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Introduction

Irreducible and primitive polynomials over finite
fields have many applications in cryptography,
coding theory, random number generation etc.
See, for example, the books by Golomb, Knuth
(Vol. 2), and Menezes et al.

In this talk I will describe a new algorithm
which has been used to find primitive
polynomials of very high (in fact, “world
record”) degree over the field GF(2) of two
elements.

The results can be generalised to almost
primitive polynomials, which are (roughly
speaking) polynomials with a large primitive
factor.

Polynomials over GF(2)

GF(2) is just the set {0,1} with operations of
addition and multiplication modulo 2.

Equivalently, GF(2) is the set of Boolean values
{F, T} with operations & (exclusive or) and
& (and).

We consider polynomials over GF(2), that is,
polynomials whose coefficients are in GF(2).
For the sake of brevity, we won’t repeat this
statement every time!

Note that, for polynomials u, v over GF(2),
2u=2v=0.
This implies that v — v = u 4+ v and

(u+v)? =u? +22.

Some Definitions

We say that a polynomial P(x) is reducible if it
has nontrivial factors; otherwise it is irreducible.

If P(z) is irreducible of degree r > 1, then
GF(2") = Zs[z]/(P()) ,

so we have a representation of the finite field
GF(2") with 2" elements. If z is generator for
the multiplicative group of Zq[z]/(P(z)), then
we say that P(z) is primitive.

Since the multiplicative group has order 2" — 1,
we need to know the complete factorisation of
2" — 1 in order to test if an irreducible
polynomial is primitive. However, if r is a
Mersenne exponent, i.e. 2" — 1 is prime, then
irreducibility implies primitivity.




Some Well-Known Results

The following results can be found in texts such
as Lidl, Menezes et al. Here p is the Mdbius
function, and ¢ is Euler’s phi function.

1. 2" + z is the product of all irreducible

polynomials of degree d|n. For example,
8 _ 3 2, .3
t+zr=z(l+z)(1+z+z°)(1+2°+2°).

2. Let J,, be the number of irreducible
polynomials of degree n. Then

1
> dJa=2" and Jn = =3 2%u(n/d).
dln dln

In particular, if n is prime then
I = (2™ = 2)/n.

3. The number of primitive polynomials of
degree nis P, = ¢(2" — 1)/n < J,.

In particular, if n is a Mersenne exponent,
then P, = J, = (2" — 2)/n.

The Reciprocal Polynomial

If P(z) =3—o a;jz’ is a polynomial of degree r,
with ag # 0, then

Pa(z) =a"P(1/z) = Y aja
=0

is the reciprocal polynomial. Clearly P(z) is
irreducible (or primitive) iff Pr(z) is irreducible
(or primitive).

In particular, if
Pz)=14+2z°4+2", 0<s<r
is a trinomial, then the reciprocal trinomial is
Pr(z)=142""°+2".

If it is convenient, we can assume that s < r/2
(else consider the reciprocal trinomial).

Searching for Irreducible Polynomials

The irreducible polynomials (over GF(2), as
usual) of degree r are analogous to primes with
r digits. When searching for large primes we
can quickly eliminate most candidates by
sieving out multiples of small primes.

Similarly, when searching for irreducible
polynomials, we can eliminate candidates by
checking if they are divisible by irreducible
polynomials of low degree. This process is
called “sieving”. Since it takes a small
proportion of the overall computing time, we
shall not describe it here.

Irreducible Trinomials

In applications we usually want irreducible or
primitive polynomials with a small number of
nonzero terms. Hence, we restrict attention to
trinomials of the form

P(z)=P(z)=1+2°+2", 0<s<r.

For simplicity, assume r is an odd prime.

Swan’s Theorem

Swan (1962) determines the parity of the
number of irreducible factors by an argument
involving the discriminant (actually, Swan’s
theorem is a rediscovery of 19-th century
results).

If r is an odd prime, then Swan’s theorem
implies that P, s(z) has an even number of
irreducible factors (and hence is reducible) if
r==23mod 8 and s # 2 or r — 2.




Expectation of Success

The probability that a randomly chosen
polynomial of degree r is irreducible is of order
1/r. Empirically, it seems that the same holds
for trinomials of prime degree » = +1 mod 8
(this condition implies that Swan’s theorem is
not applicable).

