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Abstract

This talk will describe some new bounds on the error in the
asymptotic approximation of the log-Gamma function ln Γ(z) for
complex z in the right half-plane. These improve on bounds by
Hare (1997) and Spira (1971).
I will show how to deduce similar bounds for asymptotic
approximation of the Riemann-Siegel theta function ϑ(t), and
show that the attainable accuracy of a well-known
approximation to ϑ(t) can be improved by including an
exponentially small term in the approximation.
This improves the attainable accuracy for real positive t from
O(e−πt ) to O(e−2πt ).
For further details, see the preprint at arXiv:1609.03682.
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The Riemann-Siegel theta function
The Riemann-Siegel theta function ϑ(t) is defined for real t by

ϑ(t) := arg Γ

(
it
2

+
1
4

)
− t

2
lnπ.

The argument is defined so that ϑ(t) is continuous on R, and
ϑ(0) = 0. Since ϑ(t) is an odd function, i.e. ϑ(−t) = −ϑ(t), we
can assume that t > 0.
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The significance of ϑ(t)

It follows from the functional equation for the ζ function that

Z (t) := eiϑ(t) ζ(1
2 + it)

is a real-valued function.
In a sense, ϑ(t) encodes half the information contained in
ζ(1

2 + it) (albeit the less interesting half), while Z (t) encodes
the other (more interesting) half.
Zeros of ζ(s) on the critical line <(s) = 1

2 can be isolated by
finding sign changes of Z (t).
If a < b and Z (a)Z (b) < 0, then there is an odd number of
zeros (counted by their multiplicities) in (a,b).
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The Riemann-Siegel formula

The Riemann-Siegel formula is

Z (t) =

b(t/2π)1/2c∑
k=1

2k−1/2 cos[ϑ(t)− t ln k ] + R(t),

where t1/4R(t) has a rather complicated asymptotic expansion
in descending powers of t1/2.
This gives a way of computing accurate approximations to Z (t)
in time roughly O(t1/2).
The “easy” part is the computation of ϑ(t).
However, ϑ(t) is an interesting function in its own right.
Today I will consider the computation of ϑ(t), not R(t).
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A different representation of ϑ(t)

Recall the definition

ϑ(t) := arg Γ
( it

2 + 1
4

)
− 1

2 t lnπ.

The following equivalent representation of ϑ(t) is more
convenient for our purposes:

ϑ(t) = 1
2 arg Γ

(
it + 1

2

)
− 1

2 t ln(2π)− π
8 + 1

2 arctan
(
e−πt) .

The red terms: having <(s) = 1
2 rather than <(s) = 1

4 makes it
easier to derive an asymptotic expansion with only odd powers
of t and with rigorous error bounds. The arctan

(
e−πt) term will

be important later, when we consider numerical approximation
of ϑ(t).
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Sketch of proof
Use the reflection formula

Γ(s)Γ(1− s) = π/ sin(πs)

and the duplication formula

Γ(s)Γ(s + 1
2) = 21−2sπ1/2Γ(2s)

with s = it
2 + 1

4 . Multiplying gives

Γ( it
2 + 1

4)2 |Γ( it
2 + 3

4)|2 =
21/2−itπ3/2Γ(it + 1

2)

sinπ
( it

2 + 1
4

) .

The result follows on taking the argument of each side and
simplifying, using the fact that

arctan
(

1− e−πt

1 + e−πt

)
=
π

4
− arctan

(
e−πt) .
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ϑ(t) and ln Γ(z)

To compute ϑ(t) we need arg Γ(z) where z = it + 1
2 (or it

2 + 1
4 ).

We use
arg Γ(z) = =(ln Γ(z))

(modulo a multiple of 2π which can be handled with care, so I
won’t worry about it in this talk).
Taking logarithms, the duplication formula

Γ(z)Γ(z + 1
2) = 21−2zπ1/2Γ(2z)

gives

ln Γ(z + 1
2) = ln Γ(2z)− ln Γ(z) + known terms.

