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Polynomials over finite fields

We consider univariate polynomials P (x) over a
finite field F . The algorithms apply, with minor
changes, for any small positive characteristic,
but since time is limited we assume that the
characteristic is two, and F = Z/2Z = GF(2).

P (x) is irreducible if it has no nontrivial factors.
If P (x) is irreducible of degree r, then [Gauss]

x2r
= x mod P (x).

Thus P (x) divides the polynomial
Pr(x) = x2r − x. In fact, Pr(x) is the product of
all irreducible polynomials of degree d, where d
runs over the divisors of r.

Let N(d) be the number of irreducible
polynomials of degree d. Thus

∑

d|r

dN(d) = deg(Pr) = 2r .

By Möbius inversion we see that

rN(r) =
∑

d|r

µ(d)2r/d .
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Counting irreducible polynomials

Thus, the number of irreducible polynomials of
degree r is

N(r) =
2r

r
+ O

(
2r/2

r

)
.

Since there are 2r polynomials of degree r, the
probability that a randomly selected polynomial
is irreducible is ∼ 1/r → 0 as r → +∞. In this
sense, almost all polynomials over (fixed) finite
fields are reducible (just as almost all integers
are composite).

Analogy. Polynomials of degree r are analogous
to prime numbers of r digits. By the prime
number theorem, the number of r-digit primes
in base b is about

∫ br

br−1

dt

ln t
=

(
br − br−1

r ln b

)(
1 + O

(
1

r

))
.

The Riemann Hypothesis implies an error term
O(rbr/2) as r → +∞ for the integral on the left
[von Koch].
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Irreducible and primitive polynomials

Irreducible polynomials over finite fields are
useful in several applications. As one example,
observe that, if P (x) is an irreducible
polynomial of degree r over GF(2), then
GF(2)[x]/P (x) ∼= GF(2r). In other words, the
ring of polynomials mod P (x) gives a
representation of the finite field with 2r

elements.

If, in addition, x is a generator of the
multiplicative group, that is if every nonzero
element of GF(2)[x]/P (x) can be represented as
a power of x, then P (x) is said to be primitive.

Primitive polynomials can be used to obtain
linear feedback shift registers (LFSRs) with
maximal period.

In general, to test primitivity, we need to know
the prime factorization of 2r − 1.

The number of primitive polynomials of degree
r over GF(2) is

φ(2r − 1)

r
≤ N(r) ,

with equality when 2r − 1 is prime.
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Fermat and Mersenne primes

A Fermat prime is a prime of the form 2n + 1.
There are conjectured to be only finitely many.
For n < 233 the only examples are
3, 5, 17, 257, 65537. Note that n is necessarily a
power of 2, because if n = pq with p > 1 odd,
then 2q + 1 is a nontrivial divisor of 2n + 1.
The converse is false, as shown by Euler:

232 + 1 = 641× 6700417 .

A Mersenne prime is a prime of the form
2n − 1, for example 3, 7, 31, 127, 8191, . . .
There are conjectured to be infinitely many
Mersenne primes. The number for n ≤ N is
conjectured to be of order log N .

The GIMPS project is searching systematically
for Mersenne primes. So far 46 Mersenne
primes are known, the largest being

243112609 − 1 .

If 2n − 1 is prime we say that n is a Mersenne
exponent. A Mersenne exponent is necessarily
prime, but not conversely (211 − 1 = 23× 89).
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Part 1: Testing irreducibility

Since irreducible polynomials are “rare” but
useful, we are interested in algorithms for
testing irreducibility.

From [Gauss], P (x) of degree r > 1 is
irreducible iff

x2r
= x mod P (x)

and, for all prime divisors d of r, we have

GCD
(
x2r/d − x, P (x)

)
= 1 .

