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Abstract

The Hadamard maximal determinant problem asks for the maximum
determinant of a {+1, —1}-matrix of order n. Hadamard proved the
upper bound n"/2 which is attained if and only if a Hadamard matrix of
order n exists. Various lower bounds have been given within the last
half century, mostly relying on deterministic constructions. There are
also some lower bounds by Best, and by Brown and Spencer, based
on the idea of maximum excess, but these only apply if n =1 mod 4.

Our improved lower bounds are obtained by generalizing the idea of
maximum excess using the Schur complement. In order to obtain
bounds that make best use of the probabilistic method, we use not
only the expected value of the diagonal elements in the Schur
complement but also their variance.

Part | of the talk will give the calculation of the variance, which
involves proving an unusual two-dimensional binomial identity.
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Introduction — D(n) and R(n)

Let D(n) denote the maximum determinant attainable by an

n x n {£1}-matrix.

Hadamard (1893) gave the upper bound D(n) < n"/?, and a
matrix that achieves this bound is called a Hadamard matrix.

It is often convenient to consider the normalised function

R(n) := D(n)/n"/2. Hadamard’s inequality is R(n) < 1.

There are many constructions for Hadamard matrices. If a
Hadamard matrix of order n exists, then n =1, 2, or a multiple
of 4. The Hadamard conjecture is that Hadamard matrices exist
for every positive multiple of 4. It has been verified for n < 664.

We are interested in lower bounds on D(n) or R(n).
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The bordering approach

To construct a large-determinant matrix of order n, a good

approach is to add a suitable border to Hadamard matrix H of
order h < n.

We always choose h as large as possible, subject to h < n.
It is convenient to define d := n— h.

Many constructions are known for Hadamard matrices, so d is
“usually” small.

By a result of Livinskyi (2012), d = O(n'/®), and Warren
Smith (unpublished) claims d = O(n®) for all ¢ > 0.

If the Hadamard conjecture is true, then 0 < d < 3.
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Deterministic results

A deterministic construction [BO 2012] gives the lower bound

R(n) > (4 )d/2 ;

ne

which is sharper than the well-known Clements and Lindstrém
bound (3/4)"/2, but still weak because n occurs in the
denominator.

It is conjectured that
R(n) = ¢(d),

where the right-hand-side depends only on d.
Computations show that R(n) > 1/2 for all n < 120.
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The concept of excess

The excess of a {£1}-matrix H = (h;;) is
a(H):=>_> hy.
P

We define

o(h) :== maxo(H),
where the max is taken over Hadamard matrices of order h.
If h > 4 is the order of a Hadamard matrix, then

o(h) > (2/m)'/2h3/2

by a (probabilistic) result of Best (1977).
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The case d = 1

Schmidt and Wang (1977) showed that
D(h+1) > h"2(1 + o(h)/h).

Combining this with Best’s inequality on the previous slide gives
D(h+ 1) > h"?(1 + \/2h/7).

This implies that
5\ 1/2
R(h+1)> () ~ 0.48.
e

Thus, for d = 1 the lower bound is within a constant factor of
the Hadamard upper bound.
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Excess and the Schur complement

Let e:=(1,1,...,1)7. Schmidt and Wang’s result depends on

det( noe ) — _ det(H) (1 4 ”(:'))

which is a special case of the Schur complement identity

A B _
det( c D ) — det(A)det(D — CA~'B).

Here D — CA~'B is the Schur complement of A in ( é g )
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Using the Schur complement

To generalise the results for d = 1 to larger d, we consider a
Hadamard matrix A of order h, and try to add a border of d
rows and d columns so that the resulting {+1}-matrix

A B
c D
has large determinant.

Since |det(A)| = h"/? is fixed, this amounts to choosing the
border (B, C and D) so that the Schur complement D — CA~'B
has a large determinant.

Since Ais Hadamard, AAT = hl,so A~' = h 1AT.

It is convenient to define F:= CA"'"B=h"'CA’B

and we'll later need G := F + .
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The probabilistic construction

~ A B
(¢ o)
where Ais an h x h Hadamard matrix, Bis hx d, Cis d x h,

and Dis d x d. Thus Ais n x n, where n = h+ d.

We choose B uniformly at random from the 29 possibilities,
then choose ¢ = sgn(A' B);.

Note that row i of C depends on column i of B.
The diagonal elements f; in F = h~1CAT B are given by

fi=h" > [(ATB)jl.

1<j<h

There is no cancellation here, so E[f;] is of order h'/2.
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The diagonal elements of F

More precisely, for h > 1,

st =2-7n( ) ~ (2:)1/2 |

This is due to Brown and Spencer (1971), and independently
Best (1977). It depends on the binomial sum

£(2)e-s(3). 0

This identity was a problem in the 1974 Putnam competition.
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Off-diagonal elements

Suppose i # j, 1 < i,j < d. The off-diagonal elements f; of F
are, of course, only relevant if d > 1.

Since row j of C is independent of column j of B, it is easy to
see that
E[fj] =0

and we [BOS arXiv:1211.3248v2] can also prove that
Vit =1,

where V[X] := E[(X — E[X])?] denotes the variance of a
random variable X.
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Variance of the diagonal elements

It is more difficult to find the variance of the diagonal elements
fi of F. We recently showed that, for h > 4,

e ()
= (1 — i) +Oo(h ) < %

Note that 1 — 3/7 ~ 0.045 is small (and independent of h).
Thus, the distribution of f; is “concentrated” near its mean.
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An unusual double binomial sum

The expression for V[f;] depends on a double binomial sum
that is analogous to the single binomial sum giving E[f;], but
more difficult to prove.

Theorem (BO, arXiv:1309.2795)
Forallk > 0,

ZZ (k +p> (kikq) Pl =k (zkk>2'
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Sketch of proof

Write the sum as Sy = S, + Ss, where S, consists of the terms
for whichp=0o0rg=0, so

(2K 2k \ 5, ox(2k
s-2(3) 2 (i1p) 7~ (k)

and Sz consists of the other terms. Using symmetry, we have
2k 2k
S3=8 ) ( >( )(pz_qz).
poaa k+p/)\k+q

Thus, we have removed the absolute value function, at the
expense of having to sum over a triangular region
0<g<p<Lk.
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Sketch of proof (continued)

Now, writing p? — g% = (p — k)(p + k) — (g — k)(q + k) and
using some well-known binomial identities, we get

S3 = 16k(2k — 1) x
{[=,G007)- 2,600637)]
= (2560

= s (e

p>q>0

+

The expressions inside each pair of square brackets both
involve a kind of two-variable telescoping sum — the only terms
that do not cancel are those for g = 0. The resulting
one-dimensional sums can be evaluated explicitly, and the
result follows. For details see arXiv:1309.2795v2. Ol
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Stay tuned for Part Il
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