
Fast Algorithms for

High-Precision Computation of

Elementary Functions∗

Richard P. Brent

Australian National University
Canberra, ACT 0200, Australia

RNC7@rpbrent.com

12 July 2006

∗Presented at RNC7, Nancy, 12 July 2006.

Copyright c©2006, the author. RNC7t

Motivation

In many applications of real-number
computation we need to evaluate elementary
functions such as exp(x), ln(x), arctan(x) to
high precision. Using high-precision values we
can sometimes discover identities by integer

relation-finding:

given nonzero real numbers x1, · · · , xn, find
integers ai (not all zero) such that

n
∑

i=1

aixi = 0 ,

or show that no such relation exists for
||a|| ≤ B, where B is some (large) bound.

If we are successful then we actually find
integers ai such that

∣

∣

∣

∣

∣

n
∑

i=1

aixi

∣

∣

∣

∣

∣

< ǫ ,

where ǫ depends on the precision of the
computation. To be confident that this is not
just a “near miss”, ǫ should be as small as
possible.

2

Special case

If n = 2, the problem is to find nonzero integers
a1, a2 such that

a1x1 + a2x2 = 0 ,

that is
x1/x2 = −a2/a1 ,

so we are trying to show that x = x1/x2 is
rational.

To test if a real number x is rational, we can
compute its regular continued fraction

x = q0 + 1/(q1 + 1/(q2 + · · · ))

and see if it terminates. With approximate
computation this will usually be indicated by a
very large quotient qk, that is 1/qk is zero
modulo the error of the computation.

3

Example

Euler’s constant γ = 0.57721566 · · · can be
defined by

γ = −
∫ ∞

0
e−x lnx dx = −

∫ 1

0
ln ln

(

1

x

)

dx

Open problem: Is γ or exp(γ) rational ?

Since the regular continued fraction gives best
rational approximations, continued fraction
computations can give theorems of the form:

If x is rational, say x = p/q, then |q| > B for
some (very large) bound B.

To obtain a result like this with given bound B,
we need to compute x with absolute error
O(1/B2).

Using this method we know that, if γ or exp(γ)
is rational, say p/q, then |q| must be very large.
Thus, in some sense these numbers are
“unlikely” to be rational.

4



Why consider exp(±γ) ?

From Merten’s theorem,

exp(−γ) = lim
x→+∞

ln(x)
∏

p≤x

p − 1

p
,

where the product is over primes p ≤ x.

From Grunwald’s theorem,

exp(γ) = lim sup
n→∞

σ(n)

n ln lnn
,

where
σ(n) =

∑

d|n

d

is the sum-of-divisors function.

Thus exp(±γ) has several “natural” definitions.

Robin’s theorem: the Riemann Hypothesis is
true iff

(∀n > 5040)
σ(n)

n ln lnn
< exp(γ) .

5

Another motivation

If you know efficient algorithms to compute
elementary functions to high precision, you
might win the next More Digits friendly

Competition!

6

Outline

We shall survey some of the well-known
(and some not so well-known) techniques for
fast evaluation of elementary functions, as well
as mentioning some new ideas.

Notation

Let d be the number of binary digits required,
so the computation should be accurate with
relative (or, if appropriate, absolute) error
O(2−d). By “high-precision” we mean higher
than can be obtained directly using IEEE 754
standard floating-point hardware, typically d
several hundred up to millions.

We are interested both in “asymptotically fast”
algorithms (the case d → +∞) and in
algorithms that are competitive in some range
of d.

7

Multiplication algorithms

Let M(d) denote the time (measured in word-
or bit-operations) required to multiply d-bit
numbers with d-bit accuracy (we are generally
only interested in the upper half of the 2d-bit
product).

Classically M(d) = O(d2) and the
Schönhage-Strassen algorithm shows that
M(d) = O(d log d log log d). However,
Schönhage-Strassen is only useful for large d,
and there is a significant region d1 < d < d2

where A. Karatsuba’s O(dlg 3) algorithm is best
(lg 3 = log2 3 < 1.59).

We’ll assume that M(d) ≫ d and that M(d)
satisfies reasonable smoothness conditions.

In the region where Karatsuba’s algorithm is
best for multiplication, the best algorithms for
elementary functions need not be those that are
asymptotically the fastest.

8



Ground rules

Sometimes the best algorithm depends on the
ground rules: are certain constants such as π
allowed to be precomputed, or does the cost of
their computation have to be counted every
time in the cost of the elementary function
evaluation?

Useful techniques

Techniques for high-precision elementary
function evaluation include the following. Often
several are used in combination, e.g. argument
reduction is used before power series evaluation.

1. Argument reduction

2. Fast power series evaluation

3. The arithmetic-geometric mean (AGM)

4. Newton’s method

5. Complex arithmetic

6. Binary splitting

9

1. Argument reduction

The elementary functions have addition

formulae such as

exp(x + y) = exp(x) exp(y) ,

ln(xy) = ln(x) + ln(y) ,

sin(x + y) = sin(x) cos(y) + cos(x) sin(y) ,

tan(x + y) =
tan(x) + tan(y)

1 − tan(x) tan(y)
.