The second condition is required to rule out the
possibility that P (x) is a product of irreducible
factors of some degree(s) k = r/d, d|r.
This condition does not significantly change
anything, so let us assume that r is prime.
(In our examples r is a Mersenne exponent, so
necessarily prime.) Then P (x) is irreducible iff

x2r
= x mod P (x).
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One more assumption

All the algorithms involve computations mod
P (x), that is, in the ring GF(2)[x]/P (x).

In the complexity analysis we assume that P (x)
is sparse, that is, the number of nonzero
coefficients is small. Thus, reduction of a
polynomial mod P (x) can be done in linear
time. The algorithms to be discussed still work
without this assumption, but the complexity
analysis no longer applies because more time is
spent in the reductions mod P (x).

In applications P (x) is often a trinomial

P (x) = xr + xs + 1 , r > s > 0 .
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Irreducible and primitive trinomials

There is no known formula for the number of
irreducible or primitive trinomials of degree r
over GF(2) (unlike the case of general
polynomials).

Since N(r) ≈ 2r/r, the probability that a
randomly chosen polynomial of degree r will be
irreducible is about 1/r. It is plausible to
assume that the same applies to trinomials.
There are r − 1 trinomials of degree r, so we
might expect O(1) of them to be irreducible.
More precisely, we might expect a Poisson
distribution with some constant mean µ.

This plausible argument is false, as shown by
Swan’s theorem. We state a [corrected] version
of Swan’s Corollary 5 that is relevant to
trinomials.

Historical note: Swan (1962) rediscovered
results of Pellet (1878) and Stickelberger (1897),
so the name of the theorem depends on your
nationality.
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Swan’s theorem (Corollary 5)

Theorem 1 Let r > s > 0, and assume r + s is
odd. Then Tr,s(x) = xr + xs + 1 has an even
number of irreducible factors over GF(2) in the
following cases:
a) r even, r 6= 2s, rs/2 = 0 or 1 mod 4.
b) r odd, s not a divisor of 2r, r = ±3 mod 8.
c) r odd, s divisor of 2r, r = ±1 mod 8.
In all other cases xr + xs + 1 has an odd
number of irreducible factors.

If both r and s are even, then Tr,s(x) is a
square. If both r and s are odd, apply the
theorem to Tr,r−s(x).

For r an odd prime, ignoring the easily-checked
cases s = 2 or r − s = 2,
case (b) says that the trinomial has an even
number of irreducible factors, and hence must
be reducible, if r = ±3 mod 8.

For prime r = ±1 mod 8, the heuristic Poisson
distribution does seem to apply, with mean
µ ≈ 3. Similarly for primitive trinomials, with a
correction factor φ(2r − 1)/(2r − 2).
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First algorithm — repeated squaring

Our first and simplest algorithm for testing
irreducibility is just repeated squaring:

Q(x)← x;
for j ← 1 to r do

Q(x)← Q(x)2 mod P (x);

if Q(x) = x then
return irreducible

else
return reducible.

The operation Q(x)← Q(x)2 mod P (x) can be
performed in time O(r). The constant factor is
small. We recommend the fast squaring
algorithm of Brent, Larvala and Zimmermann
(2003). This saves both operations and memory
references, and is about 2.2 times faster than
the obvious squaring algorithm (as implemented
in most otherwise-good software packages).

Since the irreducibility test involves r squarings,
the overall time is O(r2).
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Polynomial multiplication

Before describing other algorithms for
irreducibility testing, we digress to discuss
polynomial multiplication, matrix
multiplication, and modular composition.

To multiply two polynomials A(x) and B(x) of
degree (at most) r, the “classical” algorithm
takes time O(r2). There are faster algorithms,
e.g. Karatsuba, Toom-Cook, and FFT-based
algorithms.

For polynomials over GF(2), the asymptotically
fastest known algorithm is due to Schönhage.
(The Schönhage-Strassen algorithm does not
work in characteristic 2, and it is not clear
whether Fürer’s ideas are useful here.)

Schönhage’s algorithm runs in time

M(r) = O(r log r log log r) .

