.5(b) or Figure 8.5(c). Now,

if the sorting order in phase 1 is carefully chosen between snake-like-row-major and

snake-like-column-major orders then phases 2 and 3 can be done in constant time.

Phase 8 always takes constant time as no communication is needed. So, the following

recurrence equation can be written for Algorithm 5.3 applying Lemmas 4.4:

T (n) =

phase 9
︷ ︸︸ ︷

3N1/2 +T ′(n)

T ′(n) =

phase 1
︷ ︸︸ ︷

3N1/2 +

phases 6 and 7
︷ ︸︸ ︷

2

(

N1/2+
1
2

N1/2
)

︸ ︷︷ ︸

pass 0

+

phase 1
︷ ︸︸ ︷

2N1/2 +

phases 6 and 7
︷ ︸︸ ︷

2

(
1
2

N1/2+
1
2

N1/2
)

︸ ︷︷ ︸

pass 1

+T ′(N
4 )







(8.1)

Solving equation (8.1) we get that Algorithm 5.3 requires 23N1/2 steps.

Now, a careful observation reveals that if the mesh is pre-sorted before applying
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Algorithm 5.3 and the mesh is recursively divided as Figure 8.5(b) then phase 1 can

be omitted in all the even numbered passes of the recursion. Hence,

T (n) =

pre-sort
︷ ︸︸ ︷

3N1/2 +

phase 9
︷ ︸︸ ︷

3N1/2 +T ′(n)

T ′(n) =

phases 6 and 7
︷ ︸︸ ︷

2

(

N1/2+
1
2

N1/2
)

︸ ︷︷ ︸

pass 0

+

phase 1
︷ ︸︸ ︷

2N1/2 +

phases 6 and 7
︷ ︸︸ ︷

2

(
1
2

N1/2+
1
2

N1/2
)

︸ ︷︷ ︸

pass 1

+T ′(N
4 )







(8.2)

Solving equation (8.2) we get 20N1/2 steps.

Again, the purpose of phase 1 in all the odd passes the recursion in Algorithm 5.3

can also be achieved through transposing in fewer steps and thus we can further re-

duce the steps required by Algorithm 5.3 to 19N1/2 by using Lemma 8.3.

Interestingly, Algorithm 5.3 can also be executed in 19N1/2 steps if the mesh is pre-

sorted in shuffled column-major order before applying Algorithm 5.3 and Figure 8.5(c)

is followed in dividing the mesh. In such case phases 1–3 are not at all necessary.

Hence,

T (n) =

shuffled pre-sort
︷ ︸︸ ︷

6N1/2 +

phase 9
︷ ︸︸ ︷

3N1/2 +T ′(n)

T ′(n) =

phases 6 and 7
︷ ︸︸ ︷

2

(

N1/2+
1
2

N1/2
)

︸ ︷︷ ︸

pass 0

+2

(
1
2

N1/2+
1
2

N1/2
)

︸ ︷︷ ︸

pass 1

+T ′(N
4 )







(8.3)

Theorem 8.7 Any implementation of Algorithm 5.3 requires at least 14N1/2 steps.

Proof. Phases 1–3 can be discarded if the items are pre-sorted in shuffled column-

major order. Lower bounds of phases 6 and 7 are stated in Lemmas 8.5 and 8.6. As

mentioned in Section 8.2.2, sorting N items directly in shuffled row(column)-major

order on a mesh of size N1/2×N1/2 may take < 6N1/2 steps. By Theorem 4.3, the lower

bound of performing the shuffled pre-sort and phase 9 is 2N1/2 steps each. Hence, the
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following recurrence equation holds:

T (n) =

shuffled pre-sort
︷ ︸︸ ︷

2N1/2 +

phase 9
︷ ︸︸ ︷

2N1/2 +T ′(n)

T ′(n) =

phases 6 and 7
︷ ︸︸ ︷

2

(

N1/2+
1
2

N1/2
)

︸ ︷︷ ︸

pass 0

+2

(
1
2

N1/2+
1
2

N1/2
)

︸ ︷︷ ︸

pass 1

+T ′(N
4 )







(8.4)

�

8.4 A New Optimal M -Contour Algorithm

Dehne’s Algorithm 5.3 is a binary divide-and-conquer algorithm based on Lemma 5.2

where K is assumed to be 2. Lemma 5.2 also suggests that it is possible to develop

a multi-ary divide-and-conquer M -contour algorithm where the problem will be di-

vided recursively into more than two halves and the optimality of such an algorithm

depends entirely on the complexity of merging the solutions of the divided subprob-

lems. Moreover, recursion disappears when the problem is divided into N1/2 sub-

problems. By putting k = 1 in Theorem 7.16 we get the following optimal M -contour

algorithm on ordinary meshes:

Algorithm 8.2 A New Optimal M -Contour Algorithm

1 Sort S in snake-like column-major order w.r.t. the x-coordinate of the points;

2 Let the points in column c be denoted by the set Sc for all 0≤ c < N1/2.

Compute m(Sc), 0≤ c < N1/2, in parallel;

3 For all 0≤ c < N1/2: compute maxy(m(Sc)) in parallel;

4 Broadcast maxy(m(Sc)), 1≤ c < N1/2, to all columns i, 0≤ i < c;

5 For all 0≤ c < N1/2: for all p ∈ m(Sc): if y(p) > maxy(m(Si)), for all i > c

then set m(S)←m(S)∪{p};
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Theorem 8.8 Algorithm 8.2 requires at most 7N1/2 steps.

Proof. By Lemma 4.4 phase 1 takes 3N1/2 steps. Phase 2 can be done in N1/2−1 steps

in the following way:

After phase 1 each column is sorted in either ascending or descending order. Every

point in a column, say c, is systolically shifted to the descending direction for N1/2−1

times and each processor in column c then try to discard the point it contains, from

the m(Sc) by comparing it with the shifted points. The correctness of this procedure to

compute m(Sc) can easily be established using Lemma 5.2.

Phase 3 can be done in N1/2 steps by Theorem 4.1. Phase 4 can be done in 2N1/2−2

steps as follows:

Every maxy(m(Sc)) is broadcast to all the processors in column c, for all 0≤ c < N1/2,

in parallel by N1/2−1 steps. Now, these maximum values are systolically shifted to

the left in parallel for N1/2−1 times.

Phase 5 takes constant time as it does not involve any communication. �

The upper time bound of Algorithm 8.2 is just half of the lower time bound of

Algorithm 5.3.

8.5 Conclusions

We have estimated that the straightforward implementation of the recursive binary

divide-and-conquer Algorithm 5.3 of Dehne requires 23N1/2 steps to compute M -

contour of N planar points on an ordinary mesh of size N1/2×N1/2. We have been

able to reduce the required steps to 19N1/2 through pre-sorting and using an efficient

strategy in dividing the mesh into halves. A lower bound has also been established by

showing that any implementation of Dehne’s Algorithm 5.3 requires at least 14N1/2

steps. We have also developed a new optimal non-recursive N1/2-ary divide-and-

conquer algorithm which requires only 7N1/2 steps to computeM -contour of N planar

points on an ordinary mesh of size N1/2×N1/2. This is just half of the lower bound of

Algorithm 5.3.



Chapter 9

Conclusions

In the domain of parallel computation, the reconfigurable mesh has recently drawn

much attention because of its superior interprocessor communication capability

through reconfiguration of an underlying bus architecture. Yet a commercially vi-

able parallel computer is only possible if we solve some key problems like deriving

a high level programming models without compromising the power of the reconfig-

urable mesh and developing strategies and algorithms for efficient scaling down of

algorithms written on larger meshes. Ironically the major resistance to overcome in

solving these problems arises from the strength of reconfiguration.

The aim of this thesis has been to contribute to the acceptance of the reconfigurable

mesh as the next generation architecture of massively parallel computers. In pursu-

ing this aim we have developed a new programming model for the reconfigurable

mesh and developed a new strategy of adaptation to address the problem of scaling

down algorithms. We have also contributed to the existing strategy of self-simulation

in solving the same scaling down problem by developing new self-simulation algo-

rithms. Finally we have extended the application of the reconfigurable mesh by de-

veloping a number of efficient and optimal constant time algorithms for computing

the contour of maximal elements of a set of planar points on reconfigurable meshes

of various dimensions. To assist in the development of the above algorithms we have

also made an extensive survey of optimal sorting algorithms on mesh-connected net-

works.

The main contributions of the thesis, with reference to possible future extensions

of the results, are outlined below:

138
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i) We have defined a new programming model for 3-dimensional reconfigurable

meshes by means of a new programming language, RMPC (Reconfigurable Mesh

Parallel C). A serial simulator, RMSIM (Reconfigurable Mesh SIMulator), has

also been developed to assist in developing and executing RMPC programs on a

simulated 3-dimensional reconfigurable mesh. The strength of RMPC over other

existing programming models for the reconfigurable mesh lies in its unique abil-

ity to reuse programs, like subroutine calls, in different axis-orientations and/or

within restricted regions. RMPC has also opened up some key issues, in defin-

ing programming models for multi-dimensional reconfigurable meshes, to be

addressed in future development.