We can use these formulæ to reduce the
argument so that power series converge rapidly.
Usually we take x = y to get doubling formulae

such as
exp(2x) = (exp(x))2 ,

though occasionally tripling formulae such as

sin(3x) = 3 sin(x) − 4 sin3(x)

might be useful.

10

Repeated use of doubling formulæ

If we apply the doubling formula for exp
k times, we get

exp(x) =
(

exp(x/2k)
)2k

.

Thus, if |x| = O(1), we can reduce the problem
of evaluating exp(x) to that of evaluating
exp(x/2k), where the argument is now O(2−k).
The cost is the k squarings that we need to get
the final result from exp(x/2k).

There is a tradeoff here and k should be chosen
to minimise the total time. If the obvious
method for power series evaluation is used, then
the optimal k is of order

√
d and the overall

time is O(d1/2M(d)). (We’ll see soon that there
are faster ways to evaluate power series, so this
is not the best possible result.)

We assumed that |x| = O(1). A more careful
analysis would show that the optimal k depends
on |x|.

11

Loss of precision

If x < 0 we should use

exp(x) = 1/ exp(−x)

to avoid cancellation in the power series
summation.

Guard digits

Care has to be taken to use enough guard
digits. Since x/2k is O(2−k), we lose at least k
bits of precision in summing the power series
1 + x/2k + · · · then squaring k times. To avoid
this, we could evaluate expm1(x/2k), where the
function expm1 is defined by

expm1(x) = exp(x) − 1

and has a doubling formula

expm1(2x) = expm1(x)(2 + expm1(x))

that avoids loss of significance when |x| is small.

12



Loss of precision of the argument

Consider the reduction formula

ln(1 + x) = 2 ln(1 + y)

where

1 + y =
√

1 + x = 1 +
x

1 +
√

1 + x
.

It could be better to work with the function
log1p defined by

log1p(x) = ln(1 + x)

to avoid loss of precision (this time in the
argument rather than in the function). Then

log1p(x) = 2log1p

(

x

1 +
√

1 + x

)

avoids loss of significance when |x| is small.
However, note that argument reduction for ln or
log1p is more expensive than that for exp or
expm1, because of the square root.

13

2. Fast power series evaluation

The elementary functions have power series
expansions such as

expx =
∑

k≥0

xk

k!
,

ln(1 + x) =
∑

k≥0

(−1)kxk+1

k + 1
,

arctanx =
∑

k≥0

(−1)kx2k+1

2k + 1
,

sinhx =
∑

k≥0

x2k+1

(2k + 1)!
.

14

Power series to avoid

In some cases the coefficients in the series are
nontrivial to evaluate. For example,

tanx =
∑

k≥1

Tk

(2k − 1)!
x2k−1 ,

where the constants Tk are called tangent

numbers and can be expressed in terms of
Bernoulli numbers. In such cases it is best to
avoid direct power series evaluation.

For example, to evaluate tanx we can use
Newton’s method on the inverse function
(arctan), or we can use tanx = sinx/ cos x.

Thus, we’ll assume for the moment that we
have a power series

∑

k≥0 akx
αk+β where

ak+1/ak is a rational function R(k) of k, and
hence it is easy to evaluate a0, a1, a2, . . .
sequentially. For example, in the case of expx,

ak+1

ak
=

k!

(k + 1)!
=

1

k + 1
.

In general, our assumptions cover
hypergeometric functions.

15

The radius of convergence

If the elementary function is an entire function
(e.g. exp, sin) then the power series converges in
the whole complex plane. In this case the
degree of the denominator of R(k) is greater
than that of the numerator.

In other cases (such as ln, arctan) the function
is not entire and the power series only converges
in a disk in the complex plane because the
function has a singularity on the boundary of
this disk. In fact ln(x) has a singularity at the
origin, which is why we consider the power
series for ln(1 + x). This power series has radius
of convergence 1.

Similarly, the power series for arctan(x) has
radius of convergence 1 because arctan(x) has a
singularity on the unit circle (even though it is
uniformly bounded for all real x).

16



Direct power series evaluation

Using periodicity (in the cases of sin, cos)
and/or argument reduction techniques, we can
assume that we want to evaluate a power series
∑

k≥0 akx
k where |x| ≤ 1/2 and the radius of

convergence of the series is at least 1.

As before, assume that ak+1/ak is a rational
function of k, and hence easy to evaluate.

To sum the series with error O(2−d) it is
sufficient to take d + O(1) terms, so the time
required is

O(dM(d)) .

If the function is entire, then the series
converges faster and the time is reduced to

O

(

dM(d)

log d

)

.

However, we can do much better by carrying
the argument reduction further!

17

Power series with argument reduction

By applying argument reduction k + O(1) times,
we can ensure that the argument x satisfies

|x| < 2−k .

Then, to obtain d-bit accuracy we only need to
sum O(d/k) terms in the power series. The
total cost is

O ((k + d/k)M(d))

so choosing k ∼ d1/2 gives cost

O
(

d1/2M(d)
)

.