In practice, for r ≈ 32 000 000, a multiplication
takes about 480 times as long as a squaring.
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Matrix multiplication

Let ω be the exponent of matrix multiplication,
so we can multiply n× n matrices in time
O(nω+ε) for any ε > 0. The best result is
Coppersmith and Winograd’s ω < 2.376, though
in practice we would use the classical (ω = 3) or
Strassen (ω = log2 7 ≈ 2.807) algorithm.

Since we are working over GF(2), our matrices
have single-bit entries. This means that the
classical algorithm can be implemented very
efficiently using full-word operations (32 or 64
bits at a time). Nevertheless, Strassen’s
algorithm is faster if n is larger than about
1000.

Good in practice is the “Four Russians”
algorithm [Arlazarov, Dinic, Kronod &
Faradzev, 1970]. It computes n× n Boolean
matrix multiplication in time O(n3/ log n).

We can use the Four Russians’ algorithm up to
some threshold, say n = 1024, and Strassen’s
recursion for larger n, combining the advantages
of both.
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Modular composition

The modular composition problem is: given
polynomials A(x), B(x), P (x), compute

C(x) = A(B(x)) mod P (x).

If max(deg(A), deg(B)) < r = deg(P ), then we
could compute A(B(x)), a polynomial of degree
at most (r − 1)2, and reduce it modulo P (x).
However, this wastes both time and space.

Better is to compute

C(x) =
∑

j≤deg(A)

aj(B(x))j mod P (x)

by Horner’s rule, reducing mod P (x) as we go,
in time O(rM(r)) and space O(r). Using
Schönhage’s algorithm for the polynomial
multiplications, we can compute C(x) in time
O(r2 log r log log r).
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Faster modular composition

Using an algorithm of Brent & Kung (1978),
based on an idea of Paterson and Stockmeyer,
we can reduce the modular composition
problem to a problem of matrix multiplication.
If the degrees of the polynomials are at most r,
and m = ⌈r1/2⌉, then we have to perform m
multiplications of m×m matrices. The
matrices are over the same field as the
polynomials (that is, GF(2) here).

The Brent-Kung modular composition
algorithm takes time

O(r(ω+1)/2) + O(r1/2M(r)),

where the first term is for the matrix
multiplications and the second term is for
computing the relevant matrices.

Assuming Strassen’s matrix multiplication, the
first term is O(r1.904) and the second term is
O(r1.5 log r log log r). Thus, the second term is
asymptotically negligible (but maybe not in
practice).
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Using modular composition

Recall that our problem is to compute
x2r

mod P (x). Repeated squaring is not the
only way to do this.

Let Ak(x) = x2k
mod P (x). Then a modular

composition algorithm can be used to compute
Ak(Am(x)) mod P (x). Since

Ak(Am(x)) =
(
x2m)2k

mod P (x) = Am+k(x),

we can compute x2r
mod P (x) with about

log2(r) modular compositions instead of r
squarings.

For example, if r = 17, we have
(all computations in GF(2)[x]/P (x)):

A1(x) = x2, (trivial)
A2(x) = A1(A1(x)) = x4, (≡ 1 squaring)
A4(x) = A2(A2(x)) = x16, (≡ 2 squarings)
A8(x) = A4(A4(x)) = x256, (≡ 4 squarings)
A16(x) = A8(A8(x)) = x216

, (≡ 8 squarings)
A17(x) = A16(x)2 = x217

, (1 squaring)

using only 4 modular composition steps.
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Second algorithm

To summarise, we can compute
Ar(x) = x2r

mod P (x) by the following
recursive algorithm that uses the binary
representation of r (not that of 2r):

if r = 0 then
return x

else if r even then
{U(x)← Ar/2(x);
return U(U(x)) mod P (x)}

else
return Ar−1(x)2 mod P (x).

