
Fa
torisation Algorithms for Univariate and BivariatePolynomials over Finite FieldsFatima Khaled Abu SalemMerton College
Thesis submitted for the degree of Do
tor of PhilosophyTrinity Term, 2004

�
Oxford University Computing LaboratoryProgramming Resear
h Group



Fa
torisation Algorithms for Univariate and Bivariate Polynomialsover Finite FieldsFatima Khaled Abu SalemTrinity Term, 2004Abstra
tIn this thesis we address algorithms for polynomial fa
torisation over �nite �elds. In theunivariate 
ase, we study a re
ent algorithm due to Niederreiter [102℄ where the fa
torisationproblem is redu
ed to solving a linear system over the �nite �eld in question, and the solutions areused to produ
e the 
omplete fa
torisation of the polynomial into irredu
ibles. We develop a newalgorithm for solving the linear system using sparse Gaussian elimination with the Markowitzordering strategy, and 
onje
ture that the Niederreiter linear system is not only initially sparse,but also preserves its sparsity throughout the Gaussian elimination phase [3℄. We develop anew bulk syn
hronous parallel (BSP) algorithm based on the approa
h of G�ottfert (1994) forextra
ting the fa
tors of a polynomial using a basis of the Niederreiter solution set over F2 . Weimprove upon the 
omplexity and performan
e of the original algorithm, and produ
e binaryunivariate fa
torisations of trinomials up to degree 400000 [1℄.We present a new approa
h to multivariate polynomial fa
torisation whi
h in
orporates ideasfrom polyhedral geometry, and generalises Hensel lifting [2℄. The 
ontribution is an algorithmfor fa
toring bivariate polynomials via polytopes whi
h is able to exploit to some extent thesparsity of polynomials. We further show that the polytope method 
an be made sensitiveto the number of nonzero terms of the input polynomial. We des
ribe a sparse adaptation ofthe polytope method over �nite �elds of prime order whi
h requires fewer bit operations andmemory referen
es for polynomials whi
h are known to be the produ
t of two sparse fa
tors[4℄. Using this method, and to the best of our knowledge, we a
hieve a world re
ord in binarybivariate fa
torisation of a sparse polynomial with degree 20000. We develop a BSP variant ofthe absolute irredu
ibility testing via polytopes given in [45℄, produ
ing a more memory andrun time eÆ
ient method that 
an provide wider ranges of appli
ability [5℄. We a
hieve absoluteirredu
ibility testing of a bivariate and trivariate polynomial of degree 30000, and of multivariatepolynomials with up to 3000 variables.
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Chapter 1Introdu
tion1.1 MotivationSymboli
 
omputation has been the obje
t of 
omputer algebra systems for de
ades now, fo
usingon the use of 
omputers to perform symboli
 mathemati
s. The rudimentary elements of a
omputer algebra system 
onsist in numbers and polynomials over a �eld, and the basi
 domainsare the natural numbers, rational numbers, �nite �elds and polynomial rings [29, 55℄. One majorproblem in this area has been the fa
torisation of polynomials over �nite �elds, an a
tive areaof resear
h that has gained a lot of interest in the last few de
ades. Finite �elds in general, andfa
torisation of polynomials over su
h �elds in parti
ular, have widespread appli
ations in boththeory and pra
ti
e. In many instan
es it be
omes essential to be able to fa
tor any large degreepolynomial or otherwise establish its irredu
ibility. Appli
ations within mathemati
s appear ina variety of situations: Equation solving, su
h as in modeling the Cy
lohexane mole
ule andstudying the spatial 
onformations of Cy
lohexane ([55℄, Chapter 24), and symboli
 summationand integration [111, 112, 126℄. In number theory, univariate polynomial fa
torisation 
an beused in �nding 
omplete partial fra
tion de
ompositions, and 
omputing the number of points onellipti
 
urves [37℄. In 
oding theory, univariate polynomial fa
torisation is used in 
onstru
tinga useful 
lass of 
y
li
 
odes, the BCH 
odes [9, 69, 95℄, some of whi
h use polynomials over thebinary �eld [16℄. Some 
ryptosystems, in turn, are based on the Goppa 
odes, a generalisation ofBCH 
odes [92, 93℄. In 
ryptography, the fa
torisation of random polynomials over �nite �eldsis used in some randomised methods for 
omputing dis
rete logarithms over �nite �elds [37℄.High degree sparse univariate polynomials in this respe
t have re
ently been used in developingpubli
 key 
ryptosystems: SPIFI [7℄, based on the diÆ
ulty of �nding a sparse polynomial withspe
i�ed values at some given points, and EnRoot [61℄, based on the diÆ
ulty of �nding asolution to a given system of sparse polynomial equations over 
ertain large rings.Binary trinomials are also important in their role in 
onstru
ting linear feedba
k shift regis-ters, hen
e 
ontributing to uses in random number generation, to 
onstru
ting stream 
iphers in
ryptography, and to generating Hamming and BCH error 
orre
ting 
odes [9, 93, 98℄. Primitivetrinomials over F 2 [18, 19℄ also play an important role in 
onstru
ting �elds of even 
hara
teristi
and for 
omputing with elements within su
h �elds. In general, 
omputation over the binary�eld is parti
ularly fashionable be
ause of its simpli
ity in 
omputation, serving as an exampleto illustrate some of the attra
tive features of a parti
ular algorithm over �nite �elds. It is alsooften used as the underlying �eld where appli
ations in 
ryptography and 
oding theory employ1




omputations over �nite �elds [93℄.Bivariate polynomial fa
torisation 
an be used to solve systems of polynomial equationsusing Gr::obner bases ([55℄, Chapter 21). Methods for solving systems of algebrai
 equationshave also been developed using multivariate fa
torisation [28℄. Algebrai
 simpli�
ation andproving 
ombinatorial identities 
an also make use of bivariate polynomial fa
torisations [55℄.Absolute irredu
ibility testing of families of multivariate polynomials 
an be an important toolin deformation theory and number theory [47℄. Multivariate fa
torisation has also been used inthe 
lassi�
ation of algebrai
 varieties [109℄Apart from appli
ations in these domains, univariate polynomial fa
torisation over �nite�elds serves as a subproblem of other fa
torisation problems, namely, those pertaining to multi-variate polynomials over �nite �elds, and univariate and multivariate polynomials over the �eldof rational numbers and �nite extensions of the rationals [56℄.Contemporary resear
h in 
omputer algebra aims both at wide fun
tionality of the presentalgorithms (by solving a wide range of di�erent problems) and at their speed (how large 
an theproblems to solve be made, using reasonable resour
es of time and ma
hinery) [55℄. Our motivesbehind undertaking this line of resear
h from a 
omputational point of view stem from our beliefthat algorithmi
 trends in mathemati
s need to be examined and re-evaluated using the verysame tools for whi
h the algorithms were originally intended, whi
h is the a
tual \
omputer"ma
hine. A 
ontinuous 
hallenge lies in 
onne
ting the new mathemati
al ideas on how to bestperform a 
ertain algorithm, with the 
omputing approa
hes and tools that help materialise aparti
ular algorithm. A variety of tools are made available towards this end. Improvements 
antou
h upon issues exploiting sparsity, memory management and spa
e redu
tion. Parallelismin 
omputer algebra has also been interestingly demonstrated [31, 118, 129℄. One of the main
ontributions of this thesis is to also investigate areas of parallelism whenever an improvementin run time or spatial 
omplexity is desired. The main fo
us is on re
ent algorithms whi
hhave still not been thoroughly used: Niederreiter's algorithm for univariate polynomials and thepolytope method for bivariate polynomials. The ultimate aim of our work is to bring about thebest performan
e possible in those two approa
hes using a given hardware and reasonable time,a
hieving 
ompetitive fa
torisation re
ords that in some 
ases have not been a
hieved before.In parti
ular, we a
hieve the fa
torisation of a sparse binary bivariate polynomial with degree20000, and the absolute irredu
ibility testing of a bivariate and trivariate polynomial of degree30000, and of multivariate polynomials with up to 3000 variables.1.2 OutlineChapters 2 and 3 
ontain a preview of the mathemati
al ideas on whi
h our work is based. InChapter 4 we examine the Niederreiter algorithm [102, 103, 104, 105℄ whi
h has been predi
tedto perform very well for sparse polynomials over the binary �eld. This prompts us to investigatethe sparsity feature for trinomials in parti
ular, those providing the most immediate model forsparse polynomial fa
torisation. We prove that the Niederreiter matrix is sparse in the 
ase of atrinomial, and establish the exa
t sparsity pattern and density of the Niederreiter matrix [3℄. Wealso develop a new algorithm for solving the sparse linear system dire
tly to produ
e a basis forthe solution set through Gaussian elimination and using the data stru
ture of Gustavson [65℄,and show how the new algorithm 
ir
umvents the problems that have always been asso
iatedwith this data stru
ture in terms of elbow spa
e and 
ompression. Although it 
an be easily2



modi�ed to be
ome a general linear solver for other various appli
ations over F 2, our experimentsshow that the algorithm 
an be very eÆ
ient in the 
ases when the matrix maintains a highlevel of sparsity throughout the redu
tion phase, typi
ally an observed feature of the Niederreitermatrix.These results are later in
orporated into an algorithm for extra
ting the fa
tors using a ba-sis for the solution set, based on G�ottfert's a

eleration of the Niederreiter algorithm over F 2[59℄. In Chapter 5, we develop a new BSP (bulk syn
hronous parallel) algorithm that outlinesa 
lear dependen
y between the major 
omputations involved in the fa
tors extra
tion pro
ess,so that the resulting algorithm 
omprises a 
ompletely new task distribution pro
ess [1℄. Ourmain reasons behind adopting su
h a model of parallelism are due to its features simplifyingthe 
ost analysis and its 
lear distin
tion between the three important phases of 
omputation,
ommuni
ation, and syn
hronisation. Our BSP theoreti
al model results in an eÆ
ient BSP
ost requiring relatively small 
ommuni
ation and syn
hronisation 
osts, and the parallel algo-rithm a
hieves very good eÆ
ien
y as 
on�rmed by our experimental results. Combining theresults of Chapters 4 and 5, the resulting hybrid algorithm provides a 
heaper and more mem-ory eÆ
ient alternative to the fa
torisation of trinomials over F 2 than previously known denseimplementations of the Niederreiter algorithm [110℄.In Chapter 6 we be
ome interested in algorithms for bivariate polynomial fa
torisations over�nite �elds. Based on joint work with Shuhong Gao and Alan Lauder [2℄, we introdu
e a newapproa
h to bivariate polynomial fa
torisation whi
h in
orporates ideas from polyhedral geome-try, and generalises Hensel lifting. The method exploits the sparsity of input polynomials so thatbivariate polynomials 
an be pro
essed signi�
antly more qui
kly than using ordinary Hensellifting. Given a bivariate polynomial over a �eld, one may asso
iate with it a 
onvex polytopein the two dimensional real spa
e 
alled its Newton polytope. A well known result is that if thepolynomial fa
tors, then its Newton polytope de
omposes, in the sense of the Minkowski sum,into the Newton polytopes of the fa
tors. If the polytope does not de
ompose, one immediatelydedu
es that the polynomial must be irredu
ible. However, the 
onverse is not ne
essarily true,and we are fa
ed with the following problem: Given a de
omposition of the polytope, 
an were
over a fa
torisation of the polynomial whose fa
tors have Newton polytopes of that shape,or show that one does not exist. Our approa
h, motivated by Hensel lifting, is to assume that,along with the de
omposition of the polytope, we are given appropriate fa
torisations of thepolynomials de�ned by the edges of the Newton polytope. These polynomials will be essen-tially in one variable less, and the boundary fa
torisation of the input polynomial is then liftedinto the Newton polytope, where the 
oeÆ
ients of the possible fa
tors of the polynomial arerevealed in su

essive layers. In standard Hensel lifting, instead of lifting from the boundary,one does so from a single edge. Uniqueness of the linear systems en
ountered during lifting
an then be ensured by randomising the polynomial to enfor
e 
oprimality 
onditions and tomake sure the edge being lifted from is suÆ
iently long. However, this randomisation is bysubstitution of linear forms, and this destroys the sparsity of the input polynomial. With thepolytope method, uniqueness 
an be shown to hold in the bivariate 
ase, only under 
ertain
oprimality 
onditions, and without restri
tions on the lengths of the edges. As with Hensellifting, the polytope method has an exponential worst-
ase running time, sin
e the number ofsummands of a Newton polytope 
ould in the worst 
ase be exponential in the total degree ofthe asso
iated polynomial. However, our experiments performed very eÆ
iently in fa
torisationsof sparse polynomials whose polytopes have few edges, and hen
e very few Minkowski de
ompo-sitions. This leads us to 
onsider possible extensions of this work, in the belief that it 
ould be3



a promising new method with fast performan
e in pra
ti
e, despite its worst-
ase exponentialtime.In Chapter 7, we pursue this work in an attempt to get as 
lose as possible to solving theopen problem of devising a sparse bivariate algorithm. The polytope method has potentialfeatures that one 
an exploit, but as it stands above, it argues for one major advantage suitingsparse polynomials, namely, the fa
t that the worst-
ase exponential sear
h for summands 
anin fa
t be very small if the input polynomial is sparse with a Newton polytope having fewde
ompositions. However, for an input bivariate polynomial of total degree d, the amount ofwork per extension of a given boundary fa
torisation is still of the order O(d4). We investigatewhether this 
omplexity 
an be redu
ed, in the 
ase when the ground �eld is of prime order,to some bound whi
h is dire
tly dependent on the number of terms, say t. The method, whi
hexploits both the fa
t that many of the 
oeÆ
ients 
orresponding to latti
e points in the Newtonpolytope of the input polynomial (and hopefully its fa
tors) are zero, and also the fa
t that manyof the polynomials generated during the lifting steps are zero in general and sparse in the worst-
ase analysis, results in very high degree, sparse, bivariate binary fa
torisations for input degreeequal to 20000. To the best of our knowledge, this is by far the highest binary fa
torisationa
hieved to date [4℄.In Chapter 8, we examine multivariate polynomial absolute irredu
ibility over �nite �elds, asub-problem whi
h is indispensable for examining input polynomials before feeding them into apossibly expensive and nontrivial fa
torisation algorithm. In parti
ular, we revisit an algorithmdue to Gao and Lauder [45℄ that is also based on the use of polytopes. Motivated by their original�ndings and the spe
ial feature whi
h makes absolute irredu
ibility testing largely dependent onthe shape and the size of Newton polytopes, we investigate a BSP s
heme that serves to extendthe range of appli
ability of the algorithm, by making it possible to ta
kle signi�
antly higherdegrees, and by allowing a more eÆ
ient performan
e for low degree yet denser polynomials thanthose reported in [47℄. We show that the algorithm 
an be optimally parallelised by 
onstru
tinga balan
ed load s
heme using the pattern of 
omputations in the sequential 
ase as in [45℄, andby adopting a 
orresponding data distribution representing latti
e points inside polytopes in R 2.The distribution not only adheres to the proposed load s
heme, but also allows for a s
alableparallel performan
e whose eÆ
ien
y is re
e
ted in our experiments. This then paves the way forthe multivariate 
ase, where a model involving parallelism at two di�erent levels is des
ribed.The resulting improvement is shown to perform well for a wide range of input polynomials,a
hieving absolute irredu
ibility testing of bivariate and multivariate polynomials up to degree30000, and of lower degree multivariate polynomials with up to 3000 variables [5℄.We 
on
lude with a summary of our work in Chapter 9, and outline possible lines of resear
hof relevan
e to this thesis that 
an be undertaken in the future.
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Chapter 2PreliminariesIn this 
hapter we present a brief 
olle
tion of 
lassi
al terminologies and results des
ribing thetools upon whi
h the rest of the thesis is based. We start our dis
ussion by de�ning severaltypes of algebrai
 stru
tures and properties ne
essary for the 
onstru
tion of �nite �elds. Wealso dis
uss issues related to the representation of polynomials over su
h �elds, and for per-forming arithmeti
 of univariate polynomials over �nite �elds. We �nally 
on
lude with a briefdes
ription of the BSP model that we will adopt in all our parallel algorithms.2.1 Rings and �eldsFor a 
omplete overview of the statements and proofs of all assertions 
oming forward, we referthe reader to [9, 40, 55, 85, 93, 97℄.De�nition 2.1.1 A group G is a set together with a binary operation � operating on elementsof G su
h that:i. � is asso
iative.ii. There exists a unique element e in G (
alled the identity element) su
h that for all a 2 Gwe have: a � e = e � a = aiii. For ea
h a 2 G, there exists a unique element a�1 2 G su
h that:a � a�1 = a � a�1 = eIf the group also satis�es a � b = b � a for all a; b 2 G, then the group is 
alled abelian (or
ommutative).In what follows, 0 denotes the identity under + and 1 the identity under �.De�nition 2.1.2 A ring (R;+; �) is a set R endowed with two binary operations + and � (notne
essarily the 
ommon operations of addition and multipli
ation) su
h that:i. R is an abelian group under +.ii. � is asso
iative.iii. The distributive laws hold. That is, for all a; b; 
 2 R, we have:5



a � (b+ 
) = a � b+ a � 
 and (b+ 
) � a = b � a+ 
 � a.aDe�nition 2.1.3 i. A ring R is 
alled a ring with identity if the ring has a multipli
ativeidentity; that is, if there exists an element e 6= 0 su
h that a � e = e � a = a for all a 2 R.ii. A ring is 
ommutative if � is 
ommutative.iii. An integral domain is a 
ommutative ring with identity e 6= 0 in whi
h a � b = 0 impliesa = 0 or b = 0.iv. A ring is 
alled a division ring (or skew �eld) if its nonzero elements form a group underthe operation �.v. A �eld is a 
ommutative division ring.In what follows we write ab as a shorthand for a � b.De�nition 2.1.4 A subset S of a ring R is 
alled a subring of R provided S is 
losed under +and � and S forms a ring under these operations.De�nition 2.1.5 Let J � R. Then J is 
alled an ideal of R if J is a subring of R and we havera 2 J and ar 2 J for all a 2 J and r 2 R.For a 
ommutative ring R, the smallest ideal 
ontaining a given element a 2 R is the ideal(a) = fra+ na : r 2 R;n 2 Zg. If R 
ontains an identity, then (a) = fra : r 2 Rg.De�nition 2.1.6 Let R be a 
ommutative ring and J an ideal of R. If there exists an a 2 Rsu
h that J = (a), then J is 
alled the prin
ipal ideal generated by a.De�nition 2.1.7 Let J be an ideal of a ring R. We say that b and 
 in R belong to the sameresidue 
lass modulo J if b� 
 2 J .If a 2 R, the residue 
lass of a modulo J will be denoted by [a℄ = a + J , 
onsisting of allelements of R of the form a+ 
 for some 
 2 J .De�nition 2.1.8 The ring of residue 
lasses of the ring R modulo the ideal J under the oper-ations: (a+ J) + (b+ J) = (a+ b) + J(a+ J)(b+ J) = ab+ Jis 
alled the residue 
lass ring (or fa
tor ring) of R modulo J . We denote this ring by R=J .Theorem 2.1.1 The ring Zp of residue 
lasses of the integers modulo the prin
ipal ideal gen-erated by a prime p is a �eld.De�nition 2.1.9 Let p be a prime and let F p = f0; 1; :::; p � 1g. Let� : Z=(p)! F pbe the mapping de�ned by �([a℄) = a for a = 0; 1; :::; p � 1. Then � indu
es a �eld stru
ture onF p whi
h we 
all the Galois �eld of order p. 6



Theorem 2.1.2 The mapping �, as de�ned above, is an isomorphism, i.e.:�([a℄ + [b℄) = �([a℄) + �([b℄) and �([a℄[b℄) = �([a℄)�([b℄):It is 
lear that the �nite �eld F p has zero element 0 and identity 1. Moreover, its stru
ture isidenti
al to that of Zp. An obvious advantage to this is the fa
t that 
omputing with elementsof F p redu
es to ordinary arithmeti
 of integers modulo p.De�nition 2.1.10 Let R be an arbitrary ring. Suppose that there exists a positive integer nsu
h that nr = 0 for every r 2 R. We 
all the 
hara
teristi
 of R the least su
h positive integern. If no su
h positive integer exists, R is said to have 
hara
teristi
 0.Theorem 2.1.3 A �nite �eld has prime 
hara
teristi
.Theorem 2.1.4 Let R be a 
ommutative ring of prime 
hara
teristi
 p. Let a; b 2 R and n 2 N.Then (a+ b)pn = apn + bpn :In the following, all polynomials are assumed to be in one variable.De�nition 2.1.11 Let R be an arbitrary ring. The ring formed by polynomials over R with theusual operations of polynomial addition and multipli
ation is 
alled the polynomial ring over Rand denoted by R[x℄.De�nition 2.1.12 Let F be a �eld. The �eld of fra
tions of the polynomial ring F [x℄ is the setF (x) of rational fun
tions in x with 
oeÆ
ients in the �eld F .De�nition 2.1.13 Let f(x) = Pni=0 fixi be a nonzero polynomial over R su
h that fn 6= 0.Then we 
all n the degree of the polynomial f (denoted by deg(f)), fn the leading 
oeÆ
ient off(x), and f0 the 
onstant term. If R has identity 1 and the leading 
oeÆ
ient of f(x) is 1, thenf(x) is 
alled a moni
 polynomial.De�nition 2.1.14 A Laurent polynomial with 
oeÆ
ients in the �eld F is a polynomial of theform a�mx�m + a�(m�1)x�(m�1) + :::+ a�1x�1 + a0 + a1x+ :::+ anxnwhere ai 2 F , for �m � i � n, m;n 2 Z�0, and where only �nitely many of the ai's are nonzero.De�nition 2.1.15 Given a nonzero Laurent polynomial f = Pni=m aixi, where m;n 2 Z, itsdegree is de�ned to be the di�eren
e n�m.De�nition 2.1.16 A regular polynomial is a polynomial whose indeterminates 
annot have neg-ative exponents.Within appli
ations involving only regular polynomials, we set deg(0) = �1 or �1 depend-ing on the suitability of ea
h. If f = 0 is treated as a Laurent polynomial, we set deg(0) = �1.Polynomials of degree equal to zero are the nonzero 
onstant polynomials. In all the following,F denotes an arbitrary �eld. 7



Theorem 2.1.5 Let g 6= 0 be a polynomial in F [x℄. Then for any f 2 F [x℄ there exist polyno-mials q; r 2 F [x℄ su
h that f = qg + r; where deg(r) < deg(g):De�nition 2.1.17 A polynomial f 2 F [x℄ is said to be irredu
ible over F if f has positive degreeand f = b
 with b; 
 2 F [x℄ implies that either b or 
 is a 
onstant polynomial (equivalently, eitherb or 
 belongs to F ). In other words, f is irredu
ible if and only if it has only trivial fa
tors.Theorem 2.1.6 Let f 2 F [x℄ have positive degree. Then f 
an be written in the formf = age11 � � � gerr ;where a 2 F , g1; :::; gr are distin
t irredu
ible polynomials in F [x℄, and e1; :::; er are positiveintegers. Moreover, this fa
torisation is unique up to the order of fa
tors and multipli
ation byunits (the nonzero 
onstants from F ).Theorem 2.1.7 Let f 2 F [x℄. Then the residue 
lass ring F [x℄=(f) is a �eld if and only iff is irredu
ible over F . In parti
ular, the residue 
lasses 
omprising F [x℄=(f) are of the formr + (f), where r runs through all polynomials in F [x℄ with deg(r) < deg(f). Thus, if F = F pand deg(f) = n � 0, then F p[x℄=(f) has pn elements.Theorem 2.1.8 Let f 2 F [x℄ be a polynomial of degree n over F . Then f 
an have at most ndistin
t roots in F .2.2 Field extensions and stru
ture of �nite �eldsWe 
all a sub�eld K of F that subset of F whi
h itself is a �eld under the operations of F . We
all F an extension �eld of K.Let K be a �eld and F a �nite extension of it. Then F 
an be viewed as a ve
tor spa
e overK. F is 
alled a �nite extension if it is a �nite dimensional ve
tor spa
e. Its degree (denoted by[F : K ℄) is pre
isely its dimension as a ve
tor spa
e.Lemma 2.2.1 Let F be a �nite �eld 
ontaining a sub�eld K with q elements. Let m = [F : K ℄.Then F has qm elements.Theorem 2.2.1 The order of a �nite �eld F is a power of its 
hara
teristi
. Consequently,every �nite �eld has order pn, where p is prime and n is the degree of an irredu
ible polynomialover F p su
h that F is isomorphi
 to F p[x℄=(f).De�nition 2.2.1 A �eld F is said to be algebrai
ally 
losed if every univariate polynomial ofdegree at least 1 with 
oeÆ
ients in F has a zero in F .De�nition 2.2.2 A �eld extension L of F is said to be algebrai
 if every element of L is a rootof a nonzero polynomial with 
oeÆ
ients in F .De�nition 2.2.3 An algebrai
 
losure F of a �eld F is an algebrai
 extension of F that isalgebrai
ally 
losed. 8



Theorem 2.2.2 The algebrai
 
losure of a �eld F is unique up to isomorphism whi
h �xes allelements of F .De�nition 2.2.4 Let F be a �nite �eld and K a sub�eld of F . Let f 2 K [x℄ be a polynomialof degree n > 0 and leading 
oeÆ
ient a. Then f is said to split in F if it 
an be written as aprodu
t of linear fa
tors in F [x℄ or equivalently, if there exists some �1; :::; �n 2 F su
h thatf(x) = a(x� �1) � � � (x� �n):The �eld F is 
alled a splitting �eld of f .The following theorem states that �nite �elds of any prime power order exist and are essen-tially unique in stru
ture though their representation may vary.Theorem 2.2.3 For every prime p and every positive integer n there exists a �nite �eld withpn elements. Any �nite �eld with q = pn elements is isomorphi
 to the splitting �eld of xq � xover F p.Theorem 2.2.4 Let F be a �nite �eld with q elements and a 2 F . Thenaq = a:Theorem 2.2.5 Let F be a �nite �eld with q elements and K a sub�eld of F . Then the polyno-mial xq � x in K [x℄ fa
tors in F [x℄ and the fa
torisation is given by:xq � x = Ya2F (x� a):In this 
ase, F is a splitting �eld of xq � x over K .Theorem 2.2.6 For q = pm, F q 
ontains an isomorphi
 
opy of F p as a sub�eld. In otherwords, F q is an extension �eld of F p of degree m.Theorem 2.2.7 Let F q be a �nite �eld and n 2 N. The produ
t of all moni
 irredu
ible poly-nomials over F q whose degrees divide n is equal to xqn � x.In what follows let F �q denote the set of nonzero elements of F q.Theorem 2.2.8 The nonzero elements of F q form a group under multipli
ation. Furthermore,this group is 
y
li
 of order q � 1.De�nition 2.2.5 An irredu
ible polynomial f(x) 2 F p[x℄ of degree m is 
alled a primitivepolynomial if x is a generator of F �pm, the 
y
li
 multipli
ative group of nonzero elements inF pm = F p[x℄=(f(x)).Theorem 2.2.9 For ea
h m � 1, there exists a moni
 primitive polynomial of degree m overF p. 9



In 
on
lusion, we de�ne the formal derivative over �elds bearing in mind that the de�nitionentailed does not involve the idea of a limit (be
ause of the absen
e of the notion of distan
eor topology on a �eld). Instead, we adopt the following de�nition whi
h applies to arbitrary
ommutative rings and not just �elds :De�nition 2.2.6 Let R be an arbitrary 
ommutative ring with 1. Let f =P0�i�n fixi 2 R[x℄.We de�ne the formal derivative of f byf 0 = X1�i�nifixi�1:Theorem 2.2.10 Let R be a 
ommutative ring with 1, g1; :::; gr 2 R[x℄, and e1; :::; er positiveintegers. We then have:(ge11 � � � gerr )0 = X1�i�reig0igei�1i Yj 6=igejj = X1�i�reig0i fg iwhere f = ge11 � � � gerr .2.3 Constru
tion of �nite �eldsWe have seen in the previous se
tion that, given q = pm for somem � 1, we 
an always determinea �nite �eld of order q. In addition, any two �elds of the same order are isomorphi
, i.e.stru
turally the same; however, the di�eren
e in representing isomorphi
 
opies of those �eldsis essential to pra
ti
al appli
ations where one has to 
ome up with the most suitable 
hoi
e of�eld representation.We start our dis
ussion on how to 
onstru
t �nite �elds by 
onsidering the 
ase q = p. Inthis 
ase, we know that F p is isomorphi
 to Zp and so the �nite �eld 
an be taken to be the setof integers f0; :::; p � 1g. If q = pm where m > 1, the representation 
an be
ome more diÆ
ult.One eÆ
ient way to 
onstru
t �elds of prime power order is the following. We have seen that, iff(x) is an irredu
ible polynomial of degree m over F p, for some m � 1 and p a prime number,then F p[x℄=(f(x)) is a �eld 
onsisting of pm elements. By the uniqueness (up to isomorphism)of �nite �elds, we know that F p[x℄=(f(x)) 
an represent all �elds F q of order q = pm. Thus,elements of F q 
an be represented as polynomials taken modulo the polynomial f . Moreover,if f(x) is primitive, we know that x is a generator of the group F �q; in other words, all q � 1nonzero elements of F q are obtained by 
omputing xi mod f(x) for i = 1; :::; q � 1, where f(x)is the primitive polynomial of degree m over F p used to 
onstru
t the �nite �eld. It is nowobvious that elements of the �nite �eld F q, where q = pm, 
an be represented by polynomials inF p[x℄ of degree less than m. Subtra
tion and addition of elements of F q are the usual operationsas performed among polynomials in F p[x℄. The produ
t of two elements g1(x) and g2(x) ofF q, however, is obtained by multiplying g1(x) with g2(x) and redu
ing the result modulo f(x).Multipli
ative inverses and g
ds of elements of F q 
an be obtained using the Extended Eu
lideanAlgorithm in F p[x℄, always followed by redu
tion modulo f(x) [97, 98℄.As a result, the representation of a univariate polynomial in F q[x℄ be
omes, informally speak-ing, that of a bivariate polynomial (a polynomial with two variables) in F p[x℄. To illustrate, ifh(x) 2 F q[x℄, then we 
an writeh(x) = X0�i�nhixi where hi 2 F q:10



However, hi 2 F q implies that hi is a polynomial over F p, ex
ept that it is regarded as a\
onstant" in F q.The following example illustrates how we 
an 
onstru
t a �nite �eld and represent a poly-nomial in the ring of polynomials over that �eld.Example [98℄We are given p = 2, m = 4, and f(x) = x4 + x+ 1 a primitive polynomial over F 2.i. Elements of F 24 
an be generated in two ways as follows:Method 1 :We know that F 24 
onsists of all polynomials over F 2 of degree less than 4. As a result, we have:F 24 = fa3x3 + a2x2 + a1x+ a0 j ai 2 f0; 1gg;whi
h 
on�rms that F 24 
onsists of 16 elements.Method 2 :Sin
e f(x) is a primitive polynomial of degree 4 over F 2, we 
an generate all elements of F 24 by
omputing xi for i = 0; :::; 24 � 2 and redu
ing the result modulo f(x). The 
omputations aresummarised in table 1. t xt mod f(x)0 11 x2 x23 x34 x+ 15 x2 + x6 x3 + x27 x3 + x+ 18 x2 + 19 x3 + x10 x2 + x+ 111 x3 + x2 + x12 x3 + x2 + x+ 113 x3 + x2 + 114 x3 + 1Table 2.1: The powers of x modulo f(x) = x4 + x+ 1.ii. We 
an add any two elements of F 16 using regular polynomial addition. Sin
e all elementsare redu
ed modulo f(x), the resulting polynomial sum would need only be redu
ed modulo 2.iii. Two elements in F 16 
an be multiplied as polynomials and then redu
ed modulo f(x).For instan
e,(x3 + x2 + 1) � (x3 + 1) = x6 + x5 + x2 + 1 � (x3 + x2 + x+ 1) mod f(x):It is worth noting that multipli
ation 
an be performed more easily using a look-up of indi
es11



only. For example, x3 + x2 + 1 = x13 mod f(x);x3 + 1 = x14 mod f(x);and thus to perform the produ
t (x3 + x2 + 1) � (x3 + 1) we 
al
ulatex13 � x14 = x27 � x12 mod f(x) = (x3 + x2 + x+ 1):This kind of table look-up (
alled the Ze
h logarithms representation) 
an be pre
omputed andis eÆ
ient for small values of q only.iv. The inverse of x3 + x + 1 in F 16 is given by x2 + 1. Using the Extended Eu
lideanalgorithm for polynomials, we 
an verify that(x3 + x+ 1) � (x2 + 1) = x5 + x2 + x+ 1 � 1 mod f(x):v. Polynomials in F 16[x℄ 
an be 
onstru
ted with the help of elements of the �eld serving asthe 
onstant 
oeÆ
ients. For instan
e, an example of a polynomial of degree 5 over F 16 is givenby: f(y) = (x3 + x+ 1)y5 + (x+ 1)where x+ 1 is the 
onstant term of the polynomial.2.4 Univariate polynomial arithmeti
 over �nite �eldsArithmeti
 of univariate polynomials over �nite �elds 
overs operations su
h as addition, multi-pli
ation, division with a remainder, g
d 
omputation, and repeated squaring. Su
h algorithmsfall into two 
ategories, the �rst of whi
h is the 
lassi
al arithmeti
, where the operations areimplemented literally as in their de�nition. The 
omplexity of these algorithms is hopefullygreater than the 
orresponding ones in the se
ond 
ategory of \fast" arithmeti
, su
h as Karat-suba's multipli
ation algorithm, S
h�onhage and Strassen's multipli
ation algorithm, and theFast Fourier Transform [55℄. Sin
e fast arithmeti
 does not always provide an improvement inperforman
e for input size under 
ertain 
ross-over points, one has to make a 
areful 
hoi
e onwhi
h options to use based on the problem at hand. In our implementations, we use the 
lassi
alalgorithms for general arithmeti
 purposes. Detailed dis
ussions of 
lassi
al and fast arithmeti
algorithms 
an be found in [21, 29, 55℄.The 
omplexity of the algorithms below is measured in terms of the maximum number ofarithmeti
 operations required over F q, where q = pm for m � 1, and all polynomials areunderstood to be univariate. In what follows, let F q be again a �eld with q elements where,as usual, q = pm for some prime p and a positive integer m. log x denotes the binary (base 2)logarithm of x.Theorem 2.4.1 Two polynomials of degree at most n over F q 
an be added using at most O(n)operations in F q.We note that there is no useful alternative to the 
lassi
al addition algorithm.12