Note. We are assuming that a step of
argument reduction is O(M(d)), which is true
for the elementary functions.

18

Examples

For example, this applies to the evaluation of
exp(x) using

exp(x) = (exp(x/2))2 ,

to log1p(x) = ln(1 + x) using

log1p(x) = 2log1p

(

x

1 +
√

1 + x

)

,

and to arctan(x) using

arctanx = 2arctan

(

x

1 +
√

1 + x2

)

.

Note that in the last two cases each step of the
argument reduction requires a square root, but
this can be done with cost O(M(d)) by
Newton’s method. Thus in all three cases the
overall cost is

O
(

d1/2M(d)
)

,

although the implicit constant is smaller for exp
than for log1p or arctan.

19

Using symmetries

A well-known idea is to evaluate ln(1 + x) using
the power series

ln

(

1 + y

1 − y

)

= 2
∑

k≥0

y2k+1

2k + 1

with y defined by (1 + y)/(1 − y) = 1 + x, i.e.
y = x/(2 + x). This saves half the terms and
also reduces the argument, since y < x/2 if
x > 0.

A similar but less well-known idea is to use

sinh(x) =
ex − e−x

2
=
∑

k≥0

x2k+1

(2k + 1)!

to compute exp(x). Instead of computing
exp(x) directly by the power series method,
we first compute sinh(x) and then use

exp(x) = sinh(x) +

√

1 + sinh2(x) .

20



Using symmetries continued

At the cost of a square root, we get rid of half
the terms in the power series for exp(x). This
should save a factor of close to 2 for naive power
series evaluation, or

√
2 if argument reduction is

followed by power series evaluation.

The argument reduction

It is more efficient to do argument reduction via
the doubling formula for exp than the tripling
formula for sinh:

sinh(3x) = sinh(x)(3 + 4 sinh2(x)) ,

because it takes one multiplication and one
squaring (which may be cheaper) to apply the
tripling formula, but only two squarings to
apply the doubling formula twice (and 3 < 22).

21

Faster power series evaluation

Once we determine how many terms in the
power series are required for the desired
accuracy, the problem reduces to evaluating a
truncated power series, i.e. a polynomial.

Paterson and Stockmeyer (1973) considered the
number of nonscalar multiplications required to
evaluate a polynomial P (x) =

∑

0≤j<n ajx
j .

They showed that P (x) can be evaluated in
O(

√
n) nonscalar multiplications (plus O(n)

scalar multiplications and O(n) additions,
using O(

√
n) storage).

Smith (1989) applied this idea to multiple-
precision evaluation of elementary functions.
The same idea applies, more generally, to
evaluation of hypergeometric functions.

22

Smith’s method

Suppose n = jk, and write

P (x) =

j−1
∑

ℓ=0

xℓPℓ(x
j) ,

where

Pℓ(y) =
k−1
∑

m=0

ajm+ℓ ym .

The idea is to precompute the powers

x, x2, x3, . . . , xj−1

and then

y = xj , y2, y3, . . . , yk−1 .

Now the polynomials Pℓ(y) can be evaluated
using only scalar multiplications, since ajm+ℓ ym

can be computed from ajm+ℓ−1y
m using a scalar

multiplication by the rational ajm+ℓ/ajm+ℓ−1.

23

Geometric interpretation

To see the idea geometrically, write P (x) as

x0 [a0 + ajy + a2jy
2 + · · · ] +

x1 [a1 + aj+1y + a2j+1y
2 + · · · ] +

x2 [a2 + aj+2y + a2j+2y
2 + · · · ] +

...
...

...
xj−1 [aj−1 + a2j−1y + a3j−1y

2 + · · · ]

where y = xj . The terms in square brackets are
the polynomials P0(y), P1(y), . . . , Pj−1(y).

We traverse the first column of the array, then
the second column, then the third, . . ., finally
the j-th column, accumulating sums
S0, S1, . . . Sj−1 (one for each row). At the end of
this process Sℓ = Pℓ(y) and we only have to
evaluate

P (x) =

j−1
∑

ℓ=0

xℓSℓ .

Note. Alternatively, transpose the matrix of
coefficients above and interchange the powers of
x and y. The complexity is the same.

24



Complexity of Smith’s method

To evaluate a polynomial P (x) of degree
n − 1 = jk − 1, Smith’s method takes O(j + k)
nonscalar multiplications (each costing
O(M(d))) and O(jk) scalar multiplications.
The scalar multiplications involve multiplication
and/or division of a multiple-precision number
by small integers. Assume that these
multiplications and/or divisions take time
c(n)d. In practice we can safely regard c(n) as
constant.

Choosing j ∼ k ∼ n1/2 we get overall time

O(n1/2M(d) + nd · c(n)) .

If n ∼ d this is not an improvement on the
bound O(d1/2M(d)) that we obtained already
by argument reduction and power series
evaluation. However, we can do argument
reduction before applying Smith’s method.
Applying ∼ d1/3 steps of argument halving,
we can take n ∼ d2/3 and get overall time

O(d1/3M(d) + d5/3c(d)) .