Thus, if we consider all s in the range

0 < s < r/2, we expect a small constant number
¢ of irreducible trinomials of degree r.
Empirical evidence suggests that ¢ ~ 3.2 .

For example, considering the 523 prime

r € [1000,10000] such that » = +1 mod 8, we
find exactly 1683 irreducible trinomials, giving
an estimate ¢ = 3.22 4+ 0.08 .

Searching for Irreducible Trinomials

Suppose 7 is an odd prime, r = +1 mod 8, and
sieving has failed to show that P(z) = P, s(z) is
reducible. The standard algorithm computes

2% mod P(z)

by r steps of squaring and reduction, then uses
the result that P(z) is irreducible iff

¥ = z mod P(z) .
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Complexity of the Standard Algorithm

Since we are working over GF(2),

2
(Z ajm]) = Z G,jiE2j .
J J
Thus, each squaring step takes O(r) operations.

Each reduction step also takes O(r) operations,
since P(z) is a trinomial and we can apply

/" = 29+ 4 29 mod P(z)

forj=r—2,r—3,...,0 to reduce the result of
squaring to a polynomial of degree less than 7.

Thus, the complete test for reducibility of P, s
takes O(r?) operations, and to test all s takes
O(r?) operations (assuming that sieving leaves
a constant fraction of trinomials to test).
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Improving the Standard Algorithm

The standard algorithm uses 2r bits of memory
for squaring, and 2r + O(1) @ operations for
each reduction (we count bit-operations but in
practice we perform 32 or 64 bit-operations in
parallel using word-operations; this also applies
to our new algorithm). Many of these
operations are on bits which are necessarily
zero. There is a better algorithm which avoids
these redundant operations.

I don’t have time to describe the better
algorithm in detail today. Suffice it to say that
the most time-consuming operation is
interleaving two sequences of bits, analogous to
interleaving two halves of a deck of cards when
riffle-shuffling. If you are interested in the
details, see a talk that I gave at Warwick,
available from http://www.comlab.ox.ac.uk/
oucl/work/richard.brent/talks.html.
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Comparison of the Algorithms

The new algorithm has 75% fewer @ operations
than the standard algorithm.

Perhaps more significant than the number of
operations is the number of memory references,
which is reduced by 56%, from 8r/w + O(1)
loads/stores to 7= + O(1) loads/stores, on a
machine with wordlength w bits.

Also significant on some machines is that the
working set size is reduced by 25%, so memory
references are more likely to be in the cache.

In practice the improvement provided by the
new algorithm depends on many factors: the
values of 7 and (to a lesser extent) s, the cache
size, the compiler and compiler options used,
whether inner loops are written in assembler,
etc, but it is generally at least a factor of two.
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Performance of the New Algorithm

Table 1 gives normalised times for the standard
and new algorithms on various processors, for

r = 3021377. The third column is the
“normalised time” ¢ = time(nsec)/r2.

processor algorithm | ¢
300 Mhz P-IT standard | 6.31
7 new 1.64
500 Mhz P-IIT 7 0.77
833 Mhz P-III 7 1.66
300 Mhz SGI R12000 7 1.16
Sparc Ultra-80 ? 0.89
900 Mhz Ultra-Sparc 3 ? 0.54
1Ghz Alpha ES45 7 0.26

Table 1: Normalised time to test reducibility

The L2 cache size was 512KB on the P-II and
P-IIT machines ezcept only 256KB for the 833
Mhz P-III. The program was written in C,
except that on PCs the inner loops were written
in assembler to use the 64-bit MMX registers.
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Times for Various Degrees

In Table 2 we show the time for a full
reducibility test with our new algorithm and
various degrees r on a machine (300 Mhz
Pentium P-II) with 512KB L2 cache.

r time T (sec) | ¢ = 10°T/r?
19937 0.42 1.06
44497 2.10 1.06
110503 14.4 1.18
132049 21.7 1.24
756839 812 1.42
859433 1027 1.39

3021377 15010 1.64
6972593 198000 4.10

Table 2: Time to test reducibility on a P-II
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Some Primitive Trinomials

In Table 3 we give a table of primitive
trinomials 2" 4+ z° + 1 where r is a Mersenne
exponent (i.e. 2" — 1 is prime). We assume that
0<2s <7 (soxz” 4+ 2" °+1is not listed).