The algorithm takes about log2(r) modular
compositions. Hence, if Strassen’s algorithm is
used in the Brent-Kung modular composition
algorithm, we can test irreducibility in time
O(r1.904 log r).
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Third algorithm

Recently, Kedlaya and Umans (2008) proposed
an asymptotically fast modular composition
algorithm that runs in time Oε(r

1+ε) for any
ε > 0.

The algorithm is complicated, involving iterated
reductions to multipoint multivariate
polynomial evaluation, multidimensional FFTs,
and the Chinese remainder theorem.
See the papers on Umans’s web site
www.cs.caltech.edu/~umans/research.htm

Using the Kedlaya-Umans fast modular
composition instead of the Brent-Kung
reduction to matrix multiplication,
we can test irreducibility in time Oε(r

1+ε).

Warning: the “Oε(· · ·)” notation indicates that
the implicit constant depends on ε. In this case,
it is a rather large and rapidly increasing
(probably exponential) function of 1/ε.
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Comparison of the algorithms

So the last shall be first,
and the first last

Matthew 20:16

The theoretical time bounds predict that the
third algorithm should be the fastest, and the
first algorithm the slowest. However, this is
only for sufficiently large degrees r.

In practice, for r up to at least 4.3× 107, the
situation is reversed! The first algorithm is the
fastest, and the third algorithm is the slowest.

A minor drawback of the first (squaring)
algorithm is that it is hard to speed up on a
parallel machine. The other algorithms are
much easier to parallelise. However, this is not
so relevant when we are considering many
trinomials, as we can let different processors of
a parallel machine work on different trinomials
in parallel.
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Example, r = 32 582 657

Following are actual or estimated times on a
2.2 Ghz AMD Opteron 275 for r = 32 582 657
(a Mersenne exponent).

1. Squaring (actual): 64 hours

2. Brent-Kung (estimates):

• classical: 265 hours (19% mm)

• Strassen: 254 hours (15% mm)

• Four Russians: 239 hours (10% mm)
(plus Strassen for n > 1024)

3. Kedlaya-Umans (estimate): > 1010 years

The Brent-Kung algorithm would be the fastest
if the matrix multiplication were dominant;
unfortunately the O(r1/2M(r)) overhead term
dominates.

Since the overhead scales roughly as r1.5, we
estimate that the Brent-Kung algorithm would
be faster than the squaring algorithm for
r > 7× 108 (approximately).
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Note on Kedlaya-Umans

Éric Schost writes:

The Kedlaya-Umans algorithm
reduces modular composition to the
multipoint evaluation of a
multivariate polynomial, assuming
the base field is large enough.

The input of the evaluation is
over Fp; the algorithm works over Z

and reduces mod p in the end. The
evaluation over Z is done by CRT
modulo a bunch of smaller primes,
and so on. At the end-point of the
recursion, we do a naive evaluation
on all of Fpm , where p is the current
prime and m the number of
variables. So the cost here is ≥ pm.

[Now he considers choices of m in
the case r = 32 582 657; all give
pm ≥ 1.36× 1027.]

Our estimate of > 1010 years is based on a time
of 1 nsec per evaluation (very optimistic).
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The “best” algorithm

Comparing the second algorithm with the first,
observe that the modular compositions do not
all save equal numbers of squarings. In fact the
last modular composition saves ⌊r/2⌋ squarings,
the second-last saves ⌊r/4⌋ squarings, etc.

Each modular composition has the same cost.
Thus, if we can use only one modular
composition, it should be the one that
saves the most squarings.

If we use ⌊r/2⌋ squarings to compute

x2⌊r/2⌋
mod P (x), then use one modular

composition (and one further squaring, if r is
odd), we can compute x2r

mod P (x) faster than
with any of the algorithms considered so far,
provided r exceeds a certain threshold.

In the example, the time would be reduced from
64 hours to 44 hours, a saving of 31%.