25

The slowly-growing function c(n)

The scalar multiplications involve multiplication
and/or division of a d-bit multiple-precision
number by “small” integers. Here “small”
means O(n), i.e. integers with O(log n) digits.
Suppose that these multiplications and/or
divisions take time c(n)d. There are three cases:

1. The small integers fit in one word. Then
c(n) = O(1) is a constant. This is the case
that occurs in practice.

2. If the small integers do not fit in one
word, they certainly fit in O(log n) words,
so a straightforward implementation gives
c(n) = O(log n).

3. If we split the d-digit numbers into
O(d/ log n) blocks each of O(log n) bits,
and apply Schönhage-Strassen
multiplication (or division using Newton’s
method) within each block, we get
c(n) = O(log log n log log log n) .

26

Complexity of Smith’s method cont.

We saw that Smith’s method takes time

T (d) = O(d1/3M(d) + d5/3c(d)) .

Which term dominates? There are two cases:

1. M(d) ≫ d4/3c(d). Here the first term
dominates and T (d) = O(d1/3M(d)).
This case applies if we use classical or
Karatsuba multiplication, since lg 3 > 4/3.

2. M(d) ≪ d4/3c(d). Here the second term
dominates and T (d) = O(d5/3c(d)).
In fact this bound can be improved since
our choice n ∼ d2/3 is no longer optimal.
With n ∼

√

M(d)/c(d) we get an
improved bound Θ(d

√

M(d)c(d)) ≫ d3/2.

We can not approach the O(d1+ǫ) that is
achievable with AGM-based methods, so
we probably should not be using Smith’s
method (or any method based on power
series evaluation) for such large d.

27

3. The arithmetic-geometric mean

The fastest known methods for very large d are
based on the arithmetic-geometric mean (AGM)
iteration of Gauss. They take time

O(M(d) log d) .

The implicit constant here can be quite large, so
other methods are better for small d.

Given (a0, b0), the AGM iteration is defined by

(an+1, bn+1) =

(

an + bn

2
,
√

anbn

)

.

For simplicity we’ll only consider real, positive
starting values (a0, b0) for the moment, but the
results can be extended to complex starting
values (see Borwein & Borwein, Pi and the

AGM, pp. 15–16) and we’ll use that later.

The AGM iteration converges quadratically to a
limit which we’ll denote by AGM(a0, b0).

28



Why the AGM is useful

The AGM is useful because:

1. It converges quadratically. Eventually the
number of correct digits doubles at each
iteration, so only O(log d) iterations are
required.

2. Each iteration takes time O(M(d))
because the square root can be computed
in time O(M(d)) by Newton’s method.

3. If we take suitable starting values (a0, b0),
the result AGM(a0, b0) can be used to
compute logarithms (directly) and other
elementary functions (less directly), as
well as constants such as π.

29

Elliptic integrals

The theory of the AGM iteration is intimately
linked to the theory of elliptic integrals.

The complete elliptic integral of the first kind is

K(k) =

∫ π/2

0

dθ
√

1 − k2 sin2 θ

=

∫ 1

0

dt
√

(1 − t2)(1 − k2t2)
,

and the complete elliptic integral of the second

kind is

E(k) =

∫ π/2

0

√

1 − k2 sin2 θ dθ

=

∫ 1

0

√

1 − k2t2

1 − t2
dt .

k ∈ [0, 1] is called the modulus and
k′ =

√
1 − k2 is the complementary modulus.

It is traditional (though confusing) to write
K ′(k) for K(k′) and E′(k) for E(k′).

30

The connection with elliptic integrals

Gauss discovered that

1

AGM(1, k)
=

2

π
K ′(k) ,

This identity can be used to compute the elliptic
integral K rapidly via the AGM iteration. We
can also use it to compute logarithms.

From the definition

K(k) =

∫ π/2

0

dθ
√

1 − k2 sin2 θ
,

we see that K(k) has a series expansion
that converges for |k| < 1 (in fact
K(k) = (π/2)F (1/2, 1/2; 1; k2) is a
hypergeometric function). For small k we have

K(k) =
π

2

(

1 +
k2

4
+ O(k4)

)

.

It can also be shown [B&B, (1.3.10)] that

K ′(k) =
2

π
ln

(

4

k

)

K(k) − k2

4
+ O(k4) .

31

First AGM algorithm for ln

From these formulæ we easily get

π/2

AGM(1, k)
= ln(4/k)(1 + O(k2)) .

Thus, if x = 4/k is large, we have

ln(x) =
π/2

AGM(1, 4/x)

(

1 + O

(

1

x2

))

.

If x ≥ 2d/2, we can compute ln(x) to precision d
using the AGM iteration. It takes about 2 lg(d)
iterations to converge if x ∈ [2d/2, 2d].

Note that we need the constant π, which could
be computed by using our formula twice with
slightly different arguments x1 and x2, then
taking differences. More efficient is to use the
Brent-Salamin algorithm, which is based on the
AGM and the Legendre relation

EK ′ + E′K − KK ′ =
π

2
.