Theorem 2.4.2 Two polynomials of degree at most n over F q 
an be multiplied by the 
lassi
alalgorithm using at most n2 operations in F q. Fast algorithms perform this multipli
ation usingO(n log n log logn) operations in F q.De�nition 2.4.1 Let R be a 
ommutative ring with 1. LetM : N>0 ! R>0be a fun
tion su
h that two polynomials in R[x℄ of degree less than n 
an be multiplied using atmost M(n) operations in R. Then M is 
alled a multipli
ation time for R[x℄.We have the following from [55℄: M(n) � n;M(n)=n �M(k)=k if n � k;M(nk) � k2M(n);M(nk) � kM(n);M(n+ k) �M(n) +M(k);for all m;n 2 N>0 .Theorem 2.4.3 Let f be a polynomial of degree n > 0 over F q and g be a polynomial of degreem su
h that 0 < m � n. Then the division with remainder of f by g requires O(M(n)) operationsin F q.The Eu
lidean algorithm 
an be applied to 
ompute the g
d of polynomials over �nite �elds.In parti
ular, the Extended Eu
lidean algorithm 
an also be used to determine the inverse of apolynomial over a �nite �eld. There are also two 
lasses (
lassi
al and fast) 
orresponding tothese algorithms.Theorem 2.4.4 Let f and g be two polynomials of degree at most n over F q. Then g
d(f; g) 
anbe found using O(M(n) log(n)) operations in F q, where M(n) is the multipli
ation 
ost de�nedabove.Theorem 2.4.5 Let F be a �eld and f 2 F [x℄ of degree n. Let R be the 
orresponding residuering F [x℄=(f). Then a multipli
ation in R 
an be performed using 6M(n) + O(n) arithmeti
operations in F , and an inverse with at most (24M(n) +O(n)) log n operations in F .Corollary 2.4.1 Every arithmeti
 operation in the �nite �eld of order pm for some prime pand positive integer m 
an be performed using at most O(m logm log logm) operations in F p.2.5 The bulk syn
hronous parallel model (BSP)The bulk syn
hronous parallel model is a model for parallel programming whi
h provides asimple framework to a
hieve portable parallel algorithms independent of the ar
hite
ture of the
omputer on whi
h the parallel work is 
arried out. The model is attra
tive be
ause of its simple
ost fun
tion whi
h helps predi
t the running time of parallel algorithms before implementingthem, and has been su

essfully used in a variety of appli
ations (see [14, 71℄ for instan
e). For13



a detailed des
ription of the BSP model, we refer the reader to [15, 127℄. In our implementationof the BSP model, we use the standard BSP library [15, 66, 67℄. An alternative is the PaderbornUniversity BSP (PUB) library [20℄ whi
h has the extra feature of allowing subset syn
hronisationand hen
e, very importantly, nested parallelism.A BSP 
omputer 
onsists of a set of p pro
essors ea
h with its own private memory, andhaving remote a

ess to other pro
essors' private memories through a 
ommuni
ation network.A BSP algorithm 
onsists of a sequen
e of parallel steps, denoted by supersteps. A 
omputationsuperstep is a series of 
omputations performed on lo
al data available to the pro
essor beforethe superstep. A 
ommuni
ation superstep is a series of 
ommuni
ations in the form of sendingor re
eiving a number of non-lo
al data between pro
essors that are needed to perform lo
al
omputations. Communi
ation supersteps are followed by syn
hronisation barriers, whereby alltransferred data is updated. A BSP 
omputer 
an be des
ribed by the following four parameters:� p, the number of pro
essors available;� s, the pro
essor speed in 
op/se
;� g(p), the time (in 
op time units) it takes to 
ommuni
ate (send or re
eive) a data elementamong p pro
essors;� `(p), the time (in 
op time units) it takes all p pro
essors to syn
hronise.We distinguish between the BSP 
ost of an algorithm and its expe
ted running time. TheBSP 
ost is established using the parameters g and ` and the estimate of the exe
ution time isobtained by dividing the BSP 
ost in 
op time units by s, the single pro
essor speed. The BSP
ost of an algorithm is simply the sum of the BSP 
osts of its supersteps. The 
omplexity of asuperstep is de�ned as wmax + g(p) � hmax + `(p);where wmax is the maximum number of 
ops performed, and hmax is the maximum number ofmessages sent or re
eived by any one pro
essor during that superstep. In our appli
ations overthe binary �eld, 
oating point operations 
orrespond to binary operations, and thus all 
ostsare understood to be expressed in bit operations.
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Chapter 3Fa
torisation algorithmsIn this 
hapter we present the key algorithms in the literature of polynomial fa
torisation onwhi
h our work is based. We dis
uss in more detail Niederreiter's algorithm and G::ottfert'sre�nement of the algorithm over �elds of 
hara
teristi
 2, give a brief outline of Hensel liftingfor bivariate polynomial fa
torisation, and present a review of Newton polytopes in relationto absolute irredu
ibility of multivariate polynomials. For a broad survey on the origins ofpolynomial fa
torisation we refer the reader to [29, 55, 74, 79℄.3.1 Univariate fa
torisationA basi
 premise in the dis
ussion of polynomial fa
torisation is its uniqueness, the fa
t that forany �eld F the polynomials in F [x1; :::; xn℄ 
an be uniquely fa
tored into a produ
t of irredu
iblepolynomials, and that this fa
torisation is unique up to the order of the fa
tors and the mul-tipli
ation by units (whi
h are the nonzero 
onstants in F [x1; :::; xn℄). Sin
e we are interestedin polynomials over �nite �elds, we restri
t the dis
ussion to the 
ase when F q is a �nite �eldof order q = pm, for some m � 1, and where the 
orresponding ring of polynomials over F isdenoted by F q[x℄.De�nition 3.1.1 A polynomial f is square-free if and only if it is not divisible by a non-
onstantsquare.De�nition 3.1.2 If f = ge11 :::gerr for some irredu
ible polynomials g1; :::; gr and exponentsei � 0, for i = 1; :::; r, then the produ
t g1:::gr is 
alled the square-free part of f .In what follows, let f 2 F q[x℄ denote a polynomial of degree n. The fa
torisation of f overF q 
onsists of determining pairwise distin
t moni
 irredu
ible polynomials g1; :::; gr 2 F q[x℄ andpositive integers e1; :::; er su
h that f(x) = l
(f)ge11 :::gerr ;where l
(f) denotes the leading 
oeÆ
ient of f .The algorithms fall into two 
lasses: deterministi
 algorithms and probabilisti
 (or ran-domised) ones. The general aim is to devise algorithms with running time bounded by a polyno-mial in the input size, i.e. the total degree of the polynomial to be fa
torised and the logarithmof the order of the �nite �eld. Musser presented an algorithm for the square-free de
omposition15



of univariate polynomials over the integers [101℄, whi
h has been extended to the multivariate
ase by Yun [133℄. Berlekamp gave the �rst deterministi
 algorithm for univariate fa
torisationover a �nite �eld [8℄. Kaltofen and Shoup [82℄ and Shoup [120℄ provided an algorithm withsubquadrati
 time based on asymptoti
ally fast power series 
omposition algorithms from [17℄,and the algorithm is known to perform best for large �nite �elds. Kaltofen and Lobo intro-du
ed a bla
k box representation for fa
toring high degree polynomials over �nite �elds usingthe Berlekamp algorithm [81℄. The work of Berlekamp [8, 10℄, Cantor and Zassenhaus [22℄, andKaltofen and Shoup [82℄ are among many examples where univariate fa
torisation algorithmshave su

essfully a
hieved quadrati
 or subquadrati
 running times in the input size.Perhaps the simplest approa
h with whi
h to view fa
toring univariate polynomials over�nite �elds 
onsists of performing the three stages of:� square-free fa
torisation,� distin
t-degree fa
torisation, and� equal-degree fa
torisation.Square-free fa
torisation 
on
erns eliminating multiple fa
tors of a non-square-free polynomialf , whi
h amounts to 
omputing g1:::gr su
h that f = l
(f)ge11 :::gerr for positive integers ei.A well known algorithm in this respe
t is due to Yun [133℄, and returns the square-free partof f deterministi
ally using O(M(n) log n + n log(q=p)) operations in F q. On
e a polynomialis redu
ed to a square-free form, its fa
torisation 
an be a
hieved by simply de
omposing thesquare-free part. First, one 
alls Gauss's distin
t-degree fa
torisation, whi
h operates on thepolynomial to separate its fa
tors a

ording to their degree. Let f be a non-
onstant, square-free polynomial of degree n over F q. The distin
t-degree de
omposition of f 
onsists of thesequen
e (w1; :::; ws) (ws 6= 1) of polynomials su
h that wi is the produ
t of all moni
 irredu
iblepolynomials in F q[x℄ of degree i that divide f . Moreover, the distin
t-degree fa
torisation is thepro
ess of 
omputing this sequen
e [55, 56℄. The pro
ess is deterministi
 and 
an be shownto require O(sM(n) log(nq)) operations in F q, where s is the largest degree of an irredu
iblefa
tor of f . Finally, equal-degree fa
torisation solves the remaining problem by splitting all thefa
tors of the same degree whose produ
t has been generated by the pre
eding algorithm fordistin
t-degree fa
torisation. Proposed in probabilisti
 form by Cantor and Zassenhaus [22℄, thealgorithm takes as input a moni
 byprodu
t of the distin
t-degree fa
torisation, say g, with rmoni
 irredu
ible fa
tors all known to have some degree d � n. It returns all su
h irredu
iblefa
tors with probability of failure less than or equal to half, using an expe
ted number ofO((d log q + logn)M(n) log r) �eld operations. For more extensive details related to the abovealgorithms, we refer the reader to [29, 55, 56℄.3.1.1 Niederreiter's algorithm for small �nite �eldsWe now dis
uss an important 
lass of Linear algebra based algorithms, so 
alled sin
e theyredu
e the fa
torisation algorithm to solving a linear system over the �eld in question, andusing the solutions to produ
e non-trivial fa
tors of the input polynomial. The earliest work inthis respe
t was due to E. Berlekamp, and appeared su

essively in two versions, a deterministi
and a probabilisti
 one, designed to work over small and large �nite �elds respe
tively [8, 9, 10,22, 29, 55, 93℄. Berlekamp's algorithm for small �nite �elds a
hieves deterministi
ally a 
ompletefa
torisation into irredu
ibles in O(n! + rqM(n) logn) �eld operations, where r is the number16



of distin
t moni
 irredu
ible fa
tors of f and ! the exponent for solving an n� n linear systemover F q, and where r � O(log n) [83, 84, 100℄. Note that ! = 3 using 
lassi
al dire
t methodsand ! = log2 7 using for instan
e Strassen's fast matrix multipli
ation algorithm. For large �nite�elds, it su

eeds with probability at least 1=2 and requires O(n! + rM(n) logn log q log r) �eldoperations. The bottlene
ks asso
iated with these methods usually 
on
ern the linear algebraphase, where the 
osts of setting up the linear system, solving it or even storing it dominatethe operational and spatial 
omplexities. However, it is perhaps paradoxi
ally this very aspe
twhi
h makes these algorithms attra
tive in pra
ti
e, sin
e many te
hniques already known toimprove upon the performan
e of linear solvers over �nite �elds 
an be used to expedite theentire fa
torisation algorithm, as 
an be demonstrated in the fa
torisation re
ords of [1, 38, 39,110, 117℄.In this se
tion we report on a relatively re
ent fa
torisation algorithm for univariate polyno-mials in the linear algebra based 
lass. For proofs of the results given below, we refer the readerto [102, 103, 104, 105℄. First proposed by Niederreiter in [102℄, the algorithm has re
eived a lotof attention parti
ularly for its e�e
tiveness over binary �elds. Niederreiter's original 
ontribu-tion �rst addressed small �nite �elds, spe
i�
ally, �elds of prime order only. At the heart of thealgorithm is the study of the di�erential equation:y(p�1) + yp = 0of order p� 1 in the rational �eld F p(x). Here, y(p�1) denotes di�erentiation of order p� 1 andyp denotes exponentiation of order p. Although this equation 
an still be used for fa
torisationover �elds with prime power order, we shall restri
t our dis
ussion to the 
ase when the ground�eld is F p, where p is a prime. Sin
e we have seen that any arbitrary polynomial 
an be madesquare-free, we 
an also assume that f is a square-free polynomial of degree n > 0 over F p, andthat we aim to determine its moni
 irredu
ible fa
tors g1; g2; :::; gr 2 F p[x℄.3.1.2 The square-free 
aseLet L(y) denote the expression y(p�1) + yp. Several properties 
hara
terise the di�erentialequation L(y) = 0, most important of whi
h are that L(y) is a linear operator on the ve
torspa
e F p(x) over F p, and that the solutions of L(y) = 0 form a linear subspa
e of F p(x) [102℄.Niederreiter 
onsiders those solutions of L(y) = 0 with �xed denominator f : If we write y = h=fwith h 2 F p[x℄, the 
orresponding solution spa
e de�ned by:N = fh 2 F p[x℄ : �hf�(p�1) +�hf�p = 0g
onstitutes the so 
alled Niederreiter linear spa
e, whi
h forms an F p-ve
tor spa
e [102℄. Ele-ments of this set 
an be des
ribed expli
itly as follows:Theorem 3.1.1 [102℄ Let f = g1:::gr be the de
omposition of f into distin
t irredu
ible fa
torsand let deg(f) = n > 0. The solutions to L(y) = 0 su
h that y = hf are given byy = rXj=1ajf g0jgj with a1; :::; ar 2 F p:17



If f is as above and h is an unknown polynomial of degree less than deg(f) = n, then thepolynomials on both sides of the equationfp�hf�(p�1) = �hp (3.1)have degrees less than or equal to (n � 1)p, and both sides of the equation are polynomials inxp. The major impli
ations of this lead to the 
ru
ial result:Theorem 3.1.2 [102℄ If y = hf with f �xed of degree n and h(x) is an unknown polynomial inF p[x℄ of degree less than n, then solving y(p�1)+yp = 0 redu
es to solving an n�n linear systemover F p.For the sake of 
larity and illustration we shall repli
ate the proof of the above theorem from[102℄:Proof: Write h(x) = n�1Pk=0hkxk. Rewrite y(p�1) + yp = 0 asfp�hf�(p�1) = �hp:Sin
e the polynomials on both sides of Eq. (3.1) are of degree less than or equal to (n � 1)pand are polynomials in xp, this indi
ates that (3.1) holds if and only if the 
oeÆ
ients of xjp,0 � j � n � 1, agree on both sides of the equation. Identifying the 
oeÆ
ients of fp �hf �(p�1)with those of �hp results in an n � n system of linear equations in h0; :::; hn�1, the unknown
oeÆ
ients of h. Let Nf be the n� n 
oeÆ
ient matrix of fp �hf �(p�1). Then sin
eh(x)p = h(xp) = n�1Xk=0hkxkp;this system 
an be rearranged as (Nf � In)hT = 0where h = (h0; :::; hn�1) 2 Fnp and (Nf � In) is an n� n matrix over F p.It 
an be shown, as a 
onsequen
e of the above in relation to polynomial redu
ibility, thatRank(Nf � In) = n � r, where n is the degree of f and r is the number of irredu
ible fa
torsof f . In parti
ular, f is irredu
ible over F p i� Rank(Nf � In) = n� 1 [102℄. Upon redu
ing thematrix (Nf � In), and if we �nd that its rank is n� 1, then f is irredu
ible and the algorithmhalts. So, we may assume that the rank is less than or equal to n � 2 or equivalently thatr � 2. Now let h be a solution of (3.1). By theorem 3.1.1, h 
an be expressed as Pri=1 aif g0igi 2F p[x℄, for some a1; :::; ar 2 F p. Let J(h) = f1 � j � r : aj = 0g. One 
an then show thatg
d(f; h) = Qj2J(h)gj , and that:Theorem 3.1.3 [102℄ The probability that a random solution h produ
es a nontrivial fa
tori-sation of f is approximately rp , if p� r. 18



3.1.3 The algorithmThe following algorithm returns a moni
 nontrivial fa
tor of f (or all fa
tors of f if p and rare not too large). In the former 
ase, all irredu
ible fa
tors 
an be found by re
ursing on theoutput of the algorithm.Algorithm 3.1.1 Input: f a square-free moni
 polynomial of degree n over F p and r the numberof its distin
t irredu
ible fa
tors.Output: A nontrivial fa
tor of f .1. Determine the matrix Nf then 
al
ulate the rank of (Nf � In). If the rank is equal ton� 1, output f as an irredu
ible polynomial and halt the algorithm.2. If r � 2, solve the linear system of equations(Nf � In)hT = 0over F p. Ea
h solution h results in a polynomial h over F p whose 
oeÆ
ients are the 
oordinatesof h.3. Consider a nonzero polynomial h produ
ed in step 2 and 
al
ulate g
d(f; h). Repeat untilg
d(f; h) 6= 1 or g
d(f; h) 6= f . Then, g
d(f; h) is a nontrivial fa
tor of f . If p and r are nottoo large, then we 
an 
onsider all pr polynomials h from step 2, so that g
d(f; h) yields allmoni
 fa
tors of f (with repetitions if p > 2).3.1.4 A

eleration of Niederreiter's algorithm over the binary �eldWe now dis
uss how Niederreiter's algorithm 
an be extended to deal with the 
ase when f isnot square-free and when the �nite �eld is of order q = 2. The approa
h taken here be
omesmore 
ompli
ated for �elds of order qt, for t > 1, and we refer the reader to [41, 103, 104, 105℄for more details.The algorithm lends itself to major simpli�
ations in the 
ase p = 2. Let us 
onsider againthe di�erential equation fp�hf�(p�1) + hp = 0:For p = 2, this simpli�es tof2�hf�0 + h2 = 0() (h0f � f 0h) + h2 = 0() (fh)0 = h2:Theorem 3.1.4 [103℄ Let F q be an arbitrary �eld of 
hara
teristi
 2, and f 2 F q[x℄ a moni
polynomial su
h that f = ge11 :::gerr , where the gi's are distin
t moni
 irredu
ible polynomials andei � 1, for 1 � i � r. Let b be a polynomial running through all square-free moni
 fa
tors of f .Then the polynomials h solving the di�erential equation(fh)0 = h2 (3.2)are given by h = fb b0:19



Furthermore, di�erent solutions h are determined for di�erent 
hoi
es of b, and hen
e the abovedi�erential equation has exa
tly 2r distin
t solutions.Again, for the sake of 
ontinuity in further arguments, we shall repli
ate the proof from [103℄:Proof: Let b be a moni
 fa
tor of f . Thenb = rYi=1g
ii ; for 0 � 
i � ei and 1 � i � r:For h = (f=b)b0, we have hf = b0b = rXi=1
i g0igi :Sin
e F q has 
hara
teristi
 2, the 
i's are either 0 or 1, and hen
e it suÆ
es to let b range over thesquare-free moni
 fa
tors of f only. Let h be a solution to the di�erential equation (hf)0 = h2.We 
an assume that h 6= 0, sin
e the 
ase h = 0 is obtained by 
hoosing b = 1. Let a = g
d(f; h).Then we 
an �nd b and 
 su
h that f = ab, h = a
, and g
d(b; 
) = 1. Now(hf)0 = h2 () (f=h)0 = 1() (b=
)0 = 1() b0
� b
0 = 
2:Hen
e, 
 j b
0, and with g
d(b; 
) = 1 we get that 
 j 
0. But this happens only when 
0 = 0.Sin
e we also have b0
� b
0 = 
2, we must have 
 = b0 or equivalently h = fb b0.On the other hand, if h = (f=b)b0 for some moni
 square-free fa
tor b of f , then(fh)0 = h�f2b � b0i0= �� fb�2 bb0�0= �� fb�2�0 bb0 + � fb�2 (bb0)0= 2� fb��fb�0 bb0 + � fb�2 (b0b0 + bb00)= � fb�2 �(b0)2 + bb00� (sin
e all arithmeti
 is performed modulo 2)= � fb0b �2 = h2;where here we have used the fa
t that g00 = 0 for all g 2 F q[x℄ when F q is a �eld of 
hara
teristi
2 (this 
an be seen as a result of the fa
t that the only nonzero summands appearing in g0 o

urat powers xi where i is divisible by 2). Thus, h satis�es (fh)0 = h2.To show that di�erent 
hoi
es of b result in distin
t solutions h, we pro
eed as follows. Sin
eb is square-free, this is equivalent to g
d(b; b0) = 1, and so for h = (f=b)b0 we haveg
d(f; h) = fb g
d(b; b0) = fb :Thus, it is 
lear that di�erent 
hoi
es of b lead to distin
t solutions h.The above theorem provides an expli
it des
ription of elements that solve the di�erentialequation (fh)0 = h2, and one 
an pro
eed as in the general 
ase for F = F p. In parti
ular, wehave: 20



Theorem 3.1.5 [103℄ The di�erential equation (fh)0 = h2 results in a system of quadrati
equations in the unknown 
oeÆ
ients of h.As a result of the above theorem, we have:g
d(f; h) = fb g
d(b; b0) = fbwhere g
d(b; b0) = 1 sin
e b is square-free. At this stage, the r irredu
ible fa
tors 
an bedetermined using any of the following strategies:1. Choose any solution h of the linear system su
h that the 
orresponding polynomial whose
oeÆ
ients form the row ve
tor h is not equal to zero or f 0. If h 6= 0, then g
d(f;h) 6= fand if h 6= f 0, then b 6= f and so g
d(f;h) 6= 1. We 
an apply the same fa
torisation againto this non-trivial fa
tor and its 
omplement and 
all the pro
edure re
ursively on theoutput. This may be
ome in
onvenient in pra
ti
e, as it requires setting up a new matrixand solving the asso
iated system on
e again. For an input polynomial of degree n, therewill be about O(log n) irredu
ibles [83, 84, 100℄, ea
h with multipli
ity at most n. Inthe worst-
ase analysis, one will have to 
all the Niederreiter algorithm about O((log n)n)times.2. Determine the 2r solution polynomials h. The 
orresponding polynomials fg
d(f;h) = b willthen 
over all 2r moni
 fa
tors of the square-free part g1:::gr of f and in parti
ular, all theirredu
ible fa
tors of f .In this 
ontext, R. G�ottfert introdu
ed a third strategy leading to a polynomial time al-gorithm for extra
ting all irredu
ible fa
tors of f [59℄. Perhaps more striking is that G�ottfertrestri
ted his attention to the set of basis elements fh1; :::; hrg spanning the solution set of(fh)0 = h2, rather than an arbitrary solution of the linear system. In [59℄, G�ottfert showedhow this 
an be used together with at most r2 g
d and division operations to obtain a 
ompletefa
torisation. We shall re
all the algorithm brie
y and refer the reader to the original paper fordetails and proofs of the forth
oming results.Consider the set of basis elements fh1; :::; hrg of the Niederreiter linear system and the
orresponding polynomials bi = fg
d(f; hi) 2 F q[x℄; for i = 1; :::; rrepresenting moni
 square-free fa
tors of f . Those fa
tors are then listed in a 
olle
tion of atmost r rows as follows. The �rst row 
ontains only b1. The se
ond row 
onsists of at most threepolynomials, spe
i�
ally, the non-
onstant polynomials amongg
d(b2; b1); b1g
d(b2; b1) ; b2g
d(b2; b1) :
21



The third row 
onsists of g
d(b3; r1); r1g
d(b3; r1) ;g
d(b3; r2); r2g
d(b3; r2) ;g
d(b3; r3); r3g
d(b3; r3) ;b3g
d(b3; r1) g
d(b3; r2) g
d(b3; r3)where r1 = g
d(b2; b1); r2 = b1g
d(b2; b1) and r3 = b2g
d(b2; b1) :In general, the polynomials of row k, for k = 2; :::; r, 
onsist of the non-
onstant polynomialsamong d1; r1d1 ; :::; ds; rsds ; bkd1:::ds ;where r1; :::; rs are the polynomials in row k � 1 and dj = g
d(bk; rj), for j = 1; :::; s.Theorem 3.1.6 [59℄ Any polynomial row 
onstru
ted in this way has the following properties:i. The polynomials in any row are pairwise relatively prime moni
 square-free fa
tors of f .ii. The polynomial bk appears in row k, either in its original form or split up into somenon-trivial fa
tors.iii. Every polynomial in row k � 1 also appears in row k, either in its original form or splitup into two non-trivial fa
tors.Theorem 3.1.7 [59℄ The irredu
ible moni
 square-free fa
tors of f are determined on
e a row
ontaining r polynomials has been rea
hed.The following theorem shows that this pro
edure always results in a row with r elements:Theorem 3.1.8 [59℄ The row of index at most r 
ontains the polynomials g1:::gr, the distin
tmoni
 irredu
ible fa
tors of f .Summarising all, G�ottfert's algorithm takes up the following form :Algorithm 3.1.2 [59℄Input: A polynomial f of degree n over F q where q = 2t, for some t � 1.Output: The r irredu
ible fa
tors of f .1. Set up the n � n matrix Nf � I. By a rank 
omputation, determine the number ofirredu
ible fa
tors of f . If this is equal to 1, output f as an irredu
ible polynomial and halt thealgorithm.2. Determine a basis fh1; :::; hrg of the solution spa
e of the system(Nf � In)hT = 0: (3.3)22



3. Compute b1; :::; br de�ned asbi = fg
d(f; hi) for i = 1; :::; r:4. Set up a table of polynomials of at most r rows as has been des
ribed earlier. The rows areset up indu
tively and non-
onstant polynomials are removed from ea
h row. Stop the pro
esswhen a row 
ontaining r non-
onstant polynomials is obtained. This may be row r or any otherearlier one. The polynomials found on that row are the r irredu
ible fa
tors of f .Sin
e at most r rows have to be set up, ea
h 
ontaining at most r polynomials, we need atmost r2 g
d operations and at most r2 division operations to �nd all irredu
ibles. Over F 2, thisbrings the total 
ost of su
h 
omputations to O(r2M(n) log n) bit operations, where logn is thebinary logarithm of n, M(n) is the time to multiply (or divide) two polynomials of degree atmost n over F 2, and O(M(n) log n) is the time to perform the g
d of two su
h polynomials overF 2.Theorem 3.1.9 [59℄ Using G�ottfert's a

eleration of Niederreiter's algorithm, a polynomial fof degree n over F 2 
an be fa
torised using O(n! + r2M(n) log n) operations in F 2.3.2 Bivariate fa
torisationIn the multivariate 
ase, algorithms have been 
on
erned with two types of fa
torisations over�nite �elds: Rational fa
torisation into irredu
ible fa
tors over the ground �eld, and absolutefa
torisation of the input polynomial into irredu
ible fa
tors over the algebrai
 
losure of theground �eld. In the former 
ase, Lenstra, Lenstra and Lov�asz [91℄ gave the �rst polynomial timealgorithm for fa
toring univariate polynomials over rational numbers, through the so 
alledLLL latti
e basis redu
tion. This was used later on by A. K. Lenstra [88, 89, 90℄, Chistov[23, 24, 25℄, Grigoryev [63℄, and Chistov and Grigoryev [62℄, to obtain polynomial time algorithmsfor multivariate polynomials over various �elds, in
luding �nite �elds. Kaltofen [75℄, and von zurGathen and Kaltofen [51℄, introdu
ed polynomial time algorithms using Newton approximationfor multivariate fa
torisation over rational numbers and �nite �elds. Algorithms for fa
toringmultivariate polynomials using a bla
k box representation were given by Kaltofen and Trager[78℄, Diaz and Kaltofen [32℄, and Rubinfeld and Zippel [113℄. The work in [78℄ and [113℄ also usedmodular interpolation to redu
e the problem to univariate fa
torisation. Bernardin developed apolynomial time extension of Yun's algorithm [133℄ for square-free fa
torisation of multivariatepolynomials over �nite �elds [11℄.Among the well known algorithms for absolute fa
torisation are the following: Duval [34℄used spe
ial fun
tion spa
es based on algebrai
 geometry to obtain an algorithm that is only
onje
tured to run in polynomial time. Kaltofen proposed algorithms for absolute fa
torisationalso using Newton approximation [77, 80℄. Gao obtained an algorithm for multivariate polyno-mial fa
torisation over any �eld of 
hara
teristi
 zero or of relatively large 
hara
teristi
 that isbased on a simple partial di�erential equation [44℄. All the above algorithms run in polynomialtime or are 
onje
tured so. For instan
e, given a bivariate polynomial f 2 F q[x; y℄ of total degreen, where the input size is of the order N = O(n2), Lenstra's algorithm for rational fa
torisationrequires O(N4) �eld operations [89℄, ignoring logarithmi
 fa
tors. The work of von zur Gathen23



and Kaltofen based on Newton approximation requires O(N6) �eld operations [51℄. When ap-plied to �nite �elds, Gao's algorithm using PDE's requires the 
hara
teristi
 of the �eld to beat least 6mn, where m and n denote the upper bounds on the degrees in x and y respe
tively.In that 
ase, Gao's algorithm has a 
ost of O(N2:5) �eld operations [44℄.Another spe
ial 
lass of rational multivariate fa
torisation are Hensel lifting based te
hniqueswhi
h have been shown to be eÆ
ient in pra
ti
e [13, 101, 128, 131℄. Despite its worst-
aseexponential running time, Gao and Lauder showed that the appli
ation of su
h algorithms tobivariate polynomials over �nite �elds has an average running time that is almost linear in theinput size [46℄, whi
h explains why they are fast in pra
ti
e. Sin
e this relates strongly to thefa
torisation via polytopes algorithm in Chapter 6, we shall dedi
ate the rest of the dis
ussionto a summary of Hensel lifting.3.2.1 Hensel lifting for bivariate polynomialsWe re
all brie
y the main ideas behind this approa
h following the bivariate version in [46℄.Let F q denote a �nite �eld of order q and let T (n; q) denote the set of all polynomials inF q[x; y℄ of total degree n that are moni
 in x and have degree n in x. As shown in [46℄, thismodel of polynomials on whi
h the Hensel lifting algorithm will be based is not trivial be
auseany polynomial of total degree n 
an be transformed into a polynomial in T (n; q) that hasthe same fa
torisation pattern. In parti
ular, let h(y) = Pni=0 
iyi where Pni=0 
ixn�iyi is thehomogeneous part of f of degree n (in other words, ea
h 
j0 represents the 
oeÆ
ient of a terma(j;j0)xjyj0 in f su
h that j + j0 = n). Then g = f(x; y + �x) still has total degree n and the
oeÆ
ient of xn in g is h(�). Sin
e h is nonzero and has degree at most n, we only have to
hoose � 2 F q su
h that h(�) 6= 0. When h(�) 6= 0, g 
an be made moni
 in x, and hen
e 
anbe viewed as belonging to T (n; q). Obviously, the fa
tors of f are easily obtained from those ofg by the inverse transformation (say f = g(x; y � �x)) [46℄.Let f 2 T (n; q) and suppose that f = gh, where f , g and h are all lying in F q[x; y℄. Letn = deg(f), r = deg(g), and s = deg(h), so that n = r + s. Writef = nXk=0fkyk; g = rXk=0gkyk and h = sXk=0hkyk;where deg(gk) � r � k and deg(hk) � s � k, for k = 0; :::; n (here we 
onsider gk and hk to bezero whenever r� k and s� k are negative). Equating the 
oeÆ
ients of yk, for k = 0; :::; n, onboth sides of f = gh, we see that f0 = g0h0 and for k � 1:fk = kXi=0gihk�i;or g0hk + gkh0 = fk � k�1Xi=1gihk�i: (3.4)Let d = g
d(g0; h0) with u and v 
hosen so thatug0 + vh0 = d (3.5)24



and deg(u) < deg(h0), deg(v) < deg(g0). Then d divides g0hk + gkh0 = fk �Pk�1i=1 gihk�i. By(3.4) we have gkh0 � (fk � k�1Xi=1gihk�i) mod g0;and by (3.5) we have vh0 � d mod g0:Thus, gkvh0 � v(fk � k�1Xi=1gihk�i) mod g0or gkd � v(fk � k�1Xi=1gihk�i) mod g0:Sin
e d divides fk �Pk�1i=1 gihk�i, we 
an �nd wk 2 F q[x℄ su
h thatgk = vfk �Pk�1i=1 gihk�id + wk g0d : (3.6)On the other hand, we haveg0hk = fk �Pk�1i=1 gihk�i � gkh0= fk �Pk�1i=1 gihk�i � v h0(fk�Pk�1i=1 gihk�i)d � wk g0h0d= (d� vh0)fk�Pk�1i=1 gihk�id � wk g0h0dso that hk = ufk �Pk�1i=1 gihk�id � wk h0d : (3.7)Turning this observation around, assume we have been given a polynomial f 2 F q[x; y℄ oftotal degree n and a fa
torisation of the redu
tion of f modulo y given as f0 = g0h0, wheref = Pnk=0 fkyk and g0; h0 2 F q[x℄. Assume further that f 2 T (n; q) so that deg(f0) = n. Letr = deg(g0) and s = deg(h0), so that n = r + s. The question one seeks now is whether itwould be possible to use Equations (3.6) and (3.7) to de�ne a sequen
e of polynomials fgkgk�0and fhkgk�0 su
h that g =P0�k�n gkyk, h =P0�k�n hkyk, and f = gh, under the restri
tionsdeg(gk) � r � k, deg(hk) � s � k, gk = 0 if r � k < 0 and hk = 0 if s � k < 0. It turnsout that this is possible provided at ea
h stage wk is 
hosen so that d divides the polynomialsfk �Pk�1i=1 gihk�i. If d 6= 1, then the 
hoi
e we make of wk may not be unique, resulting inexponentially many 
hoi
es for gk's and hk's. If d = 1, however, there will be at most one wayof doing this, and the equations (3.6) and (3.7) uniquely determine gk and hk, for k � 1, asgk � v(fk � k�1Xi=1 gihk�i) mod g0 (3.8)25



hk � u(fk � k�1Xi=1 gihk�i) mod h0 (3.9)and the lifting 
an be 
arried out uniquely as high as one wishes, after 
he
king whetherdeg(gk) � r � k and deg(hk) � s � k. In the parlan
e of Chapter 6, the Newton polytopeof f as given above lies in a triangle with verti
es (n; 0); (0; n); (0; 0), and lifting is initiatedalong the horizontal edge, sin
e all terms in f0 have a zero exponent in the variable y.The algorithmFor n � 1, let M(n; q) � T (n; q) denote the subset of all polynomials whose redu
tion moduloy is square-free. The 
ondition in the previous se
tion requiring that d = g
d(g0; h0) = 1 showsthat Hensel lifting works for all polynomials in M(n; q). We shall �rst present a version from[46℄ whi
h a

epts only polynomials in M(n; q). With slight modi�
ations, this 
an later beused to fa
tor polynomials in T (n; q).Algorithm 3.2.1 (Hensel Fa
torisation)Input: A polynomial f =Pnk=0 fkyk in M(n; q), where fk 2 F q[x℄.Output: All moni
 fa
tors of f with total degree between 1 and bn=2
.Step 1: Use a univariate polynomial fa
torisation algorithm to fa
tor f0, a square-free polyno-mial. If f0 is irredu
ible, then halt the algorithm.Step 2: List all pairs (g0; h0) of moni
 fa
tors of f0 su
h that f0 = g0h0, and deg(g0) < deg(h0),say. Let r = deg(g0) (so that 1 � r � bn=2
). For ea
h pair (g0; h0), repeat Steps 3-5:Step 3: Compute polynomials u and v with ug0 + vh0 = 1 and deg(u) < deg(h0), deg(v) <deg(g0).Step 4: For k = 1; :::; r, 
omputegk � v(fk � k�1Xi=1gihk�i) mod g0;and hk � u(fk � k�1Xi=1gihk�i) mod h0:In the 
ase that r � k 
he
k whether deg(gk) � r � k and in the 
ase that k > r 
he
k whethergk = 0. Also, in the 
ase that s � k 
he
k whether deg(hk) � s� k and in the 
ase that k > s
he
k whether hk = 0. If any of those two 
he
kings fail, halt the 
omputation for this pair of(g0; h0).Step 5: Che
k whether g =Prk=0 gkyk divides f . If so, then output g.Corre
tness of the above algorithm follows easily from the pre
eding dis
ussion. The worst-
ase running time is 
learly dependent on the total number of pairs of moni
 fa
tors (g0; h0),whi
h is exponential in the total number of irredu
ible fa
tors of f0. The average su
h numberfor a univariate polynomial of degree n is about O(logn) [83, 84, 100℄. For ea
h pair (g0; h0),26



the inner-most 
omputations of the algorithm is dominated by O(n) polynomial divisions inF q. If d(n; q) denotes the bound on the worst-
ase number of F q operations required to fa
torunivariate polynomials of degree n over F q, the above algorithm has a worst-
ase 
omplexity ofthe order O(d(n; q) + 2log nn3) �eld operations, assuming 
lassi
al polynomial arithmeti
.In general though, f0 = f mod y may not be square-free in F q[x℄, and hen
e, 
annot befa
torised using the above version of Hensel lifting. To this end, a randomisation te
hnique isintrodu
ed in [46℄ addressing square-free polynomials f in F q[x; y℄ whose redu
tion modulo y isnot square-free. In parti
ular, it was shown the following:Lemma 3.2.1 [46℄ Let S be a subset of F q and f 2 T (n; q) square-free. For random � 2 S, wehave g = f(x; y + �) 2M(n; q) with probability at least 1� n(2n� 1)=jSj.Thus, if q > 4n2, one 
an take S = F q and so the probability in the above lemma will be atleast 1=2. If q is small, one needs to go to an extension of F q of suÆ
ient size and fa
tor f overthere, then 
ombine the fa
tors to go down to F q. For more details on this and on Hensel liftingte
hniques in general, we refer the reader to [29, 101, 128, 130, 131, 134℄.3.3 Polynomials and Newton polytopesFor an extensive review of the theory of 
onvex polytopes we refer the reader to [64℄. Let Rdenote the �eld of real numbers and Rn the Eu
lidean n-spa
e. A 
onvex polytope in Rn is thesmallest 
onvex set 
ontaining a given nonempty �nite set of points in Rn. A point of a polytopeis a vertex if it does not belong to the interior of any line segment in the polytope. A hyperplane
uts the polytope if both of the open half-spa
es determined by it 
ontain points of the polytope.A hyperplane whi
h does not 
ut a polytope, but has a non-empty interse
tion with it is 
alleda supporting hyperplane. The interse
tion of a supporting hyperplane and a polytope is 
alleda proper fa
e, and the union of all proper fa
es is the boundary. 1-dimensional fa
es are edges.By proper we simply refer to the non-trivial 
ase when the dimension of the fa
e is less than thedimension of the polytope.Let F [X1;X2; : : : ;Xn℄ be the ring of polynomials in n variables over an arbitrary �eld F .For any ve
tor e = (e1; : : : ; en) of non-negative integers, de�ne Xe := Xe11 � � � Xenn . Let f 2F [X1; : : : ;Xn℄ be given by f :=Xe aeXewhere the sum is over �nitely many points e in N n 
alled support ve
tors of f , and ae 2 F . LetSupp(f) denote the set of all its support ve
tors. The total degree of f when f is not a 
onstantis de�ned to be the maximum value of P1�i�n ei over all (e1; :::; en) 2 Supp(f). The Newtonpolytope of f , denoted by Newt(f), is the polytope in Rn obtained as the 
onvex hull of allexponents e for whi
h the 
orresponding 
oeÆ
ient ae is nonzero. It has integer verti
es, sin
eall the e are integral points. We 
all su
h polytopes integral. Given two polytopes Q and R,their Minkowski sum is de�ned to be the setQ+R := fq + r j q 2 Q; r 2 Rg:When Q and R are integral polytopes, so is Q+R. If we 
an write an integral polytope P as aMinkowski sum Q+R for integral polytopes Q and R then we 
all this an integral de
omposition.27