Doing two modular compositions would reduce
the time to 40 hours, a saving of 37%.
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Computational results

In 2007-8 Paul Zimmermann and I conducted a
search for irreducible trinomials xr + xs + 1
whose degree r is a (known) Mersenne
exponent. Since 2r − 1 is prime, irreducible
implies primitive. The previous record degree of
a primitive trinomial was r = 6972 593.

r s
24 036 583 8 412 642, 8 785 528
25 964 951 880 890, 4 627 670, 4 830 131, 6 383 880
30 402 457 2 162 059
32 582 657 5 110 722, 5 552 421, 7 545 455

Table 1: Ten new primitive trinomials xr +xs +1
of degree a Mersenne exponent, for s ≤ r/2.

We used the first algorithm to test irreducibility
of the most difficult cases. Most of the time was
spent discarding the vast majority of trinomials
that have a small factor, using a new factoring
algorithm with good average-case behaviour
(the topic of the second half of this talk).
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Part 2: Factoring

The problem of factoring a univariate
polynomial P (x) over a finite field F often
arises in computational algebra. An important
case is when F has small characteristic and
P (x) has high degree but is sparse (has only a
small number of nonzero terms).

Since time is limited, I will make the same
assumptions as in Part 1: F = GF(2) and
P (x) is sparse, typically a trinomial

P (x) = xr + xs + 1, r > s > 0,

although the ideas apply more generally.

The aim is to give an algorithm with good
amortized complexity, that is, one that works
well on average. Since we are restricting
attention to trinomials, we average over all
trinomials of fixed degree r.

Equivalently, we can use probabilistic language,
and assume a uniform distribution over all
trinomials of fixed degree r.
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Distinct degree factorization

I will only consider distinct degree factorization.
That is, if P (x) has several factors of the same
degree d, the algorithm will produce the
product of these factors. The Cantor-
Zassenhaus algorithm can be used to split this
product into distinct factors. This is usually
cheap because in most cases the product has
small degree or consists of just one factor.

Factor of smallest degree

To simplify the complexity analysis and speed
up the algorithm in the common application of
searching for irreducible polynomials, I only
consider the time required to find one nontrivial
factor (it will be a factor of smallest degree) or
output “irreducible”.

Certificates of reducibility

A nontrivial factor (preferably of smallest
degree) gives a “reducibility certificate” that
can quickly be checked.
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Factorization in GF(2)[x]

From now on we write “+” instead of “−” (they
are equivalent in GF(2)[x]).

As we already mentioned, x2d
+ x is the product

of all irreducible polynomials of degree
dividing d. For example,

x23

+ x = x(x + 1)(x3 + x + 1)(x3 + x2 + 1) .

Thus, a simple (but slow) algorithm to find a
factor of smallest degree of P (x) is to compute

GCD(x2d
+ x, P (x)) for d = 1, 2, . . .. The first

time that the GCD is nontrivial, it contains a
factor of minimal degree d. If the GCD has
degree > d, it must be a product of factors of
degree d.

If no factor has been found for d ≤ r/2, where
r = deg(P (x)), then P (x) must be irreducible.

Note that x2d
should not be computed

explicitly; instead compute x2d
mod P (x) by

repeated squaring.
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Application to trinomials

Some simplifications are possible when
P (x) = xr + xs + 1 is a trinomial.

• We can skip the case d = 1 because a
trinomial can not have a factor of
degree 1.

• Since xrP (1/x) = xr + xr−s + 1, we only
need consider s ≤ r/2.

• By applying Swan’s theorem, we can
usually show that the trinomial under
consideration has an odd number of
factors; in this case we only need check
d ≤ r/3.
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Complexity of squares and muls

In Part 1 we already considered the complexity
of computing squares and products in
GF(2)[x]/P (x). Recall that, with our usual
assumption that P (x) is sparse, squaring can be
performed in time

S(r) = Θ(r)≪M(r)

and multiplication can be performed in time

M(r) = O(r log r log log r) .