32



Argument expansion

If x is not large enough, we can compute

ln(2kx) = k ln 2 + lnx

by the AGM method (assuming the constant
ln 2 is known). Alternatively, if x > 1, we can
square x enough times and compute

ln
(

x2k
)

= 2k ln(x) .

This method with x = 2 gives a way of
computing ln 2.

33

The error term

The O(k2) error term in the formula

π/2

AGM(1, k)
= ln

(

4

k

)

(1 + O(k2))

is a nuisance. [B&B, p.11, ex. 4(c)] gives a
rigorous bound

∣

∣

∣

∣

π/2

AGM(1, k)
− ln

(

4

k

)
∣

∣

∣

∣

≤ 4k2(8 − ln(k))

for all k ∈ (0, 1], and the bound can be
sharpened to 0.37k2(2.4 − ln(k)) if k ∈ (0, 0.5].

The error O(k2| ln k|) makes it difficult to
accelerate convergence by using a larger value
of k (i.e. a smaller value of x = 4/k). There is
an exact formula which is much more elegant
and avoids this problem. Its use to compute
lnx was first suggested by Sasaki and Kanada
(see [B&B, (7.2.5)], but beware the typo).

Before giving Sasaki & Kanada’s formula we
need to define some theta functions and show
how they can be used to parameterise the AGM
iteration.

34

Theta functions

The theta functions that we need are θ2(q),
θ3(q) and θ4(q), defined for |q| < 1 by

θ2(q) =
+∞
∑

n=−∞

q(n+1/2)2 = 2q1/4
+∞
∑

n=0

qn(n+1) ,

θ3(q) =
+∞
∑

n=−∞

qn2

= 1 + 2
+∞
∑

n=1

qn2

,

θ4(q) = θ3(−q) = 1 + 2
+∞
∑

n=1

(−1)nqn2

.

Note that the defining power series are sparse so
it is easy to compute θ2(q) and θ3(q) for
small q. Unfortunately, Smith’s method does
not help to speed up the computation.

The asymptotically fastest methods to compute
theta functions use the AGM. However, we
won’t follow this trail because it would lead us
in circles! (We want to use theta functions to
give starting values for the AGM iteration.)

35

Theta function identities

There are many identities involving theta
functions (see [B&B, Ch. 2]). Two that are of
interest to us are:

θ2
3(q) + θ2

4(q)

2
= θ2

3(q
2)

and
θ3(q)θ4(q) = θ2

4(q
2)

which may be written as

√

θ2
3(q)θ

2
4(q) = θ2

4(q
2)

to show the connection with the AGM:

AGM(θ2
3(q) , θ2

4(q)) = · · ·
= AGM(θ2

3(q
2k

) , θ2
4(q

2k

)) = · · · = 1

for any |q| < 1.

Apart from scaling, the AGM iteration is
parameterised by (θ2

3(q
2k

), θ2
4(q

2k

)) for
k = 0, 1, 2, . . .

36



The scaling factor

Since AGM(θ2
3(q) , θ2

4(q)) = 1, scaling gives

AGM(1, k′) =
1

θ2
3(q)

if

k′ =
θ2
4(q)

θ2
3(q)

.

Equivalently, since θ4
2 + θ4

4 = θ4
3 (Jacobi),

k =
θ2
2(q)

θ2
3(q)

.

However, we know that

1

AGM(1, k′)
=

2

π
K(k) ,

so
K(k) =

π

2
θ2
3(q) .

Thus, the theta functions are closely related to
elliptic integrals. In the theory q is usually
called the nome associated with the modulus k.

37

From q to k and k to q

We saw that

k =
θ2
2(q)

θ2
3(q)

,

which gives k in terms of q. There is also a nice
inverse formula which gives q in terms of k:

q = exp(−πK ′(k)/K(k)) ,

or equivalently

ln

(

1

q

)

=
πK ′(k)

K(k)
.

For a proof see [B&B, §2.3].

Sasaki and Kanada’s formula

Putting all these pieces together gives Sasaki
and Kanada’s elegant formula:

ln

(

1

q

)

=
π

AGM(θ2
2(q) , θ2

3(q))
.

38

Second AGM algorithm for ln

Suppose x ≫ 1. Let q = 1/x, compute θ2(q
4)

and θ3(q
4) from their defining series, then

compute AGM(θ2
2(q

4) , θ2
3(q

4)). Sasaki and
Kanada’s formula (with q replaced by q4 to
avoid the q1/4 term in the definition of θ2(q))
gives

ln(x) =
π/4

AGM(θ2
2(q

4) , θ2
3(q

4))
.

There is a tradeoff between increasing x
(by squaring or multiplication by a power of 2)
and taking longer to compute θ2(q

4) and θ3(q
4)

from their series. In practice it seems good to
increase x so that q = 1/x is small enough that
O(q36) terms are negligible. Then we can use

θ2(q
4) = 2

(

q + q9 + q25 + O(q49)
)

,

θ3(q
4) = 1 + 2

(

q4 + q16 + O(q36)
)

.