Thus, the problem of finding an asymptotic expansion for ϑ(t)
can be solved via Stirling’s asymptotic expansion for ln Γ(z) in
the case z = it (i.e. on the imaginary axis in the z-plane).
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Stirling’s formula for ln Γ(z)

Recall Stirling’s asymptotic expansion (for z ∈ C\(−∞,0]):

ln Γ(z) = (z − 1
2) log z − z + 1

2 log(2π) +
k∑

j=1

Tj(z) + Rk+1(z),

where
Tj(z) =

B2j

2j(2j − 1)z2j−1

is the j-th term in the sum, and the “error” or “remainder” after
summing k terms may be written as

Rk+1(z) = −
∫ ∞

0

B2k ({u})
2k (u + z)2k du.

Here {u} := u − buc denotes the fractional part of u,
and B2k (x) is the 2k -th Bernoulli polynomial.
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The remainder term in Stirling’s formula

If z is real and positive, life is easy: the asymptotic series is
strictly enveloping in the sense of Pólya and Szegö, so Rk (z)
has the same sign as Tk (z) and is smaller in absolute value,
i.e. |Rk (z)| < |Tk (z)|. Note that Rk (z) is the remainder after
summing k − 1 terms, so Tk (z) is the first term omitted.
For complex z, life is not so simple.
If |arg(z)| ≤ π/4, the inequality |Rk (z)| < |Tk (z)| still holds
[Whittaker and Watson].
If <(z) < 0, we can (and probably should) use the reflection
formula Γ(z)Γ(−z) = − π

z sin(πz)
, so assume that <(z) > 0.

If =(z) < 0, we can take complex conjugates, so assume that
=(z) ≥ 0.
Thus, we are left with the case θ := arg(z) ∈ (π/4, π/2].
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New error bounds

We have two (related) bounds, valid for <(z) ≥ 0, z 6= 0:∣∣∣∣Rk+1(z)

Tk (z)

∣∣∣∣ < √πk

and ∣∣∣∣Rk (z)

Tk (z)

∣∣∣∣ < 1 +
√
πk .

The first bound is useful if we want to bound the error as a
multiple of the last term included in the sum; the second bound
applies if we want to bound the error as a multiple of the first
term omitted from the sum.
The second bound follows from the first by the triangle
inequality, since Rk (z) = Tk (z) + Rk+1(z).
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Proof (sketch)

Since |B2k (v)| ≤ |B2k | for all v ∈ [0,1], we have

|Rk+1(z)| =

∣∣∣∣∫ ∞
0

B2k ({u})
2k(u + z)2k du

∣∣∣∣ ≤ |B2k |
2k

∫ ∞
0
|u + z|−2k du.

Let x := <(z) ≥ 0 and y := =(z). Inside the last integral,

|u + z|2 = (u + x)2 + y2 ≥ u2 + x2 + y2 = u2 + |z|2,

so ∫ ∞
0
|u + z|−2k du ≤

∫ ∞
0

(u2 + |z|2)−k du.

Now a change of variables u 7→ |z| tanψ allows us to evaluate
the integral on the right in closed form (obtaining a ratio of
Gamma functions) via “Wallis’s formula”. Finally, we use the
inequality Γ(k + 1

2)/Γ(k) <
√

k to simplify the result.
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Hare’s bound

Kevin Hare1 (1997) gave a bound (in our notation)∣∣∣∣Rk (z)

Tk (z)

∣∣∣∣ ≤ 4π1/2 Γ(k + 1
2)

Γ(k) sin2k−1θ
,

where θ := arg(z) ∈ (0, π). Note that sin θ = y/|z|.
If sin θ < 1, our bound is much better than Hare’s, because we
do not have a sin2k−1 θ factor in the denominator.
If θ = π/2 then sin θ = 1 (the best case for Hare’s bound),
and Hare’s upper bound on |Rk/Tk | is about 4

√
πk . This is

between 2.74 and 4 times larger than our bound 1 +
√
πk .

1Hare was a student of Jon Borwein at Simon Fraser University, 2002.
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Improvements on Hare’s bound

We made three improvements on Hare’s bound.
I By using a form of the remainder with numerator (inside

the integral) B2k ({u}) instead of B2k − B2k ({u}), we save
(almost) a factor of two, since we can use
|B2k ({u})| ≤ |B2k |, but Hare has to use
|B2k − B2k ({u})| ≤ 2|B2k |.
This trick reduces 2

√
πk to 1 +

√
πk .