In the complexity estimates we assume that
M(r) is a sufficiently smooth and well-behaved
function.
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Complexity of GCD

For GCDs we use a sub-quadratic algorithm
that runs in time G(r) = O(M(r) log r).

More precisely,

G(2r) = 2G(r) + O(M(r)) ,

so

M(r) = O(r log r log log r)⇒ G(r) = Θ(M(r) log r) .

In practice, for r ≈ 2.4× 107 and our
implementation on a 2.2 Ghz Opteron,

S(r) ≈ 0.005 seconds,

M(r) ≈ 2 seconds,

G(r) ≈ 80 seconds,

M(r)/S(r) ≈ 400 ,

G(r)/M(r) ≈ 40 .
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Avoiding GCD computations

In the context of integer factorization,
Pollard (1975) suggested a blocking strategy to
avoid most GCD computations and thus reduce
the amortized cost; von zur Gathen and
Shoup (1992) applied the same idea to
polynomial factorization.

The idea of blocking is to choose a parameter
ℓ > 0 and, instead of computing

GCD(x2d
+ x, P (x)) for d ∈ [d′, d′ + ℓ) ,

compute

GCD(pℓ(x
2d′

, x), P (x)) ,

where the interval polynomial pℓ(X, x) is
defined by

pℓ(X, x) =
ℓ−1∏

j=0

(
X2j

+ x
)

.

In this way we replace ℓ GCDs by one GCD and
ℓ− 1 multiplications mod P (x).
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Backtracking

The drawback of blocking is that we may have
to backtrack if P (x) has more than one factor
with degrees in [d′, d′ + ℓ), so ℓ should not be
too large. The optimal strategy depends on the
expected size distribution of factors and the
ratio of times for GCDs and multiplications.
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New idea - multi-level blocking

We introduce a finer level of blocking to replace
most multiplications by squarings, which speeds
up the computation in GF(2)[x]/P (x) of the

interval polynomials pm(x2d
, x), where

pm(X, x) =
m−1∏

j=0

(
X2j

+ x
)

=
m∑

j=0

xm−jsj,m(X) ,

sj,m(X) =
∑

0≤k<2m, w(k)=j

Xk ,

and w(k) denotes the Hamming weight of k.

Note that sj,m(X2) = sj,m(X)2 in

GF(2)[x]/P (x). Thus, pm(x2d
, x) can be

computed with cost m2S(r) if we already know

sj,m(x2d−m
) for 0 < j ≤ m.

In this way we replace m multiplications and m
squarings by one multiplication and m2

squarings. Choosing m ≈
√

M(r)/S(r)
(about 20 if M(r)/S(r) ≈ 400), the speedup
over single-level blocking is about m/2 ≈ 10.
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Fast initialization

The polynomials

sj,m(x) =
∑

0≤k<2m, w(k)=j

xk

satisfy a “Pascal triangle” recurrence relation

sj,m(x) = sj,m−1(x
2) + x× sj−1,m−1(x

2)

with boundary conditions

sj,m(x) = 0 if j > m ,

s0,m(x) = 1 .

Thus, we can compute

{sj,m(x) mod P (x) | 0 ≤ j ≤ m}

in time O(m2r), even though the definition of
sj,m(x) involves O(2m) terms.

Question: Have the polynomials sj,m(x) been
studied before? It seems probable but I have
not found any references to them.

33

Recapitulation

To summarize, we use two levels of blocking:

• The outer level replaces most GCDs by
multiplications.

• The inner level replaces most
multiplications by squarings.

• The blocking parameter
m ≈

√
M(r)/S(r) is used for the inner

level of blocking.

• A different parameter ℓ = km is used for
the outer level of blocking.
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Example

Figure 1: ℓ = 15, m = 5

In the example, S = 1/25, M = 1, G = 10

No blocking: cost 15G + 15S = 150.6

1-level blocking: G + 14M + 15S = 24.6

2-level blocking: G + 2M + 75S = 15.0

More realistically, suppose ℓ = 80, m = 20,
S = 1/400, M = 1, G = 40

No blocking: cost 80G + 80S = 3200.2

1-level blocking: G + 79M + 80S = 119.2

2-level blocking: G + 3M + 1600S = 47.0
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Sieving

A small factor is one with degree d < 1
2 log2 r,

so 2d <
√

r.