We need x ≥ 2d/36 which is much better than
the requirement x ≥ 2d/2 for the first AGM
algorithm. We save about four AGM iterations
at the cost of a few multiplications.

39

Implementation notes

Since

AGM(θ2
2 , θ2

3) =
AGM(2θ2θ3 , θ2

2 + θ2
3)

2
,

we can avoid the first square root in the AGM
iteration. Also, it only takes two nonscalar
multiplications to compute 2θ2θ3 and θ2

2 + θ2
3.

Constants

d-bit square roots take time ∼ 4.25M(d) so one
AGM iteration takes time ∼ 5.25M(d).

The AGM algorithms require 2 lg(d) + O(1)
AGM iterations. The total time to compute
ln(x) by the AGM is ∼ 10.5 lg(d)M(d).

Paul Zimmermann notes that the constant is
smaller if d-bit multiplication produces a 2d-bit
result (4.25M(d) → 2.25M∗(d)).

Dan Bernstein notes that the algorithms can be
speeded up if redundant FFTs in the square
root computations are eliminated (assuming
that multiplication uses the FFT).

40



Drawbacks of the AGM

1. The AGM iteration is not self-correcting,
so we have to work with full precision
(plus any necessary guard digits)
throughout. In contrast, when using
Newton’s method or evaluating power
series, many of the computations can be
performed with reduced precision.

2. The AGM with real arguments gives ln(x)
directly. To obtain exp(x) we need to
apply Newton’s method. To evaluate
trigonometric functions such as sin(x),
cos(x), arctan(x) we need to work with
complex arguments, which increases the
constant hidden in the “O” time bound.
Alternatively, we can use Landen
transformations for incomplete elliptic
integrals, but this gives even larger
constants.

3. Because it converges so fast, it is difficult
to speed up the AGM. At best we can
save O(1) iterations.

41

4. Newton’s method

If we have an algorithm for computing a
function F (y), then Newton’s method generally
allows us to compute the inverse function G(x).

For example, we can compute F (y) = ln y in
time O(M(d) log d) by one of the AGM
algorithms. Using Newton’s method, we can
compute G(x) = expx, also in time
O(M(d) log d).

Newton’s method increases the constant factor
since we have to evaluate F with precision
d, d/2, d/4, . . . (not in this order). Assuming
that

∑

0≤k≤⌊lg d⌋

M(d/2k) ∼
∑

0≤k≤⌊lg d⌋

2−kM(d) ∼ 2M(d) ,

the constant is multiplied by two. However, this
increase in the constant can be avoided by using
higher-order methods.

42

The Newton iteration

If x is regarded as fixed, then Newton’s method
applied to solve

F (y) − x = 0

for y gives the iteration

yj+1 = yj −
F (yj) − x

F ′(yj)
,

and under certain conditions this converges
quadratically to y = G(x).

If F (y) is an elementary function, then it is easy
to calculate the derivative F ′(y). For example,
if F (y) = ln(y), then F ′(y) = 1/y, and the
Newton iteration is

yj+1 = yj − yj(ln(yj) − x) .

We can write this as

yj+1 = yj(1 + δj)

where
δj = x − ln(yj) .

43

Higher order methods

It is easy to get a higher-order method using
the addition formula for exp. We have

exp(x) = exp(ln(yj) + δj) = yj

∞
∑

k=0

δk
j

k!
.

To get a method of order r > 1, truncate the
series after r terms, giving an iteration

yj+1 = yj

r−1
∑

k=0

δk
j

k!
.

Newton’s method is just the case r = 2.

Under the same assumptions as before, the r-th
order method multiplies the constant by a factor

1 +
1

r
+

1

r2
+ · · · =

r

r − 1
.

This is true for any fixed r > 1. If we allow r to
increase with d, we need to take the overhead of
an iteration into account: essentially it is r
extra multiplications.

44



Getting the best constant

If ln(y) can be evaluated in time

∼ c ln(d)M(d) ,

the r-th order method evaluates exp(x) in time

∼ r

r − 1
(r + c ln(d))M(d) .

Taking r ∼
√

c ln d gives exp(x) in time

∼ c ln(d)M(d)

(

1 + O

(

1√
ln d

))

.

Since 1/
√

ln d → 0 (slowly!) as d → ∞, we see
that exp(x) can be evaluated in time

∼ c ln(d)M(d) ,

asymptotically the same time as for ln(y). In
practice, though, the overhead of computing an
inverse function is significant.

45

Other inverse functions

Other pairs of elementary functions may be
handled in much the same way as the pair
(exp, ln), since they all satisfy simple addition
formulæ.

For example, replacing exp by tan and ln by
arctan, we define

δj = x − arctan(yj) ,

and use

tan(x) = tan(arctan(yj) + δj) =
yj + tan(δj)

1 − yj tan(δj)
.

The first r terms in the Taylor series for tan(δ)
can be found in O(r2) operations by inversion of
the Taylor series for arctan (this bound can be
improved to O(r log r) but O(r2) is sufficient).