I By assuming that x = <(z) ≥ 0, we save another factor
of two because the integral that we have to bound is over
[0,∞), but Hare’s is over [x ,∞) ⊂ (−∞,∞).

I We can use |u + z|2 ≥ u2 + |z|2 in our proof, whereas Hare
has to use |u + z|2 = (u + x)2 + y2, since he does not
assume that x ≥ 0. This gives us an improvement by a
factor (|z|/y)2k−1 = 1/ sin2k−1 θ.
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Some other bounds

Spira (1971) proved a bound that is similar to Hare’s, but with a
larger constant factor. He stated his bound without the sin2k−1 θ
factor in the denominator. However, the bound that he actually
proved did have the sin2k−1 θ factor in the denominator.
Stieltjes (c. 1900) showed that, for |θ| < π,∣∣∣∣Rk (z)

Tk (z)

∣∣∣∣ ≤ sec2k (θ/2).

If θ = π/2 (the case that is of interest for ϑ(t)), this is larger
than our bound by a factor 2k/(1 +

√
πk).
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Gauss’s asymptotic expansion for ln Γ(z + 1
2)

Taking logarithms in the duplication formula

Γ(z + 1
2) = 21−2zπ1/2Γ(2z)/Γ(z),

it is easy to deduce Gauss’s (1813) asymptotic expansion

ln Γ(z + 1
2) ∼ z log z − z + 1

2 log(2π) +
∑
j≥1

T̂j(z),

where

T̂j(z) = −(1− 21−2j)Tj(z) =
B2j(

1
2)

2j(2j − 1)z2j−1
.

The result is well-known, but the point is that we also inherit
bounds on the error when the sum in Gauss’s formula is
truncated.
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The Riemann-Siegel theta function (again)

Returning to the Riemann-Siegel theta function ϑ(t), recall that

ϑ(t) = 1
2 arg Γ

(
it + 1

2

)
− 1

2 t ln(2π)− π
8 + 1

2 arctan
(
e−πt) .

If we put z = it in Gauss’s asymptotic expansion for ln Γ(z + 1
2),

we quickly get an asymptotic expansion for ϑ(t), along with
error bounds. The result is

ϑ(t) =
t
2

log
(

t
2πe

)
− π

8
+

arctan
(
e−πt)

2
+

k∑
j=1

T̃j(t) + R̃k+1(t),

where T̃j(t) =
|B2j(

1
2)|

4j(2j − 1)t2j−1 > 0, and R̃k+1(t) is the remainder

after taking k terms in the sum.
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Error bounds

Using our error bounds on Gauss’s asymptotic expansion for
ln Γ(z + 1

2) in the case z = it , we get several bounds for the
error R̃k+1(t) in the asymptotic expansion of ϑ(t):

|R̃k+1(t)| ≤
π1/2 Γ(k − 1

2) |B2k |
8 k ! t2k−1

,

and if k ≥ 3 or t ≥ 1 then∣∣∣∣∣ R̃k+1(t)

T̃k (t)

∣∣∣∣∣ < √πk

and ∣∣∣∣∣ R̃k (t)

T̃k (t)

∣∣∣∣∣ < 1 +
√
πk .
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The arctan term

What if we omit the term 1
2 arctan

(
e−πt) in the asymptotic

approximation to ϑ(t)? This always seems to be done in the
literature (Lehmer, Edwards, Gabcke, . . .).
We still get a valid asymptotic expansion in the sense of
Poincaré. However, numerically the approximation can be
much worse.
The error bound has to be increased to compensate,
e.g. we could replace our second error bound by

|R̃k+1(t)| < T̃k (t)
√
πk + 1

2e−πt .

The term 1
2e−πt is not always negligible, because

min
k≥1

T̃k (t)
√
πk ≈ 1

2e−2πt � 1
2e−πt .
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The smallest term(s)

Define
T̃min(t) := min

k≥1
T̃k (t).

Let kmin(t) be the corresponding index, so T̃min(t) = T̃kmin(t).