It would be inefficient to find small factors in
the same way as large factors. Instead, let
d′ = 2d − 1, r′ = r mod d′, s′ = s mod d′. Then

P (x) = xr +xs +1 = xr′ +xs′ +1 mod (xd′ −1) ,

so we only need compute

GCD(xr′ + xs′ + 1, xd′ − 1) .

The cost of finding small factors is negligible
(both theoretically and in practice), so will be
ignored.

In the definition, the fraction 1
2 is rather

arbitrary; it can be replaced by 1− ε for any
ε > 0.
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Distribution of degrees of factors

In order to predict the expected behaviour of
our algorithm, we need to know the expected
distribution of degrees of irreducible factors.
Our complexity estimates here are based on the
assumption that trinomials of degree r behave
like the set of all polynomials of the same
degree, up to a constant factor:

Assumption 1 Over all trinomials xr + xs + 1
of degree r over GF(2), the probability πd that a
trinomial has no nontrivial factor of degree ≤ d
is at most c/d, where c is a constant and
1 < d ≤ r.

This assumption is plausible and in agreement
with experiments, though not proven. Under
the assumption, we use an amortized model to
obtain the total complexity over all trinomials
of degree r.

From Assumption 1, the probability that a
trinomial does not have a small factor is
O(1/ log r).
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Simpler approximation

Let pd = πd−1 − πd be the probability that the
smallest nontrivial factor of a randomly chosen
trinomial has degree d ≥ 2. Although not
strictly correct, the following is a good
approximation.

Assumption 2 pd is of order 1/d2, provided d
is not too large.

I will use Assumption 2 because it simplifies the
amortized complexity analysis, but the same
results can be obtained from Assumption 1
using summation by parts.

Some empirical evidence for Assumptions 1–2 in
the case r = 6972 593 is given in Table 2 (next
slide). Results for other large Mersenne
exponents are similar.
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Table 2: Statistics for r = 6972 593

d dπd d2pd

2 1.33 1.33
3 1.43 1.71
4 1.52 1.52
5 1.54 1.84
6 1.60 1.47
7 1.60 1.85
8 1.67 1.29
9 1.64 2.10
10 1.65 1.73
100 1.77
1000 1.76
10000 1.88
100000 1.62
226887 2.08
r − 1 2.00

Evidence for Assumptions 1–2.
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Analogies

The following have similar distributions in the
limit as n→∞:

1. Degree of smallest irreducible factor of a
random monic polynomial of degree n
over a finite field (say GF(2)).

2. Size of smallest cycle in a random
permutation of n objects.

3. Size (in base-b digits) of smallest prime
factor in a random integer of n digits.

More precisely, let Pd be the limiting
probability that the smallest irreducible factor
has degree > d, that the smallest cycle has
length > d, or that the smallest prime factor
has > d digits, in cases 1–3 respectively. Then

Pd ∼ c/d as d→∞

(the constant c is different in each case).
For example, in case 3, let x = bd; then

Pd =
∏

prime p<x

(
1− 1

p

)
∼ e−γ

lnx
=

(
e−γ

ln b

)
1

d

by the theorem of Mertens.
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Outer level blocking strategy

The blocksize in the outer level of blocking is
ℓ = km. We take an increasing sequence

k = k0j for j = 1, 2, 3, . . . ,

where k0m is of order log r (since small factors
will have been found by sieving). This leads to
a quadratic polynomial for the interval bounds.

There is nothing magic about a quadratic
polynomial, but it is simple to implement and
experiments show that it is reasonably close to
optimal.