If we take r ∼ (ln d)1/3, we can compute tan in
essentially the same time as arctan, since the
multiplicative factor

1 + O

(

1

ln d

)1/3

→ 1 as d → ∞ .

46

5. Complex arithmetic

In some cases the asymptotically fastest
algorithms require the use of complex
arithmetic to produce a real result. It would be
nice to avoid this because complex arithmetic is
significantly slower than real arithmetic.

Examples where we seem to need complex
arithmetic to get the asymptotically fastest
algorithms are:

1. arctan(x), arcsin(x), arccos(x) via the
AGM using

arctan(x) = ℑ(ln(1 + ix)) .

2. tan(x), sin(x), cos(x) using Newton’s
method and the above, or

cos(x) + i sin(x) = exp(ix) ,

where the complex exponential is
computed by Newton’s method from
the complex ln.

47

The complex AGM

The theory that we outlined for the AGM
iteration and AGM algorithms for log(z) can be
extended without problems to complex
z /∈ (−∞, 0], provided we always choose the
square root with positive real part.

The constants

A complex multiplication takes three real
multiplications (using Karatsuba’s trick), and a
complex squaring takes two real multiplications.
Taking this into account, we get the following
asymptotic upper bounds.

Operation real complex

squaring M(d) 2M(d)
multiplication M(d) 3M(d)
square root 4.25M(d) 10.25M(d)
AGM iteration 5.25M(d) 13.25M(d)
ln via AGM 10.5 lg(d)M(d) 26.5 lg(d)M(d)

Exercise: Improve the constants.

48



6. Binary splitting

Since the asymptotically fastest algorithms for
arctan, sin, cos etc have a large constant hidden
in their time bound O(M(d) lg d), it is
interesting to look for other algorithms that
may be competitive for a large range of
precisions even if not asymptotically optimal.
One such algorithm (or class of algorithms) is
based on binary splitting or the closely related
FEE method.

The time complexity of these algorithms is
usually

O((log d)αM(d))

for some constant α > 1 depending on how fast
the relevant power series converges, and perhaps
also on the multiplication algorithm
(classical/Karatsuba or Schönhage-Strassen).

I won’t discuss the rather controversial history
of these algorithms except to note that the idea
is quite old, e.g. over thirty years ago I gave a
binary splitting algorithm for computing exp(x)
with α = 2.

49

The idea

Suppose we want to compute arctan(x) for
rational x = p/q, where p and q are small
integers and |x| ≤ 1/2. The Taylor series gives

arctan

(

p

q

)

≈
∑

0≤k≤d/2

(−1)kp2k+1

(2k + 1)q2k+1
.

The finite sum, if computed exactly, gives a
rational approximation P/Q to arctan(p/q), and

log |Q| = O(d log d) .

(Note: the series for exp converges faster, so in
this case log |Q| = O(d).)

The finite sum can be computed by “divide and
conquer”: sum the first half to get P1/Q1 say,
and the second half to get P2/Q2, then

P

Q
=

P1

Q1
+

P2

Q2
=

P1Q2 + P2Q1

Q1Q2
.

The rationals P1/Q1 and P2/Q2 are computed
by a recursive application of the same method,
hence the term “binary splitting”.

50

Complexity

The overall time complexity is

O

(

∑

k

M((d/2k) log(d/2k))

)

= O((log d)αM(d)) ,

where α = 2 for Schönhage-Strassen
multiplication; in general α ≤ 2.

We can save a little by working to precision d
rather than d log d at the top levels; for classical
or Karatsuba multiplication this reduces α to 1,
but we still have α = 2 for Schönhage-Strassen
multiplication.

In practice the multiplication algorithm would
not be fixed but would depend on the size of
the integers being multiplied. The complexity
depends on the algorithm that is used at the
top levels.

51

Repeated application of the idea

If x ∈ (0, 0.5] and we want to compute
arctan(x), we can approximate x by a rational
p/q and compute arctan(p/q) as a first
approximation to arctan(x). Now

tan(arctan(x) − arctan(p/q)) =
x − p/q

1 + px/q
,

so

arctan(x) = arctan(p/q) + arctan(δ)

where

δ =
x − p/q

1 + px/q
=

qx − p

q + px
.

We can apply the same idea to approximate
arctan(δ), until eventually we get a sufficiently
accurate approximation to arctan(x). Note that
|δ| ≤ |x − p/q|, so it is easy to ensure that the
process converges.

52



Complexity of repeated application

If we use a sequence of about lg d rationals
p0/q0, p1/q1, . . ., where

qi = 22i

,

then the computation of each arctan(pi/qi)
takes time O((log d)αM(d)) and the overall time
to compute arctan(x) is

O((log d)α+1M(d)) .

The exponent α + 1 is 2 or 3. Although this is
not asymptotically as fast as AGM-based
algorithms, the implicit constants for binary
splitting are small and the idea is useful for
quite large d (at least 106 decimal places).

53

Comparison of arctan algorithms

Linear scale to 100,000D (decimal places).

Times are for computing arctan(3/7) (given in
binary not rational form) on a 3GHz Pentium 4
using GMP. The multiplication algorithm(s) are
chosen by GMP.