The de
omposition is trivial if Q or R has only one point, and P is integrally de
omposable if ithas at least one non-trivial de
omposition. If a polytope has no non-trivial de
ompositions thenit is integrally inde
omposable. The Minkowski sum of two 
onvex polytopes is also a 
onvexpolytope.The following result, demonstrated in [36, 64, 117℄, des
ribes how fa
es de
ompose in aMinkowski sum of polytopes:Lemma 3.3.1 Let Q and R be polytopes in Rn and P = Q+R.1. Ea
h fa
e of P is a Minowski sum of unique fa
es of Q and R.2. Let P1 be any fa
e of P and v0; :::; vm�1 be all of its verti
es. Suppose that vi = qi + rifor some qi 2 Q, ri 2 R, and i = 0; :::;m � 1. Let Q1 and R1 denote the 
onvex hullsof fq0; :::; qm�1g and fr0; :::; rm�1g, respe
tively. Then Q1 and R1 are fa
es of Q and R,respe
tively, and P1 = Q1 +R1.A polytope of dimension 2 is a polygon, where the only proper fa
es are edges and verti
es.The above lemma 
an then be rephrased as follows:Corollary 3.3.1 [45℄ Let P , Q and R be 
onvex polygons in R 2 with P = Q+ R. Then everyedge of P de
omposes uniquely as the sum of an edge of Q and an edge of R, possibly one ofthem being a point. Conversely, any edge of Q or R is a summand of exa
tly one edge of P .Let P be a 
onvex polygon in R 2, and let v0; :::; vm�1 denote its verti
es ordered 
y
li
ally ina 
ounter-
lo
kwise dire
tion. The edges of P are ve
tors of the form Ei = vi+1 � vi = (ai; bi),for 0 � i � m�1, where ai; bi 2 Z and the indi
es are taken modulom. A ve
tor v = (a; b) 2 Z2is 
alled a primitive ve
tor if g
d(a; b) = 1. If ni = g
d(ai; bi) and ei = (ai=ni; bi=ni), then Ei =niei, where ei is a primitive ve
tor, for 0 � i � m � 1. The sequen
e of ve
tors fnieig0�i�m�1is 
alled the edge sequen
e or polygonal sequen
e and uniquely identi�es the polygon up totranslation determined by v0. Sin
e the boundary of a polygon forms a 
losed path, we havethat P0�i�m�1 niei = (0; 0). For 
onvenien
e, an edge sequen
e 
an be identi�ed with thatobtained by extending the sequen
e by inserting an arbitrary number of zero ve
tors, and so we
an assume that the edge sequen
e of a summand of P has the same length as that of P . Thefollowing lemma gives an expli
it des
ription of edge sequen
es des
ribing all possible summandsof a given integral polygon.Lemma 3.3.2 [45℄ Let P be a polygon with edge sequen
e fnieig0�i�m�1 where ei 2 Z2 areprimitive ve
tors. Then an integral polygon is a summand of P i� its edge sequen
e is of theform fkieig0�i�m�1, 0 � ki � ni, with P0�i�m�1 kiei = (0; 0).For proof, see [45℄.We 
on
lude with a �nal useful result des
ribing the notion of the length of an edge of anintegral polygon, designating the number of integral points falling on the edge:Lemma 3.3.3 [43℄ Given v0 and v1 two distin
t integral points in R 2, the number of integralpoints on the line segment v0v1, in
luding v0 and v1, is equal to g
d(v0 � v1).For proof, see [43℄. 28



3.3.1 Inde
omposable polytopes and absolute irredu
ibilityRe
all from the above dis
ussion that f is absolutely irredu
ible over F if it has no non-trivialfa
tors over F , the algebrai
 
losure of F . Absolute irredu
ibility forms a stronger irredu
ibility
riterion than rational irredu
ibility be
ause f has no irredu
ible fa
tors over F if it is ab-solutely irredu
ible. The multivariate fa
torisation algorithms presented earlier 
an all serveas irredu
ibility tests. The following theorem is at the heart of a di�erent kind of absoluteirredu
ibility 
riterion:Theorem 3.3.1 (Ostrowski) [108℄ Let f; g; h 2 F [X1; : : : ;Xn℄. If f = gh then Newt(f) =Newt(g) + Newt(h).Corollary 3.3.2 (Irredu
ibility Criterion) [43℄ Let f 2 F [X1; :::;Xn℄ with f not divisibleby any non-
onstant Xi, for 1 � i � n. If Newt(f) is not integrally de
omposable, then f isabsolutely irredu
ible.For proof, see [43℄.We 
on
lude this se
tion with a brief dis
ussion on a relevant 
on
ept of homotheti
 de
om-posability [42, 43, 64, 96, 99, 115, 121, 122℄ a�e
ting integral de
omposability. The relevan
e ofthis will be
ome 
learer towards the end of this se
tion.De�nition 3.3.1 Let P and Q be polytopes in Rn (not ne
essarily integral). We say that Q ishomotheti
 to P if there exists a real number t � 0 and a ve
tor a 2 Rn su
h thatQ = tP + a = ftb+ a : b 2 Pg:De�nition 3.3.2 A polytope P is 
alled homotheti
ally inde
omposable whenever P = P1 + P2for two polytopes P1 and P2 implies that P1 or P2 is homotheti
 to P . Otherwise, P is 
alledhomotheti
ally de
omposable.The following proposition outlines the relationship between homotheti
 and integral polytopeinde
omposability:Proposition 3.3.1 [45℄ Let Q be an integral polytope in Rn with verti
es vi, where 0 � i � k.If Q is homotheti
ally inde
omposable and g
d(v0 � v1; :::; v0 � vk) = 1, then Q is integrallyinde
omposable.For proof, see [45℄Remark: Note that ifQ is integrally inde
omposable, thenQ is homotheti
ally inde
omposable.To see this, write Q = T + S for some integral polytopes T and S. Then T , say, must be atrivial summand 
onsisting of one point, v, in whi
h 
ase T = 0 �Q+ v.3.3.2 Testing inde
omposability of polytopesPolygonsFollowing the dis
ussion above, testing absolute irredu
ibility of multivariate polynomials overarbitrary �elds is thus redu
ed to de
iding whether a given polytope is integrally de
omposable.Assuming that the polytope is given as a list of its verti
es, the input size of this problem is the29



length of the binary representation of the 
oordinates of the verti
es. It was established in [45℄that de
iding polygon inde
omposability (and hen
e inde
omposability of higher dimensionalpolytopes) is NP-
omplete, and thus it remains an open problem to develop an eÆ
ient, polyno-mial time, deterministi
 or even randomised algorithm for testing general integral polytopes forinde
omposability. Gao and Lauder developed a pseudo-polynomial time algorithm (see [48℄)with a run-time 
omplexity that is polynomial in the lengths of the sides of the polygon, ratherthan in the logarithm of the lengths [45℄. We re
all the algorithm and refer the reader to theoriginal paper [45℄ for more details.Algorithm 3.3.1 Input: The edge sequen
e fnieig0�i�m�1 of an integral 
onvex polygon Pstarting at a vertex v0 where ei 2 Z2 are primitive ve
tors.Output: Whether P is de
omposable.Step 1: Compute the set IP of all the integral points in P , and set Ai = ;, for i = �1; :::;m�1.Step 2: For i = 0; :::;m � 2, 
ompute the set of points in IP that are rea
hable via the ve
torse0; :::; ei:2.1: For ea
h k = 1; :::; ni, if v0 + kei 2 IP , then add it to Ai;2.2: For ea
h u 2 Ai�1 and k = 0; :::; ni, if u+ kei 2 IP , then add it to Ai.Step 3: Compute the last set Am�1: For ea
h u 2 Am�2 and k = 0; :::; nm�1 � 1, if u+ kem�12 IP , add it to Am�1.Step 4: Return \De
omposable" if v0 2 Am�1 and \Inde
omposable" otherwise.Theorem 3.3.2 [45℄ The above algorithm de
ides de
omposability 
orre
tly in O(tmN) ve
toroperations where t is the number of integral points in P , m is the number of its edges, and N isthe maximum number of integral points on an edge.For a detailed proof of the above theorem we refer the reader to [45℄ and we sket
h only thebasi
 idea for the sake of 
larity. All the points in Am�1 that are points in IP rea
hable viathe ve
tors e0; :::; em�1 are 
onstru
ted to be of the form v0 +Pm�1i=0 kiei, 0 � ki � ni. If oneof the points in Am�1 is equal to v0, then Pm�1i=0 kiei = (0; 0), and so the sequen
e fkieig formsthe edge sequen
e of an integral summand Q of P . On the other hand, it 
an be easily shownthat the edge sequen
e of every proper integral summand of P will be dete
ted by the abovealgorithm.Higher dimensional polytopesCarrying this work further to deal with general polytopes in Rn, Gao and Lauder integratedthe above algorithm into a heuristi
 randomised test for higher dimensional polytope inde
om-posability. Their approa
h relies on the use of random integral linear maps whi
h proje
t agiven polytope into a polygon in a plane. If the proje
ted polygon is inde
omposable, and un-der 
ertain 
onditions presented in the lemma below, one dedu
es that the original polytope isinde
omposable.Lemma 3.3.4 [45℄ Let P be any integral polytope in Rn and let � : Rn 7! Rm be any integrallinear map whi
h maps integral points in Rn to integral points in Rm. If �(P ) is integrally30



inde
omposable, and ea
h vertex of �(P ) has only one pre-image in P , then P must be integrallyinde
omposable.For proof, see [45℄.Corollary 3.3.3 [45℄ Let Q be any integrally inde
omposable polytope in Rm and � : Rn 7! Rmany integral linear map. Let S be any set of integral points in ��1(Q) having exa
tly one pointin ��1(v) for ea
h vertex v of Q. Then the polytope in Rn 
onsisting of the 
onvex hull of allpoints in S is integrally inde
omposable.The above results 
an be used in a multivariate polynomial absolute irredu
ibility test asfollows. Given a non-
onstant polynomial f 2 F [X1; :::;Xn℄, let S = Supp(f), and let P denotethe 
onvex hull of the �nite set of points in S. We need to de
ide whether P is integrallyinde
omposable. Note that P need not be 
omputed at this stage, sin
e the points of S that aremapped to verti
es of a polygon by a random integral linear map will be verti
es of P , providedea
h vertex of the polygon has only one pre-image in S.To des
ribe a suitable proje
tion, we write the points of S in Rn as 
olumn ve
tors. If S has
 points, then it 
an be represented as an n� 
 matrix, where ea
h 
olumn stands for a point.For 
onvenien
e, we shall also denote the matrix by S. Its 
olumns are distin
t sin
e the supportve
tors of f are so. Let u; v 2 Rn be two integral points; then for any w 2 Rn, the matrix-ve
torprodu
t (u; v)Tw represents a point in R 2. This de�nes an integral proje
tion � : Rn 7! R 2where (u; v)TS is the image of S under � in R 2. The polygon de�ned by the 
onvex hull of thepoints in this image is 
alled the shadow of P . The next statement is a spe
ial 
ase of Lemma2.9 in [44℄ and determines how likely it is that the proje
tion is inje
tive on the set S, whereelements of Supp(f) are viewed as ve
tors with entries from Q :Lemma 3.3.5 [44℄ Let S be an n�
 matrix over Q with no repeated 
olumns, and let K be any�nite subset of 
ardinality k of Z. Choose ui 2 K randomly and independently, for 1 � i � n,and let (a1; :::; a
) = (u1; :::; un)S:Then the entries a1; :::; a
 are all distin
t with probability at least 1� 
(
�1)2k .The above lemma 
an be used to establish a lower bound on the probability that a randomly
hosen linear integral map satis�es the 
onditions in Lemma 3.3.4 above. In parti
ular, if we
hoose K = f�
2; :::;�1; 0; 1; ::; 
2g, then K has k = 2
2 + 1 integers. If we further 
hoose theentries of u and v from K randomly and independently, then the points in (u; v)TS are distin
twith probability at least 3=4. In this 
ase, ea
h vertex of the shadow has only one pre-imagewith the same probability, whi
h 
an be in
reased arbitrarily 
lose to 1 if one in
reases thesize of the set K [45℄. The polytope de
omposability test (and hen
e the multivariate absoluteirredu
ibility test) is now as follows:Algorithm 3.3.2 [45℄Input: f 2 F [X1; :::;Xn℄ with no non-
onstant monomial fa
tors, and Sf the set of exponentve
tors of nonzero terms of f of 
ardinality 
.Output: Absolutely irredu
ible or Failure, where the latter 
ase means that de
omposability of31




onv(Sf ) (and hen
e absolute irredu
ibility of f) is not de
ided.Step 1: Re-arrange the points in Sf as an n�
 matrix S. If n = 2, let A be the trivial proje
tionand go to Step 4. Else, 
hoose positive integers b and e. Let M(b) denote the set of all 2 � nmatri
es with integer 
oeÆ
ients bounded in absolute value by b. Repeat Steps 2-4 up to e times.Step 2: Sele
t a matrix A uniformly at random from M(b) and 
ompute the set of points in R 2de�ned by A(S) := fAsjs 2 Sg.Step 3: Compute the 
onvex hull, 
onv(A(S)), of A(S) and 
he
k that ea
h vertex of 
onv(A(S))has only one pre-image in S under the proje
tion A. If this 
ondition is not met, return to Step2.Step 4: Call Algorithm 3.3.1 above using the edge sequen
e of 
onv(A(S)). If this polygon isintegrally inde
omposable, output \Absolutely Irredu
ible" and halt. Else, if n > 2, return toStep 2. Else, if n = 2, output \Failure".Step 5: Output \Failure".Theorem 3.3.3 [47℄ Algorithm 3.3.2 works 
orre
tly and requires at mosteO(((nbd)3 + 
(
+ n)) log2(nbd))binary operations and O((nbd)2 log(nbd)) bits of storage for a polynomial in n variables, with 
nonzero terms, and degree at most d in ea
h variable. If f has no more that 
 = O(nd) nonzeroterms, the run-time be
omes 
ubi
 in the total degree of the input polynomial.For proof, see [47℄.Though promisingly eÆ
ient for polynomials whose number of terms is not mu
h greaterthan their total degree, the above method is still 
onsidered a heuristi
 for the following reasons:Although the probability that the 
ondition in Step 3 is satis�ed 
an be determined, it still needsto be determined how likely it is that the algorithm will show inde
omposability if Newt(f) isinde
omposable, sin
e it is possible that there are inde
omposable polytopes whose shadowpolygons are always de
omposable [45℄. On the other hand, sin
e it has been proven that mostpolytopes in Rn, for n � 3, are homotheti
ally inde
omposable [117℄, a dire
t 
onsequen
e ofProposition 3.3.1 is that, most random integral polytopes may be expe
ted to be inde
omposable.Algorithm 3.3.2 may dete
t these qui
kly in most of the 
ases, and hen
e should be parti
ularlye�e
tive for random sparse polynomials.3.3.3 Constru
ting 
onvex hulls in two dimensionsWe now 
on
lude with a dis
ussion of a fast algorithm for 
omputing 
onvex hulls in two dimen-sions, based on the pioneering work of R. Graham [60℄, who gave the �rst O(n logn) algorithmfor 
omputing the hull of n points in the plane. We shall give a brief des
ription and refer thereader to the 
omprehensive texts in 
omputational geometry [35, 107℄.The input to the 
onvex hull algorithm will be a set S of n arbitrary points in the plane,and the output we seek will be a subset of these points representing extreme points or verti
esordered in a 
ounter-
lo
kwise dire
tion around a 
hosen pivot. By verti
es we refer to thosepoints of the hull at whi
h the interior angle is stri
tly 
onvex (less than �). Also, a point is32



extreme if and only if there exists a line through that point whi
h otherwise does not tou
h the
onvex hull. Alternatively, a point is non-extreme if and only if it is inside some triangle whoseverti
es are points of S and it is not itself a 
orner of that triangle. An edge of a 
onvex hull isalso 
alled extreme if every point of S is on or to one side of the line determined by the edge.We shall do this by treating the edge as dire
ted, spe
ifying the left side of a dire
ted edge tobe the \inside". As su
h, a dire
ted edge is not extreme if there exists some point that is notleft of it or on it.The above de�nition of extreme points and edges will be 
ru
ial to our understanding of thesimple Graham's algorithm. In parti
ular, the 
onvex hull of points of S will be 
onstru
tedsu

essively in a sta
k of points, ea
h representing an extreme point. The sta
k is 
onstru
tedusing a subset of S representing sorted points around a 
hosen pivot. The sorting rule is asfollows. The pivot, say p0, is 
hosen as the lowest rightmost point in S, whi
h is 
learly on thehull. The remaining n � 1 points are then sorted around the pivot, a

ording to \leftedness"from p0, or a

ording to in
reasing values of their 
ounter-
lo
kwise angles from the horizontalray emanating from p0. If there exist two points forming the same angle with p0, we de�ne ato be less than b if the distan
e from a to p0, de�ned by the eu
lidean distan
e ja� p0j, is lessthan jb� p0j. In that 
ase, point a is deleted, sin
e it belongs stri
tly to the interior of the hull.Assume that the number of sorted points (after deletion) is s � n, and let p0; :::; ps�1 denote theordered set of points around the pivot. The sta
k is now built iteratively as follows. As indi
atedabove, the �rst point is the pivot, sin
e it belongs to the hull. The se
ond point is p1, sin
e itforms an extreme angle with p0 (no point of the hull is to the right of the dire
ted edge p0p1).The rest of the points are then pro
essed in their sorted order in
rementally around the set. Atany step, the hull will be 
orre
t for the points examined so far, but newly added points may
ause earlier de
isions to be reverted. To illustrate, suppose that we wish to examine whether p2belongs to the hull. Sin
e the edge p0p1 is extreme, the dire
ted sequen
e of points (p0; p1; p2)makes a stri
t left turn at p1, so that p2 is pushed to the head of the sta
k. Now, if p3 is alsosu
h that the dire
ted sequen
e of points (p1; p2; p3) forms a left turn, p3 is pushed to the headof the sta
k. Else, the earlier de
ision (i.e. to add p2) is reversed, and p2 is deleted. One then
he
ks for the new dire
ted sequen
e of points p0; p1; p3, and repeats the above pro
ess, for allpoints pi, i = 3; :::; s � 1. The algorithm 
an be simply stated as follows; for a detailed proof ofits 
orre
tness as well as several important implementation issues, we refer the reader to [107℄:Algorithm 3.3.3 (Graham's algorithm for 
omputing 
onvex hulls)Input: A set S of n points in the plane.Output: 
onv(S), the 
onvex hull of S, as a list of verti
es ordered 
y
li
ally in a 
ounter-
lo
kwise dire
tion around a pivot.Step 1: Find the rightmost lowest point and label it as the pivot p0.Step 2: Sort all other points angularly around p0; if two points have the same angle with thehorizontal ray emanating from p0, delete the point 
loser to p0. Let s denote the total numberof sorted points.Step 3: Set 
onv(S) (p1; p0) = (pt; pt�1); t indexes top.Step 4: Set i 2; while i < s do:4.1: If pi is stri
tly left of pt�1pt then push pi to the top of the sta
k 
onv(S), and seti i+ 1. 33



4.2: Else, delete pt.Step 5: Output 
onv(S).
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Chapter 4A new sparse Gaussian eliminationalgorithm and the Niederreiter linearsystem for trinomials over F 24.1 Introdu
tionVarious methods have been used to solve the Niederreiter linear system using expli
it and denselinear algebra in [110℄ and impli
it linear algebra in [39℄. While those implementations havea
hieved fa
torisation re
ords for polynomials over F 2, 
on�rming the argument that the Nieder-reiter algorithm is a very eÆ
ient linear algebra based algorithm for the fa
torisation of su
hpolynomials (see [8, 102, 103, 104, 105℄), we attempt to investigate the sparsity feature of thealgorithm whi
h renders it more eÆ
ient for sparse polynomials, and in parti
ular, trinomials.Trinomials are very sparse and hen
e provide a good model for investigating this aspe
t of theNiederreiter algorithm. In this 
hapter, we prove the argument that the Niederreiter matrix issparse in the 
ase of a trinomial, and establish the exa
t sparsity pattern and density of theNiederreiter matrix. We also develop a new algorithm for solving the sparse linear system di-re
tly to produ
e a basis for the solution set through Gaussian elimination and using the datastru
ture of Gustavson [65℄. The new algorithm is mainly aimed at 
ir
umventing the problemsthat have always been asso
iated with this data stru
ture in terms of elbow spa
e and 
ompres-sion (see Se
tion 4.4). Although it 
an be easily modi�ed to solve general sparse linear systemsover F 2, the algorithm proves to be very eÆ
ient when the matrix maintains a high level ofsparsity throughout the redu
tion phase. Our experimental results 
on�rm that the Niederre-iter matrix is initially sparse, and maintains its sparsity throughout the redu
tion phase. Ourresults 
an then be in
orporated into G�ottfert's a

eleration of the Niederreiter algorithm overF 2 whi
h uses all the elements of the basis set [59℄.We refer to Chapter 3 for the earlier summary of the Niederreiter algorithm over the binary�eld, and to [38, 41, 87, 102, 103, 104, 105℄ for an extensive review of the algorithm. In Se
tion4.2, we prove the assumption that the Niederreiter matrix is sparse for trinomials, and establishthat the initial number of entries in the sparse matrix of dimension d � d does not ex
eed 3d.In Se
tion 4.3 we review some of the widely used data stru
tures for storing sparse matri
es. Inse
tion 4.4 we dis
uss the new algorithm for performing sparse Gaussian elimination with pivotalordering using the Markowitz strategy. In Se
tion 4.5, we report on our experimental results,35



from whi
h we 
onje
ture that the Niederreiter linear system maintains a high per
entage ofsparsity throughout the Gaussian elimination phase.4.2 Setting the Niederreiter matrix over F2Let F 2 be the binary �eld of order 2 
onsisting only of the elements 0; 1; it is thus understoodthat all polynomials des
ribed in this 
hapter are moni
. Let f be a polynomial of degree d overF 2, and f = ge11 :::gemm be its 
anoni
al fa
torisation over the �eld. Let Nf denote the Niederreitermatrix de�ned in Chapter 3. In [102℄, Niederreiter proposes that, due to the simple form of Eq.(3.2), the system (3.3) has the form:min(2j+1;d�1)Xk=max(2j+1�d;0)f2j+1�khk = hj for 0 � j � d� 1: (4.1)The proof of this assertion 
an be sket
hed as follows:First, we know that h2(x) = h(x2) in F 2[x℄ and so the 
oeÆ
ients of x2j in the right-handside of Eq. (3.2) are given by hj for 0 � j � d � 1. On the other hand, re
all that the matrixNf is obtained by 
omparing the 
oeÆ
ients of x2j for 0 � j � d� 1 in both (fh)0 and h2. Letf(x) = dXi=0fixiand h(x) = d�1Xk=0hkxk:The 
oeÆ
ient of x2j in (fh)0 is the 
oeÆ
ient of x2j+1 in fh, and so the 
oeÆ
ients of (fh)0
an be expressed as min(2j+1;d�1)Xk=max(2j+1�d;0)f2j+1�khkfor 0 � j � d� 1. The bounds on k follow be
ause of the following fa
ts:a. Sin
e deg(h) � d � 1, hk = 0 for all k > d � 1 and so k has to satisfy k � d � 1. Also,sin
e f2j+1�k = 0 for all 2j + 1� k < 0, we have to maintain k � 2j + 1. As a result, an upperbound for k would be min(2j + 1; d� 1).b. In a similar way, hk = 0 for k < 0 and f2j+1�k = 0 for 2j + 1� k > d (sin
e deg(f) = d).Therefore, k has to satisfy k � 0 and k � 2j+1�d and so a lower bound for k is max(2j+1�d; 0).The above proposition establishes a �xed stru
ture for the Niederreiter matrix from whi
hthe algorithm derives many of its attra
tive features over F 2. The following result appearsoriginally in [102℄. For a detailed proof of it, we refer the reader to our report in [3℄.36



Theorem 4.2.1 [102℄ Let f = fdxd + ::: + f1x+ f0 be a polynomial of degree d over F 2. Theelements in the Niederreiter matrix Nf 
an be obtained as follows:1. If d is even, then:a. f2k0 appears in rows i = k0 + 1; :::; d=2 + k0 and o

upies 
olumn 2(i � k0) in row i, fork0 = 0; :::; d=2.b. f2k0+1 appears in rows i = k0 + 1; :::; d=2 + k0 and o

upies 
olumn 2(i � k0)� 1 in row i,for k0 = 0; :::; d=2 � 1.2. If d is odd, thena. f2k0 appears in rows i = k0 + 1; :::; d�12 + k0 and o

upies 
olumn 2(i � k0) in row i, fork0 = 0; :::; d�12 .b. f2k0+1 appears in rows i = k0+1; :::; d�12 + k0+1 and o

upies 
olumn 2(i� k0)� 1 in rowi, for k0 = 0; :::; d�12 .In other words, the Niederreiter matrix over F 2 
an be written as0BBBBBBBBBBBBBB�
f1 f0 0 0 0 0 0 ::: ::: ::: 0f3 f2 f1 f0 0 0 ::: ::: ::: ::: 0f5 f4 f3 f2 f1 f0 0 ::: ::: ::: 0::: ::: ::: ::: ::: ::: ::: ::: ::: ::: :::fd�1 fd�2 ::: ::: ::: ::: ::: ::: ::: ::: f00 fd fd�1 ::: ::: ::: ::: ::: ::: ::: f20 0 0 fd fd�1 ::: ::: ::: ::: ::: f4::: ::: ::: ::: ::: ::: ::: ::: ::: ::: :::0 0 ::: ::: ::: ::: 0 0 fd fd�1 fd�20 0 ::: ::: ::: ::: ::: ::: ::: 0 fd

1CCCCCCCCCCCCCCAif d is even, and0BBBBBBBBBBBBBB�
f1 f0 0 0 0 0 0 ::: ::: ::: 0f3 f2 f1 f0 0 0 ::: ::: ::: ::: 0f5 f4 f3 f2 f1 f0 0 ::: ::: ::: 0::: ::: ::: ::: ::: ::: ::: ::: ::: ::: :::fd fd�1 ::: ::: ::: ::: ::: ::: ::: ::: f10 0 fd fd�1 ::: ::: ::: ::: ::: ::: f30 0 0 0 fd fd�1 ::: ::: ::: ::: f5::: ::: ::: ::: ::: ::: ::: ::: ::: ::: :::0 0 ::: ::: ::: ::: 0 0 fd fd�1 fd�20 0 ::: ::: ::: ::: ::: ::: ::: 0 fd

1CCCCCCCCCCCCCCAif d is odd.Theorem 4.2.1 is at the basis of the assumption that the matrix Nf is sparse if the polynomialf is sparse. It also establishes that there is no 
ost asso
iated with arithmeti
 operations forsetting up the matrix Nf , in the sense that the matrix 
oeÆ
ients 
an be read o� immediatelyfrom those of f . In this 
hapter, we support the main argument that the Niederreiter matrixis sparse by determining exa
tly the per
entage of sparsity of the matrix upon set-up. Thefollowing theorem not only des
ribes a 
onsistent pattern of where the entries o

ur in thematrix Nf � I if f is a trinomial over F 2, but also the exa
t number of entries that initially37



o

ur in Nf � I. By a simple abuse of notation, we de�ne the length of a row to be the numberof nonzero entries appearing in it, rather than its a
tual length d. We then 
laim the following:Theorem 4.2.2 Let f(x) = fdxd + fsxs + f0 denote a trinomial over F 2. Let M = Nf � Iwhere Nf is the d� d Niederreiter matrix and I the d� d identity matrix over F 2. Then:a. if d is even, the matrix M 
ontains exa
tly one row of length 0, one row of length 1, d2 �1rows of length 2, and d2 � 1 rows of length 3.b. if d is odd, the matrix M 
ontains exa
tly one row of length 0 and one row of length 1.In addition, if s is odd, then M 
ontains exa
tly d�32 rows of length 2 and d�12 rows of length 3;else, if s is even, then M 
ontains d�12 rows of length 2 and d�32 rows of length 3.Proof: Suppose that d is even and write i = j + 1. By Theorem 4.2.1, f0 falls along rowsi = j + 1 of Nf , for j = 0; :::; d=2, and fd falls along rows i = j + 1 of Nf , for j = d=2; :::; d.Sin
e f is a trinomial, Theorem 4.2.1 also implies that the maximum number of entries in anyrow of Nf is two, those 
onsisting of the pair (fs; f0) or (fd; fs), and so, the maximum numberof entries in any row of M is three. LetSeth = fj : 0 � j � d� 1j row i of M 
ontains h entriesg;for h = 0; 1; 2; 3. We aim to show that jjSet0jj = 1; jjSet1jj = 1; jjSet2jj = d=2 � 1, andjjSet3jj = d=2� 1. LetRf0 = fj : 0 � j < d2 jf0 appears in row i of matrix Mg;Rfd = fj : d2 � j < djfd appears in row i of matrix Mg;Rfs = fj : 0 � j < d2 jfs appears in row i of matrix Mg;R0fs = fj : d2 � j < djfs appears in row i of matrix Mg:We �rst 
laim that f0 
an never appear as a diagonal entry in Nf ; otherwise, if we write f0 = f2kfor k = 0, and sin
e f0 o

upies the position (i; 2(i� k)) for some i = 1; ::; d=2 (Theorem 4.2.1),we must have i = 2(i � k) = 2i, a 
ontradi
tion, sin
e i � 1. Thus, when 
omputing row i inM for i = 1; :::; d=2, f0 in Nf is never 
an
elled out by a diagonal entry in Id, or equivalently,jjRf0 jj = d2 . Similarly, if we write fd = f2k for k = d2 , then for fd to be a diagonal entry, wemust have i = 2(i � d2) or that i = d. It follows that fd appears as a diagonal entry of Nf onlyin the last row d, and so never appears in row d of M . This implies thatjjRfd jj = d2 � 1:Note that s 6= 0; d. For fs to o

upy a diagonal entry in Nf , Theorem 4.2.1 implies thati = 2(i � t)$ i = 2tif s = 2t for t � 1, or that i = 2(i� t)� 1$ i = 2t+ 138



if s = 2t+1, for t � 0. It follows that fs is a diagonal entry of Nf (and hen
e disappears in M)only in row s, whi
h as su
h 
ontains either f0 or fd alongside fs. Also, by Theorem 4.2.1, fsappears in d2 rows of Nf . As a result,jjRfs jj+ jjR0fs jj = d2 � 1:Now, sin
e f0 is never a diagonal entry in rows i = 1; :::; d=2 of Nf , sin
e fd is a diagonal entryonly in row d of the last d=2 rows, and sin
e row d does not 
ontain fs, it follows that Set0 = fdg.Sin
e fs is a diagonal entry of Nf only in row s 6= 0; d (whi
h also 
ontains either f0 or fd),Set1 = fsg. Also, (Rf0 �Rfs) [ (Rfd �R0fs) = Set2 [ fi = sgwhere Set2 
ontains the diagonal entry and one of f0 or fd. Thus,jjSet2jj = jjRf0 �Rfs jj+ jjRfd �R0fs jj � 1= jjRf0 jj+ jjRfd jj � (jjRfs jj+ jjR0fs jj) � 1= d2 � 1:Sin
e jjSet0jj+ jjSet1jj+ jjSet2jj+ jjSet3jj = d;we have jjSet3jj = d=2 � 1.A similar proof 
an be sket
hed when d is odd and we refer the reader to our report in [3℄for details.4.3 Data stru
tures for the sparse matrix MIn this se
tion we des
ribe brie
y the data stru
tures that are widely used to represent sparsematri
es. A major review of the subje
t 
an be found in [33℄ (see also [123℄). Without loss ofgenerality we assume the matrix to be a square d�d matrix. Let � denote the number of nonzeroelements appearing in the sparse matrix, and entries refer to the nonzero elements. Initially, itis always 
onvenient to supply the matrix in a 
oordinate s
heme, a set of triples 
ontaining thevalue of ea
h entry, together with its row and 
olumn indi
es. Sin
e we are working modulo 2,an entry 
an only have the value 1, hen
e our disposal of the data stru
ture and algorithmi
details whi
h deal with storing the nonzero values, modifying them, or maintaining the numeri
alstability of the algorithm. The 
oordinate s
heme is one favoured form of supplying the matrixelements, but not for performing Gaussian elimination, for instan
e, sin
e this would requireeasy a

ess to rows and 
olumns. For this, two main data stru
tures 
an be used. In [65℄, adata stru
ture whi
h transforms the matrix into a 
olle
tion of sparse row and 
olumn ve
torsis introdu
ed. For simpli
ity, we assume that the indexing of arrays starts at 1 (not 0). In the
olle
tion of sparse row ve
tors, and for ea
h row of the matrix, we store a pointer to its startingentry and its length. For ea
h entry in that row, we store its 
olumn lo
ation. For this, we usetwo integer arrays (say, row�start and row�length) of size d, and one integer array (say j
n) of39



size � . The 
omponents in ea
h row ve
tor 
an be ordered or unordered. As su
h, all entries alonga parti
ular row i have indi
es s = row�start[i℄; :::; row�start[i℄ + row�length[i℄ � 1. Settingthe row ve
tor representation from the 
oordinate s
heme 
an be established using O(�) +O(d)operations (see [33℄). The 
olle
tion of rows allows a

ess for entries along a parti
ular row,but not along 
olumns. To perform this, a similar stru
ture designating a 
olle
tion of sparse
olumns is established, with arrays 
ol�start, 
ol�length, and irn allowing a

ess to the start ofea
h 
olumn and information about its length, as well as the row indi
es of entries found in the
olumn ve
tors. This data stru
ture requires four integer arrays of size d and two integer arraysof size � in total. One main diÆ
ulty asso
iated with it arises when a new row be
omes longeras a result of row operations introdu
ing new entries. In this 
ase, the 
urrent spa
e allo
atedfor the row ve
tor has to be wasted temporarily, so that the new row ve
tor is added to theend of the stru
ture. Subsequently, rows be
ome disordered, and after several su
h additionsrequiring what is 
alled elbow room at the end of the data stru
ture, one is for
ed to 
ompressthe stru
ture by re-ordering the rows to o

upy the free spa
e wasted previously, a pro
ess thatis known as 
ompression. This 
onstitutes the only major disadvantage of the data stru
ture,hen
e the alternative of linked lists.A sparse matrix 
an be represented as a 
olle
tion of rows, ea
h in a linked list. For ea
hrow we store a pointer to its starting entry, say in a one dimensional integer array of lengthd, denoted by row�header. All subsequent elements in the row are forwardly linked by links,stored in a one dimensional integer array of length � , denoted by row�fwd�link. The 
olumnlo
ations of all entries are stored in a one dimensional integer array j
n of length � . The fa
tthat the list 
an be updated without referen
e to the a
tual physi
al lo
ation of entries allowsproper insertion of new elements upon �ll-in without having to have elbow room or perform
ompression. The list 
an be ordered or unordered by in
reasing index of entries. To makeinsertion or deletion easier and less expensive, the list 
an be modi�ed into a doubly linked onewhere entries in a parti
ular row are further linked to their ba
kward neighbors in the list (thisis made possible through the use of a one dimensional integer array row�ba
kwd�link of length�). Sin
e the 
olle
tion by rows allows only a

ess to entries within a parti
ular row but not a
olumn, a similar solution as above 
onsists in establishing a 
olle
tion of the matrix 
olumns aslinked lists and storing the row indi
es of entries found along the 
olumns. This transforms thestru
ture into a two dimensional list, whose elements 
an be singly or doubly linked, ordered orunordered. However, this s
heme results in large memory overheads by asso
iating four integerswith ea
h entry if the list is not doubly linked, and six integers otherwise. Curtis and Reid[27℄ suggested that the arrays irn and j
n 
an be dis
arded, so that the negation of the row(
olumn) indi
es of entries along a parti
ular row (
olumn) are stored in the last link of the row(
olumn). A basi
 diÆ
ulty asso
iated with this data stru
ture is that the integers stored 
an beas large as � , in 
ontrast to the 
orresponding upper bound d asso
iated with the Gustavson'sdata stru
ture, whi
h allows for the use of half-word storage if the array entries �t in 16-bit(32-bit) 
omputer words. Although the issues of elbow room and 
ompression are 
ir
umvented,the initial memory requirements 
an be larger than that of Gustavson's if the doubly linked listis used, 
onsisting of two arrays of size d, and four arrays of size � .Summarising, the advantages and disadvantages of the data stru
tures 
an be listed asfollows. The singly linked lists need the same amount of memory as that required by Gustavson'sdata stru
ture at the time of set-up, but less memory than the doubly linked lists. However,their use requires extensive sear
hes as entries are added or deleted, and the alternative is atthe expense of in
reasing memory requirements through the use of doubly linked lists, or elbow40



room and 
ompression through Gustavson's stru
ture. The sequential operational 
omplexitiesfor performing sparse Gaussian elimination using all of the stru
tures above are the same (see[33℄), although di�eren
es emerge for parallel appli
ations, where the two dimensional unordereddouble list is of lowest operational 
omplexity (see [123℄ for a detailed a

ount of 
omplexities).The de
ision as to whi
h data stru
ture to use be
omes a problem-dependent 
hoi
e whi
h servesthe priorities of the appli
ation, those being either improvements on running time or savings inmemory.4.4 A new sparse Gaussian elimination algorithmSolving the linear system 
onstitutes the bottle-ne
k in the Niederreiter algorithm for very largepolynomial degrees. As a result, the 
hallenges in implementing polynomial fa
torisation 
onsistin �rst, performing the algorithm for as large an input size as feasible, and se
ond, performing itin the fastest possible way. A

ordingly, our main interest in this 
hapter is aimed at a
hievingsavings in memory to deal with very large sparse linear systems over F 2. These fa
ts, 
oupledwith our interests in fa
torising as large a trinomial as our resour
es 
an a�ord, motivated usto 
onsider an e�e
tive data stru
ture su
h as Gustavson's and investigate how the problems ofelbow room and 
ompression asso
iated with it 
an be avoided to yield a more spa
e-eÆ
ientdata stru
ture. Our new algorithm for performing sparse Gaussian elimination using Gustavson'sdata stru
ture 
onsists of a series of major sub-tasks, ea
h of whi
h is des
ribed in due 
ourse,together with its operational 
omplexity. We �rst give a few de�nitions and notations. Re
allthat we have to 
ompute the left nullspa
e of the system (3.3), and as a result we have to performrow operations 
onsisting in inter
hanging two rows, adding a multiple of one row to another,and multiplying any row by a nonzero �eld element. Sin
e we are working over the binary �eld,our algorithm 
onsists of the �rst two operations only, where the se
ond operation simpli�esto adding one row to another modulo 2. To further apply the pivotal Markowitz strategy, wealso have to perform 
olumn inter
hanges. To establish the representation of the matrix M asa 
olle
tion of sparse row ve
tors, we 
laim that this does not require that the matrix be givenin a 
oordinate stru
ture. In parti
ular, we haveProposition 4.4.1 The matrix M for a trinomial over F 2 
an be represented as a 
olle
tion ofordered sparse row ve
tors without the use of a 
oordinate s
heme.Proof: By Theorem 4.2.2, entries along any row ofM 
an be spe
i�ed a

ording to their 
olumnlo
ation. This dire
tly provides the information in arrays row�start, row�length, and j
n.The 
olle
tion of sparse 
olumn ve
tors 
an be easily set up by s
anning the rows, in whatrequires O(�) operations. We de�ne A(a0 ! b0; 
0 ! d0) to be the blo
k matrix 
omprisingrows a0 to b0 and 
olumns 
0 to d0 of some matrix A. We let 

 and 
r denote the maximumnumber of entries along a nonzero 
olumn or row respe
tively, M (q) the transformed matrix
orresponding to M during some stage of Gaussian elimination, and M 0 the image of M (q)under a transformation whi
h involves any of the following:1. An inter
hange I
 of 
olumns.2. An inter
hange Ir of rows.3. Repla
ing row i with i + j where j is some other row in the matrix. Over F 2, this stepredu
es to a pro
ess of adding and/or removing 1's from row i wherever appli
able, and hen
e41




onstitutes a 
omposition of a �nite number of transformations of the form Ae and Re, whereAe and Re represent adding and removing an entry respe
tively.The row and 
olumn operations in a sparse algorithm appear di�erently from what 
an beseen in dense algorithms, where any of these operations is performed as in their literal de�nition,su
h that elements of the dense data stru
ture are inter
hanged whenever rows/
olumns are so,or added together whenever a row is added to another. In our sparse algorithm, the operationsare a
hieved through a series of 
hanges updating the information in the various arrays des
ribingthe data stru
ture, based on the assumption that the transformed matrix is still sparse and hen
e
an be represented by the same stru
ture as that of the original matrix. The sequen
e a

ordingto whi
h the updates are performed is not arbitrary, in that some arrays need to be modi�edbefore others. For instan
e, the lengths of rows and 
olumns have always to be updated �rst,a�e
ting the pointers to the starts, whi
h then a�e
t the row or 
olumn indi
es of entries. Ouralgorithm maintains this order of dependen
e among arrays and this is impli
itly assumed tohold in all forth
oming des
riptions of the sub-tasks.4.4.1 A

essing entries along a 
olumnOften enough during any stage of Gaussian elimination one has to be able to lo
ate entriesbelow the pivotal element. To 
he
k whether there exists an entry in some position (a; b), we
an 
hoose to either a

ess the row a looking for an entry whose 
olumn is b, or a

ess the 
olumnb looking for an entry whose row is a. If we know that this entry is likely to be situated in thestart of a 
olumn (for instan
e, if b happens to be a pivotal 
olumn), then a

essing the entriesby 
olumns would be more eÆ
ient. Lo
ating an entry in some position (a; b) 
an be performedby s
anning all entries s 2 f
ol�start[b℄; :::; 
ol�start[b℄ + 
ol�length[b℄ � 1g. In the remainderof this 
hapter we denote by Lo
ation�by�
olumn(a; b) the sub-routine whi
h when input thelength and starting index of 
olumn b, returns PASS if there exists an entry in lo
ation (a; b)and FAIL otherwise. It 
an be seen that the sub-routine requires at most 