ii) We have introduced two unique properties of the maximal contour (M -contour)

of a set of planar points which have aided immensely in developing efficient

parallel algorithms. Exploiting these properties we have developed a number of

AT2 optimal parallel algorithms on different mesh-connected networks of vari-

ous dimensions. In fact the M -contour problem can be regarded as the second

theme of the thesis as we have used this problem in establishing most of our

ideas, from developing adaptive algorithms on restricted as well as unrestricted

reconfigurable meshes to extending the application of adaptive algorithms by

extracting new algorithms on the ordinary mesh. We have also made an exten-

sive survey of optimal parallel M -contour algorithms on mesh-connected net-

works. Our algorithm on 2-dimensional reconfigurable meshes can also be eas-

ily adapted to compute maximal elements of a set of points in multi-dimensional

space AT2 optimally. It is still an open problem whether an AT 2 optimal algo-

rithm exists for solving the above problem on higher dimensional reconfigurable

meshes.

iii) We have surveyed a number of self-simulation algorithms as self-simulation

is the widely-accepted strategy for solving the problem of scaling down algo-

rithms written on larger meshes. We have argued that the existing self-simulation

algorithms, where the simulation involves the problem of computing the con-

nected components of graphs, are unnecessarily complex and inefficient for self-

simulating a large class of problems. To support this argument we have pre-
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sented two restricted models of the reconfigurable mesh, the Monotonic-Bus

(MB) model and the Piecewise-Monotonic-Bus (PMB) model, and then we have

developed a new generic self-simulation algorithm SIMPLE, avoiding any com-

putation of connected components, which can self-simulate the new models

with asymptotically optimal slowdown, and for which the constant factor as-

sociated with the optimal slowdown is much less than that of the algorithms

which exploit computations of connected components. It would be interesting

to see whether our algorithm SIMPLE can also self-simulate some special in-

stances of the tree-RM model which resembles our new models in making global

restrictions of bus configuration.

iv) An important contribution of the thesis is in devaluing, if not rejecting, self-

simulation as an efficient strategy for solving the problem of scaling down al-

gorithms with the finding that, even with optimal slowdown, the resultant al-

gorithms fail to remain AT2 optimal when a large reconfigurable mesh is self-

simulated on a smaller mesh for which AT2 optimal algorithms exist. As an al-

ternative strategy for solving the problem of scaling down algorithms, we have

introduced the idea of developing adaptive algorithms which can run on recon-

figurable meshes of variable sizes and aspect ratios without compromising AT2

optimality. We have supported this idea by developing adaptive algorithms for

sorting items and computing the M -contour of a set of planar points on recon-

figurable meshes.

v) We have conjectured that in developing adaptive algorithms, it is sufficient to

configure buses whose lengths are bounded solely by the parameter which rep-

resents how much the mesh is filled with data initially. To substantiate our con-

jecture we have successfully transformed our adaptive algorithms on the con-

strained reconfigurable mesh where buses of at most a fixed length are allowed

to be formed.

vi) We have argued that the study of adaptive algorithms on reconfigurable meshes

for solving any specific problem will lead to developing new efficient algorithms

on mesh-connected networks—reconfigurable or ordinary ones. This argument
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has then been supported by extracting a new AT2 optimalM -contour algorithm,

on the ordinary mesh, from our adaptive M -contour algorithm. The new algo-

rithm has lower constant associated with the highest order term in the complex-

ity function than the existing optimal algorithm. This example has opened up a

new frontier in the study of adaptive algorithms.

We have used only two problems in supporting our idea of developing adap-

tive algorithms. We are hopeful that the idea of adaptive algorithms will be well-

established in future and researchers will come forward in developing adaptive algo-

rithms to solve hundreds of problems available in the field of computational geometry,

graphs, image processing, routing and ranking, arithmetic and vector computations

etc. Exploring the relationship between the restricted and the unrestricted general

reconfigurable mesh remains a challenging area of future research. We also believe

that the process of developing adaptive algorithms on the reconfigurable mesh will

lead to the development of many new efficient optimal algorithms on different mesh-

connected networks. It is also interesting to see how the idea of adaptive algorithms

can aid in scaling down algorithms on other reconfigurable architectures–existing and

yet to appear.

The reconfigurable mesh is an exciting idea whose time has not yet come. We hope

that the results and methods of this thesis, focusing on programming, algorithmic,

scaling, and optimality issues, will make a significant contribution towards hastening

that time.



Appendix A

The Source Code of RMSIM

The complete source code of the serial simulator RMSIM (Reconfigurable Mesh SIM-

ulator), presented in Chapter 3, with a reasonable amount of technical details and ex-

ample programs can be obtained by contacting the author and the same is also freely

available by ftp://cslab.anu.edu.au/pub/Manzur/RMSIM.
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