Results for r < 756839 are given by
Heringa et al. [7]. We have confirmed these
results.

The entries for » < 3021377 have been checked
by running at least two different programs on
different machines.

During this checking process, the entry with
r = 859433, s = 170340

was found. This was surprising, because
Kumada et al. [9] claimed to have searched the
whole range for r = 859433. It turns out that
Kumada et al. missed this entry because of a
bug in their sieving routine!
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Some Primitive Trinomials cont.

In Table 3, 2" + 2° + 1 is primitive over GF(2).
The entries for r = 132049 are by Heringa et al.
Smaller primitive trinomials are listed in
Heringa’s paper and the references given there.
The second entry for » = 859433 is from
Kumada et al..

The other seven entries were found by Brent,
Larvala and Zimmermann. The search for
7 = 6972593 is 96% complete.

T s
132049 | 7000, 33912, 41469, 52549, 54454
756839 215747, 267428, 279695
859433 170340, 288477
3021377 361604, 1010202
6972593 3037958

Table 3: Primitive trinomials

Almost Primitive Trinomials

There is a large gap between some of the
Mersenne exponents r for which primitive
trinomials exist. For example, there are none in
the interval 859433 < r < 3021377, even though
there are three Mersenne exponents in this
interval. This is because Swan’s theorem rules
out about half of the Mersenne exponents —

it rules out most exponents of the form

r = £3 mod 8.

The usual solution is to consider pentanomials
(five nonzero terms) instead of trinomials, but a
faster alternative is to use almost primitive
trinomials.

Definition. We say that a polynomial P(z) is
almost primitive with exponent r and increment
d < rif P(z) has degree r + ¢, P(0) # 0, and
P(z) has a primitive factor of degree r.

17 18
Almost Primitive Trinomials cont.
. . 16 3 . T 6 S f
For example, the trinomial z'° 4+ z° + 1 is 13 3 3 7
almost primitive with exponent 13 and 19 3 3 7
increment 3, because 61 5 17 31
TR (1,3 + 224 1)D(z), 107 2 8, 14, 17 3
2203 3 355 7
where 4253 8 1806 255
1960 85
D(z) = 2% +2+at + 2 + 2% +o® + 2t +a? 41 9941 | 3 | 1077 7
. o 11213 6 227 63
Is primitive. 21701 | 3 | 6999, 7587 | 7
In Table 4 we list some almost primitive 86243 2 2288 3
. . . 216091 | 12 42930 3937
trinomials. In fact, we give at least one for each
Mersenne exponent r < 107 for which no 1257787 | 3 74343 7
primitive trinomial of degree r exists. 1398269 | 5 417719 21
2976221 | 8 1193004 85
For more on almost primitive trinomials and
their applications, see my talk at Banff Table 4:

(May 2003), available at http://
www.comlab.ox.ac.uk/oucl/work/
richard.brent/talks.html.
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Some almost primitive trinomials over GF(2).
2™t9 4+ 2% 4 1 has a primitive factor of degree r;
4 is minimal; 2s < r + §; the period p = (2" — 1) f.
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A Larger Example

We already considered the almost primitive
trinomial 26 + 23 4- 1. Here we give an example
with higher degree: » = 216091, § = 12. We
have

p16108 4 42930 | 9 _ G(4)D(z),
where
S(z) =22+ 2 425 423+ 1,

and D(z) is a (dense) primitive polynomial of
degree 216091.

The factor S(z) of degree 12 splits into a
product of two primitive polynomials,

22+zt+28+2+1and
2T+t 2+ + 1

The contribution to the period from these
factors is f = LCM(2% — 1,27 — 1) = 3937.
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Use of Almost Primitive Trinomials in
Random Number Generators

If T(z) = 2"+% + 2° 4 1 is almost primitive with
exponent r, we can use the corresponding linear
recurrence

Up=Up_r_s+Upns mod 2%

as a generalized Fibonacci random number
generator.

The period will be a multiple of 2" — 1 (usually
a multiple of 2¢~1(2" — 1)) provided Uy, ..., Us
are odd.

The condition ensures that a recurrence with
lags < 6 (corresponding to the degree-d factor of
T'(z)) is not satisfied.

For more on random number generators, see my
talk at ICCSA03 (Montreal, May 2003),
available at http://www.comlab.ox.ac.uk/
oucl/work/richard.brent/talks.html.
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