 �eld operations,sin
e in the worst-
ase analysis, one would have to s
an an entire 
olumn before �nding an entryin lo
ation (a; b).4.4.2 Implementing the Markowitz strategyIn our present implementation we use the Markowitz 
riterion [94℄ for lo
ally minimising the�ll-in during ea
h step of the Gaussian elimination, as opposed to other global methods whi
hpreserve the general sparsity pattern of the matrix [33℄. The Markowitz strategy 
onsists inlo
ating good 
andidates for pivotal elements during ea
h step of Gaussian elimination. By agood pivotal 
andidate aij we mean a nonzero entry in the a
tive part of the matrix whi
hminimises the Markowitz 
ount (ri � 1)(
j � 1), where ri and 
j represent the lengths of row iand 
olumn j respe
tively, and where the minimum is over all entries of the a
tive sub-matrix.Note that the Markowitz 
ount represents the maximum amount of �ll-in that 
ould arise usinga pivotal entry aij . The Markowitz 
riterion requires a further numeri
al stability test to besatis�ed by the pivotal 
andidate, but this is not of 
on
ern in our implementation over F 2, sin
eall arithmeti
 is exa
t. A straightforward implementation of the Markowitz sear
h is likely torequire s
anning all entries in the a
tive sub-matrix before a 
andidate is found. Curtis and Reid(see [27℄) introdu
ed methods to avoid an expensively naive sear
h. We des
ribe the methodonly very brie
y here and refer the reader to [33℄ for more details. In prin
iple, the approa
h42




onsists of storing the various row and 
olumn lengths and sear
hing for a pivotal 
andidatethrough the rows and 
olumns in in
reasing order of 
ounts (i.e. number of entries). This 
anbe a
hieved by 
olle
ting all the rows (
olumns) in a set of doubly linked lists of rows (
olumns)having the same 
ount. The row (
olumn) lists 
an be 
onstru
ted using two integer arrays,row�fwd�link and row�ba
kwd�link (or 
ol�fwd�link and 
ol�ba
kwd�link), ea
h of size d,and 
an be a

essed through header pointers, stored in a one dimensional integer array of lengthd and denoted by row�header (
ol�header). The sear
h for pivotal elements begins along rowsand 
olumns of least 
ount, and progresses in in
reasing order, whereby the 
orresponding rowand 
olumn lists are s
anned. For a �xed 
ount w, one �rst s
ans all rows of length w, thenall 
olumns of the same length. At any stage of the sear
h, one 
an determine a bound on theMarkowitz 
ount of all unsear
hed entries, whi
h helps terminate the sear
h before all rows and
olumns are s
anned. The following des
ription 
an be found in [33℄ and we repeat it only brie
yhere. Suppose that one is about to sear
h rows with ri entries, so that all 
olumns whose 
ountis less than ri have been s
anned. This leaves only entries whose 
ount is(ri � 1)(
j � 1) � (ri � 1)(ri � 1) = (ri � 1)2:Thus, the �rst entry whose 
ount is equal to (ri� 1)2 is 
hosen as pivot. If no su
h entry exists,one simply 
hooses an entry having least 
ount among all other entries in the a
tive sub-matrix.On the other hand, if one is sear
hing 
olumns with 
ount 
j , then, sin
e rows of 
ount 
j havealready been s
anned, the 
ount of remaining unsear
hed entries along 
olumns with 
ount 
j is(ri � 1)(
j � 1) � (
j + 1� 1)(
j � 1) = 
j(
j � 1);so that as above the sear
h is terminated as soon as an entry whose 
ount is equal to 
j(
j�1) isen
ountered. Else, one again 
hooses an entry having least 
ount among others in the a
tive sub-matrix. Although there is no theoreti
al justi�
ation that this method always improves uponthe O(�) pro
ess through a naive sear
h, experien
e has shown that it is likely to be su

essfulafter looking through only a few rows and 
olumns (see [33℄ for experimental results).Updating lists of 
olumns having the same lengthAs before, all following arguments work for 
olumns as well as rows, by repla
ing the arrays withappropriate ones. A number of row and 
olumn operations may result in the 
olumn lengthsbeing 
hanged, and as a result, the lists of 
olumns having the same 
ount must undergo a
orresponding modi�
ation. Suppose, for instan
e, that 
olumn i, of original length a, be
omesof a new length b. This 
orresponds to removing i from the list of 
olumns of length a andinserting it into the list of 
olumns of length b. There are several positions into whi
h one 
an
hoose to insert the 
olumn, the most natural being the head of the list. Obviously, this does notpreserve the order of 
olumns by in
reasing indi
es, something whi
h, we argue, has advantagesin the following:1. Our appli
ation of the Markowitz strategy requires that we have an eÆ
ient way of deter-mining the rows and 
olumns of minimum 
ount but only those in the a
tive sub-matrix.Ordering the linked lists allows for a qui
k way of lo
ating the a
tive rows and 
olumns ofsome parti
ular 
ount.2. Inter
hanging 
olumns takes pla
e when a pivotal 
andidate is 
hosen having some mini-mum Markowitz 
ount 
 and along a 
olumn j that is di�erent from the pivotal 
olumn,43



say i. As will be
ome 
learer later on, our algorithm for inter
hanging two 
olumns i andj is most eÆ
ient when the total number of entries found along 
olumns k = i; :::; j is theleast possible. All other 
olumns 
ontaining entries whose 
ount is 
 and having the samelength as j belong to the same list, whi
h when ordered in in
reasing order of 
olumnindi
es helps that we 
hoose 
olumn j su
h that j is 
losest to i among all 
olumns of itslist.With these advantages, we are in
lined to a

ept the extra 
ost of maintaining ordered linkedlists. We denote the sub-routine for updating the lists as a result of 
hanges in 
olumn lengthsColumn�
hain(i; a; b)�, whi
h updates the lists of lengths a and b as the length of i 
hangesfrom a to b. This 
an be easily seen to require at most O(d) operations by 
onsidering theworst-
ase analysis of inserting a 
olumn to the end of a list of d 
olumns.4.4.3 Inter
hanging 
olumnsBe
ause of the symmetry involved in ex
hanging rows and 
olumns, we dis
uss only 
olumninter
hanges. For k = 1; :::; d, let 
k denote the ve
tor o

upying 
olumn k, L(k) the lengthof 
k in M (q) and I
(L(k)) its length in M 0 = I
(M (q)). Similarly, if s denotes the index ofan entry in the representation of M , then I
(s) denotes the index of that same entry in therepresentation of M 0, whether viewed as a 
olle
tion of sparse rows or 
olumns. We will furtherrequire information about the greatest 
olumn index 
 less than k su
h that 
olumn 
 is nonzero.This integer 
an be stored at lo
ation k of the integer array previous�
olumn of size d.y If nosu
h integer exists, previous�
olumn[k℄ is set to �1. The array previous�
olumn 
an be set atthe start of the algorithm and later modi�ed only when a zero 
olumn is displa
ed, a nonzero
olumn has be
ome of length zero, or a zero 
olumn has be
ome nonzero. This modi�
ation willbe assumed to hold impli
itly in any of these 
ases and we leave it to the reader to verify thatthis 
omes at a negligible 
ost. We note that, if 
 6= �1, then
olumn�start[k℄ = 
olumn�start[
℄ + 
olumn�length[
℄:The inter
hange of 
olumns for
es us to keep tra
k of the 
orresponding 
hange in the order ofthe 
oordinate entries of the unknown 
olumn ve
tor hT solving the linear system (3.3). Thisis ne
essary for the 
orre
tness of the �nal solution of the system after 
olumn inter
hangeshave been performed. For every 
olumn k = 1; :::; d, we asso
iate an integer y representingthe original index of 
k in M and store it in original�
olumn[k℄, where original�
olumn is aninteger array of size d. The array 
an also be initialised at the beginning of the program su
hthat original�
olumn[k℄ = k for k = 1; :::; d and modi�ed a

ordingly when two 
olumns getinter
hanged.Now, let i and j denote the two 
olumns to be inter
hanged su
h that i < j. The matrixM 0 =I
(M (q)) 
an be obtained through a series of 
hanges a�e
ting its 
olumn lengths and starts, aswell as the row and 
olumn indi
es of its entries appearing. The algorithm for inter
hanging
olumns is presented as follows:Algorithm 4.4.1 Inter
hange�Columns(i; j)Input: The matrix M (q);�A similar algorithm, Row�
hain, 
an be analogously 
onstru
ted, by 
hanging referen
e to the appropriatearrays.yA similar array, previous�row, 
an be used in the 
olle
tion of rows.44



Output: The matrix M 0 = I
(M (q)), where I
 represents the inter
hange of two 
olumns i and jof M (q). Without loss of generality we may assume that i < j and that at most one of i or j iszero.1. Swit
h(original�
olumn[i℄,original�
olumn[j℄);2. y  
ol�length[i℄, 
ol�length[i℄ 
ol�length[j℄;3. Column�
hain(i; y; 
ol�length[i℄);4. 
ol�length[j℄ y;5. Column�
hain(j; 
ol�length[i℄; y);for k 2 fi; :::; jg doIf (
ol�length[k℄ = 0) do6. 
ol�start[k℄ 0;else do7. 
 previous�
olumn[k℄;If (
 = �1) do8. 
ol�start[k℄ 1;else do9. 
ol�start[k℄ 
ol�length[
℄ + 
ol�start[
℄;end;end;end;10. Initialise�to�zero(new�array), sum 0;for k 2 fi+ 1; :::; j � 1g do11. sum sum+ 
ol�length[k℄;end;If (
ol�length[i℄ 6= 0) do12. a sum+ 
ol�length[j℄;for y 2 f
ol�start[i℄; :::; 
ol�start[i℄ + 
ol�length[i℄� 1g do13. new�array[y℄ irn[y + a℄;end;end;14. a 
ol�length[j℄ � 
ol�length[i℄;for k 2 fi+ 1; :::; j � 1g doIf 
ol�length[k℄ 6= 0 dofor y 2 f
ol�start[k℄; :::; 
ol�start[k℄ + 
ol�length[k℄� 1g do15. new�array[y℄ irn[y + a℄;end;end;end;If (
ol�length[j℄ 6= 0) do16. a sum+ 
ol�length[i℄;for y 2 f
ol�start[j℄; :::; 
ol�start[j℄ + 
ol�length[j℄ � 1g do17. new�array[y℄ irn[y � a℄;end;end;18. Copy(new�array; irn), Initialise�to�zero(new�array);for k 2 f1; :::; dg do 45



If (row�length[k℄ 6= 0) do19. sum 0;for s 2 frow�start[k℄; :::; row�start[k℄ + row�length[k℄� 1g doIf (j
n[s℄ > i) and (j
n[s℄ < j) do20. sum sum+ 1;end;end;21. t1 Lo
ation�by�
olumn(k; i), t2 Lo
ation�by�
olumn(k; j);If (t1 = PASS) and (t2 = FAIL)do for s 2 frow�start[k℄; :::; row�start[k℄ + row�length[k℄� 1gdo If (j
n[s℄ > i) and (j
n[s℄ < j) do22. new�array[s� 1℄ j
n[s℄;else if (j
n[s℄ = i) do23. new�array[s+ sum℄ j;end;end;end;If (t1 = FAIL) and (t2 = PASS) dofor s 2 frow�start[k℄; :::; row�start[k℄ + row�length[k℄ � 1gdo If (j
n[s℄ > i) and (j
n[s℄ < j) do24. new�array[s+ 1℄ j
n[s℄;else if (j
n[s℄ = j) do25. new�array[s� sum℄ i;end;end;end;end;end;27. Copy(new�array; j
n), Initialise�to�zero(new�array).Proposition 4.4.2 Algorithm 4.4.1 performs 
orre
tly and requires O (d(
r + 

)) �eld opera-tions.Proof: Steps 1-5 of the algorithm perform the initial 
hanges that have to do with swit
hingthe lengths of 
olumns as well as the original indi
es of 
olumns o

upying positions i and j.As a result of 
hanges in 
olumn lengths, the 
orresponding lists of 
olumns of the same 
ounthave to be updated through 
alls to Column�
hain, ea
h requiring O(d) operations.In steps 6-9 we perform the 
hanges to the starting pointers of 
olumns. We 
laim thatonly 
olumns i; :::; j of M (q) 
an have the pointers to their starting entries 
hanged in therepresentation of M 0. Let s denote the index of the starting entry of any 
olumn in the matrix.Sin
e 
olumns less than i� 1 retain the same number and distribution of entries, it follows thatall 
olumns k 2 f1; :::; i�1g retain the same pointers to their starting entries. Suppose k = i andlet 
 = previous�
olumn[i℄. If i is a zero 
olumn in M 0 (i.e. has no nonzero entries, something46



whi
h, a

ording to our original assumption, implies that i is not a zero 
olumn in M (q)), thenI
(s) = 0 6= s. Else, if i is not a zero 
olumn, and if 
 = �1, then I
(s) = 1 = s; else, if i is nota zero 
olumn and 
 6= �1, let S(
) denote the starting index of 
olumn 
. We then haveI
(s) = I
(L(
)) + I
(S(
))= L(
) + S(
) sin
e 1 � 
 < i= s:Now suppose that k = i+1; :::; j and 
olumn k is not zero. If I
(L(i)) 6= L(i), the start of 
olumnk 
hanges as a result. In parti
ular, if 
 = previous�
olumn[k℄, then I
(S(k)) = L(
) + S(
)if 
 6= �1, and I
(S(k)) = 1 otherwise. If k > j, then sin
e the total number of entries in thematrix blo
k M 0(1 ! n; 1 ! j) is the same as that in the matrix blo
k M (q)(1 ! n; 1 ! j),the start of 
olumn k remains un
hanged. The loop a
ross steps 6-9 is iterated j � i+ 1 times,involving only array a

esses, so that it requires at most O(j�i) steps. In the worst-
ase analysiswhen i = 1 and j = d, the operational 
ount is of the order O(d).It is immediate to see that the lengths of rows in M 0 do not 
hange as a result of 
olumninter
hanges, and hen
e, the pointers to the starts of rows remain un
hanged.Steps 10-18 update the row indi
es of entries in the representation of M 0 as a 
olle
tion of
olumns. When i and j are inter
hanged, some entries in that 
olle
tion will be displa
ed andas a result, the values in irn will have to be updated a

ordingly to �t the new displa
ement.Be
ause of the dependen
e of the new values of irn on former values of the same array, theupdates on irn are 
opied �rst into the auxiliary array new�array whi
h is then 
opied ontoirn when all ne
essary 
hanges have been performed. Sin
e only 
olumns k = i; :::; j in M 0 hadthe pointers to their starting entries 
hanged, it follows that only entries along these 
olumnsundergo a shift in their indi
es whi
h then a�e
ts the values in irn. In parti
ular, if s denotesthe index of an entry e in M (q) as a 
olle
tion of 
olumns and I
(s) is its index in M 0, then therow index of s in M (q) is equal to the row index of I
(s) in M 0. To establish what the exa
t
hanges to irn will be, it suÆ
es to determine the exa
t value of I
(s) in ea
h of the following
ases:a. Suppose e 2 j in M (q), then e 2 i in M 0. Sin
e i < j, and sin
e the indexing of entriesalong the 
olle
tion of 
olumns is ordered in
reasingly, the index of e in M 0 de
reases as e getsdispla
ed from j to i. Furthermore, the amount of redu
tion 
orresponds to the total numberof entries being moved ahead of e as i and j are inter
hanged. In parti
ular, this amounts tothe total number of entries found on 
olumns k = i; :::; j � 1 in M . Summarising, I
(s) 
an bewritten as I
(s) = s� a, wherea = Xi�l<jL(l) = sum+ L(i) = sum+ I
(L(j))and sum is as de�ned in the algorithm. Write s0 = I
(s). Then s0 2 f
ol�start[i℄; :::; 
ol�start[i℄+
ol�length[i℄ � 1g. Sin
e new�array[s0℄ = irn[s℄, we have new�array[s0℄ = irn[s0 + a℄. Analo-gously, it is easy to see that, if e 2 i in M (q), then e 2 j in M 0 so that I
(s) = s+ a, wherea = Xi<l�jL(l):The loops in steps 13 and 17 
over all entries in 
olumns i and j and involve mainly arraya

esses so that their total 
ost amounts to O(

) �eld operations.47



b. Suppose e 2 k su
h that k = i + 1; :::; j � 1. Inter
hanging i and j would result inde
reasing the index of e by L(i)� L(j), sin
e i < j, so that I
(s) = s� a, wherea = L(i)� L(j) = I
(L(j)) � I
(L(i)):The loop 
overs all entries of indi
es s0 = I
(s) along k and assigns new�array[s0℄ = irn[s0+ a℄.The iterations of the loop 
over all entries e along 
olumns k = i+ 1; :::; j � 1 involving mainlyarray a

esses so that the total 
ost of step 15 is O ((j � i)

). When all the updates areperformed, we 
opy new�array onto irn and re-initialise new�array to zero. This requiresO(�) operations. In the worst-
ase analysis when j = d and i = 1, the total 
ost for updatingirn thus be
omes O (� + d

).Steps 19-27 aim at updating the 
olumns of entries as their indi
es in the 
olle
tion by rows
hange. As before, we store the new values of j
n in new�array. Upon inter
hanging 
olumnsi and j, we have seen that only entries found along 
olumns k0 = i; :::; j get displa
ed. Also, ifs denotes the index of an entry in the representation of M (q) as a 
olle
tion of rows su
h thatI
(s) is the index of that same entry in the representation of M 0, then the 
olumn index of s inM (q) is equal to the 
olumn index of I
(s) in M 0. For all rows k = 1; :::; d we argue as follows:a. If k has entries in both 
olumns i and j, or does not have entries in both 
olumns i andj, then its representation in the 
olle
tion by rows does not 
hange as a result of inter
hangingthe two 
olumns. As a result, the 
olumn indi
es of all its entries remain un
hanged.Let S denote the number of entries o

upying position (k; k0) for k0 = i+ 1; :::; j � 1 and letsum = #S.b. If k has an entry e in 
olumn i but not in 
olumn j of M (q), and sin
e i < j, theninter
hanging the two 
olumns augments the index s of e by an amount equal to sum as aresult of displa
ing elements of S to the left. In other words, we have I
(s) = s+ sum, and inparti
ular, new�array[I
(s)℄ = j. On the other hand, if e0 is an entry along row k of M (q) su
hthat j
n[e0℄ = i+ 1; :::; j � 1, then swit
hing 
olumns i and j 
auses only e to be shifted to theright ahead of e0. If s0 denotes the index of e0 in M (q), we haveI
(s0) = s0 � 1, and new�array[s0 � 1℄ = j
n[s0℄:
. In a very similar way, if there exists an entry e in 
olumn j but not in 
olumn i of M (q),then I
(s) = s� sum where s is the index of e in M (q) and sum is as above. In parti
ular, wehave new�array[I
(s)℄ = i. Also, for e0 o

upying (k; k0) and k0 = i+1; :::; j � 1, I
(s0) = s0+ 1so that new�array[s0 + 1℄ = j
n[s0℄.The updates on the 
olumn indi
es 
an thus be performed through a loop ranging over allrows of the matrix. Ea
h loop involves two 
alls of the fun
tion Lo
ation�by�
olumn, whose
ost was seen to be O(

), as well as a series of updates on entries falling between 
olumns i andj. In the worst-
ase analysis when j = d and i = 1, steps 19-27 require d(
r + 

) operations.Summing up the sub-
osts of this algorithm, and using 

 < d, it 
an be seen to requireO (d(
r + 

)) +O(�) = O (d(
r + 

)) �eld operations.4.4.4 Adding rowsLet i denote the pivotal row in a parti
ular stage of Gaussian elimination. We 
hoose to viewthe pro
ess of repla
ing row j > i with j + i as a series of a 
omposition of two sub-tasks whi
h48



involve inserting a new entry to, or removing an already existing one from, row j, resulting in�ll-in and �ll-out respe
tively. Sin
e we are working with integers modulo 2, where an entryis either zero or one, the �ll-out be
omes of 
onsiderable signi�
an
e, for the zeros we obtainas a result of elimination are not a

idental zeros. In other words, if there exists some entry ein the lo
ation (i; k) and another entry e0 in (j; k), then e0 is de�nitely (and not a

identally)transformed to zero as a result of the operation j  j + i. Furthermore, our algorithm forrepla
ing row j with one that is probably longer than itself es
apes previous restri
tions in thatit does not require adding a fresh 
opy of the modi�ed row at the end of the data stru
ture. Inparti
ular, our approa
h does not require the use of any elbow room beyond what is needed toa

ommodate for only the extra number of �ll-in - �ll-out. In some 
ases when this quantity isnegative, the empty spa
e is simply allo
ated at the end of the stru
ture. Most of the updates
apable of a
hieving this involve a shifting pro
edure as des
ribed in the previous se
tion, andsin
e this 
omes at a higher operational 
ost than using 
ompression and elbow room, the tradeo� we establish is between savings in memory versus in
rease in running time.We �rst present the following two sub-algorithms:Algorithm 4.4.2 Remove�entry(j; k)Input: M (q), where lo
ation (j; k) is o

upied by a nonzero entry.Output: M 0 = Re(M (q)), where lo
ation (j; k) is empty.1. �  � � 1, x row�length[j℄, row�length[j℄ row�length[j℄ � 1;2. Row�
hain(j; x; row�length[j℄);3. x 
ol�length[k℄, 
ol�length[k℄ 
ol�length[k℄� 1;4. Column�
hain(k; x; 
ol�length[k℄);If (row�length[j℄ = 0) do5. row�start[j℄ 0;end;If (
ol�length[k℄ = 0) do6. 
ol�start[k℄ 0;end;for s 2 fj + 1; :::; dg doIf (row�start[s℄ 6= 0) do7. row�start[s℄ row�start[s℄� 1;end;end;for s 2 fk + 1; :::; dg doIf (
ol�start[s℄ 6= 0) do8. 
ol�start[s℄ 
ol�start[s℄� 1;end;end;9. new�array[� + 1℄ 0;If row�start[j℄ 6= 0 dofor s 2 frow�start[j℄; :::; row�start[j℄ + row�length[j℄ � 1g doIf (j
n[s℄ � k) do10. new�array[s℄ j
n[s+ 1℄;end;end; 49



end;for t 2 fj + 1; :::; dg doIf (row�start[t℄ 6= 0) dofor s 2 frow�start[t℄; :::; row�start[t℄ + row�length[t℄� 1g do11. new�array[s℄ j
n[s+ 1℄;end;end;end;12. Copy(new�array; j
n), Initialise�to�zero(new�array);13. new�array[� + 1℄ 0;If (
ol�start[k℄ 6= 0) dofor s 2 f
ol�start[k℄; :::; 
ol�start[k℄ + 
ol�length[k℄ � 1g doIf (irn[s℄ � j) do14. new�array[s℄ irn[s+ 1℄;end;end;end;while t 2 fk + 1; :::; dg doIf (
ol�start[t℄ 6= 0) dofor (s 2 f
ol�start[t℄; :::; 
ol�start[t℄ + 
ol�length[t℄� 1g do15. new�array[s℄ irn[s+ 1℄;end;end;end;16. Copy(new�array; irn), Initialise�to�zero(new�array).Proposition 4.4.3 Algorithm 4.4.2 performs 
orre
tly and requires O(d)+O(�) �eld operations.Proof: As one entry is deleted, the total number of entries in the matrix and the lengths ofrow j and 
olumn k are all de
reased by 1. Any 
hange in the lengths of rows or 
olumnshas to be followed by the 
orresponding 
hanges in the lists of rows and 
olumns of the same
ount. In total, steps 1-4 of the algorithm require O(d) �eld operations through the two 
alls toRow�
hain and Column�
hain.Steps 5-8 perform the updates on row and 
olumn starts. If row j be
omes zero, we set itsrow start to be zero. Else, let s denote the index of the starting entry of j in M (q). If j = 1,then Re(s) = s = 1. Now suppose that j > 1 and let M 0 = Re(M (q)). Sin
e the total numberand distribution of entries in the matrix blo
k M 0(1 ! j � 1; 1 ! d) is the same as that inM (q)(1 ! j � 1; 1 ! d), it follows that all rows less than or equal to j retain the same pointerto their starting entries. If we further have j < d, we 
laim that, for rows r = j + 1; :::; d,Re(s) = s�1 (where s is the index of the starting entry of r) sin
e removing one entry from rowj shifts all entries in the remaining rows one unit to the left. As su
h, the updates on row startsrequire O(d � j) operations, whi
h in the worst-
ase analysis (j = 1) require O(d) operations.A similar argument holds for the updates on 
olumn starts and hen
e 
an be skipped.Steps 9-12 perform the updates on the 
olumn indi
es of entries in the 
olle
tion by rows.As one entry e is removed from row j, the lo
ation at the end of the array j
n is freed and the50



indi
es of all entries following e in the 
olle
tion by rows are de
reased by 1. As before, the newupdates are stored in new�array whi
h is then 
opied onto j
n before being re-initialised tozero. A very similar argument holds for the row indi
es of entries in the 
olle
tion by 
olumnswhen an entry is removed from 
olumn k, and we leave the details to the reader. The updateson j
n and irn thus require at most O(�) steps, 
onsidering the worst 
ase when j = k = 1.This brings the total 
ost of the algorithm to O(d) +O(�) �eld operations.Algorithm 4.4.3 Add�entry(j; k)Input: M (q), where lo
ation (j; k) is empty.Output: M 0 = Re(M (q)), where lo
ation (j; k) is o

upied by a nonzero entry.1. �  � + 1, x row�length[j℄, row�length[j℄ row�length[j℄ + 1;2. Row�
hain(j; x; row�length[j℄);3. x 
ol�length[k℄, 
ol�length[k℄ 
ol�length[k℄ + 1;4. Column�
hain(k; x; 
ol�length[k℄);If (row�start[j℄ = 0) do5. 
 previous�row[j℄;If (
 6= �1) do6. row�start[j℄ row�start[
℄ + row�length[
℄;else do7. row�start[j℄ 1;end;end;for t 2 fj + 1; :::; dg doIf (row�start[t℄ 6= 0) do8. row�start[t℄ row�start[t℄ + 1;end;end;for t 2 fk + 1; :::; dg doIf (
ol�start[t℄ 6= 0) do9. 
ol�start[t℄ 
ol�start[t℄ + 1;end;end;10. t PASS;If (row�length[j℄ = 1) do11. new�array[row�start[j℄℄ k, t FAIL;else dofor s 2 frow�start[j℄; :::; row�start[j℄ + row�length[j℄) � 2g doIf (j
n[s℄ > k) and (t = PASS) do12. new�array[s℄ k, t FAIL;end;If (j
n[s℄ > k) and (t = FAIL) do13. new�array[s+ 1℄ j
n[s℄;end;end;end; 51



If (t = PASS) do14. new�array[s℄ k;end;for t 2 fj + 1; :::; dg doIf (row�start[t℄ 6= 0) dofor s 2 frow�start[t℄; :::; row�start[t℄ + row�length[t℄� 1g do15. new�array[s℄ j
n[s� 1℄;end;end;end;16. Copy(new�array; j
n), Initialise�to�zero(new�array);17. t PASS;for s 2 f
ol�start[k℄; :::; 
ol�start[k℄ + 
ol�length[k℄) � 2g doIf (irn[s℄ > k) and (t = PASS) do18. new�array[s℄ j, t FAIL;end;If (irn[s℄ > j) and (t = FAIL) do19. new�array[s+ 1℄ irn[s℄;end;end;If (t = PASS) do20. new�array[s℄ j;end;for t 2 fk + 1; :::; dg doIf (
ol�start[t℄ 6= 0) dofor s 2 f
ol�start[t℄; :::; 
ol�start[t℄ + 
ol�length[t℄� 1g do21. new�array[s℄ irn[s� 1℄;end;end;end;22. Copy(new�array; irn), Initialise�to�zero(new�array).Proposition 4.4.4 Algorithm 4.4.3 performs 
orre
tly and requires O(d) +O(�) operations.Proof: When an entry is added to the lo
ation (j; k), the total number of entries in the matrixin
reases by 1, and so do the lengths of row j and 
olumn k. The 
orresponding lists of rows and
olumns of the same length are modi�ed through the 
alls to Column�
hain and Row�
hain.Steps 1-4 as su
h require O(d) �eld operations.Steps 5-9 perform the updates on the row and 
olumn starts. As in algorithm 4.4.2, and forrows r = 1; :::; j, we have Ae(s) = s (where s is the index of the starting entry of a nonzero rowr -
he
k proof of Proposition 4.4.3 above), unless j was originally a zero row, in whi
h 
ase weargue as follows. If j be
omes the �rst nonzero row of M 0, then Ae(s) = 1; else,Ae(s) = row�start[
℄ + row�length[
℄where 
 = previous�row[j℄. If we further have j < d, then for rows r = j+1; :::; d, Ae(s) = s+1sin
e adding one entry to row j shifts the indexing of all entries in the remaining rows one unit52



to the right. A similar argument holds for the updates on the starts of 
olumns in the matrix.For 
olumn k, however, we argue that Ae(s) = s, sin
e the inserted entry will always appearafter the start of 
olumn k when this is the pivotal 
olumn. It 
an be further established thatthe operational 
omplexity of the updates on the starts of rows and 
olumns is of the orderO(d � j) + O(d � k) �eld operations, whi
h in the worst-
ase analysis (j = k = 1) be
omes ofthe order O(d).Steps 10-16 perform the updates on the 
olumn indi
es of entries in the 
olle
tion of rows.Let e0 denote the entry to be inserted. If row j be
omes of length 1, then e0 is given the 
olumnindex k, and the algorithm skips to step 15 where updates on the 
olumn indi
es for entriesin rows r > j take pla
e. Else, suppose that row j be
omes of length greater than 1. Let edenote an entry in j and of index s in M (q). If j
n[s℄ < k, then e also represents an entry ofj in M 0 whose index is not a�e
ted, sin
e it appears before e0. Else, if e is the �rst entry ofj in M (q) su
h that j
n[s℄ > k, then e0 takes up the index of e so that new�array[s℄ = k inM 0. For all entries e in row j whose 
olumns are greater than k in M (q), Ae(s) = s + 1 sothat new�array[s + 1℄ = j
n[s℄. If no entry e of row j in M (q) was found to have a 
olumnindex greater than k (step 14), then e0 is the last entry to appear in row j and hen
e has indexs = row�start[j℄+row�length[j℄�1, whi
h is a
hieved through exit of the loop in the pre
edingstep 12. For all entries e along rows r greater than j and of index s in M (q), Ae(s) = s+ 1 as aresult of inserting e0 in j. When all updates are performed, new�array is 
opied onto j
n andre-initialised to zero. In total, and 
onsidering the worst-
ase analysis when j = 1, this step 
anbe seen to require at most O(�) �eld operations. A very similar argument 
an be establishedfor updating the row values of entries in M 0 as a 
olle
tion of 
olumns and we leave the detailsto the reader. Summing up the sub-
osts of the algorithm, the total 
ost is O(d) + O(�) �eldoperations.The algorithm for adding rows 
an now be des
ribed using the previous two sub-tasks. Ourdis
ussion above also demonstrates that no 
ompression or 
reation of elbow room is required toa

ommodate for new 
opies of modi�ed rows (or 
olumns). Whatever extra spa
e 
reated 
or-responds only to the amount of �ll-in minus �ll-out, when this amount is positive. In parti
ular,the algorithm 
an be stated as follows:Algorithm 4.4.4 Add�Rows(i; j)Input: Rows i and j su
h that i is the pivotal row during one stage of Gaussian elimination andj is some other row in the a
tive sub-matrix of M (q).Output: Row j su
h that j  j + i.for s 2 frow�start[i℄; :::; row�start[i℄ + row�length[i℄� 1g do1. k  j
n[s℄;If lo
ation�by�
olumn(j; k) = PASS do2. Remove�entry(j; k);else do3. Add�entry(j; k);end;end.Proposition 4.4.5 Algorithm 4.4.4 performs 
orre
tly and requires O(d
2r ) �eld operations.53