Using the data that we have obtained on the
distribution of degrees of smallest factors of
trinomials, and assuming that this distribution
is insensitive to the degree r, we could obtain a
strategy that is close to optimal. However, the
choice k0j with suitable k0 is simple and not too
far from optimal. The number of GCD and
sqr/mul operations is usually within a factor of
1.5 of the minimum possible.
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Expected cost of sqr/mul

Recall that the inner level of blocking replaces
m multiplications by m2 squarings and one
multiplication, where m ≈

√
M(r)/S(r) makes

the cost of squarings about equal to the cost of
multiplications.

For a smallest factor of degree d, the expected
number of squarings is m(d + O(

√
d)).

Averaging over all trinomials of degree r, the
expected number is

O


m

∑

d≤r/2

d + O(
√

d)

d2


 = O (m log r) .

Thus, the expected cost of sqr/mul operations
per trinomial is

O
(
S(r) log r

√
M(r)/S(r)

)

= O
(
log r

√
M(r)S(r)

)

= O
(
r(log r)3/2(log log r)1/2

)
.
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Expected cost of GCDs

Suppose that P (x) has smallest factor of
degree d. The number of GCDs required to find
the factor, using our (quadratic polynomial)
blocking strategy, is O(

√
d). By Assumption 2,

the expected number of GCDs for a trinomial
with no small factor is

1 + O




∑

(lg r)/2<d≤r/2

√
d

d2


 = 1 + O

(
1√
log r

)
.

Thus the expected cost of GCDs per trinomial is

O(G(r)/ log r) = O(M(r)) = O(r log r log log r) .

This is asymptotically ≪ expected cost of
sqr/mul operations

In practice, for r ≈ 4.3× 107, GCDs take about
65% of the time versus 35% for sqr/mul. Once
again, the asymptotic analysis is misleading,
because the function

√
log r

log log r

is a very slowly growing function of r.
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Comparison with classical algorithms

For simplicity I will use the Õ notation which
ignores log factors.

The “classical” algorithm takes an expected
time Õ(r2) per trinomial, or Õ(r3) to cover all
trinomials of degree r.

The new algorithm takes expected time Õ(r)
per trinomial, or Õ(r2) to cover all trinomials of
degree r.

In practice, the new algorithm is faster by a
factor of about 160 for r = 6972 593, and by a
factor of about 1000 for r = 43 112 609.

Thus, comparing the computation for
r = 43 112 609 with that for r = 6972 593: using
the classical algorithm would take about 240
times longer (impractical), but using the new
algorithm saves a factor of 1000.

Generally, our search for different Mersenne
exponents r ∈ {6 972 593, 24 036 583, 25 964 951,
30 402 457, 32 582 657, 43 112 609} took less time
for larger r, due to incremental improvements in
the search program!
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Recent computational results

Since Sept 2008 we have been searching for
primitive trinomials of degree 43 112 609 (the
largest known Mersenne exponent).

Dan Bernstein and Tanja Lange have joined in
the search and contributed CPU cycles.

So far we completed about 98% of the search
and found four new primitive trinomials
xr + xs + 1, r = 43 112 609:

s = 3569 337, 4 463 337, 17 212 521, 21 078 848

Testing irreducibility took about 119 hours per
trinomial on a 2.2 Ghz AMD Opteron, using
our first algorithm. The “best” algorithm would
take about 69 hours (saving 42%).

Most of the time (about 22 processor-years) was
spent eliminating reducible trinomials at an
average rate of about 32 sec per trinomial
(×43112609/2 trinomials).
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Conclusion

The new double-blocking strategy works well
and, combined with fast multiplication and
GCD algorithms, has allowed us to find new
primitive trinomials of record degree. This
would have been impractical using the classical
algorithms.

The same ideas work over finite fields GF(p) for
small prime p > 2, and for factoring sparse
polynomials P (x) that are not necessarily
trinomials: all we need is that the time for p-th
powers (mod P (x)) is much less than the time
for multiplication (mod P (x)).
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