Using |B2k | =
2(2k)! ζ(2k)

(2π)2k , it is straightforward to show that

kmin(t) =
⌊
πt + 5

4 + O
(
t−1)⌋

and

T̃min(t) =
e−2πt

2π
√

t

(
1 + O

(
t−1
))

.
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Attainable accuracy

Using our error bound |R̃k+1(t)| < T̃k (t)
√
πk with k = kmin,

it is clear that we can guarantee an error of at most

1
2e−2πt (1 + O(1/t))

if we truncate the asymptotic series for ϑ(t) after kmin(t) terms,
provided that we include the arctan term in the approximation.
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Graphical interpretation: the terms

The terms T̃k (t) are all positive. They decrease for k ≤ kmin,
then increase. Pictorially:

Close to kmin, the terms approximate a (discretised) parabola
y = T̃min + c(x − kmin)2.
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Graphical interpretation: the error

The error curve R̃k+1(t) approximates a cubic: −(integral of the
previous curve).

If the 1
2 arctan(e−πt ) term is included in the approximation,

the curve crosses the k -axis close to k = kmin.
If the 1

2 arctan(e−πt ) term is omitted, the error curve is
displaced upwards (drawn with the same curve but a dashed
axis). The zero-crossing is near some k ≥ 2kmin.
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Numerical results
t kmin A B C
1 4 7.2×101 −0.79 −1.1×10−2

2 7 2.4×103 −0.63 +2.4×10−4

5 16 4.6×107 −0.21 +2.8×10−3

10 32 4.4×1014 −0.50 +8.3×10−4

20 64 2.7×1028 −1.08 +8.3×10−5

50 158 3.7×1069 −0.84 −1.5×10−4

100 315 8.6×10137 −0.76 −5.2×10−5

The table gives
A : the error in the standard asymptotic approximation

(no arctan term) after taking kmin(t) terms in the sum,
normalised by the smallest term T̃min(t);

B : the same but including the 1
2 arctan(e−πt ) term;

C : the error in an empirically improved approximation
(next slide), again normalised by T̃min(t).
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Observations
I The normalised value A is approximately πt1/2 exp(πt),

which is large because T̃min(t) is much smaller than the
error, which is about 1

2 exp(−πt).
I The entries in column B are negative. We would be better

off truncating the sum after kmin − 1 terms instead of kmin
terms (which would have the effect of adding one to the
entries in column B). However, a much better
approximation is obtained by adding a “correction term”(

πt − kmin(t) + 1
12

)
T̃min(t).

The motivation for the correction term is to smooth out the
sawtooth nature of approximation B, which has jumps at
the values of t where kmin(t) changes. This explains the
addition of (πt − kmin(t) + c) T̃min(t), where c is an arbitrary
constant. Column C assumes that c = 1

12 .
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The mysterious constant 1
12

We do not have a theoretical explanation for the value of the
constant c ≈ 1

12 , although it is clearly related to the asymptotic
location of the positive zero of the function R̃k+1(t). (There
should be a unique positive zero.)
By a theorem of Karl Dilcher (1987), for u ∈ [−1

2 ,
1
2 ],

B2k (u + 1
2)

B2k
= cos(2πu) + O(4−k ) uniformly as k →∞.

Thus, in the expression

R̃k+1(t) = =

(
− 1

4k

∫ ∞
0

B2k ({u + 1
2})

(u + it)2k du

)
,

we may be able to approximate B2k ({u + 1
2}) by B2k cos(2πu),

which could make the problem more tractable.
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Olver’s example
We have seen that an exponentially small term ≈ 1

2e−πt can be
significant in the numerical approximation of ϑ(t).
This is not an isolated example. Olver (1964) gives a simpler
example, which is discussed by Meyer (1989) in a more
accessible paper. Briefly,

F (n) :=

∫ π

0

cos(nt)
t2 + 1

dt

has (for large integer n > 0) an asymptotic expansion

F (n) ∼ (−1)n−1
∑
k≥1

λkn−2k ,

where λ1 ≈ 0.05318, λ2 ≈ 0.04791, . . . However, this gives a
poor approximation (16% relative error) for n = 10 because it
does not allow for a term π

2 e−n that arises because the
integrand has poles at t = ±i .
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