Proof: Repla
ing j with j + i modulo 2 
an be performed in distin
t steps as follows. If bothrows i and j 
ontain an entry in the same 
olumn k, then performing j + i will 
an
el out thisentry in lo
ation (j; k); else, this will introdu
e a new entry in (j; k). The loop through steps1-3 iterates 
r times during whi
h a 
all to Remove�entry or Add�entry is performed. ByPropositions 4.4.3 and 4.4.4, and sin
e � = O(
rd), the total running time of algorithm 4.4.4 isat most O(d
2r ) �eld operations.4.4.5 A 
omplete sparse Gaussian elimination algorithmThe results of the previous subse
tions 
an now be used to 
onstru
t a 
omplete sparse GaussianElimination algorithm. The forward sweep of the algorithm whi
h redu
es the matrix intoE
helon form 
onsists of at most d pivotal steps. In ea
h step, a Markowitz sear
h is performedto �nd a suitable pivotal element. A

ordingly, an inter
hange of rows and/or 
olumns isperformed, and/or an elimination of entries falling below the pivotal element is performed byadding suitable rows. If we 
onsider the worst-
ase analysis in whi
h the Markowitz sear
hrequires O(�) operations, and 
ombining the 
osts in Propositions 4.4.2 and 4.4.5, we �nd thatthe forward sweep is of the order O �d2(max(
r; 

))2� (4.2)�eld operations. Our experien
e has shown that roughly speaking, the maximum number ofentries in a row or 
olumn is negligible 
ompared to d (see table 4.1 below). In parti
ular,if � denotes the maximum ratio �=d attained during any stage of the redu
tion, we have � =O(max(
r; 

)) and the 
ost in (4.2) is of the orderO(�2d2). It 
an also be seen that the ba
kwardsweep of the algorithm, whi
h produ
es the basis elements on
e the matrix is redu
ed, requiresO(d
r) �eld operations, so that the total 
ost of the algorithm involving both its forward andba
kward sweeps is bounded by O(�2d2). When 
ompared with the dense and expli
it Gaussianelimination of order O(d3), our algorithm performs faster provided that � < pd. In terms of itsmemory requirements, we have shown that the algorithm requires twelve integer arrays of sized, and three integer arrays of size � = O(�d). Compared to the spatial requirement d2 of theexpli
it methods, our algorithm is more memory eÆ
ient provided � < (d� 12)=3. Both upperbounds hold easily in our implementations.4.5 Implementation and run timesAll programs were written in C. The work was 
arried out at Oxford University Super
omputing
enter (OSC) on the Oswell ma
hine. Only one pro
essor of the Sun 
luster was used to per-form the serial work. The UltraSPARC III pro
essors run at about 122.2 M
op/se
 ea
h. Wegenerated a number of trinomials over F 2 
ompletely randomly. Table 4.1 lists the run times inminutes for setting up and solving the Niederreiter linear system for random binary trinomialsof degree d and having m irredu
ible fa
tors over F 2. As before, � denotes the maximum ratio�=d attained at any stage, and max(

; 
r) denotes the maximum number of entries appearingin any row or 
olumn during the entire Gaussian elimination phase. We note the negligiblevalues of max(
r; 

) 
ompared to d. The run times verify the e�e
t of in
reasing values of �or d on the total exe
ution time, and our �ndings assert that the matrix remains 
onsiderably54



d m � = max(�=d) max(
r; 

) Time in minutes8000 6 6 253 39:48000 7 2 33 1:28000 30 4 150 7:516000 7 2 34 4:716000 10 9 430 258:516000 14 2 126 6:132000 31 3 240 54:932000 10 15 854 1940064000 7 2 40 77:864000 10 3 248 215:7128000 10 3 363 812:9128000 14 2 178 343:5256000 14 2 288 1896:1300000 11 2 52 1634:3400000 11 2 49 5061:1Table 4.1: Run times for setting up the Niederreiter matrix and solving the asso
iated system.sparse throughout the redu
tion phase no matter how large the degree of the trinomial grows.As a result, our sparse algorithm performs eÆ
iently well without having to be transformedinto a dense algorithm towards the �nal stages of Gaussian elimination. Our impression is thata similar behaviour might still be observed for sparse polynomials of more than three terms,parti
ularly be
ause of the distribution of the Niederreiter matrix, whi
h heuristi
ally seems topreserve its sparsity throughout the elimination phase.4.6 Con
lusionIn this 
hapter we have investigated the initial and most limiting phase of the Niederreiteralgorithm for trinomials over the binary �eld and determined the exa
t initial sparsity level ofthe asso
iated Niederreiter linear system. A new sparse Gaussian elimination algorithm usingthe Markowitz strategy was developed for produ
ing a basis of the solution set of the sparselinear system. The new algorithm exploits the Gustavson data stru
ture but 
ir
umvents theproblems asso
iated with it regarding 
reation of elbow room and 
ompression. The problem ofrequiring extra spa
e and modifying the data stru
tures is however shifted within the subroutinesfor adding one row to another. Yet, our approa
h does not require the use of any elbow roombeyond what is needed to a

ommodate for only the extra number of �ll-in - �ll-out, whi
hin the 
ase of Niederreiter's linear system for trinomials over F 2 remains 
onsiderably small.This was supported by our experimental results where the linear system remained 
onsiderablysparse throughout the Gaussian elimination phase. The resulting algorithm is also more memoryeÆ
ient than the two dimensional doubly linked list whi
h has been the most eÆ
ient stru
tureamong linked-lists based data stru
tures. The gains in spatial requirements 
ome at the expenseof running time where our new algorithm requires O(�2d2) �eld operations, in 
ontrast to theO(�2d) 
ost of other sparse algorithms, where � = �=d. Our algorithm was used in solvingvery large sparse Niederreiter linear systems for trinomials over F 2, but 
an also serve as an55



irredu
ibility test for trinomials over F 2, where a trinomial is irredu
ible if and only if the rankof the redu
ed Niederreiter system is su
h that m = d�rank = 1 [102℄. Although our algorithm
an be easily modi�ed to be
ome a general linear solver in various other appli
ations, we expe
tit to be parti
ularly e�e
tive in solving the Niederreiter linear system for sparse polynomials overF 2. Our work in this 
hapter 
an be 
ombined with results of [1℄ where the irredu
ible fa
tors of fare extra
ted from a basis of the solution set using a parallel approa
h to the G�ottfert algorithmover F 2. When 
ompared with work in [110℄ for a dense expli
it linear algebra approa
h to theNiederreiter algorithm, the resulting hybrid algorithm is of a better spatial 
omplexity for thefa
torisation of large trinomials over F 2, provided � < (d � 12)=3, a 
riterion that is easy toestablish in the sparse Niederreiter linear system. Our algorithm a
hieves fa
torisation degreesthat are ina

essible to the dense implementation up to 16 pro
essors (see [1℄), and performsthe nullspa
e stage for d = 300000 in about 27 hours using only one pro
essor in 
ontrast tothe performan
e in [110℄ requiring about 10 hours and 256 nodes for a random (possibly dense)polynomial of the same degree. Our algorithm also a
hieves fa
torisations beyond this degree.
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Chapter 5A BSP model of the G�ottfertalgorithm for polynomialfa
torisation over F 25.1 Introdu
tionThe solutions of the Niederreiter linear system 
an lead to a 
omplete fa
torisation in a varietyof ways, one of whi
h was presented by G�ottfert [59℄ for �elds of 
hara
teristi
 2, leading to asimple and polynomial time algorithm for extra
ting the fa
tors using only the basis elementsof the solution set of the Niederreiter linear system.In this 
hapter, we develop a new BSP parallel approa
h to the G�ottfert algorithm over F 2.The BSP model o�ers simpli
ity in terms of its 
ost analysis and its 
lear distin
tion between thethree important phases of 
omputation, 
ommuni
ation, and syn
hronisation. It also has theadvantage of being independent of the underlying ar
hite
ture of the ma
hine, thus providingportable software that 
an be used eÆ
iently in a variety of appli
ations (see [14, 71℄). Ouralgorithm a
hieves high eÆ
ien
y in many of our test 
ases and 
an thus be used eÆ
iently tofa
torise very large polynomials over F 2 provided a basis of the solution set is given. For a briefsurvey of the algorithms underlying our work and some ba
kground information des
ribing theBSP parallel model, we refer the reader to Chapter 3. In Se
tion 5.2 we present our parallelalgorithm, prove its 
orre
tness and dis
uss its BSP 
ost analysis. In Se
tion 5.3 we report onour experimental results and dis
uss the s
alability of the algorithm.5.2 A parallel approa
h to G�ottfert's re�nement of the Nieder-reiter algorithmAs in the earlier 
hapter, let F 2 be the binary �eld of order 2 
onsisting only of the elements0; 1; it is thus understood that all polynomials des
ribed in this 
hapter are moni
. Let f be apolynomial of degree d over F 2, and f = ge11 � � � gemmbe its 
anoni
al fa
torisation over the �eld. Let Nf be the Niederreiter matrix of 
oeÆ
ients off . Let h = (h0; :::; hd�1) denote the 
oeÆ
ient row ve
tor of an unknown polynomial h over F 257



of degree less than d. In [102℄, Niederreiter establishes that the solutions h of the system (3.3)form a linear subspa
e of the ve
tor spa
e F 2[x℄ of dimension m over F 2 and that they are givenby h = fb b0where b denotes a fa
tor of g1 � � � gm. Sin
e b is square-free (so that g
d(b; b0) = 1), we have alsoseen that g
d(f;h) = fb g
d(b; b0) = fb :Let fh1; :::;hmg be a basis spanning the solution set of the system (3.3). The 
orrespondingpolynomials bi = fg
d(f;hi) 2 F 2[x℄ for i = 1; :::;mare square-free fa
tors of f . In the present 
hapter, all 
ops are 
onsidered as binary operations,sin
e we are working over the binary �eld.5.2.1 Dete
ting parallelism in the G�ottfert settingLet #rn denote the maximum number of non-
onstant polynomials Pi, for i = 1; :::;#rn, that
an appear in any row n des
ribed in the G::ottfert 
onstru
tion of Chapter 3. Ea
h Pi 
an bethe result of a g
d or a division operation, in whi
h 
ase we denote it by a D-polynomial or anR-polynomial respe
tively. Furthermore, we assert the following:Claim 5.2.1 #rn = 2n � 1 for n = 1; :::;m.Proof: We prove the 
laim by indu
tion on n. For n = 1, we know that row 1 
onsists of thepolynomial b1 only. Suppose the assertion is true for n. We know that any row n + 1 has atmost one plus twi
e the number of non-
onstant polynomials in row n so that#rn+1 = 2#rn + 1 = 2 � (2n � 1) + 1 = 2n+1 � 1:It is easy to see that there are at most (#rn � 1)=2 non-
onstant D-polynomials and at most(#rn + 1)=2 non-
onstant R-polynomials in ea
h row n. We denote D and R-polynomials inrow n by n;Dj and n;Rj0 respe
tively, where j and j0 are the polynomials' indi
es along rown. For 
onsisten
y throughout the text, we 
an arrange the 
omputations along rows so thatall the D polynomials are 
omputed �rst, their 
orresponding R polynomials next, and thepolynomial bn=Qj n;Dj (where the produ
t is over non-
onstant polynomials n;Dj) last. Withthis notation, it is also easy to see that, if the polynomials in row n� 1 are written as(n� 1);Di; for some i = 1; :::; (#rn�1 � 1)=2;and (n� 1);Ri; for some i = (#rn�1 + 1)=2; :::;#rn�1;58



then row n 
onsists ofn;Di = � g
d(bn; (n� 1);Di); if 1 � i � (#rn�1 � 1)=2,g
d(bn; (n� 1);Ri�(#rn�1�1)=2); if (#rn�1 + 1)=2 � i � #rn�1,n;Ri = � (n� 1);Di=n;Di; if 1 � i � (#rn�1 � 1)=2,(n� 1);Ri�(#rn�1�1)=2=n;Di; if (#rn�1 + 1)=2 � i � #rn�1,and n;R#rn�1+1 = bn#rn�1Qi=1n;Di 6=1n;Di :The �rst step in our parallel approa
h 
onsists of studying the dependen
ies between the g
dand division 
omputations and stru
turing these dependen
ies in a parallel hierar
hy. Withoutloss of generality we may assume that the number of threads 
oin
ides with the number ofpro
essors available. We introdu
e the 
on
ept of a parallel queue, whi
h 
onsists of a list ofpolynomials that 
an be 
omputed independently by a number of p pro
essors using a numberof supersteps. The queue 
omprises a set of jobs that are not ne
essarily performed in the sameparallel superstep; however, the jobs are entirely independent (and hen
e 
an be performed inany order) and do not require that the pro
essors syn
hronise at any point before the queue isfully ta
kled. The �rst parallel queue 
onsists of the polynomials bi, for i = 1; :::;m, where mpolynomials 
an be 
omputed simultaneously in parallel. The se
ond parallel queue 
onsists ofthe polynomial 2;D1 only, sin
e all other polynomials (in its row or in following rows) dependon it. This 
onstitutes the only queue where not enough distin
t tasks are available to engageall pro
essors. In fa
t, the ensuing queues start �lling up immediately a

ording to an iterativeformula derived from the dependen
ies that we des
ribe in the following algorithm:Algorithm 5.2.1 Set�Queues(queuek; queuek0)Input: queuek = fP1; :::; Psg, a list of non-
onstant polynomials from the G�ottfert setting 
om-puted in a parallel queue k � 2.Output: queuek0 , a list of polynomials that 
an be 
omputed in the parallel queue k0 > k.1. queuek0 = ;;for j 2 f1; :::; sg doif Pj = n;Di for some n = 2; :::;m and some i = 1; :::;#rn�1 do2. queuek0  queuek0 [ fn;Rig [ f(n+ 1);Dig.end;if Pj = n;Di for some n = 2; :::;m and i = #rn�1 do3. queuek0  queuek0 [ fn;R#rn�1+1g.end;if Pj = n;Ri for some n = 2; :::;m and some i = 1; :::;#rn�1 + 1 do4. queuek0  queuek0 [ f(n+ 1);Di+((#rn�1)=2)g.end;end. 59



Theorem 5.2.1 The algorithm works 
orre
tly as spe
i�ed, produ
ing all the rows in the G�ottfertalgorithm required to a
hieve a 
omplete fa
torisation. As a result, the algorithm requires at most3s steps for a list of size s.Proof: We assume that the polynomials b1; :::; bm are already 
omputed. Corre
tness of thealgorithm follows as a result of justifying the steps 2-4:Step 2: Suppose Pj = n;Di for some n = 2; :::;m and some i = 1; :::;#rn�1. If 1 � i �(#rn�1 � 1)=2, then Pj = g
d(bn; (n� 1);Di) and n;Ri = (n� 1);DiPj :Sin
e Pj has already been 
omputed in queue k, we know that (n�1);Di must be a non-
onstantpolynomial 
omputed in queue j < k. As su
h, n;Ri has both its 
omponents available and 
anbe assigned to queuek0 . Else, if (#rn�1 + 1)=2 � i � #rn�1, thenPj = g
d(bn; (n� 1);Ri�((#rn�1�1)=2)) and n;Ri = (n� 1);Ri�((#rn�1�1)=2)Pj :Again, (n � 1);Ri�((#rn�1�1)=2) must be a non-
onstant polynomial 
omputed in queue j < k,so that n;Ri 
an be assigned to queuek0 . On the other hand, for i = 1; :::;#rn�1 (or i =1; :::; (#rn � 1)=2) we know that(n+ 1);Di = g
d(bn+1; n;Di):The proof now follows as above.Step 3: Suppose Pj = n;Di for some n = 2; :::;m and i = #rn�1. Sin
e n;D#rn�1 is theD-polynomial to be 
omputed last in row n, and sin
en;R#rn�1+1 = bn#rn�1Qi=1n;Di 6=1n;Di ;the proof follows as above.Step 4: Suppose that Pj = n;Ri for some n = 2; :::;m and some i = 1; :::;#rn�1 + 1. Weknow that i also satis�es i = 1; :::; (#rn + 1)=2 or(#rn + 1)2 � i+ (#rn � 1)2 � #rn:Moreover, we have(n+ 1);Di = g
d(bn+1; n;Ri�((#rn�1)=2)) if (#rn + 1)2 � i � #rn;or equivalently(n+ 1);Di+#rn�12 = g
d(bn+1; n;Ri) if (#rn + 1)2 � i+ (#rn � 1)2 � #rn:The proof now follows as above.With the 
orre
tness of the algorithm now established, it be
omes immediate to see thatany polynomial in queuek 
an lead to at most 3 polynomials in queuek0 (e.g. the polynomialsatisfying the 
onditions in steps 2 and 3 above).60



5.2.2 The parallel G�ottfert algorithmOne major 
hara
teristi
 of the algorithm is that it 
onsists of task parallelism, sin
e distributingthe data would require mu
h more syn
hronisation between pro
essors in the inner loops thanwould be the 
ase in our present algorithm. To minimise the number of syn
hronisation barriers,we 
hoose to make all initial data available globally at the beginning of the algorithm and allre
ently 
omputed data available to all pro
essors on
e they are obtained. The following detailsare 
ru
ial in following up on the algorithm and des
ribe some of the data stru
tures as wellas the notations we adopt throughout this se
tion. The polynomials are represented by integerarrays whose entries are either zero or one. The 
oeÆ
ients are pa
ked into bit-words (wherewl is the bit-size of the 
omputer word being used). This not only speeds up the polynomialarithmeti
 sub-routines but also minimises the number of messages to be transmitted amongpro
essors, and hen
e the BSP 
ost of the algorithm. We des
ribe several arrays that storeeither the values of the polynomials or information about them. Unless otherwise stated, allarrays are global.We �rst de�ne two 
opies of three integer arrays, Typej;j0, Rowj;j0, and Indexj;j0, ea
h of sizem. Those serve to hold temporarily information about a polynomial Pi being 
omputed in someparallel queue. In parti
ular, Typej;j0[i℄ denotes the type of the polynomial (whether a D or anR polynomial), Rowj;j0[i℄ the row to whi
h it belongs, and Indexj;j0[i℄ its index within that row.Those arrays are embedded within two queues queuej and queue0j su
h that queuej is a sequen
eof triples (Typej[i℄; Rowj [i℄; Indexj [i℄), for i = 0; :::;#(queuej)�1, and ea
h su
h triple des
ribesa polynomial already 
omputed in some parallel queue. On the other hand, queuej0 
onsists ofsimilar triples des
ribing polynomials to be 
omputed in a forth
oming parallel queue.By a simple abuse of notation we also de�ne what we 
all an array of polynomials Polykof size dd=wle (where wl is the bit-size of the 
omputer word being used). By this we simplymean a two dimensional array of integers Poly su
h that the k'th row of the two dimensionalarray 
ontains the 
oeÆ
ients of the polynomial Polyk. The array is used to store permanentlythe values of all non-
onstant polynomials 
omputed in the parallel pro
ess. Similarly, wede�ne an array of polynomials Bk of size dd=wle 
ontaining the 
oeÆ
ients (in bit-words) ofthe polynomials bi = f=g
d(f;hi), for i = 0; :::;m � 1. We note that the polynomial indi
es areglobal variables indi
ating that Polyk and Bk are global polynomials whose individual values are
omputed by one parti
ular pro
essor then broad
ast to all at one �xed lo
ation k independentof the pro
essor id. To keep tra
k of the number of non-
onstant polynomials in ea
h row,we de�ne the integer array Length of size m su
h that Length[i℄ denotes the total number ofnon-
onstant polynomials lo
ated along row i during any phase of the parallel pro
ess. We alsode�ne two dimensional arrays of pointers, D and R, of approximate sizes m� (2m � 1). D[n℄[i℄points to null if the polynomial n;Di is 
onstant; else, it 
ontains the address of the row in Polywhere the polynomial n;Di is stored. A similar des
ription holds for the array R. Finally, wede�ne two integer arrays sum, and lo
al�sums, of sizes m and p�m respe
tively, that are usedto update the lengths of rows individually by ea
h pro
essor, as will be des
ribed later on.All 
ommuni
ation between pro
essors is a
hieved through the bsp�put 
ommand [66, 67℄.We use the short-hand of the fun
tion 
all as iny  BSP�Put(s;N; x):where N is an integer greater than or equal to zero. If N = 0, this indi
ates that the pro
essormeeting the 
ommand is sending its individual value of variable x onto variable y found on61



pro
essor s. Otherwise, x denotes a polynomial whose 
oeÆ
ients form the �rst N entries ofarray x and are being sent to pro
essors s at the same 
orresponding lo
ations in the globalarray y. Signal is an indi
ator whi
h 
ontrols the 
ow of the loops in that, if the length of anyrow be
omes equal to m, we set Signal to Stop, indi
ating that all irredu
ibles have been found(see Theorem 3.1.7); else, we set it equal to OK in whi
h 
ase all loops 
ontinue to operate.queue�length always designates the number of polynomials to be 
omputed in a new parallelqueue, and total�poly designates the total number of non-
onstant fa
tors determined duringany stage of the parallel algorithm. Our parallel algorithm now takes the following form:Algorithm 5.2.2 Parallel�G�ottfert(f; d;m; fh0; :::hm�1g; p; id)Input: f a polynomial of degree d over F 2, m > 1 the number of irredu
ible fa
tors of f ,fh0; :::;hm�1g a basis for the solution set of (3.3), p the total number of pro
essors operating inparallel, and id the pro
essor identi�
ation number ranging from 0; :::; p � 1.Output: the m irredu
ible fa
tors of f and their multipli
ities in f .1. Signal  OK, k  id;while (k < m) do2. bk  f= g
d(f;hk), degree deg(bk);for y 2 f0; :::; p � 1g do3. bk  BSP�Put(y; degree + 1; bk);end;4. k  k + p;end.5. BSP�syn
hronise().6. P0  g
d(b0; b1);if (P0 6= 1) do7. Poly0  P0, D[2℄[1℄ &Poly0, total�poly  1, Length[2℄ 1;else do8. total�poly  0;end;9. queuej  fP0g, Set�Queues(queuej ; queuej0), queue�length #queuej0;while (Signal = OK) do10. k  id, Set�to�zero(sum; lo
al�sums);while (k < queue�length) do11. Type Typej0 [k℄, n Rowj0 [k℄, i Indexj0 [k℄,Pk  Compute�Polynomial(Type; n; i);if (Pk 6= 1) do12. Poly(k+total�poly)  Pk;if (Type = D�type) do13. D[n℄[i℄ &Poly(k+total�poly);else do14. R[n℄[i℄ &Poly(k+total�poly);end;15. sum[n℄ sum[n℄ + 1, degree deg(Polyk);for y 2 f0; :::; p � 1g do16. Poly(k+total�poly)  BSP�Put(y; degree + 1; P oly(k+total�poly));end; 62



if (Type = D�type) dofor y 2 f0; :::; p � 1g do17. D[n℄[i℄ BSP�Put(y; 0;D[n℄[i℄);end;else dofor y 2 f0; :::; p � 1g do18. R[n℄[i℄ BSP�Put(y; 0; R[n℄[i℄);end;end;end;19. k  k + p;end;for y 2 f0; :::; p � 1g dofor w 2 f2; :::;mg do20. lo
al�sums[y℄[w℄ BSP�Put(y; 0; sum[w℄);end;end;21. BSP�syn
hronise();for (y 2 f0; :::; p � 1g) dofor (w 2 f2; :::;mg) do22. Length[w℄ Length[w℄ + lo
al�sums[y℄[w℄,total�poly total�poly + lo
al�sums[y℄[w℄;if (Length[w℄ = m) do23. Signal  Stop, last�row w;end;end;end;if (Signal = OK) do;24. queuej  queuej0, queue�length Sort(queuej), queuej0  (),Set�Queues(queuej ; queuej0);end;end;25. i id+ 1;while (i � 2last�row�1) doif (D[last�row℄[i℄ 6= NULL) do26. fa
tor �D[last�row℄[i℄, exp Multipli
ity(f; fa
tor),return (fa
tor; exp);end;if (R[last�row℄[i℄ 6= NULL) do27. fa
tor �R[last�row℄[i℄, exp Multipli
ity(f; fa
tor),return (fa
tor; exp);28. i i+ p;end.The algorithm is 
alled by all pro
essors whi
h implement the same 
opy of it for variousdata, 
onforming to the SPMD model: A single program with multiple data is en
ountered by63



all pro
essors, whi
h then exe
ute their own version of the program, distinguished by their ownidenti�
ation number, id = 0; :::; p�1. In step 1 of the algorithm, few initialisations are set. The�rst \while" loop is a parallel loop met by all pro
essors whi
h 
ompute the square-free fa
torsbk = f= g
d(f;hk), for k = 0; :::;m�1. k is a global variable whi
h when �rst set to id and thenin
remented by p guarantees that all pro
essors 
ompute almost an equal number of polynomialsbk. This 
onstitutes the �rst parallel queue a

ording to Algorithm 5.2.1. Every pro
essor thenbroad
asts its own value of bk to all other pro
essors, but no syn
hronisation barrier is met untilall the bk's are 
omputed, sin
e they are not needed in any loop 
omputation. A syn
hronisationpoint in the loop as su
h would only in
ur an extra 
ost of syn
hronisation without a
tuallybeing required.The se
ond parallel queue 
onsists of the polynomial 2;D1 (see Algorithm 5.2.1) whi
h is
omputed by all pro
essors. Although this 
onstitutes a sequential step, the pro
essors start toengage in distin
t 
omputations soon after the se
ond queue is set up. If P0 = 2;D1 is not trivial,it is stored in a permanent lo
ation in Poly0, D[2℄[1℄ is set to point to the lo
ation of Poly0(whi
h we denote by &Poly0), and the length of row 2 and the total number of non-
onstantfa
tors 
omputed so far are updated. We 
all Algorithm 5.2.1 to set up the ensuing queuej0 ofpolynomials to be 
omputed in parallel. queue�length denotes #queuej0 .Thereafter, the main loop of the algorithm is iterated so long as Signal is not set to Stop(indi
ating that none of the rows has attainedm non-
onstant polynomials). The global variablek loops over indi
es in queuej0 , and as above, the in
rement it re
eives arranges for the pro
essorsto 
ompute almost an equal number of polynomials Pk in queuej0 . The pro
essors re
eiveinformation about the polynomials they should 
ompute through the global data found in Type =Typej0 [k℄, n = Rowj0 [k℄, and i = Indexj0 [k℄, and 
all the sub-routine Compute�Poly whi
hdetermines the polynomial Pk as de�ned in the G�ottfert setting. If Pk is non-
onstant, pro
essorid stores it permanently in Poly(k+total�poly), and sets D[n℄[i℄ (or R[n℄[i℄) to point to the addressof Poly(k+total�poly). Be
ause total�poly represents the total number of non-
onstant fa
tors
omputed so far, this parti
ular index of Poly is su
h that all new polynomials do not overwriteprevious ones, and no two pro
essors store their results in the same lo
ation. The lo
al valueof the polynomial and its pointer are then broad
ast by pro
essor id to all pro
essors, andthe total number of non-
onstant fa
tors found along row n by pro
essor id during the set upof queuej0 is in
reased by 1 in the pro
essor's lo
al 
opy of sum[n℄ (it is assumed that sumand lo
al�sums are initialised to zero before every new iteration of the main loop of step 10).When all polynomials in queuej0 have been 
omputed, ea
h pro
essor id pla
es its own 
opiesof sum[n℄, for n = 2; :::;m in global lo
ations at lo
al�sums[id℄[n℄. A syn
hronisation barrieris now met, whi
h updates the values of the non-
onstant polynomials, their pointers, and thepartial lengths of rows as 
omputed by every individual pro
essor. We note the absen
e of asyn
hronisation point immediately after the broad
asting of Poly(k+total�poly) and the pointerto it, due to the fa
t that they were not needed in any 
omputation within the loop of step 11.We also note that, although updating the total row lengths inside the loop of step 11 (i.e. whilepro
essors are still operating within the same parallel queue) de�nitely dis
ards any unne
essaryg
d or division operations remaining in the queue, our 
hoi
e not to perform a

ordingly 
anbe justi�ed by the fa
t that this will require a syn
hronisation point within the innermost loop,one whose repeated appli
ation 
ould prove to be 
ostly. Ea
h pro
essor now has all the partialsums available to it globally in lo
al�sums[id℄[n℄ and 
an thus sum them all up into one globalquantity in Length[n℄. The total number of non-
onstant fa
tors is also updated as being thesum of all row lengths. If any row length be
omes equal to m, all pro
essors are signalled to64



stop. Else, queuej0 is transferred onto queuej (so that the most re
ent polynomials 
an helpdetermine what the new parallel queue will be), and queuej is sorted through a 
all to Sort.Sin
e some pro
essors 
ompute 
onstant polynomials whose index k leaves the 
orrespondinglo
ation in the array Poly empty, the Sort sub-routine re-arranges the elements stored in Poly(and their 
orresponding pointers in the arrays D or R) so that the non-
onstant fa
tors arestored 
onse
utively after ea
h other. Sort also returns the length of the sorted list. Finally, anew queuej0 is set a

ording to Algorithm 5.2.1. The loop of step 10 
an be shown to end, sin
ewe are bound to rea
h a row 
ontaining m non-
onstant polynomials whi
h 
onstitute all theirredu
ible fa
tors of f (Theorem 5.2.1). At this point, last�row 
ontains the index to that row.All pro
essors s
an in parallel the non-
onstant D and R pointers to the polynomials found alonglast�row (using our notation, the polynomials are a

essed by applying � to a parti
ular lo
ationin the D or R arrays). By Claim 5.2.1, there is a maximum of #rlast�row�1 = (2last�row�1�1) D-polynomials and #rlast�row�1+1 = 2last�row�1 R-polynomials in last�row, whi
h by Theorems3.1.7 and 3.1.8 
onstitute the m non-
onstant fa
tors of f . Ea
h pro
essor then determines themultipli
ity of that fa
tor in f (by a 
all to the sub-routine Multipli
ity). At this stage, we
an 
hoose not to distribute the results globally so that ea
h pro
essor outputs its own set of(fa
tor; exp) pairs. The algorithm terminates with the last iteration of this loop.5.2.3 The BSP 
ost of the algorithmIn this se
tion we establish the parallel 
omplexity of our algorithm. To this end, we �rst stateand prove several preliminary results.Lemma 5.2.1 In the parallel setting des
ribed in Algorithm 5.2.1, every row n has its �rstelement n;D1 
omputed in the parallel queue n and its last element n;R#rn�1+1 
omputed inthe parallel queue 2n� 1.Proof: We prove the result by indu
tion on n. For n = 2, we know that queue 2 starts with2;D1, and by Algorithm 5.2.1, queue 3 
ontains the polynomials 3;D1, 2;R1 and 2;R2, where2;R2 is the last polynomial to be 
omputed in row 2. Suppose that n;D1 
an be �rst 
omputedin queue n. Sin
e (n+1);D1 = g
d(bn+1; n;D1), the �rst queue whi
h assigns the 
omputation of(n+1);D1 is n+1. Furthermore, suppose that queue 2n�1 
ontains the polynomial n;R#rn�1+1whi
h is 
omputed last in row n. Sin
e(n+ 1);D#rn = g
d(bn+1; n;R#rn�1+1);this polynomial 
an be determined at the earliest in the parallel queue 2n. But (n+1);R#rn+1depends on the values of all polynomials (n+1);Di, for i = 1; :::;#rn, and hen
e 
an be 
an be
omputed at the earliest when (n+ 1);D#rn is available, whi
h is in the parallel queue 2n+ 1.Corollary 5.2.1 It takes at most 2m� 1 parallel queues for a 
omplete fa
torisation into irre-du
ibles to be established.Proof: By Theorem 3.1.8 it takes at most m rows to 
ompute all irredu
ible fa
tors of f (see[59℄ for proof). By Lemma 5.2.1, row m requires at most 2m � 1 parallel queues before allnon-
onstant polynomials appearing in it are 
omputed. This 
on
ludes the proof.65



Lemma 5.2.2 If n is odd, then queue n 
ontains polynomials belonging only to rows (n+1)=2+j,for j = 0; :::; (n � 1)=2, if 2 � n � m, and for j = 0; :::;m � (n + 1)=2, if m < n � 2m � 1.Else, if n is even, then queue n 
ontains polynomials belonging only to rows n=2 + 1 + j, forj = 0; :::; n=2 � 1, if 2 � n � m, and for j = 0; :::;m � (n=2 + 1), if m < n � 2m� 1.Proof: For all queues n appearing in the parallel set-up, Corollary 5.2.1 maintains that 1 �n � 2m� 1. Suppose now that n is odd. Let k be a row o

upying queue n. By Lemma 5.2.1,we must have n � 2k � 1 (or k � (n+ 1)=2). Write k = (n+ 1)=2 + j for j � 0 (sin
e n is odd,this expression is an integer). For n = 2; :::; 2m�1, we must have k � n (so that j � (n�1)=2);otherwise, row k starts appearing in queues n+1 onwards, a 
ontradi
tion. If m < n � 2m� 1,the upper bound on k 
an be strengthened to satisfy k � m (or j � m� (n + 1)=2), sin
e thelast row to be set up in the G�ottfert representation is row m.If n is even, n � 2k � 1 implies that n � 2k � 2 sin
e 2k � 1 is odd, or that k � n=2 + 1.Write k = n=2 + 1 + j for j � 0 (again, this expression is an integer sin
e n is even). A similarargument as above follows to establish the upper bounds on j, and we leave the straightforwardproof to the reader.Lemma 5.2.3 Ea
h parallel queue 
onsists of at most 2m g
d and division operations and
ontributes to at most m non-
onstant polynomials.Proof: First, we note that, sin
e ea
h row k in the G�ottfert representation requires at most2m g
d and division 
omputations and has at most m non-
onstant polynomials appearing init, and sin
e ea
h su
h row requires a number of at most k queues to be fully set up, we wouldexpe
t, roughly and on average, ea
h parallel queue n to require a number of 2m=k g
d anddivision operations leading to about m=k non-
onstant polynomials for ea
h row k assigned toqueue n. Let n be odd (the 
ase when n is even 
an be proven similarly and hen
e 
an beomitted). If 2 � n � m, Lemma 5.2.2 implies that queue n has polynomials belonging to rowsk = (n + 1)=2 + j, for j = 0; :::; (n � 1)=2, where ea
h row k has roughly m=k non-
onstantpolynomials appearing in queue n. Thus, the total number of g
d and division operations to beperformed in queue n is approximately(n�1)=2Xj=0 2mn+12 + j < �n� 12 + 1� 2m(n+ 1)=2 = 2m:Furthermore, if m < n � 2m� 1, this number is approximatelym�(n+1)=2Xj=0 2mn+12 + j < �m� n+ 12 + 1� 2m(n+ 1)=2< (m� m+ 12 + 1) 2m(m+ 1)=2 = 2m:Using a very similar 
al
ulation, the total number of non-
onstant polynomials produ
ed is easilyshown to be at most m.Sin
e the number of pro
essors will be �xed throughout the text, we shall refer to the
ommuni
ation and syn
hronisation BSP parameters as simply g and ` respe
tively, where it isimpli
itly understood that the two parameters depend on p.66