Note the crossover for Smith and complex AGM
at about 95,000D.

54

Arctan algorithms to 1,000,000D

Log-log scale to 1,000,000D.

The crossover is the one that we saw on the
previous slide (Smith and complex AGM at
about 95,000D).

Postscript: The version (4.1.4) of GMP used
does not implement sqrt optimally (there is an
extra factor of log(d)) which may explain the
lack of a crossover for complex AGM and binary
splitting.

55

Arctan algorithms: detail

Log-log scale for 100,000D to 1,000,000D.

Binary splitting with 12-bit reduction (12 steps
of argument reduction) is well ahead of complex
AGM.

Binary splitting with 4-bit reduction is also
ahead of complex AGM, though not by so
much.

There is no sign of a crossover (see postscript
on previous slide).

56



Generalisations

The idea of binary splitting can be generalised.
For example, the Chudnovskys gave a
“bit-burst” algorithm which applies to fast
evaluation of solutions of linear differential
equations. However, that is the topic of another
talk!

Acknowledgements

This talk is based on a chapter of a book that
Paul Zimmermann and I are writing. Many
thanks to Paul for help in debugging my slides.

Thanks also to Jim White (ANU) for many
interesting discussions, and for providing the
timing comparisons for arctan algorithms.

57

References

[1] D. H. Bailey, High-precision floating-point
arithmetic in scientific computation, Computing

in Science and Engineering, May–June 2005,
54–61; also report LBNL–57487. Available from
http://crd.lbl.gov/~dhbailey/dhbpapers/.

[2] D. J. Bernstein, Removing redundancy in
high-precision Newton iteration, draft, 2004.
http://cr.yp.to/papers.html#fastnewton.

[3] J. M. Borwein and P. B. Borwein, Pi and the

AGM, Monographies et Études de la Société
Mathématique du Canada, John Wiley & Sons,
Toronto, 1987.

[4] R. P. Brent, Multiple-precision zero-finding
methods and the complexity of elementary
function evaluation, in Analytic Computational

Complexity (edited by J. F. Traub), Academic
Press, New York, 1975, 151–176. Available from
http://wwwmaths.anu.edu.au/~brent/pub/

pub028.html.

58

[5] R. P. Brent, The complexity of
multiple-precision arithmetic, in The

Complexity of Computational Problem Solving

(edited by R. S. Anderssen and R. P. Brent),
University of Queensland Press, Brisbane, 1976,
126–165. Postscript added 1999. Available from
http://wwwmaths.anu.edu.au/~brent/pub/

pub032.html.

[6] R. P. Brent, Fast multiple-precision evaluation
of elementary functions, J. ACM 23 (1976),
242–251. http://wwwmaths.anu.edu.au/
~brent/pub/pub034.html.

[7] R. P. Brent and H. T. Kung, Fast algorithms
for manipulating formal power series, J. ACM

25 (1978), 581–595. http://wwwmaths.anu.
edu.au/~brent/pub/pub045.html.

[8] R. P. Brent and P. Zimmermann, Modern

Computer Arithmetic, book in preparation,
2006.

59

[9] D. V. Chudnovsky and G. V. Chudnovsky,
Computer algebra in the service of
mathematical physics and number theory, in
Computers in Mathematics (edited by
D. V. Chudnovsky and R. D. Jenks), Lecture
Notes in Pure and Applied Mathematics,
Vol. 125, Marcel Dekker, New York, 1990,
109–232.

[10] X. Gourdon and P. Sebah, Numbers, constants
and computation: binary splitting method,
http://numbers.computation.free.fr/

Constants/Algorithms/splitting.html.

[11] A. Karatsuba and Y. Ofman, Multiplication of
multidigit numbers on automata (in Russian),
Doklady Akad. Nauk SSSR 145 (1962),
293–294. English translation in Sov. Phys.

Dokl. 7 (1963), 595–596.

[12] E. A. Karatsuba, Fast evaluation of
transcendental functions (in Russian), Probl.

Peredachi Inf. 27, 4 (1991), 87–110. English
translation in Problems of Information

Transmission 27 (1991), 339–360. See also
http://www.ccas.ru/personal/karatsuba/

faqen.htm.

60



[13] M. S. Paterson and L. J. Stockmeyer, On the
number of nonscalar multiplications necessary
to evaluate polynomials, SIAM J. Computing 2

(1973), 60–66.

[14] G. Robin, Grandes valeurs de la fonction
somme des diviseurs et hypothèse de Riemann,
J. Math. Pures Appl. 63 (1984), 187–213.

[15] T. Sasaki and Y. Kanada, Practically fast
multiple-precision evaluation of log(x), J. Inf.

Process. 5 (1982), 247–250. See also [3, §7.2].

[16] A. Schönhage and V. Strassen, Schnelle
Multiplikation Grosser Zahlen, Computing 7

(1971), 281–292.

[17] D. M. Smith, Efficient multiple-precision
evaluation of elementary functions, Math.

Comp. 52 (1989), 131–134.

61