Theorem 5.2.2 Assuming 
lassi
al polynomial arithmeti
 with multipli
ation time M(d) =O(d2), the BSP 
ost of Algorithm 5.2.2 is of the orderO�m2p M(d) log d+ gm2(� dwl�+ p) +m`�
ops. (5.1)Proof: In our proof, we note the following remarks. Sin
e all polynomials appearing in the
ourse of the algorithm are fa
tors of f , their degrees are at most equal to d = deg(f). It isalso understood that any 
omputational 
omplexity is the maximum work load a
hieved by anyone pro
essor. Sorting a list of size at most k 
an be a
hieved in O(k log k) 
ops (e.g. see [26℄).Computing the multipli
ity of a fa
tor of f requires at most d polynomial multipli
ations overF 2 (and hen
e in our 
ase, M(d) 
ops). We also assume that a

essing an array entry requiresalmost as mu
h time as one 
op. A message denotes one 
omputer word (i.e. a message ofsize 1). The total 
ost of the algorithm is the summation of the 
osts of its supersteps. Theindividual BSP 
osts of the main supersteps (i.e. those whose 
ost is not 
onstant) 
an bedetailed as follows:Supersteps 2-4: we have seen earlier that this loop is divided almost equally among allpro
essors. As a result, the parallel loop is a

essed at most dm=pe times. Ea
h iteration of theouter loop involves mainly one g
d and one division 
omputation, and an inner loop 
onsistingof a bsp�put operation, whereby ea
h pro
essor sends ddegree=wle � dd=wle messages to allpro
essors (and hen
e p 
opies of these) and re
eives pddegree=wle � pdd=wle messages. Thus,hmax = pddegree=wle < pdd=wle. Superstep 5 is a syn
hronisation point, so that the total BSP
ost of supersteps 2-4 is at mostO��mp ��M(d) log d+ gp� dwl��+ `� 
ops. (5.2)Supersteps 6-9: 
onsist mainly of one g
d operation and a 
all to Set�Queues with inputqueuej = fP0g, whi
h a

ording to Theorem 5.2.1 requires at most 3 steps. Thus, the BSP 
ostof these supersteps is of the order O(M(d) log(d)) 
ops. (5.3)Supersteps 10-28: 
onstitute the main body of the parallel algorithm. The outer{most loopdesignates the total number of times the pro
essors set up parallel queues before a 
ompletefa
torisation is a
hieved. This number has been shown in Corollary 5.2.1 to be at most 2m� 1.Supersteps 11-19 are embedded within an inner loop ranging over all polynomials along queuej0 .The tasks within the queue, 
onsisting mainly of g
d and division operations, are divided almostequally among pro
essors (
he
k the initial value of the loop variable k and the in
rement itre
eives). By Lemma 5.2.3, ea
h queue 
onsists of at most 2m g
d and division operations toperform equally among all pro
essors, and hen
e the loop is a

essed at most d2m=pe times.The bulk of the work appears in the following: step 11 
onsists of either a g
d or a divisionoperation, step 16 
onsists of sending at most pdd=wle messages and re
eiving at most pdd=wlemessages (resulting in hmax = pdd=wle), and step 17 or 18 
onsists of sending p messages andre
eiving one message (resulting in hmax = p). Within ea
h inner loop iteration, the BSP 
ostof supersteps 11-19 is at most O�M(d) log(d) + gp� dwl��67



whi
h a
ross both the outer and inner loops be
omes of the orderO�m�mp � �M(d) log(d) + gp� dwl��� 
ops. (5.4)Supersteps 20-28 are found outside the inner loop of step 11 but inside the loop of step 10. In the
ommuni
ation superstep 20 ea
h pro
essor sends pm messages and re
eives pm messages (sothat hmax = pm). Superstep 21 is a syn
hronisation point, and superstep 22 
onsists of about2pm additions. Superstep 24 
onsists mainly of a 
all to Sort with input list of size at most2m (produ
ing a list of size at most m by Lemma 5.2.3), as well as a 
all to Set�Queues withinput list of size at most m (this requiring at most 3m 
ops). Summing up, a single appli
ationof supersteps 20-28 requires at mostO (m(p+ logm) + gpm+ `)
ops whi
h when iterated a
ross the outer loop of step 10 be
omes of the orderO(m2(p+ logm) + gpm2 +m`) 
ops. (5.5)Supersteps 25-28 
onsist of 
omputing the multipli
ity of all m fa
tors in parallel, where ea
hpro
essor takes up almost an equal number of D and R-fa
tors. If ea
h 
all to Multipli
ityrequires about M(d) 
ops, the supersteps will requireO��mp �M(d)� 
ops. (5.6)Summing up the individual 
osts (5.2), (5.3), (5.4), (5.5), and (5.6), the total BSP 
ost 
an befound to be of the orderO�m�mp �M(d) log d+m2(p+ logm) + gp(m� dwl��mp �+m2) +m`�
ops. Sin
e �mp � < mp + 1; p = O(d);M(d) = O(d2) and m = O(d);(where the se
ond inequality easily holds in implementations involving large polynomial degrees {see Table 5.2, the third estimate holds in our implementations of 
lassi
al polynomial arithmeti
[55℄), it follows that m2(p+ logm) = O(m2d) = O�m�mp �M(d) log d� ;from whi
h the total BSP 
ost (5.1) 
an be derived.Corollary 5.2.2 Assuming the given in Theorem 5.2.2 above, Algorithm 5.2.2 has low syn
hro-nisation and 
ommuni
ation requirements. 68



Proof: We 
laim that our algorithm has very good syn
hronisation and 
ommuni
ation re-quirements, in that the number of 
ops required by both 
an be negligible 
ompared to the
omputation 
ost. In parti
ular, and based on the values of the BSP parameters in table 5.2, it
an be easily attained thatg = O(d log dp ); p = O(d); and ` = O(mp M(d) log d)for large values of d, so thatgm2�� dwl�+ p�+m` = O(m2p M(d) log d):
5.2.4 Redu
tion of the algorithm's memory requirementsAs de�ned in Algorithm 5.2.2, the two dimensional arrays D and R of size m � (2m � 1) ea
h
an be easily seen to 
onstitute an infeasible (exponential) spa
e requirement unless m is verysmall. To this end, we des
ribe how a linked-list stru
ture 
an be adopted whi
h redu
es thememory requirements to four integer arrays of size m ea
h and four integer arrays of size 2m2ea
h, requiring only a polynomial order spa
e 
omplexity.Re
all that, for n = 2; :::;m and i = 1; :::; 2m�1, D[n℄[i℄ represents a pointer whi
h is NULLif n;Di is a 
onstant polynomial, and whi
h points to the lo
ation of n;Di in the array Poly,otherwise. Similarly for R[n℄[i℄. We also note that there are many more 
onstant polynomialsthan there are non-
onstant ones, and hen
e, the distribution of non-
onstant polynomials amongall possibilities is a sparse one. Our algorithm in its present form 
ontains many NULL pointers,and a 
andidate for a more eÆ
ient method has to repla
e this stru
ture with one whi
h lo
atesonly non-
onstant polynomials without any referen
e to the others.The improvement 
an be des
ribed as follows. We �rst order the non-
onstant fa
tors in alist F , in whi
h ea
h fa
tor o

upies an index 
orresponding to its position in the array Poly.For instan
e, if a non-
onstant fa
tor is stored at lo
ation k in Poly, it would appear as the k+1polynomial in F . In this way, a non-
onstant fa
tor in the entire 
olle
tion 
an be 
ompared toa nonzero entry in a 
olle
tion of sparse row ve
tors (or 
olumns) representing a sparse matrix.We de�ne four global integer arrays, D�header, D�tail, R�header and R�tail, ea
h of sizem, and four global integer arrays, D�fwd�link, R�fwd�link, D�index and R�index, ea
h ofsize 2m2. The aim would be to arrange polynomials in F in lists of polynomials of the sametype and row. The des
ription below 
on
erns only D-arrays but a very similar one holds forR-arrays.Suppose we want to link all D- polynomials in F appearing in row n. For n = 2; :::;m,D�header[n℄ represents the index in F of the �rst (non-
onstant) D-polynomial appearing inrow n. All ensuing non-
onstant D-polynomials in row n are adjoined to the list, and as su
h, weneed to preserve various information des
ribing ea
h one of them as they appear together. Forea
h row n, we keep tra
k of the index in F of the last D-polynomial appearing in the row bystoring it in D�tail[n℄. Thus, for a start, if one non-
onstant D-polynomial of row n appears inF at lo
ation k, we set D�header[n℄ = k and D�tail[n℄ = k. We also store its index along rown in D�index[k℄, whi
h 
ompletes all information about the polynomial. For ea
h non-
onstant69



D-polynomial in row n and of index k in F , we maintain a pointer to the index in F of the nextsu
h polynomial and store it in D�fwd�link[k℄. If D�fwd�link[k℄ = 0, polynomial k is thelast one in the list of non-
onstant D-polynomials belonging to row n, whi
h 
an be generated
ompletely as follows:Algorithm 5.2.3 Input: A non-
onstant D-polynomial of index i in some row n = 2; :::;m andindex k in F .Output: The polynomial adjoined to the end of the list of non-
onstant D-polynomials belongingto row n.if (D�header[n℄ = 0) do1. D�header[n℄ k, D�tail[n℄ k, D�index[k℄ i, D�fwd�link[k℄ 0;else do2. D�fwd�link[D�tail[n℄℄ k, D�tail[n℄ k, D�index[k℄ i;end.It is trivial to see that the 
all to this algorithm 
omes at a very negligible 
onstant 
ost andhen
e 
an be embedded within the estimate of (5.1). We now illustrate the use of this stru
ture inlo
ating non-
onstant fa
tors whenever required for new 
omputations. Suppose, for instan
e,that we need to 
ompute n;Di for some n = 3; ::;m and i = 1; :::; (#rn�1 � 1)=2 (so thatn;Di = g
d(bn; (n � 1);Di)). Using the two dimensional array D, and if D[n � 1℄[i℄ is NULL,one 
on
ludes that n;Di is 
onstant; otherwise, the polynomial pointed to by D[n� 1℄[i℄ is usedto 
ompute the required g
d. Using the linked list stru
ture, the pro
ess 
an be des
ribed asfollows:Algorithm 5.2.4 Input: A D-polynomial of index i in some row n� 1, n = 3; :::;m.Output: The lo
ation of (n� 1);Di in the array Poly if it is non-
onstant or FAIL otherwise.1. t FAIL, x D�header[n� 1℄;if (D�header[n� 1℄ 6= D�tail[n� 1℄) dowhile (x 6= 0 and t = FAIL) doif (D�index[x℄ = i) do2. t PASS;3. k  x, x D�fwd�link[x℄;end;end;end;else doif (D�index[x℄ = i) do4. t PASS;end;5. k  x;end;if (t = PASS), return (k � 1);else return FAIL.If D�header[n � 1℄ 6= D�tail[n� 1℄, the list of D-polynomials belonging to row n 
ontainsmore than one polynomial and hen
e has to be s
anned entirely; else, the list 
ontains only oneelement. x takes up indi
es in this list, starting with its header, and moving a
ross the forwardlinks. t is an indi
ator whi
h when set to PASS indi
ates that a non-
onstant polynomial70



(n� 1);Di has been found whose lo
ation in F is k (or lo
ation in Poly is k� 1). If x be
omeszero, this signals the end of the list. Finally, the loop a
ross the list ends either when t be
omesPASS or x = 0. The algorithm demonstrates how 
he
king D[n℄[i℄ 
an be substituted withs
anning a list of size at most m. The in
rease in the total 
omputational 
ost as a result ofusing the improved data stru
ture 
an be realised as follows. We have seen that the 
all toCompute�Polynomial in step 11 of algorithm 5.2.2 is issued at most 2m � dm=pe times. Ea
hsu
h polynomial 
omputation will require two 
alls to algorithms 5.2.3 and 5.2.4, thus in
reasingthe total 
ost of Algorithm 5.2.2 by O(2m2 � dm=pe) 
ops. Sin
e m = O(M(d) log d), the upperbound estimate given in (5.1) remains of the same order, and as su
h, the new improvement 
anbe introdu
ed at little 
ost to the worst-
ase analysis initially provided.5.3 Implementation and run timesTable 5.1: Parallel run times.Pro
essorsd m max seq. 1 2 4 8 168000 6 7446 2.37 2:32(1) 1(1:2) 0:8(0:7) 0:2(1:5) 0:6(0:2)8000 7 3200 2.62 2:6(1) 0:9(1:5) 0:7(0:9) 1:4(0:2) 1:1(0:1)8000 30 600 48.98 48:36(1) 27(0:9) 17:4(0:7) 6:8(0:9) 6:6(0:5)16000 10 10224 29.9 29:9(1) 14:2(1:1) 10:4(0:7) 10:4(0:4) 3:7(0:5)16000 14 5600 8.78 8:74(1) 4:7(0:9) 2:4(0:9) 2:6(0:4) 1:4(0:4)32000 31 19360 145.8 144:89(1) 76:4(1) 31:5(1:2) 13:8(1:3) 10:4(0:9)64000 10 26400 82.6 82:01(1) 64:2(0:6) 29:3(0:7) 27(0:4) 29:05(0:2)128000 14 44800 2629.62 2609(1) 794:8(1:7) 761:4(0:9) 760:6(0:4) 468:8(0:4)256000 14 92800 6819.12 6761:89(1) 2696:3(1:3) 1420:4(1:2) 1417(0:6) 325:1(1:3)300000 11 120000 621.8 621:32(1) 408:68(0:8) 242:2(0:6) 51:2(1:5) 57:6(0:7)400000 11 160000 1658.2 1658(1) 829(1) 592(0:7) 188:4(1:1) 148(0:7)Table 5.2: BSP parameters.p g `1 0.34 552 1.64 14964 2.48 16838 2.34 256216 4.83 343171



All programs were written in C and extended using the standard BSP library [66, 67℄. Thework was 
arried out at the Oxford University Super
omputing Centre (OSC) using the Oswellma
hine. Oswell is a Sun 
luster of 84 pro
essors and a shared memory system where thepro
essors are arranged in three groups of 24 pro
essors and a group of 12 pro
essors (ea
hpro
essor having 2 GBytes of memory). With this s
heme, any work submitted to the ma
hineis queued to one of those four boxes, and the number of pro
essors available for use by any onejob is at most 24. In pra
ti
e, however, we had a

ess to 16 pro
essors only.The various input data were taken from the results of Chapter 4 where the Niederreiterlinear system for a trinomial over F 2 is solved and a basis for the solution set is produ
ed. Weremark that, in spite of the input polynomial being sparse, the intermediary polynomials in theG�ottfert representation are not ne
essarily so, whi
h renders su
h a 
ase study for trinomialsnot so spe
ial a 
ase as it appears. The run times in table 5.1 represent the times in se
ondsfor produ
ing the entire fa
torisation using our BSP parallel algorithm given a parti
ular basisset. The timings 
orrespond to the sequential as well as the parallel results. max represents themaximum over all i = 1; :::;m of deg(geii ), and d and m are as de�ned previously. The absoluteeÆ
ien
ies are shown in parentheses. All polynomial arithmeti
 was performed using 
lassi
alalgorithms so that the multipli
ation time for polynomials of degree at most d is O(d2) [55℄.Let Tp and Ts denote the parallel run time using p pro
essors and the sequential run timerespe
tively. Our run times suggest a speed gain in almost all 
ases, an out
ome that is to beexpe
ted a

ording to our BSP 
ost (5.1), whi
h roughly suggests thatTp < Ts i� m2p < m2 i� p > 1;ignoring the negligible 
ommuni
ation and syn
hronisation requirements of our algorithm aswell as any other parallel overheads asso
iated with the 
reation and management of threads.To measure the s
alability of our parallel algorithm, we 
al
ulate the absolute eÆ
ien
y Ep [86℄for all 
ases, where Ep = TspTp ;whi
h when a
hieving values 
lose to one indi
ates a good parallel performan
e. A

ordingly,and upon examining our eÆ
ien
ies, we note that almost all our experiments s
ale very wellfor up to 8 pro
essors. Thereafter, the eÆ
ien
y remains very good for a �xed d either as min
reases (e.g. 
ompare trinomials with m > 30 to others), or as max in
reases (for d = 8000,
ompare the trinomials withmax = 7446 andmax = 3200). We also note that eÆ
ien
y remainsalmost 
onstant around 1 for d � 256000. We remark the absen
e of a sharp 
u
tuation in theeÆ
ien
y levels mainly be
ause our algorithm does not involve data partitioning (but only taskparallelism), whi
h results in the 
omputation being either entirely in 
a
he or out of 
a
hea
ross all pro
essors for the same d. This has the advantage of revealing the real s
alability ofthe algorithm and avoiding 
a
he e�e
ts.5.4 Con
lusionIn this 
hapter we presented and analyzed a 
omplete BSP algorithm for extra
ting the fa
torsof a polynomial over F 2 using the G�ottfert re�nement of the Niederreiter algorithm, whi
h,72



given a basis for the solution set of the Niederreiter linear system, performs the last phase of thefa
torisation algorithm in polynomial time. Our BSP theoreti
al model resulted in an eÆ
ientBSP 
ost requiring relatively small 
ommuni
ation and syn
hronisation 
osts. The parallelalgorithm not only a
hieves 
onsiderable speed gains as the number of pro
essors in
reases upto 16, but maintains a moderate to very good eÆ
ien
y that is better maintained as the degree ofthe polynomial, the number of its irredu
ible fa
tors or the maximum over its irredu
ible fa
tors'degrees in
reases. The algorithm 
an be applied over �elds of 
hara
teristi
 2 in general, providedan input basis is available. When 
ombined with our work in Chapter 4 whi
h exploits sparsityin the Niederreiter linear system, the hybrid algorithm provides a 
heaper and more memoryeÆ
ient alternative to the fa
torisation of trinomials over F 2 than the implementation in [110℄,whi
h uses dense expli
it linear algebra and a maximum of 256 nodes to a
hieve a polynomialre
ord of degree 300000. When 
ompared with the Bla
k Box Niederreiter algorithm of [39℄, thehybrid algorithm is a simpler approa
h for moderately high re
ord fa
torisations of trinomialsover F 2 as those allowed by the use of impli
it linear algebra, requiring reasonable running times(see Chapter 4). Apart from the signi�
an
e of its experimental results, our algorithm provides agood model of how parallelism in general, and the BSP model in parti
ular, 
an be in
orporatedelegantly and su

essfully into problems in symboli
 
omputation.
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Chapter 6Fa
toring polynomials via polytopes6.1 Introdu
tionThis 
hapter is based on joint work with Shuhong Gao and Alan Lauder [2℄. As mentioned inChapter 1, fa
toring multivariate polynomials is a fundamental problem in all major 
omputeralgebra systems. There is an extensive literature on this problem | we refer the reader tothe referen
es in [23, 44, 52, 63, 75, 78, 88, 89, 90, 101, 131, 130℄. Most of these papers dealwith dense polynomials, two notable ex
eptions being [52, 78℄. These two papers redu
e sparsepolynomials with more than two variables to bivariate or univariate polynomials whi
h are thentreated as dense polynomials. It is still open whether there is an eÆ
ient algorithm for fa
toringsparse bivariate or univariate polynomials. The goal in this 
hapter is to study sparse bivariatepolynomials using their 
onne
tion to integral polytopes.Newton polytopes of multivariate polynomials re
e
t to a 
ertain extent the sparsity ofpolynomials and they 
arry a lot of information about the fa
torisation patterns of polynomialsas demonstrated in the re
ent work of Gao [43℄ and Gao and Lauder [45℄. In this 
hapter thefo
us is on the more diÆ
ult problem of fa
toring sparse polynomials. We do not solve thisproblem 
ompletely. However, our approa
h is a pra
ti
al new method whi
h generalises Hensellifting; its running time will in general improve upon that of Hensel lifting and sparse bivariatepolynomials 
an often be pro
essed signi�
antly more qui
kly. As with Hensel lifting, it has anexponential worst-
ase running time. Also, our method does not work for all polynomials, butonly for those that are square-free on 
ertain subsets of the edges of their Newton polytopes (seeTheorem 6.6.1).In Se
tion 6.2 we present a brief introdu
tion to Newton polytopes and their relation tomultivariate polynomials, and in Se
tion 6.3 we state the 
entral problem. Se
tion 6.4 
ontainsan outline of our method, and highlights the theoreti
al problems we need to address. Themain theorem underpinning our method is proved in Se
tion 6.6, after a key geometri
 lemma inSe
tion 6.5. Se
tion 6.8 
ontains a detailed des
ription of the algorithm. Finally in Se
tion 6.9we present a small example, as well as details of our 
omputer implementation of the algorithm.6.2 Newton polytopes and Ostrowski's theoremThis 
hapter 
onsiders polynomial fa
torisation over a �eld F of arbitrary 
hara
teristi
. Wedenote by N the non-negative integers, and Z, Q and R the integers, rationals and reals. For74



an earlier introdu
tion on polytopes and polynomials we refer the reader to 
hapter 3.Let F [X1;X2; : : : ;Xn℄ be the ring of polynomials in n variables over the �eld F . We re
allthe motivating theorem behind our investigation:Theorem 6.2.1 (Ostrowski) Let f; g; h 2 F [X1; : : : ;Xn℄. If f = gh then Newt(f) = Newt(g)+Newt(h).An immediate result of this theorem relates to testing polynomial irredu
ibility: In thesimplest 
ase in whi
h the polytope does not de
ompose, one immediately dedu
es that thepolynomial must be irredu
ible. This was explored in [43, 45, 47℄. In this 
hapter, we addressthe more diÆ
ult problem: Given a de
omposition of the polytope, how 
an we re
over afa
torisation of the polynomial whose fa
tors have Newton polytopes of that shape, or showthat one does not exist?In the remainder of this 
hapter, we restri
t our attention to bivariate polynomials, and falways denotes a bivariate polynomial in the ring F [x; y℄. For e = (e1; e2) 2 N 2, we rede�ne thenotation Xe to mean xe1ye2 .6.3 Extending partial fa
torisationsLet Newt(f) = Q+R be a de
omposition of the Newton polytope of f into integral polygons inthe �rst quadrant. For ea
h latti
e point q 2 Q and r 2 R we introdu
e indeterminates gq andhr. The polynomials g and h are then de�ned asg := Pq2Q gqXqh := Pr2R hrXr:We 
all g and h the generi
 polynomials given by the de
omposition Newt(f) = Q + R. Let#Newt(f) denote the number of latti
e points in Newt(f). The equation f = gh de�nes asystem of #Newt(f) quadrati
 equations in the 
oeÆ
ient indeterminates obtained by equating
oeÆ
ients of ea
h monomial Xe with e 2 Newt(f) on both sides. The aim is to �nd an eÆ
ientmethod of solving these equations for �eld elements. Our approa
h, motivated by Hensel lifting,is to assume that, along with the de
omposition of the Newton polytope, we are given appropriatefa
torisations of the polynomials de�ned along its edges. This \boundary fa
torisation" of thepolynomial is then \lifted" into the Newton polytope, and the 
oeÆ
ients of the possible fa
torsg and h revealed in su

essive layers. Unfortunately, to des
ribe the algorithm properly weshall need a 
onsiderable number of elementary de�nitions | the reader may �nd the �gures inSe
tion 6.9.1 useful in absorbing them all.Let S be a subset of Newt(f). An S-partial fa
torisation of f is a spe
ialisation of a subset ofthe indeterminates gq and hr su
h that for ea
h latti
e point s 2 S the 
oeÆ
ients of monomialsXs in the polynomials gh and f are equal �eld elements. (A spe
ialisation is just a substitution of�eld elements in pla
e of indeterminates.) The 
ase S = Newt(f) is equivalent to a fa
torisationof f in the traditional sense, and we will 
all this a full fa
torisation. Now suppose we havean S-partial fa
torisation and an S0-partial fa
torisation. Suppose further S � S0 and theindeterminates spe
ialised in the S-partial fa
torisation have been spe
ialised to the same �eldelements as the 
orresponding ones in the S0-partial fa
torisation. Then we say the S0-partialfa
torisation extends the S-partial fa
torisation. We 
all this extension proper if S0 has stri
tlymore latti
e points than S. 75



Let Edge(f) denote the set of all edges of Newt(f). Ea
h edge Æ 2 Edge(f) is viewed asdire
ted so that Newt(f) lies on the left hand side of the edge, and this dire
ted edge 
anbe de�ned by an aÆne fun
tion ` as follows. Suppose the edge Æ is from (u1; v1) to (u2; v2),verti
es with integral 
oordinates; (u1; v1) is 
alled the starting vertex of the edge. Let d =g
d(u2 � u1; v2 � v1), u0 = (u2 � u1)=d, and v0 = (v2 � v1)=d. Then (u0; v0) represents thedire
tion of Æ and the integral points on Æ are of the form(u1; v1) + i(u0; v0); i 2 Z:Assuming the Eu
lidean plane is endowed with an orthonormal system of 
oordinates, let(�1; �2) := (�v0; u0) be a rotation of (u0; v0) by 90 degrees 
ounter 
lo
kwise. For any edgeÆ of Newt(f), all integral points of Newt(f) lying on the left hand side of Æ are of the form(u1; v1) + i(u0; v0) + j(�v0; u0); for some integers j � 0; i 2 Z:Let � = v0u1 � u0v1. De�ne`(e) = �1e1 + �2e2 + �; for e = (e1; e2) 2 R 2:Then ` has the property that `(e) � 0 for ea
h point e 2 Newt(f), with the equation holdingi� e 2 Æ, that is, Newt(f) lies in the positive side of the line ` = 0. We 
all this fun
tion ` theprimitive aÆne fun
tion asso
iated with Æ, denoted by `Æ.The fun
tion `Æ has another ni
e property: Sin
e g
d(�1; �2) = 1, there exist integers �1 and�2 su
h that �1�1 + �2�2 = 1, and they are unique under the requirement that 0 � �2 < �1.De�ne the 
hange of variables z := x�2y��1 and w := x�1y�2 : (6.1)Then any monomial of the form xe1ye2 
an be written as xe1ye2 = zi1wi2 , where�i1i2� = ��2 ��1�1 �2 ��e1e2� :Its inverse transform is �e1e2� = � �2 �1��1 �2��i1i2� :This 
hange of variables has the ni
e property that when (e1; e2) moves along the dire
tion(u0; v0) of the edge Æ, then the exponent of w remains 
onstant (as i2 = `Æ(e1; e2) � �), whilethe exponent of z stri
tly in
reases (by 1 = �2u0 � �1v0 for ea
h in
rement of (u0; v0)).For ea
h Æ 2 Edge(f), there exists a unique pair of fa
es (either edges or verti
es) Æ0 and Æ00of Q and R, respe
tively, su
h that Æ = Æ0 + Æ00, and the lines supporting the edges Æ; Æ0 and Æ00are parallel (see [36℄ for instan
e). One 
an also show that there exists a unique integer 
Æ su
hthat Æ0 = fe 2 Q j `Æ(e) = 
ÆgÆ00 = fe 2 R j `Æ(e) = �
Æ + �g76



where � is the 
onstant 
oeÆ
ient of `Æ. In parti
ular, let 
Æ be the unique positive integer su
hthat Æ0 = fr 2 Q j lÆ(r) = 
Æg:For any r00 2 Æ00, we know that r00 = r � r0 for some r 2 Æ and r0 2 Æ0. Write r = r0 + r00 forr0 = (r01; r02) 2 Æ0 and r00 = (r001 ; r002) 2 Æ00. ThenlÆ(r) = �1(r01 + r001) + �2(r02 + r002) + �= �1r01 + �2r02 + �1r001 + �2r002 + �= lÆ(r0) + �1r001 + �2r002= 
Æ + �1r001 + �2r002 :But lÆ(r) = 0, and so �1r001 + �2r002 + � = � � 
Æwhi
h gives lÆ(r00) = � � 
Æ . We then haveÆ00 = fr 2 R j lÆ(r) = �
Æ + �g:Let � � Edge(f), and let K = (k
)
2� be a ve
tor of positive integers labelled by �. De�neNewt(f)j�;K := fe 2 Newt(f) j 0 � l
(e) < k
 for some 
 2 �g:This de�nes a strip along the interior of Newt(f), or a union of su
h strips.We denote by Qj�;K and Rj�;K the subsets of Q and R respe
tively given byQj�;K := fe 2 Q j 0 � lÆ(e) < kÆ + 
Æ for some Æ 2 �gRj�;K := fe 2 R j 0 � lÆ(e) < kÆ � 
Æ + � for some Æ 2 �g:On
e again these denote strips along the inside of Q and R whose sum 
ontains the stripNewt(f)j�;K in Newt(f).We now 
ome to the main de�nition of this se
tion.De�nition 6.3.1 A Newt(f)j�;K-fa
torisation is 
alled a (�;K;Q;R)-fa
torisation if the fol-lowing two properties hold:� Exa
tly the indeterminate 
oeÆ
ients of g and h indexed by latti
e points in Qj�;K andRj�;K, respe
tively, have been spe
ialised.� Let K 0 = (k0
)
2� be a ve
tor of positive integers with k0
 � k
 for all 
 2 �, with theinequality stri
t for at least one 
. Then not all of the indeterminate 
oeÆ
ients of gindexed by latti
e points in Qj�;K0 have been spe
ialised.The se
ond property will be used only on
e, in the proof of Lemma 6.6.1.In most instan
es Q;R and � will be 
lear from the 
ontext. If so we will omit them andrefer simply to a K-fa
torisation. Furthermore, if K is the all ones ve
tor, denoted (1), of theappropriate length indexed by elements of some set �, then we 
all this a (�;Q;R)-boundaryfa
torisation. We shall simplify this to partial boundary fa
torisation or (1)-fa
torisation when77



�, Q and R are evident from the 
ontext. This spe
ial 
ase will be the \lifting o�" point for ouralgorithm.The 
entral problem we address isProblem 6.3.1 Let f 2 F [x; y℄ have Newton polytope Newt(f) and �x a Minkowski de
om-position Newt(f) = Q+R where Q and R are integral polygons in the �rst quadrant. Supposewe have been given a (�;Q;R)-boundary fa
torisation of f for some set � � Edge(f). Constru
ta full fa
torisation of f whi
h extends it, or show that one does not exist.Moreover, one wishes to solve the problem in time bounded by a small polynomial fun
tionof #Newt(f).6.4 The polytope method6.4.1 An outline of the methodWe now give a basi
 sket
h of our polytope fa
torisation method for bivariate polynomials.Throughout this se
tion � will be a �xed subset of Edge(f) and Newt(f) = Q + R a �xedde
omposition. We shall need to pla
e 
ertain 
onditions on � later on, but for the time beingwe will ignore them. Sin
e �; Q and R are �xed we shall use our abbreviated notation whendis
ussing partial fa
torisations.We begin with K = (1) the all-ones ve
tor of the appropriate length and a K-fa
torisation(partial boundary fa
torisation). Re
all this is a partial fa
torisation in whi
h exa
tly the
oeÆ
ients in the sets Qj�;K and Rj�;K , subsets of points on the boundaries of Q and R, havebeen spe
ialised.At ea
h step of the algorithm we either show that no full fa
torisation of f exists whi
hextends this partial fa
torisation, and halt, or that at most one 
an exist, and we �nd a newK 0-fa
torisation with K 0 = (k0Æ) su
h thatXÆ2� k0Æ >XÆ2� kÆ :(Usually the sum will be in
remented by just one.) Iterating this pro
edure either we halt aftersome step, in whi
h 
ase we know that no fa
torisation of f exists whi
h extends the originalpartial boundary fa
torisation, or we eventually have Newt(f) � Newt(f)j�;K , for the updatedK (or just Q � Qj�;K or R � Rj�;K will do). At that point all of the indeterminates in ourpartial fa
tors have been spe
ialised, and we may 
he
k to see if we have found a pair of fa
torsby multipli
ation. (In the 
ase, say, that just Q � Qj�;K we only know that the partial fa
tor ghas all of its 
oeÆ
ients spe
ialised, so we may use division to see if this is a fa
tor.)Note that in the situation in whi
h Newt(f) is just a triangle with verti
es (0; n); (n; 0)and (0; 0) for some n, our method redu
es to the standard Hensel lifting method for bivariatepolynomial fa
torisation. As su
h, our \polytope method" is a natural generalisation of Hensellifting from the 
ase of \generi
" dense polynomials to arbitrary, possibly sparse, polynomials.6.4.2 Hensel lifting equationsIn this se
tion we derive the basi
 equations whi
h are used in our algorithm.78



For any Æ 2 Edge(f) re
all that lÆ is the asso
iated normalised aÆne fun
tional. For i � 0we de�ne f Æi := XlÆ(e)=i aeXe:Thus f Æi is just the polynomial obtained from f by removing all terms whose exponents do notlie on the \ith translate of the supporting line of Æ into the polytope Newt(f)". We 
all thepolynomials f Æ0 edge polynomials.Given the de
omposition Newt(f) = Q+ R let Æ0 and Æ00 denote the unique fa
es of Q andR whi
h sum to give Æ. As before assume lÆ(Æ0) = 
Æ and lÆ(Æ00) = �
Æ + �. Let g and h denotegeneri
 polynomials with respe
t to Q and R. For i � 0 de�negÆi := Xq2Q; lÆ(q)=
Æ+i gqXqhÆi := Xr2R; lÆ(r)=�
Æ+�+ihrXr:On
e again gÆi and hÆi are obtained from g and h by 
onsidering only those terms whi
h lie onparti
ular lines. The next result is elementary but fundamental.Lemma 6.4.1 Let f 2 F [x; y℄ and Newt(f) = Q + R be an integral de
omposition with 
or-responding generi
 polynomials g and h. Let Edge(f) denote the set of edges of Newt(f) andÆ 2 Edge(f). The system of equations in the 
oeÆ
ient indeterminates of g and h de�ned byequating monomials on both sides of the equality f = gh has the same solutions as the systemof equations de�ned by the following:f Æ0 = gÆ0hÆ0; and gÆ0hÆk + hÆ0gÆk = f Æk � k�1Xj=1 gÆjhÆk�j for k � 1: (6.2)Thus any spe
ialisation of 
oeÆ
ient indeterminates whi
h is a solution of equations (6.2) willgive a full fa
torisation of f .Proof: In the equation f = gh gather together on ea
h side all monomials whose exponentve
tors lie on the same translate of the line supporting Æ. We then have f Æ0 = gÆ0hÆ0 andf Æk = Pkj=0 gÆjhÆk�j for k � 1= gÆ0hÆk +Pk�1j=1 gÆjhÆk�j + hÆ0gÆkor that gÆ0hÆk + hÆ0gÆk = f Æk � k�1Xj=1 gÆjhÆk�j for k � 1;where a sum over the empty set is understood to be zero.These are pre
isely the equations whi
h are used in Hensel lifting to try and redu
e the non-linear problem of sele
ting a spe
ialisation of the 
oeÆ
ients of g and h to give a fa
torisation79



of f , to a sequen
e of linear systems whi
h may be re
ursively solved. We re
all pre
isely howthis is done, as our method is a generalisation.We begin with a spe
ialisation of the 
oeÆ
ients in the polynomials gÆ0 and hÆ0 whi
h yieldsa full fa
torisation of the polynomial f Æ0 . Equation (6.2) with k = 1 gives a linear system forthe indeterminate 
oeÆ
ients of gÆ1 and hÆ1. In the spe
ial 
ase in whi
h standard Hensel liftingapplies this system may be solved uniquely, and thus a unique partial fa
torisation of f is de�nedwhi
h extends the original one. This pro
ess is iterated for k > 1 until all the indeterminate
oeÆ
ients in one of the generi
 polynomials have been spe
ialised, at whi
h stage one 
he
kswhether a fa
tor has been found by division.The problem with this method is that in general there may not be a unique solution toea
h of the linear systems en
ountered. There will be a unique solution in the dense bivariate
ase mentioned at the end of 6.4.1, subje
t to a 
ertain 
oprimality 
ondition. General bivariatepolynomials may be redu
ed to ones of this form by randomisation, but the substitutions involveddestroy the sparsity of the polynomial. Our approa
h avoids this problem, although again is notuniversal in its appli
ability. As explained earlier, our method extends a spe
ial kind of partialboundary fa
torisation of f , rather than just the fa
torisation of one of its edges. In this wayuniqueness in the bivariate 
ase is restored.6.5 A geometri
 lemmaThis se
tion 
ontains a geometri
 lemma whi
h ensures our method 
an pro
eed in a unique wayat ea
h step provided we start with a spe
ial type of partial boundary fa
torisation. We beginwith a key de�nition.De�nition 6.5.1 Let � be a set of edges of a polygon P in R 2 and r a ve
tor in R2. We saythat � dominates P in dire
tion r if the following two properties hold:� P is 
ontained in the Minkowski sum of the set � and the in�nite line segment rR�0 (thepositive hull of r). Call this sum Mink(�; r).� Ea
h of the two in�nite edges of Mink(�; r) 
ontains exa
tly one point of P .Thus Mink(�; r) 
omprises a region bounded by the interior strip between its two in�niteedges and all edges in �. This de�nition is illustrated in Figure 1 where � 
onsists of all thebold edges on the boundary indi
ated by T .We will 
all � an irredundant dominating set if there exists a ve
tor r 2 R 2 su
h that �dominates P in dire
tion r and no two edges ei, ej in �, for i 6= j, are su
h thatrR>0 + ei � rR>0 + ej :The edges in an irredundant dominating set are ne
essarily 
onne
ted.The next lemma is at the heart of our algorithm.Lemma 6.5.1 Let P be an integral polygon and � an irredundant dominating set of edges ofP . Suppose �1 is a polygonal line segment in P su
h that ea
h edge of �1 is parallel to someedge of �. If �1 is di�erent from � then � has at least one edge that has stri
tly more latti
epoints than the 
orresponding edge of �1. 80
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Figure 1: Dominating set of edgesThe lemma is illustrated in Figure 1, where T denotes the union of the edges in � and T1the union of the line segments in �1.Before proving this lemma we make one more de�nition. We de�ne a map �r onto theorthogonal 
omplement hri? := fs 2 R 2 j (s � r) = 0g of the ve
tor r as follows:�r(v) = v � �v � rr � r� r:We 
all this proje
tion by r, and we have that �r(P ) = �r(�). To see this, it suÆ
es to showthat �r(v) 2 �r(�) for any v 2 P . Sin
e P is 
ontained in Mink(�; r), we 
an write v = r + �for some point � 2 �. Then �r(v) = �r(r + �)= (r + �)� � (r+�):rr:r � r= r + �� �r:rr:r + �:rr:r � r= �� ��:rr:r � r= �r(�)from whi
h one 
on
ludes that �r(P ) � �r(�).Now, noti
e that if e1 and e2 are edges in an irredundant dominating set, then the lengthof the proje
tion by r of the polygonal line segment e1e2 is just the sum of the lengths ofthe proje
tions by r of the individual edges e1 and e2. For otherwise, we would have, say,�r(e1) � �r(e2) and hen
e rR�0 + e1 � rR�0 + e2, a 
ontradi
tion, sin
e e1 and e2 belong toan irredundant dominating set. The same is true if we repla
e e1 and e2 by any line segmentsparallel to them | we still obtain an \additivity" in the lengths, whi
h shall be used in theproof of the lemma.Proof: We assume that � dominates P in the dire
tion r as shown in Figure 1. Let Æ1; � � � ; Ækbe the edges in � and Æ01; � � � ; Æ0k the 
orresponding edges of �1. Let ni be the number of latti
epoints on Æi, and mi that on Æ0i, 1 � i � k. We want to show that ni > mi for at least one i,1 � i � k. Suppose otherwise, namelyni � mi; 1 � i � k: (6.3)81



We derive a 
ontradi
tion by 
onsidering the lengths of � and �1 on the proje
tion by �r. Notethat if mi = 0 for some i then 
ertainly ni > mi and we are done; thus we may assume thatmi � 1 for all i.First, 
ertainly �(�1) � �(�) as � is a dominating set. Sin
e �1 is di�erent from �, their
orresponding end points must not 
oin
ide. Hen
e at least one end point of �1 will not be onthe in�nite edges in the dire
tion r. Hen
e �r(�1) lies 
ompletely inside �r(�), so has lengthstri
tly shorter than �r(�).Now for 1 � i � k let �i be the length of the proje
tion of a primitive line segment on Æi(whi
h means that the line segment has both end points on latti
e points but no latti
e pointsin between). Certainly �i � 0. Sin
e the end points of Æi are latti
e points, the length of �r(Æi)is exa
tly (ni � 1)�i for 1 � i � k, hen
e �r(�) has length Pki=1(ni � 1)�i. (Here we need thefa
t that the dominating set is irredundant, to give us the ne
essary \additivity" in the lengths.)For Æ0i, sin
e it is parallel to Æi, the proje
ted length of a primitive line segment on it is also �i.Hen
e the length of �r(�1) is at least Pki=1(mi � 1)�i and from (6.3) we know thatkXi=1(mi � 1)�i � kXi=1(ni � 1)�i:This 
ontradi
ts our previous observation that �r(�1) is stri
tly shorter than �r(�). The lemmais proved.6.5.1 On identifying irredundant dominating setsBefore 
on
luding this se
tion we des
ribe an algorithm for identifying all possible irredundantdominating sets of the polygon. This is pre
eded by some results whi
h we present as follows:Lemma 6.5.2 Let P denote a 
onvex polygon with m verti
es in R 2 ordered 
y
li
ally arounda 
hosen pivot v0 in a 
ounter-
lo
kwise dire
tion. Let vi�1; vi, and vi+1, for i � 1, denote anythree 
onse
utive verti
es, and let v denote an arbitrary point in R 2 di�erent from vi�1; vi, andvi+1. Then the line (viv) 
uts P only at vi if and only if it does not lie in the angular se
torde�ned by the two ve
tors (vivi�1) and (vivi+1).Proof: First, note that, sin
e P is 
onvex, the line segment joining vi�1 to vi+1 is 
ompletelylying in P . Suppose that (viv) lies in the se
tor de�ned by the angle (vivi�1; vivi+1). Then (viv)will ne
essarily interse
t the line segment [vi�1vi+1℄ at a point of P di�erent from vi. Conversely,suppose that (viv) interse
ts P at a point v0 di�erent from vi. By 
onvexity of P , an arbitrarypoint of the plane is interior to P if and only if it lies to the left of the line supporting everydire
ted edge of P . As a result, v0 is to the left of the lines supporting ei and ei+1, whereei = vi�vi�1 and ei+1 = vi+1�vi. Hen
e, the line (viv) lies in the angular se
tor de�ned above.Now, let vi�1; vi; vi+1 and v be as de�ned in Lemma 6.5.2. Let the range of admissible slopesof vi, denoted by admiss(i), represent the union of all possible slopes of lines (viv) su
h that(viv) does not interse
t the angular se
tor de�ned by (vivi�1; vivi+1).Lemma 6.5.3 Let P be a polygon with m verti
es in R2 and let � denote a set of 
onse
utiveedges of P 
onne
ting (either in the 
lo
kwise or 
ounter
lo
kwise dire
tion) any two verti
es vi82



and vj, for i; j = 0; :::;m � 1, and i < j. Then � is an set of dominating fa
ets if and only ifadmiss(i) \ admiss(j) 6= ;.Proof:1. Suppose that admiss(i) \ admiss(j) 6= ; and no two edges in � are parallel. Let a be anelement of the interse
tion. We 
an then 
onstru
t two parallel lines ri and rj passingthrough vi and vj respe
tively and having slope equal to a. Consider Mink(�; r), wherer is a ve
tor in R 2 having the dire
tion of the parallel lines. As su
h, ea
h of the twoin�nite edges of Mink(�; r) 
ontains exa
tly one point of �. To show that P is 
ontainedin Mink(�; r), it suÆ
es to show that all verti
es vk, for k = j + 1; :::;m � 1, belong toMink(�; r). Suppose there is one su
h vertex vk not in the Minkowski sum. Then vk liesoutside the interior strip bounded by ri and rj. But this implies that either segment [vivk℄will interse
t rj in a point v0 6= vi; vk or [vjvk℄ will interse
t ri in a point v00 6= vj ; vk. Sin
eP is 
onvex, v0 or v00 is 
ontained in P , a 
ontradi
tion, by Lemma 6.5.2 and the fa
t thatri and rj have admissible slopes.2. Proof of the 
onverse is immediate by noting that, sin
e � is a set of dominating fa
ets
onne
ted by the two verti
es vi and vj, we 
an 
onstru
t two parallel lines ri and rjthrough vi and vj respe
tively su
h that P is 
ontained in Mink(�; r), where r is a ve
torin R 2 having the dire
tion of the two parallel lines, and ea
h of the two in�nite edges ofMink(�; r) 
ontains exa
tly one point of P , whi
h implies that admiss(i)\admiss(j) 6= ;.The algorithm for �nding all possible irredundant sets of dominating edges 
an now be statedas followsAlgorithm 6.5.1 Input: A polygon P in R 2 with m verti
es vk, for k = 0; :::;m � 1.Output: The 
olle
tion D of all irredundant sets of dominating edges of P , in the form f(i; j; d)g,for i; j = 0; :::;m�1 and i < j, where vi and vj are the �rst and last verti
es to appear in any setof dominating edges, and d is the dire
tion (
lo
kwise or 
ounter
lo
kwise) of the path 
onne
tingthe two verti
es.Step 1: S  ;, num�sets 0.Step 2: For i = 0; :::;m � 1 determine admiss(i) using Lemma 6.5.2 above.Step 3: For i = 0; :::;m � 1 doFor j = i+ 1; :::;m � 1 doIf admiss(i) \ admiss(j) 6= ;:Set S  S [ f(i; j)g, Inum�sets  admiss(i) \ admiss(j),and num�sets num�sets+ 1.Step 4: Repeat Steps 4.1-4.3 for d = 
lo
kwise and d = 
ounter
lo
kwise:4.1: Consider the num�sets dominating sets found so far.For k = 0; :::; num�sets� 1 doFor h = k + 1; :::; num�sets� 1If Ik = Ih and either the dire
ted dominating set of index h is a subset of thedire
ted dominating set of index k or the 
onverse is true:Mark the larger set for deletion from S.83



4.2: Choose only the unmarked sets in S of the form (i; j) and store (i; j; d) in D.4.3: Unmark all sets in S.Step 5: Return D.Proposition 6.5.1 Algorithm 6.5.1 works 
orre
tly as spe
i�ed and requires O(m4) arithmeti
operations, where m is the number of verti
es of the polygon P .Proof: That Steps 1-3 above produ
e all sets of dominating edges is a dire
t 
onsequen
e ofLemma 6.5.3. Note that for a �xed pair of verti
es (i; j), both the 
lo
kwise and 
ounter
lo
kwisepaths of edges 
onne
ting them are dominating. In Step 4, we sort all su
h sets in order to keeponly the irredundant ones. The sorting rule is as follows. Suppose for instan
e that we aregiven two dominating sets (i1; j1) and (i2; j2) su
h that the 
lo
kwise path of edges 
onne
tingi1 to j1, say, is a subset of the 
lo
kwise path 
onne
ting i2 to j2. For (i2; j2; 
lo
kwise) to beirredundant, one must be able to �nd at least one dire
tion r 2 R 2 su
h that P 
an be embeddedin a strip along the dire
tion of r using (i2; j2; d) as a dominating set, but not (i1; j1; d). This 
anhappen only when I1 6= I2, where I1 = admiss(i1)\admiss(j1) and I2 = admiss(i2)\admiss(j2).The same argument 
an be repeated for the 
ounter
lo
kwise dire
tion along whi
h the pathsare 
onsidered.The 
ost 
an be easily established by noting the following. The loops in Step 3 iterate O(m2)times in total, produ
ing O(m2) dominating sets. These are then sorted in Step 4, where thetwo loops iterate O((m2)2) times in total. All operations in the above algorithm require onlyarithmeti
 operations for 
al
ulating and 
omparing slopes as well as interse
tion of rational sets.We will see in Chapter 7 how the latter interse
tions 
an be made to involve stri
tly integralvalues.6.6 The main theoremLet � be an irredundant dominating set of Newt(f). We 
all a (�;Q;R)-boundary fa
torisationof f a dominating edges fa
torisation relative to �; Q and R. A 
oprime dominating edgesfa
torisation is a (�;Q;R)-boundary fa
torisation with the property that for ea
h Æ 2 � the edgepolynomials gÆ0 and hÆ0 are 
oprime as Laurent polynomials (see De�nition 2.1.14 of Chapter 2),up to monomial fa
tors.We are now ready to state our main theoreti
al result.Theorem 6.6.1 Let f 2 F [x; y℄ and Newt(f) = Q + R be a �xed Minkowski de
omposition,where Q and R are integral polygons in the �rst quadrant. Let � be an irredundant dominatingset of Newt(f) in dire
tion r, and assume that Q is not a single point or a line segment parallelto rR�0. For any 
oprime dominating edges fa
torisation of f relative to �; Q and R, thereexists at most one full fa
torisation of f whi
h extends it, and moreover this full fa
torisationmay be found or shown not to exist in time polynomial in #Newt(f).We shall prove this theorem indu
tively through the next two lemmas.Lemma 6.6.1 Let f;Q;R and � be as in the statement of Theorem 6.6.1. Suppose we are givena K-fa
torisation of f , where K = (kÆ)Æ2� (more spe
i�
ally, a (�;K;Q;R)-fa
torisation). For84



ea
h Æ 2 �, denote by Æ0 the fa
e of Q supported by lÆ� 
Æ. There exists Æ 2 � with the followingproperties� The fa
e Æ0 is an edge (rather than a vertex).� The number of unspe
ialised 
oeÆ
ients of gÆkÆ is nonzero but stri
tly less than the numberof integral points on Æ0.� All the unspe
ialised terms of gÆkÆ have exponents being 
onse
utive integral points on theline de�ned by `Æ = (
Æ + kÆ).Proof: Let �Q be the polygon�Q := fr 2 Q j `Æ(r) � 
Æ + kÆ for all Æ 2 �g:Note that the latti
e points in �Q 
orrespond to unspe
ialised 
oeÆ
ients of g. Let � denote theset of edges Æ 2 � of Newt(f) su
h that the fun
tional `Æ � 
Æ supports an edge of Q (ratherthan just a vertex). Note that � 6= ;, for otherwise Q must be a single point or a line segmentin dire
tion r, 
ontradi
ting our assumption. We denote the edge by Æ0, and write �Æ for the fa
eof �Q supported by `Æ � (
Æ + kÆ). Note that ea
h �Æ 
ontains at least one latti
e point. (Thisfollows from the se
ond property in De�nition 6.3.1.) Certainly, �Æ is parallel to Æ0 for ea
h Æ 2 �,and the edge sequen
e f�ÆgÆ2�, forms a polygonal line segment in Q. Sin
e � is an irredundantdominating set for Newt(f), the set of edges fÆ0gÆ2� is an irredundant dominating set for Q.By Lemma 6.5.1, there is at least one edge Æ 2 �, su
h that Æ0 has stri
tly more latti
e pointsthan �Æ. This edge Æ has the required properties. This 
ompletes the proof.Lemma 6.6.2 Let f;Q;R and � be as in the statement of Theorem 6.6.1. Suppose we aregiven a K-fa
torisation of f , where K = (kÆ)Æ2�. Moreover, assume this fa
torisation extendsa 
oprime dominating edges fa
torisation, i.e., the polynomials gÆ0 and hÆ0 are 
oprime up tomonomial fa
tors for all Æ 2 �. Then there exists Æ 2 � su
h that the 
oeÆ
ients of gÆkÆ are notall spe
ialised, but they may be spe
ialised in at most one way 
onsistent with equations (6.2).This spe
ialisation may be 
omputed in time polynomial in #Newt(f).Proof: The basi
 idea of the proof is to �rst transform the bivariate equation (6.2) intoequations of univariate polynomials determined by the individual edges, then to determine theexisten
e or uniqueness of solutions.Sele
t Æ 2 � su
h that the properties in Lemma 6.6.1 hold. Let nÆ and mÆ be the number ofintegral points on the edges Æ0 and �Æ respe
tively, where Æ0 and �Æ are de�ned as in the proof ofLemma 6.6.1. Thus we have mÆ < nÆ and mÆ � 1. With the notation from Se
tion 6.3, write`Æ(e1; e2) = �1e1 + �2e2 + �, where �1 and �2 are 
oprime.Let z and w be new variables. Using the transform (6.1), any monomial of the form xe1ye2
an be written as xe1ye2 = zi1wi2 (6.4)where i1 = e1�2 � e2�1; i2 = e1�1 + e2�2 = `Æ(e1; e2)� �:85



Every monomial in gÆi is of the form xe1ye2 where `Æ(e1; e2) = 
Æ+i. Let the monomials s and t bethe terms of g and h respe
tively whose exponents ve
tors are the starting verti
es of the fa
es ofQ andR de�ned by `Æ�
Æ and `Æ+
Æ��, respe
tively. Thus we have gÆi (z; w) = swiGi(z) for someunivariate Laurent polynomial Gi(z). Similarly hÆi (z; w) = twiHi(z) and f Æi (z; w) = stwiFi(z),where Hi(z) and Fi(z) are univariate Laurent polynomials. With this 
onstru
tion, G0(z);H0(z)and F0(z) have nonzero 
onstant term and are \ordinary polynomials", i.e., 
ontain no negativepowers of z. For i < kÆ all of the 
oeÆ
ients in the polynomials Gi(z) and Hi(z) have beenspe
ialised. Moreover G0(z) is of degree nÆ, and all butmÆ of the 
oeÆ
ients of GkÆ(z) have beenspe
ialised. Equations (6.2) with this 
hange of variables may be written as F0(z) = G0(z)H0(z),and for k � 1 Gk(z)H0(z) +G0(z)Hk(z) = Fk(z)� k�1Xj=1Gj(z)Hk�j(z):We know that all of the 
oeÆ
ients of Gi(z) and Hi(z) have been spe
ialised for 0 � i < kÆ insu
h a way as to give a solution to F0 = G0H0 and the �rst kÆ � 1 equations above. Thus weneed to try and solve GkÆH0 +G0HkÆ = FkÆ � kÆ�1Xj=1 GjHkÆ�j: (6.5)for the unspe
ialised indeterminate 
oeÆ
ients of GkÆ and HkÆ .We �rst 
ompute using Eu
lid's algorithm ordinary polynomials U(z) and V (z) su
h thatV (z)H0(z) + U(z)G0(z) = 1where degz(U(z)) < degz(H0(z)) and degz(V (z)) < degz(G0(z)). (Note that G0(z) and H0(z)are 
oprime sin
e we have a 
oprime partial boundary fa
torisation.) Any solution GkÆ ofEquation (6.5) must be of the formGkÆ = fV (FkÆ � kÆ�1Xj=1 GjHkÆ�j) mod G0g+ "G0 (6.6)for some Laurent polynomial "(z) with undetermined 
oeÆ
ients.We rearrange (6.6) asGkÆ � fV (FkÆ � kÆ�1Xj=1 GjHkÆ�j) mod G0g = "G0 (6.7)Let the degree in z of the Laurent polynomial on the left hand side of this equation be d. Nowthe degree of the polynomial G0(z) as a Laurent polynomial (and an ordinary polynomial) isnÆ�1. If d < nÆ�1 then we must have d = 0. In other words, (6.6) has a unique solution, namelythat with " = 0. Otherwise d � nÆ � 1 and the degree in z of "(z) as a Laurent polynomial isd � (nÆ � 1). Hen
e in this 
ase we need to also solve for the d � nÆ + 2 unknown 
oeÆ
ientsof "(z). We know that all but mÆ 
oeÆ
ients of GkÆ have already been spe
ialised, and theseunspe
ialised ones are adja
ent terms. Hen
e exa
tly (d+ 1)�mÆ 
oeÆ
ients on the left hand86



side of (6.7) have been spe
ialised, whi
h are adja
ent lowest and highest terms. By assumptionwe have that mÆ < nÆ, and hen
e (d+ 1)�mÆ � d� nÆ + 2.All of the 
oeÆ
ients of the right hand side of Equation (6.7) have been spe
ialised, ex
eptthose of the unknown polynomial "(z). On the left hand side all but the middle mÆ 
oeÆ
ientshave been spe
ialised. This de�nes a pair of triangular systems from whi
h one 
an eithersolve for the 
oeÆ
ients of " uniquely, or show that no solution exists (this may happen whennÆ > mÆ+1). We des
ribe pre
isely how this is done: Suppose that exa
tly r of the lowest termson the left hand side have been spe
ialised, and hen
e also (d + 1) � (mÆ + r) of the highestterms. We 
an solve uniquely for the r lowest terms of "(z) using the triangular system de�nedby 
onsidering 
oeÆ
ients of the powers za; za+1; : : : ; za+r�1 on both sides of Equation (6.6),where za is the lowest monomial o

urring on the left hand side. One may also solve for the
oeÆ
ients of the (d+ 1)� (mÆ + r) highest powers uniquely using a similar triangular system.(Note that to ensure the triangular systems ea
h have unique solutions we use here the fa
t thatthe 
onstant term of G0 is nonzero, and the polynomial is of degree exa
tly nÆ � 1.) Noti
ingthat (d + 1) � (mÆ + r) + r = (d + 1 �mÆ) � d � nÆ + 2, we see that all the 
oeÆ
ients of "have been a

ounted for. However, if d + 1 �mÆ > d� nÆ + 2 (i.e. nÆ > mÆ + 1) there will besome \overlap", and the two triangular systems might not have a 
ommon solution. In this 
asethere 
an be no solution to the Equation (6.6). If an "(z) does exist whi
h satis�es Equation(6.7) then the remaining 
oeÆ
ients of GkÆ 
an now be 
omputed uniquely. Having 
omputedthe only possible solution of (6.6) for GkÆ we 
an substitute this into Equation (6.5) and re
overHkÆ dire
tly. More pre
isely 
ompute(FkÆ �PkÆ�1j=1 GjHkÆ�j)�GkÆH0G0 : (6.8)If its 
oeÆ
ients mat
h with the known 
oeÆ
ients of HkÆ then we have su

essfully extendedthe partial fa
torisation; otherwise we know no extension exists.These 
omputations 
an be done in time quadrati
 in the degree of the largest polynomialo

urring in the above equations. Sin
e all polynomials are Newton polytopes whi
h are linesegments lying within Newt(f) this is 
ertainly quadrati
 in #Newt(f). (In fa
t, the runningtime is most 
losely related to the length of the side nÆ from whi
h we are performing the liftingstep. We shall show in Chapter 8 that this number is of the order O(n), where n = deg(f).)This 
ompletes the proof.Theorem 6.6.1 may now be proved in a straightforward manner: Spe
i�
ally, one �rst showsthat for any partial fa
torisation extending a 
oprime dominating edges fa
torisation, there existsat most one full fa
torisation extending it, and this may be eÆ
iently found. This is proved byindu
tion on the number of unspe
ialised 
oeÆ
ients in the partial fa
torisation using Lemma6.6.2. Theorem 6.6.1 then follows easily as a spe
ial 
ase.6.7 On long division with remainder of Laurent polynomialsIn this se
tion we dis
uss in some detail how to perform long division with remainder for Laurentpolynomials. The set of all su
h polynomials forms a 
ommutative ring R[z; z�1℄, where divisionwith remainder between two Laurent polynomials is possible; however, this division is not aunique operation [30℄. Given two Laurent polynomials, say a(z) and b(z) 6= 0, there always exists87



a Laurent polynomial q(z) and a Laurent polynomial r(z) so that r(z) = a(z) � b(z)q(z) anddeg(r(z)) < deg(b(z)). As su
h, r(z) 
onsists of deg(b(z)) terms or less (where some of the middleterms 
an be zero), and hen
e b(z)q(z) has to mat
h a(z) in at least deg(a(z)) � deg(b(z)) + 1terms. However, sin
e the remainder is also a Laurent polynomial, there exists more than one
hoi
e for the integer pair (i; j) su
h thatr(z) = jXk=i rkzk;where j � i = deg(r(z)). As a result, we are free to 
hoose the mat
hing terms of a(z) andb(z)q(z) in the beginning, the end, or divided between the beginning and the end of a(z). Forea
h 
hoi
e of terms, a 
orresponding long division algorithm exists.Sin
e division is not unique, this allows us to transform the modular operations in (6.7) tothat between two regular polynomials (see de�nition 2.1.16 in Chapter 2). We have seen earlierthat sin
e G0 is an edge polynomial, it is a regular polynomial whose degree is equal to one plusthe number of integral points found on its 
orresponding edge. We 
an thus require that theLaurent remainder be a stri
tly regular polynomial of degree less than that of G0. As a result,and to 
ompute the quantity V (FkÆ � kÆ�1Xj=1 GjHkÆ�j) mod G0; (6.9)where a(z) = V (FkÆ � kÆ�1Xj=1 GjHkÆ�j)is a Laurent polynomial, it suÆ
es to rewrite a(z) = z�mreg(z), where �m is the lowest negativeexponent appearing in a(z), and to 
ompute the inverse of zm modulo G0, 
alled inv(z) (by
onstru
tion, we also know that G0 has a nonzero 
oeÆ
ient term, and hen
e is relatively primeto zm, whi
h makes zm invertible modulo G0, with inv(z) a regular polynomial). We then haveV (FkÆ � kÆ�1Xj=1 GjHkÆ�j) mod G0 � inv(z):reg(z) mod G0;where the right hand side redu
es to an ordinary modular operation over F involving only regularpolynomials, and whose remainder, if nonzero, has degree less than deg(G0).On the other hand, equation (6.8) requires that we 
ompute the quotient of a Laurentpolynomial over G0. Note that in this 
ase[(FkÆ � kÆ�1Xj=1 GjHkÆ�j)�GkÆH0℄ mod G0should be zero; else, we know that no extension exists for the partial fa
torisation. The quotientq(z) 
an thus be found uniquely, by simply solving for q(z) in(FkÆ � kÆ�1Xj=1 GjHkÆ�j)�GkÆH0 = q(z)G0:88



6.8 The algorithmWe now gather everything together and state our algorithm:Algorithm 6.8.1 Input: A polynomial f 2 F [x; y℄ of total degree n, and a positive integer M .Output: A fa
torisation of f or \failure" or \f is irredu
ible".Step 1: [Convex hull℄Compute a vertex-edge des
ription of Newt(f) using a polygon 
onvex hull algorithm. Let theedges be Æ0; : : : ; Æm�1, 
y
li
ally joining verti
es v0; : : : ; vm�1. So Edge(f) = fÆig.Step 2: [Fa
tor edge polynomials℄Compute a 
omplete fa
torisation of all edge polynomials f Æ0 , Æ 2 Edge(f).Step 3: [Admissible edge de
ompositions℄For ea
h edge Æi 2 Edge(f) 
ompute the set fm(i)j j 0 � j � deg(f Æi0 )g, where m(i)j is the numberof moni
 fa
tors of the edge polynomial f Æi0 of degree j.Step 4: [Dominating sets℄List all sets f�ig of square-free dominating fa
ets of Newt(f) using algorithm 6.5.1. If there areno su
h sets then fail.Step 5: [Count 
oprime dominating fa
ets fa
torisations℄For ea
h set �i, 
ount the number of 
oprime (�i;Q;R)-boundary fa
torisations, where Q andR range over all integral de
ompositions of Newt(f).Step 6: [Sele
t a dominating set℄Sele
t the dominating set � for whi
h the number 
omputed in Step 5 is minimal. If this numberis greater than M then fail.Step 7: By repeatedly applying the method in the proof of Lemma 6.6.2, lift ea
h 
oprime domi-nating edges fa
torisation of f as far as possible. If any of these lift to a full fa
torisation outputthis fa
torisation and halt. If none of them lifts to a full fa
torisation then output \irredu
ible".Proposition 6.8.1 Algorithm 6.8.1 outputs 
orre
tly.Proof: The algorithm will always su

eed when one �nds a dominating set � of Newt(f)su
h that the polynomials f Æ0 , Æ 2 �, are all square-free (up to a monomial fa
tor), provided wetake M \suÆ
iently large" (an upper bound on M is dm, where d is the maximum number ofintegral points falling along any edge and m is the number of edges of Newt(f)). One might 
allpolynomials for whi
h su
h sets exist ni
e. Suppose that the polynomial is redu
ible, and we havea proper fa
torisation f = gh with 
orresponding non-trivial de
omposition Newt(f) = Q+ R.This is a full fa
torisation extending a �-boundary fa
torisation, whi
h is ne
essarily 
oprimeby the assumption on �. It will therefore be found during one of the liftings, by Theorem 6.6.1.Prior to dis
ussing the time 
omplexity we shall dis
uss in details some of the steps above. Inthe forth
oming dis
ussion we shall treat F as a �nite �eld whose 
hara
teristi
 �ts in a ma
hineword. 89



Steps 1,2Steps 1 and 2 
an be 
lassi�ed as a pre-
omputation sin
e they are performed only on
e forea
h input polynomial. If s denotes the number of nonzero terms in f , the 
onvex hull maybe 
omputed in time O(s log (s)) (see [60℄). Note that s � #(Newt(f)). Ignoring logarithmi
fa
tors, Step 2 may be performed using a univariate fa
torisation algorithm over �nite �eldsin O(dM(d)) �eld operations, where d is the maximum degree of any of the edge polynomials.Certainly d � #(Newt(f)).Step 3This is also another pre-
omputation step whi
h is performed only on
e during the entire al-gorithm. We refer the reader to the re
ursive 
ounting Algorithm 7.3.4 of Chapter 7. Given aunivariate polynomial P (z) of degree d over F and its 
anoni
al fa
torisation (not ne
essarilysquare-free) into irredu
ibles, the algorithm returns the number of fa
tors of P (z) of degreek = 1; :::; d using O(d1+hh) bit operations, where h denotes the number of irredu
ible fa
tors ofP (z). Obviously, h = O(d), although on average it is approximately log d [83, 84, 100℄.Step 4The maximum number of edges is 
ertainly s, and thus one may easily �nd all suitable � usingalgorithm 6.5.1, whi
h in this 
ase requires O(s2) arithmeti
 operations.Steps 5For Step 5, one may use a modi�ed version of the polygon summand 
ounting algorithm in [45℄.The modi�
ation needed is that one only 
onsiders summands of the polygon whose edges havelengths mat
hing the degrees of the known univariate fa
tors of the edge polynomials. Also, one
ounts two di�erent fa
torisations of the edge polynomials on the dominating set separately evenif the de
omposition of the polytope is the same in ea
h 
ase. It is easily seen that the algorithmhas running time polynomial in #(Newt(f)). More pre
isely the subroutine is as follows:Algorithm 6.8.2 (Step 5) Input: The edge sequen
e fnieig0�i�m�1 of the Newton polytopeof a bivariate polynomial, starting at vertex v0 where ei 2 Z2 are primitive ve
tors (i.e. have
oprime integer 
oordinates) and ni are positive integers, a set � of dominating fa
ets of Newt(f),and a set fm(i)j j 1 � j � nig of admissible edge de
ompositions lengths for ea
h edge niei.Output: The number of 
oprime �-boundary fa
torisations of Newt(f) and an array A. Ea
h
ell in A 
ontains a pair (u; S) where u is a non-negative integer and S is a subset of f(k; i) :1 � k � ni; 0 � i � m� 1g.Step 5.1: Compute the set IP of all the integral points in Newt(f) (so v0 2 IP); say IP hast(= #(Newt(f))) points. Initialize a t-array A indexed by the points in IP. Set A�1[v℄ := (0; ;)for all v 2 IP ex
ept the 
ell A�1[v0℄ whi
h is set to (1; ;).Step 5.2: For i from 0 up to m� 1, 
ompute the t-array Ai from Ai�1:5.2.1 First 
opy the 
ontents of all the 
ells of Ai�1 into Ai (this step is for k = 0).90



5.2.2 For ea
h v 2 IP with the �rst number of the 
ell Ai�1[v℄ nonzero, and for ea
h 0 < k � nifor whi
h m(i)k > 0, if v0 = v+ kei 2 IP then update the 
ell Ai[v0℄ as follows: if (u1; S1) isthe value of Ai�1[v℄ and (u2; S2) the 
urrent value of Ai[v0℄ then the new value of Ai[v0℄ is(u; S2 [ f(k; i)g). Here we take u = u2 + u1 in the 
ase niei =2 � and u = u2 +m(i)k u1 inthe 
ase niei 2 �.Step 5.3: Return the number u and the array A = Am, where (u; S) is the 
ontent of 
ellAm�1[v0℄.Proposition 6.8.2 The above algorithm works 
orre
tly, produ
ing the total number of integralsummands in time polynomial in #(Newt(f)).Proof: Corre
tness of the algorithm follows by a suitable modi�
ation of Theorem 18 in[45℄. By Lemma 13 of [45℄, the number of integral summands of Newt(f) 
orresponds to thetotal number of 
losed paths P0�i�m�1 kiei, su
h that ki 6= 0 for all i and km�1 6= nm�1. Weshall show that this number is the integer stored in Am�1[v0℄. Sin
e the length of an edge isde�ned to be the number of integral points lying on it, whi
h in turn 
orresponds to one plusthe degree of the edge polynomial asso
iated with it, the 
ondition m(i)k > 0 guarantees thatwe 
ount only those summands whose edges have lengths 
orresponding to degrees of \known"univariate fa
tors of the original edge polynomial in Newt(f). Now, as seen in the original proof,we suppose that v = v0 + k0e0 + ::: + kiei, for any v 2 IP . We 
an then view the ve
tor sumas a path from v0 to v, so that the number of su
h paths is equal to the sum of the number ofpaths from v0 to v�kei, for 0 � k � ni, using e0; :::; ei�1. However, if we further know that nieibelongs to �, then for ea
h k = 1; :::; ni, we should 
ount all possible fa
torisations of the edgepolynomial 
orresponding to the same edge, as indi
ated by the number of fa
tors of degree kof the edge niei polynomial. As a result, and for ea
h admissible k = 1; :::; ni, the value of u inAi[v℄ is in
remented as follows: by the number of paths from v0 to v � kei, using e0; :::; ei�1, ifniei is not in �, or by m(i)k times this number, otherwise. The loops in the above pro
ess 
an beeasily seen to be of the order O(#(Newt(f)):md), where d is the maximum number of integralpoints on any edge. The innermost loop 
omputations involve updating the integer u throughinteger addition and updating the set S through the set union operation. Sin
e u requires anupper bound of M < dm, its update has an upper bound of O(m log d) bit operations. If wefurther 
onsider set union to require a single bit operation, the 
omplexity of the above algorithmbe
omes of the order O(#(Newt(f)):m2d), ignoring logarithmi
 fa
tors.Step 6Having sele
ted a dominating set, one 
an re
over all 
oprime dominating fa
ets fa
torisationin the array output by Algorithm 6.8.2. We des
ribe how one su
h fa
torisation 
an be found.Suppose the 
ell A[v0℄ 
ontains the pair (u; S). Choose any (k; i) 2 S. The line segment keiwill be the \�nal edge" in our summand of Newt(f). Sin
e by assumption m(i)k > 0, we 
analso 
hoose a fa
tor gÆi0 of the edge polynomial of Æi whi
h has degree k. This is the \�nal edgepolynomial" in our dominating fa
ets fa
torisation. Let (u0; S0) be the 
ontents of 
ell A[v0�kei℄.Pi
k any (k0; i0) 2 S0 with i0 < i. The line segment k0ei0 will be the \penultimate edge" in oursummand of Newt(f), and we 
an further 
hoose a \penultimate edge polynomial" if niei 2 �.91



As our sequen
e of i's is de
reasing we shall eventually return to the 
ell A[v0℄. At that pointwe will have re
overed one summand in a de
omposition of Newt(f).The 
omplexity of the above pro
ess is M times the time required to �nd one dominatingfa
ets fa
torisation, whi
h is linear in the number of edges m. Certainly m = O(Newt(f)).Step 7Now one lifts ea
h 
oprime dominating fa
ets fa
torisation using the method des
ribed in Lemma6.6.2. Using Theorem 6.6.1, lifting from ea
h 
oprime dominating edges fa
torisation 
an bedone in time polynomial (in fa
t 
ubi
) in d, whi
h itself is bounded by Newt(f). However,although one 
an �nd su
h a dominating edges fa
torisation eÆ
iently, the number of themmay be exponential in the degree. In pra
ti
e we re
ommend that a relative small number ofdominating edges fa
torisations are tried before the polynomial is randomised and one resortsto other \dense polynomial" te
hniques.Time 
omplexity and 
ommentsProposition 6.8.3 Assuming Step 3 above is performed as a pre
omputation, Algorithm 6.8.1halts in time polynomial in M and #(Newt(f)).Proof: Steps 1, 2, 4, 5, and 6 are performed in time polynomial in #(Newt(f)). In Step 7one performs at most M liftings. The result now follows using the estimates dis
ussed above.This algorithm should be 
ompared with the standard method of fa
toring \ni
e" polyno-mials using Hensel lifting [46℄. Pre
isely, in the literature a bivariate polynomial of total degreen whi
h is square-free upon redu
tion modulo y is often 
alled \ni
e". The standard Hensellifting algorithm will fa
tor \ni
e" bivariate polynomials, on average very qui
kly [46℄, althoughin exponential time in the worst 
ase. Noti
e that a \ni
e" polynomial would be one whose New-ton polytope has \lower boundary" a single edge of length n whi
h is square-free. The abovealgorithm fa
tors not just these polynomials, but also any polynomials whi
h have a \square-freedominating set". In the 
ase of a generi
 dense \ni
e" polynomial, it redu
es to a modi�ed formof standard Hensel lifting. (The algorithm also in
ludes as a spe
ial 
ase that given in Wan[128℄, where one \lifts downward" from the edge joining (n; 0) and (0; n))6.9 Examples and implementation6.9.1 ExampleSuppose we want to fa
tor the following polynomial over F 2f = x12 + x19 + (x10 + x11 + x13)y + (x8 + x9 + x12 + x17)y2 + x7y3 + (x4 + x11)y4+(x2 + x5 + x10)y5 + y6 + x10y8 + (x8 + x11)y9 + x6y10 + x9y12 + x15y16with Newton polytope pi
tured in Figure 2 where a star indi
ates a nonzero term of f .Newt(f) is found to have three non-trivial de
ompositions, and eight irredundant dominatingsets. None of these sets have edge polynomials whi
h are all square-free; however, fortunately92
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Figure 4: Newton polytope R of the generi
 polynomial hwe are still able to lift su

essfully from one of the 
oprime partial boundary fa
torisations.Spe
i�
ally, 
onsider the de
omposition Newt(f) = Q + R, where Q and R are the 
onvexhulls of the sets f(0; 2); (4; 0); (11; 0); (9; 8)g and f(0; 4); (8; 0); (6; 8)g respe
tively (see Figures3 and 4). The generi
 polynomials for this de
omposition are as usual denoted g and h. Thedominating edges of Newt(f) whi
h allow a 
oprime edge fa
torisation are given byÆ1 = 
onvf(0; 6); (12; 0)g; Æ2 = 
onvf(12; 0); (19; 0)gand the 
orresponding edge polynomials aref Æ10 = y6 + x2y5 + x4y4 + x8y2 + x10y1 + x12f Æ20 = x12 + x19:The 
oprime fa
tors from whi
h the lift begins aregÆ10 = y2 + x2y + x4; hÆ10 = y4 + x8gÆ20 = x4 + x11; hÆ20 = 1:The lifting pro
ess is then initiated; Figures 3 and 4 help illustrate the pro
ess in that thelines drawn in the interior of the polygons indi
ate the �rst few layers of 
oeÆ
ients whi
h arerevealed during the lifting, and the lines in the interior of Newt(f) the known 
oeÆ
ients of fwhi
h are used to do this. We re
all some notation de�ned earlier in the 
hapter. For i = 1 and2, the normalised aÆne fun
tional of Æi is denoted lÆi . In this 
ase lÆ1(r1; r2) = r1 + 2r2 � 12and lÆ2(r1; r2) = r2. The 
onstants 
Æi su
h that lÆi � 
Æi de�nes a fa
e of Q are 
Æ1 = �8 and
Æ2 = 0 respe
tively.We start then with a K-fa
torisation where K = (kÆ1 ; kÆ2) and kÆ1 = kÆ2 = 1. At thisstage, we would like to extend this partial fa
torisation to either a (2; 1)-fa
torisation, or a(1; 2)-fa
torisation. By Lemma 6.6.2 we are guaranteed that it will be possible in at least oneof these two 
ases. (We shall borrow notation from the proof of Lemma 6.6.1 for the next fewparagraphs.) The polygon �Q is that obtained from Q by moving the two lower fa
ets \one stepin" as indi
ated in the diagram. Examining Q we see that the edge supported by lÆ2 � 
Æ2 ,94



namely the line joining (4; 0) and (11; 0), has 8 integral points. The edge of �Q supported bylÆ2 � (
Æ2 + 1) (this is the line joining (3; 1) and (10; 1)) also has eight integral points. Thus we
annot lift from Æ2. So Lemma 6.6.2 assures us we must be able to lift from Æ1. Indeed, the edgeof Q supported by lÆ1 � 
Æ1 has three points, and the 
orresponding edge of �Q only two points.We now des
ribe expli
itly the �rst lifting step from Æ1. To simplify notation let Æ1 berepla
ed simply by Æ. We shall now also use notation from the proof of Lemma 6.6.2. We havelÆ(r1; r2) = �1r1+�2r2+� where �1 = 1; �2 = 2; � = �12. Also �1�1+ �2�2 = 1 where �1 = 1 and�2 = 0. Thus the 
hange of variables is z := x2y�1 and w := x1y0. The monomials s and t arey2 and y4 respe
tively. Hen
e we have that gÆ0 = y2+x2y+x4 = y2(1++(x2y�1)+ (x2y�1)2) =sw0G0(z) where G0(z) = 1 + z + z2. Also, gÆ1 = g(1;2)xy2 + g(3;1)x3y + g(5;0)x5 where the g(i;j)are indeterminates. The indeterminate g(5;0) has already been spe
ialised to the value 0 in ourpartial fa
torisation. We thus have gÆ1 = sw1(g(1;2) + g(3;1)z), and so G1(z) = g(1;2) + g(3;1)z.Similarly, H(0)(z) = 1 + z4 and H(1)(z) = h(1;4) + h(3;3)z + h(5;2)z2 + h(7;1)z3; and F0(z) =1 + z + z2 + z4 + z5 + z6, F1(z) = z3 + z4 + z5.The equation we shall use in the lifting step isG0(z)H(1)(z) +G1(z)H(0)(z) = F1(z):The polynomials U(z) and V (z) su
h thatU(z)G0(z) + V (z)H(0)(z) = 1are U(z) = 1 + z2 + z3 and V (z) = z. ThusG1(z) + (V (z)F1(z) mod G0(z)) = "(z)G0(z)for some polynomial "(z) = "0 with undetermined 
oeÆ
ients. Now the se
ond term on the lefthand side is just 0 and hen
e the degree of the left hand side as a Laurent polynomial is 1. Thisis less than the degree of G0, and so the only solution is that with " = 0. Thus G1(z) = 0.F1 �H(0)G1G0 = z3;and we dedu
e that H(1)(z) = z3. Thus h(7;1) = 1 and h(1;4) = h(3;3) = h(5;2) = 0. This
ompletes the �rst lifting step.At this stage one may 
ontinue to lift from Æ1, or alternatively start to lifting from Æ2.The latter has the advantage that more 
oeÆ
ients will be revealed at ea
h step; however, the
omputations required involve higher degree polynomials and as su
h it may be preferable tokeep lifting from the shorter edge. We do this and next obtain a (3; 1)-fa
torisation of K, withg(2;2) = g(4;1) = h(2;4) = h(4;3) = h(6;2) = 0. Noti
e that this lifting step is somewhat easier sin
eF2 � G1H(1) = 0 whi
h again results in G2 = H(2) = 0. One may 
ontinue lifting from Æ1 toobtain a (4; 1)-fa
torisation. In this we �nd g(5;1) = 1 and g(3;2) = h(3;4) = h(5;3) = h(7;2) = 0.At this stage lifting further from Æ1 be
omes impossible. Thus one must now lift from Æ2 to geta (3; 2)-fa
torisation. We explain brie
y how this step is performed as it illustrates somewhatthe role of the triangular systems.So let Æ := Æ2. The 
hange of variable is now z := x and w := y and we have the equationG1(z)� (V (z)F1(z) mod G0) = "(z)G0:95



Here G1(z) = 1z�2 + 0z�1 + 0 + 1z + g(6;1)z2 + g(7;1)z3 + g(8;1)z4 + g(9;1)z5 + g(10;1)z6and G0(z) = 1 + z7. Also V is the inverse of H(0)(z) = 1 modulo G0(z), whi
h is just 1. Thepolynomial F1(z) = z�2 + z�1 + z. We �rst 
ompute (V F1 mod G0) asz�2(1 + z + z3) mod (1 + z7) = z + z5 + z6:Hen
e the left hand side isz�2 + g(6;1)z2 + g(7;1)z3 + g(8;1)z4 + (1 + g(9;1))z5 + (1 + g(10;1))z6:This has degree 8 as a Laurent polynomial, and hen
e the degree of our unknown polynomial"(z) is 8 � 7 = 1. Let "(z) = ("�1z�1 + "�2z�2). Then equating the powers of z�2 and z�1 weget the triangular system 1"�2 + 0"�1 = 10"�2 + 1"�1 = 0whi
h has solution "�2 = 1 and "1 = 0. Hen
e we get thatG1(z) = z + z5 + z6 + z�2(1 + z7)= z�2 + z + z6:This 
ompletes the lifting step.Now one may on
e again 
hoose to lift from Æ1 another few steps to get a (7; 2)-fa
torisation.Then one may lift for two steps from Æ2 to obtain a (7; 4)-fa
torisation. One 
ontinues in thismanner until all the indeterminate 
oeÆ
ients in one of the two generi
 fa
tors g and h have beenspe
ialised. (Of 
ourse, if we are not lifting an a
tual full fa
torisation, we may have to abandonthe lifting at some stage be
ause either our triangular systems have no 
ommon solution, or the
omputed 
oeÆ
ients in H do not mat
h with the known 
oeÆ
ients.)It is perhaps appropriate at this stage to make a few observations on how sparse polynomialsmay be fa
tored more qui
kly using Algorithm 6.8.1. Using standard Hensel lifting the polyno-mial f above would �rst be randomised to obtain a dense polynomial of total degree 31. It 
ouldhave as many as (32� 33)=2 = 528 nonzero terms, and heuristi
ally around half this many sin
ef is over the binary �eld. The fa
tor g we found above would then 
orrespond to a \dense"fa
tor of our original polynomial of total degree 17. It would be found by Hensel lifting a degree17 fa
tor of the redu
tion modulo y of our randomised version of f , and (17�18)=2 = 153 terms(heuristi
ally half of them nonzero) need to be determined. In our algorithm, one restri
ts at-tention to unknown terms in possible fa
tors whose exponents lie within 
ertain polygons. Thusfor the fa
tor g we found we only need to determine 57 
oeÆ
ients. Moreover, if the polynomialf is sparse, there is good 
han
e that most of these terms, and those in h, will be zero and so one
an exploit sparse data stru
tures (see Chapter 7). The main bene�t, though, of our approa
happears to be for very sparse but 
omposite polynomials of very high degree. In this 
ase, oneexpe
ts few 
oprime partial boundary de
ompositions, and as one 
an try and lift ea
h one toa full fa
torisation, the algorithm will su

eed (or fail) relatively qui
kly. If one randomises thepolynomial by substitution of linear forms, the spe
ial sparse stru
ture is 
ompletely lost. Tofa
tor the randomised polynomial using Hensel lifting, for example, one expe
ts to have to trya large number of lifts. Thus, as demonstrated in the next 
hapter, our algorithm 
an be usedto fa
tor very sparse polynomials of degree beyond the rea
h of 
lassi
al Hensel lifting.96



6.9.2 ImplementationWe have developed a preliminary implementation of the algorithm with the aim of demonstratinghow it would work for bivariate polynomials over F 2. The work was 
arried out at the OxfordUniversity Super
omputing Centre (OSC) on the Oswell ma
hine. The implementation waswritten using a 
ombination of C and Magma programs, and was divided into three phases.In the �rst phase, the input polynomial is read and its Newton polytope 
omputed using theasymptoti
ally fast Graham's algorithm for 
omputing 
onvex hulls [60℄. In that phase we also
ompute all irredundant dominating sets, and output the edge polynomials. In the se
ond phase,a Magma program invokes a univariate fa
torisation algorithm to perform the partial boundaryfa
torisations, and the results are dire
ted into the third phase program. In this last phase,a sear
h for 
oprime dominating edges fa
torisations is performed, and when appropriate, thelifting pro
ess is started. The polynomial arithmeti
 was performed using 
lassi
al multipli
ationand division, and the triangular systems were solved using dense Gaussian elimination over F 2.We generated a number of random experiments as follows: The input polynomial f was
onstru
ted by multiplying two random polynomials g and h of degree d=2, ea
h with a givennumber of nonzero terms. Spe
i�
ally, for ea
h polynomial the given number of exponent ve
tors(e1; e2) were 
hosen uniformly at random subje
t to 0 � e1 + e2 � d=2. These ve
tors alwaysin
luded ones of the form (e1; 0), (0; e2) and (e3; (d=2) � e3) to ensure the polynomial was ofthe 
orre
t degree and had no monomial fa
tors. As the polynomials 
hosen were sparse the
orresponding Newton polytopes had very few edges. In all these 
ases, the 
omponents ofedge ve
tors of Newt(f) had a very small g
d, so that the edges had few integral points and
onsequently the polygon itself had very few summands. The table below gives the running times(in se
onds) of the total fa
torisation pro
ess to �nd at least one non-trivial fa
tor involving allthree phases des
ribed above. Here s is the number of nonzero terms of the input polynomial f ;#Newt(f), #Newt(g), and #Newt(h) are the total number of latti
e points in Newt(f), Newt(g)and Newt(h) respe
tively; and t is the total running time in se
onds. The a
tual polynomialsf; g and h in ea
h of the �ve 
ases are also listed.Table 6.1: Run time data for random experiments.d s #Newt(f) #Newt(g) #Newt(h) t50 14 561 166 50 2:3100 16 2234 472 222 11:6500 15 52940 12758 11282 21:51000 30 206461 28582 56534 42:92000 28 848849 133797 132932 619:7d = 50:f = x9 + x18 + x22y8 + x14y16 + (x4 + x13)y20 + (x8 + x17)y21 + x18y24 + x17y28 + x21y29 +x1y32 + y36 + x4y37,g = x4 + x13 + x17y8 + y16,h = x5 + x1y16 + y20 + x4y21.d = 100:f = x26 + x29y3 + x31y5 + x34y8 + x20y13 + x25y18 + x6y19 + (x9 + x48)y22 + x53y27 + y32 +x28y41 + x11y45 + x14y48 + x5y58 + x33y67,g = x20 + x25y5 + y19 + x5y45, 97



h = x6 + x9y3 + x28y22 + y13.d = 500:f = x99+ x151y30 + x176y130+ x151y142+ x228y160 + x99y181+ x56y220 + x43y223+ x108y250 +x228y272 + x176y311 + x120y353 + x108y362 + x56y401 + y443,g = x56 + x108y30 + x108y142 + x56y181 + y223,h = x43 + x120y130 + y220.d = 1000:f = x727 + x678y3 + x935y13 + x886y16 + x679y67 + x600y79 + x887y80 + x551y82 + x469y86 +x420y89 + x448y93 + x399y96 + x279y136 + x636y143 + x552y146 + x487y149 + x421y153 + x844y156 +x400y160+x152y215+(x21+x509)y222+(1+x378)y229+x357y236+x611y251+x562y254+x563y318+x163y387 + x520y394,g = x448 + x399y3 + x400y67 + y136 + x357y143,h = x279 + x487y13 + x152y79 + x21y86 + y93 + x163y251.d = 2000:f = x875+x856y6+x1469y18+x1450y24+x776y66+x1370y84+x722y157+x703y163+x963y190+x944y196+ x623y223+x864y256+x487y291+x468y297+ x647y334+x628y340+x982y375+ x548y400+x235y514 + x476y547 + x769y619 + x1363y637 + x0y648 + x160y691 + x616y776 + x857y809 + x381y910 +x541y953,g = x487 + x468y6 + x388y66 + y357 + x381y619,h = x388 + x982y18 + x235y157 + x476y190 + x160y334 + y291.6.10 Con
lusionIn this 
hapter we have investigated a new approa
h for bivariate polynomial fa
torisation basedon the study of their Newton polytopes. The approa
h 
ombines results on polytopes withgeneralised Hensel lifting. In standard Hensel lifting, one lifts a fa
torisation from a single edge,and uniqueness 
an be ensured by randomising the polynomial to enfor
e 
oprimality 
onditionsand make sure the edge being lifted from is suÆ
iently long. However, this randomisation isby substitution of linear forms whi
h destroys the sparsity of the input polynomial. We showhow uniqueness may be ensured in the bivariate 
ase without destroying the sparsity of thepolynomial, only under 
ertain 
oprimality 
onditions, and without restri
tions on the lengthsof the edges. For 
ertain 
lasses of sparse polynomials, namely those whose Newton polytopeshave few Minkowski de
ompositions, this gives a pra
ti
al new approa
h whi
h greatly improvesupon Hensel lifting. As with Hensel lifting, our method has an exponential worst-
ase runningtime; however, we have demonstrated the pra
ti
ality of our algorithm on several randomly
hosen 
omposite and sparse binary polynomials of high degree.
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Chapter 7An eÆ
ient sparse adaptation of thepolytope method over F p and are
ord-high binary bivariatefa
torisation7.1 Introdu
tionIn the previous 
hapter, we examined polynomial fa
torisation through a generalisation of Hensellifting as applied to the Newton polytope of the input polynomial. Despite its worst-
ase ex-ponential running time, the polytope method has been asso
iated with a number of advantagespromising to make it very eÆ
ient in pra
ti
e. First, when applied to the spe
ial 
ategoryof sparse polynomials whose Newton polytopes have very few Minkowski de
ompositions, onewould expe
t to have a small number of edges to lift from. Although we do not yet have aheuristi
 estimate of the frequen
y with whi
h this 
an happen, experiments reported in theearlier 
hapter 
learly re
e
ted this observation, whereby most random input polynomials hadNewton polytopes with the above property, and the bulk of the work was spent in the liftingstage. However, the implementation used there was dense, where the total amount of work isof the order O(d4) for a bivariate polynomial of total degree d, and requiring an order of O(d2)bits of memory, whi
h prompts us to investigate further advantages resulting from the sparsityof the input polynomial. Sin
e the polytope method has been shown to preserve the sparsity ofthe polynomial by avoiding the randomisation and substitution of linear forms in the 
lassi
alHensel lifting method, one natural question to answer is how to des
ribe the sensitivity of thepolytope method with respe
t to the number of nonzero terms of the input polynomial. We areequally motivated to investigate how exploiting this aspe
t 
an possibly in
rease the problemsizes whi
h the polytope method 
an handle for the spe
ial 
lass of sparse polynomials. Theapproa
h we present produ
es a sparse fa
torisation algorithm per se, where the operational andspatial 
omplexities be
ome dependent on both the degree of the input polynomial as well asthe number of nonzero terms of its possible fa
tors whi
h the polytope method 
an dete
t. Theaspe
ts we exploit are that the input polynomial and its fa
tors have many zero 
oeÆ
ients, andthat most of the lifted polynomials are zero, or at worst very sparse. As in the original algorithm,this method works only under 
ertain 
oprimality 
onditions governing the edge fa
torisations99



along a spe
ial subset of edges of the Newton polytope (see Chapter 6).The rest of this 
hapter is organised as follows: In Se
tion 7.2 we des
ribe the model of sparsepolynomials to whi
h this algorithm is best suited. In Se
tion 7.3 we des
ribe the implementationin C and the sub-routines 
omprising the pre-lifting stages. In Se
tion 7.4 we present our sparseadaptation whi
h a�e
ts the polytope method at the lifting stage. In Se
tions 7.5 and 7.6 weanalyse the 
omplexity of the sparse method, and in Se
tion 7.7 we report on the run times ofour experiments produ
ing high re
ord degree fa
torisations over F 2.7.2 Input modelWe 
hoose to investigate the performan
e of the sparse adaptation when the input polynomialbelongs to F p[x; y℄, for a �nite �eld F p with prime order. As previously reported in the denseimplementation of [2℄, the random experiments are generated by 
onstru
ting a degree d inputpolynomial f using two random polynomials g and h of degree d=2 ea
h, with a given numberof nonzero terms. Let tg and th denote the number of nonzero terms in g and h respe
tively,and let t = tgth. The number of nonzero terms in f is thus O(t). For reasons that will be
omeapparent later on, we will assume the 
onditiont3 < d2:This will make up our de�nition of a sparse polynomial f , where d2 is an upper bound on thenumber of nonzero terms that 
an appear in a degree d polynomial in F p[x; y℄. Note that oneof tg or th has to be at most t1=2, and hen
e we 
an assume that g and h have t� terms ea
h,for some 
onstant 0 < � < 1. In the remainder of this 
hapter, we shall omit the referen
e to\nonzero terms" and refer to these as simply \terms". Also, when analysing the 
omplexity ofthe sparse method with respe
t to an integral de
ompositionNewt(f) = Q+R;we will restri
t our attention to the 
ase when Q and R 
orrespond to the sparse fa
tors g andh as de�ned above; i.e, when Q = Newt(g) and R = Newt(h). By this, we understand that anextension of a 
oprime dominating edges fa
torisation using our sparse method should be abortedon
e the number of spe
ialised 
oeÆ
ients 
orresponding to Q or R ex
eeds max(tg; th) = O(t�),for 0 < � < 1.Generi
 shape of Newt(f)We now des
ribe few aspe
ts 
hara
terising the generi
 shape of Newt(f) for a non-trivial inputf . By non-trivial we refer to the 
ase when f is non-
onstant and not known to be divisible byany monomial of the form f(e1;e2)xe1ye2 , for some integers e1; e2 � 0, and f(e1;e2) 2 F p.Lemma 7.2.1 Let f 2 F p[x; y℄ be of total degree d. Then f has at least one term with degreezero in y and one term with degree zero in x if and only if the 
orresponding exponent ve
tors ofthose two or more terms are verti
es or form edges of Newt(f) that lie on the x-axis and y-axisrespe
tively.Proof: Re
all that for a bivariate regular polynomial f , Newt(f) lies entirely in the quadrantof positive 
oordinates. Suppose that Newt(f) has at least two verti
es lying on the x-axis and100



y-axis respe
tively. Sin
e Newt(f) is the 
onvex hull of all exponents of f whose 
orresponding
oeÆ
ients are nonzero, f should have at least two terms whi
h have a zero exponent in yand x respe
tively. Now suppose that f has at least two su
h terms denoted by f(i;0)xi andf(0;j)yj, for i; j = 1; :::; d. Then the points (i; 0) and (0; j) belong to Newt(f). We want to showthat p = (i; 0) 
annot but be a vertex or lying on an edge of Newt(f) (the 
ase for (0; j) isestablished similarly and so are the 
ases when there are more than one term in f of the formf(i;0)xi or f(0;j)yj). Suppose to the 
ontrary that p is a stri
tly interior point of the polytope. By
onvexity of Newt(f), p should lie stri
tly in the interior of every angular se
tor formed by anythree 
onse
utive verti
es. But then the x-axis would interse
t at least one edge of the polytopein one point di�erent from the two endpoints of the edge, so that Newt(f) 
ontains points inthe half-plane f(x; y) 2 R 2jy < 0g;a 
ontradi
tion, sin
e Newt(f) lies entirely in the quadrant of positive 
oordinates.Corollary 7.2.1 Let f 2 F p[x; y℄ be of total degree d. Then f has no trivial monomial fa
torsof the form f(i;j)xiyj for some integers i; j � 0, f(i;j) 2 F p, if and only if Newt(f) has at leasttwo of its verti
es on the x-axis and y-axis respe
tively.Proof: Suppose that f has no trivial monomial fa
tors of the form f(i;j)xiyj for some positiveintegers i and j. Then f must have at least one term that has zero degree in x and one termthat has zero degree in y. By the lemma above, Newt(f) would then have at least two verti
eson the x and y axes. The 
onverse is immediate to establish.7.3 Pre-lifting stagesThe pre-lifting sub-routines all require a non-trivial implementation tou
hing upon issues aboutproper data stru
ture and 
areful manipulation of geometri
 data. In the 
ourse of this des
rip-tion we explore the primary data types representing the geometri
 stru
tures su
h as edges,verti
es, straight lines, and dominating sets of edges. We also address how operations involvinggeometri
 stru
tures with integer 
oordinates 
an be performed 
orre
tly, under the restri
tionthat all su
h 
omputations should involve input and output integer values only.7.3.1 Floating-point operations and integer over
owAs will be seen shortly, many aspe
ts of our C implementation are designed so as to avoid bothinstan
es of 
oating-point operations (unless the result 
an be guaranteed to be exa
t) andinteger over
ow. Be
ause one 
an predi
t the possible o

urren
e of a 
oating-point operationbefore su
h an operation is 
arried out, this type of problem is easier to handle than integerover
ow. On most 
urrent ma
hines, signed integers use 32 bits whi
h represent numbers inthe range �2:109. This sets the �rst restri
tion on the size of the input data representing theexponent pairs (e1; e2) of terms of f . However, when operations su
h as addition or multipli
ationof signed integers produ
e an output that ex
eeds this range, standard C gives no error uponinteger over
ow. In the absen
e of a multi-pre
ision pa
kage for dealing with arbitrary sizes101



of signed integers (see for e.g. [53℄), one may opt to use doubles to represent integers, so thatinteger 
al
ulation 
an be performed a

urately with 
oating-point numbers. This, 
ombinedwith tests to depi
t the safe range of any 
omputation prior to its exe
ution, makes up a goodstrategy for avoiding integer over
ow. In doing this, one has to 
onsider possible 
an
ellationsof even in
orre
t 
al
ulations of the generi
 form ab+ 
d. There, for instan
e, it suÆ
es to testfor the sizes of ab and 
d prior to 
an
ellation (addition) and de
ide whether or not the upperbound on the size of the �nal sum ex
eeds the allowed bound.Assuming the order of the �nite �eld in question �ts in a ma
hine word, all �eld operationswill be referred to as bit operations, and the spatial 
omplexity will be measured in bits.7.3.2 Computing Newt(f)The �rst phase of the algorithm 
onsists in 
omputing Newt(f) using a 
onvex hull algorithm.We 
hoose to use Graham's fast algorithm of 
omplexity O(t log t) for an input of size t (see[60℄), despite the fa
t that slower algorithms of quadrati
 time in t would still be eÆ
ient in thesparse 
ase. We also adopt the eÆ
ient variant of Graham's algorithm found in [107℄. The inputpolynomial f is given as a 
olle
tion of points P representing the exponent ve
tors of terms off . Graham's algorithm above produ
es a sta
k of verti
es of Newt(f), whi
h uniquely des
ribesthe entire polytope, sin
e it is suÆ
ient to store information about the verti
es of a 
onvex set toretrieve any further information about its edges or interior latti
e points. The sta
k of verti
esis built in a 
ounter-
lo
kwise order around a �xed pivot, 
hosen to be the lowest rightmost ofall input points. If m denotes the total number of verti
es of Newt(f), the sta
k is representedby a singly linked list of pointers to the verti
es V0; :::; Vm�1. In turn, ea
h vertex is a stru
ture
ontaining information about the index of the vertex in the sta
k, as well as the x 
oordinate(abs
issa) and the y 
oordinate (ordinate) of the vertex. For further uses in the algorithm, wealso store the edge des
ription of Newt(f) as follows. For i = 0; :::;m�1, let Ei denote the edgede�ned by Vi+1 � Vi. If ni denotes the g
d of the two 
omponents of the edge ve
tor, then Ei
an be written as niei for a primitive ve
tor ei whose 
omponents (ai; bi) are relatively prime.We shall adopt this notation throughout the text.Representing terms of fSin
e terms of f (and thereafter spe
ialised terms of g and h) will have to be a

essed duringevery lifting step, one has to modify the representation of f , originally given as an arbitrarilyordered 
olle
tion of points, to allow qui
k a

essibility. Ideally, this would be through the useof a dense representation, whereby the nonzero 
oeÆ
ient of a term f(e1;e2)xe1ye2 of f is storedin the array lo
ation (e1; e2). A possible solution would be to balan
e the time it takes to sear
hfor a parti
ular term and the total memory required for storing all of them, through the use of a\semi-sparse" representation, so long as this requires no more than the largest stru
ture used inthe entire algorithm, whi
h will be shown later to be O(t�d) bits of memory, for some 
onstant�, 0 < � < 1.To illustrate, suppose that ymax and xmax denote the largest degree in y and x respe
tively,and ymin and xmin denote the smallest degree in y and x respe
tively, among all terms of f . ByCorollary 7.2.1, we know that ymin and xmin are both equal to zero when f is a \non-trivial"polynomial. We then have ymax � d and xmax � d. Without loss of generality we shall alwaysassume that ymax � xmax, and that all arrays have starting index equal to 0 (rather than 1).102



We 
an now de�ne a re
ursive stru
ture as follows. Let fterms denote an integer array of sizeymax su
h that ea
h entry fterms[k � 1℄ denotes the number of terms of f whose degree in yis k. Although this makes the array fterms a dense one, it 
an now be used to in
orporate asparse data stru
ture as follows: for k = 0; :::; ymax � 1 and j = 0; :::; fterms[k℄ � 1, de�ne alist of integers fabsk su
h that the j'th element in the list 
ontains the degree in x of the j'thterm of f belonging to the list of terms of degree k in y. A similar list 
an be 
onstru
ted tostore the 
oeÆ
ients of terms over F p. In the worst-
ase analysis, all terms of f will have thesame degree in y, and we 
an allow the above sparse stru
ture to o

upy at most O(td) bits ofmemory. Assuming that the 
oordinates of the input polynomial are no larger than a ma
hineword size, and 
ombining the requirements for storing the output in Graham's algorithm above,where the number of verti
es of Newt(f) is of the order O(t) [35℄, the total spatial 
omplexityof this stage is dominated by O(td) bits. With this stru
ture, we 
an de
ide for the existen
eof a term f(e1;e2)xe1ye2 of f through a simple s
an of the list fabse2�1 whi
h 
ontains at mostO(t) elements, so that a naive sear
h is of the order O(t).7.3.3 Finding all irredundant sets of dominating edgesFor determining all irredundant sets of dominating edges we use the algorithm reported inChapter 6. Re
all that the pro
edure depends on the notion of admissible slopes asso
iated witha vertex Vi, and denoted by admiss(i), whi
h designates the range of slopes of all straight linesthat 
an be drawn through Vi su
h that their interse
tion with the polytope is only one point. Itwas shown that su
h straight lines have to be lying in the angular se
tor de�ned by the two edgesvi�1vi and vivi+1, and that a ne
essary 
ondition for any set of edges 
onne
ting two distin
tverti
es vi, vj to form an irredundant set of dominating edges is that admiss(i)\ admiss(j) 6= ;.The input to this sub-routine are the verti
es of Newt(f) as 
omputed above. The pro
ess 
anbe a
hieved through several implementations of the following:Slopes of edgesWe �rst need a 
areful manipulation of slopes whi
h avoids any instan
es of 
oating-pointoperations while performing simple tasks su
h as determining and 
omparing slopes of linessupporting edges. In our implementation, slopes are always integral ratios a=b, whi
h is onegood property to start with. If k 2 Z and a; b 6= 0, any equality of the form a=b = k(a=b) is notguaranteed to hold for 
oating point division in C. As a result, we have to treat this quantityas a dis
rete one. Using a re
ursive stru
ture we de�ne an array of pointers, Slope, indexed bythe edges Ei, for i = 0; :::;m � 1, su
h that the entry Slope[i℄ points to a list of two elements:the numerator and denominator of the slope of Ei, in normalised form (having g
d equal to 1).When 
omputing admiss(i) we are 
on
erned with 
hara
terising all straight lines that fall inthe angular se
tor whose vertex is Vi and whose rays are with endpoints Vi�1 and Vi+1. Let s1and s2 denote the slopes of lines (Vi�1Vi) and (ViVi+1) respe
tively. Obviously, any straight linefalling in the interior of the angular se
tor de�ned above has to have slope in the rangeI = (min(s1; s2);max(s1; s2))if s1 and s2 are of the same sign, or in the rangeI = (�1;min(s1; s2)) [ (max(s1; s2);+1)103



otherwise. The set admiss(i) is then simply the 
omplement of I, whi
h 
an be a single intervalor a union of two intervals. This 
an be represented by a stru
ture of intervals of the form A[B,for two 
ontinuous intervals A and B, where only B 
an be empty. A 
ontinuous interval thenextends re
ursively into a two dimensional array Component of pointers su
h that Component[0℄and Component[1℄ point to its lower and upper bounds respe
tively. In turn, su
h lower andupper bounds represent slopes of edges, and are hen
e represented by a two dimensional integerarray bound, su
h that bound[0℄ and bound[1℄ denote the numerator and denominator of thequantity denoting slope. Of 
ourse, by this we understand that bound[1℄ = 0 whenever the
orresponding slope is in�nite.Complements and interse
tions of setsAt this point we have at hand a representation of rational intervals that will allow us to performthe set operations of taking 
omplements and of interse
ting sets. If I denotes an interval or aunion of two intervals as en
ountered previously, then R nI 
an be trivially determined and musthave the same representation of I as de�ned above. Furthermore, we will need to determinewhether or not the interse
tion of two intervals I = A [ B and I 0 = A0 [ B0, for 
ontinuousintervals A;B;A0 and B0, is empty. That redu
es easily to �nding whether A00\B00 6= ; for someA00 = (a; b) and B00 = (a0; b0), where a; a0; b; b0 2 Z[f�1g. To do this, it suÆ
es to 
ompare the
orresponding lower and upper boundaries of the 
ontinuous intervals (a; b) and (a0; b0), whoseinterse
tion is non-empty if and only if any of the following holds:� both a and a0 are �1,� both b and b0 are +1,� only a is �1, b is �nite, and a0 < b,� only a0 is �1, b0 is �nite, and a < b0,� only b0 is +1, a0 is �nite, and a0 < b,� only b is +1, a is �nite, and a < b0.� a; b; a0 and b0 are �nite, and b < a0 or b0 < a.A

ording to our representation above, a; b; a0 and b0 are stored as rational quantities, where
omparison of two su
h fra
tions n=d and n0=d0 redu
es to 
omparing the produ
t nd0 and n0d.Even though the numerators and denominators are bounded by the 
oordinates of exponentve
tors of terms of f , performing the above integer produ
ts may result in over
ow. For this,a possible test 
an be inserted at the beginning of ea
h su
h multipli
ation to ensure that thesize of any of the intervals boundaries are bounded by at most square root of �2:109.When admiss(i)\admiss(j) 6= ; for i = 0; :::;m�1 and j = i+1; :::;m�1, we 
on
lude thatthe edges 
onne
ting the two verti
es Vi and Vj form two dominating sets of edges 
omprisingthe 
ounter-
lo
kwise and 
lo
kwise sequen
e of edges 
onne
ting them. A further 
onditionthat examines the di�eren
e of two intervals representing interse
tions of admissible slopes ofvarious dominating sets is required to sele
t the irredundant ones (see Chapter 6. All su
h setsare represented by a singly linked list Dominating�set ordered a

ording to in
reasing valuesof i. The k'th element of the list points to the two integers i and j su
h that Vi and Vj form104



the k'th irredundant dominating set, and to the dire
tion of the set 
onne
ting the two verti
es(whether 
lo
kwise or 
ounter
lo
kwise). In Chapter 6, the entire pro
edure has been shown torequire an order of O(m2) operations of set interse
tions and 
omplements. From the dis
ussionabove, these require no more than integer multipli
ation and 
omparison. Assuming all su
hintegers and intermediary produ
ts �t in a ma
hine word, the total 
ost of this stage is of theorder O(m4) bit operations (see Chapter 6). We have also seen that the amount of storageneeded does not ex
eed eight integers per vertex (representing the total number of numeratorsand denominators of rational boundaries of intervals representing admiss(i) for some i), as wellas three integers per dominating set, whose number itself is dominated by m. As a result, thissub-routine requires at most O(m) = O(t) bits of storage.7.3.4 Determining univariate edge polynomialsAt this point, we shall make the distin
tion between a sparse and dense polynomial representa-tion as de�ned throughout the text. In parti
ular, we denote by a sparse polynomial stru
tureany su
h stru
ture where only information about the exponents of the terms is available, evenwhen the 
orresponding polynomial is not sparse enough. In the rest of the text it will be as-sumed that all entries in a sparse polynomial representation are ordered a

ording to in
reasingvalues of exponents. For simpli
ity, we shall also always assume that the 
oeÆ
ients of termsin a sparse representation are stored in a stru
ture mat
hing the one used for exponents, andit will be impli
it everywhere in our dis
ussion that 
oeÆ
ients of terms are retrieved whenevertheir exponents are so.On the other hand, we denote by a dense polynomial stru
ture any su
h stru
ture whereinformation about the (zero and nonzero) 
oeÆ
ients of the 
orresponding polynomial is avail-able, as indexed by the degrees of their terms. In the worst-
ase analysis, both sparse and denserepresentations will require the same amount of storage for dense polynomials.When f is sparse, so are the 
orresponding univariate edge polynomials along Newt(f).Thus, we require that they be represented using a sparse data stru
ture. The entire pro
ess ofdetermining these polynomials depends on a number of sub-tasks, su
h as identifying integralpoints belonging to the edge, 
hoosing only those points (e1; e2) 
orresponding to a term of f ,and determining the 
orresponding term in z as de�ned by the 
hange of basis in Step 4 ofAlgorithm 6.8.1.Identifying integral pointsLet Æ 2 Edge(f) where Æ = niei = Vi+1�Vi for some i = 0; :::;m�1, so that Æ has ni+1 integralpoints lying on it. To identify ea
h of these points, one 
an start from one of the endpoints, sayVi = (xi; yi), and use the gradients as de�ned by the slope of the line supporting the edge. Re
allthat the normalised slope s = a=b of the line supporting Æ 
an be retrieved using the pointerstored in Slope[i℄, and hen
e, all integral points on the line supporting Æ 
an be des
ribed byx = xi + kb; y = yi + ka;for k 2 Z. In parti
ular, points (e1; e2) lying between Vi+1 and Vi are de�ned by k = 1; :::; k0�1,where k0 = (xi+1 � xi)=b. One 
an then test whether (e1; e2) is an exponent 
orresponding to aterm of f by s
anning the list fabse2�1, this requiring no more than O(t) bit operations. ByCorollary 26 of Chapter 8, we know that, for a polynomial f 2 F p[x; y℄ of degree d, ea
h edge of105



Newt(f) will have at most O(d) integral points lying on it. Throughout the text, we shall referto this number as max�int�pts.Change of basisTo determine the 
hange of basis asso
iated with Æ one �rst has to determine its asso
iatedprimitive aÆne fun
tion as de�ned in Chapter 6. Given only the slope and two end points ofÆ, one 
an �rst derive the equation of its supporting line. If (xi; yi) and s = a=b are as de�nedabove, then the equation of this line is given byy � yix� xi = ab :To avoid any 
oating-point operations asso
iated with the right hand side division, we view thisas �ax+ by � (byi � axi) = 0;where we are fa
ed with a possible integer over
ow upon the 
al
ulation of byi � axi. This, of
ourse, 
an be avoided through a pre-test on the sizes of byi and axi as mentioned previously.The primitive aÆne fun
tion lÆ = �1x+ �2y + � 
an now be derived from the equation of Æ in astraightforward way. Sin
e Newt(f) should lie in the non-negative halfplane fr 2 R 2jlÆ(r) � 0g,one 
an simply 
hoose any vertex of Newt(f) di�erent from the two endpoints of Æ, and substituteits 
oordinates in the equation of the line 
omputed above. If the result is positive, we set�1 = �a; �2 = b; and � = �(byi � axi):Else, we set �1 = a; �2 = �b; and � = (byi � axi):These 
oeÆ
ients 
an now be stored in an integer array indexed by the position of Æ in the sta
kof edges. Finally, we 
all the Extended Eu
lidean algorithm to 
ompute the integers �1 and �2su
h that �1:�1 + �2:�2 = 1;and we store �1 and �2 
ontiguously next to �1; �2 and �. Assuming all input and intermediaryinteger values do not ex
eed the required bound, the above pro
ess per edge is dominated by a
onstant number of bit operations.The 
hange in basis as des
ribed in Step 4 of Algorithm 6.8.1 
an be retrieved using the
oeÆ
ients �1; �2; �1, and �2. Let (e01; e02) denote the 
oordinates of the starting vertex of Æ. Forea
h integral point of Æ 
orresponding to a term f(e1;e2)xe1ye2 in f , a univariate term in f(e1;e2)z�
an be found using� = (e2 � e02)=(��1) if �1 6= 0; or � = (e1 � e01)=(�2) if �2 6= 0;and every su
h exponent is stored in the sparse data stru
ture representing the sparse edgepolynomial. Sin
e all 
oordinates of points in Newt(f) are assumed to �t in a ma
hine word, thisrequires no more than O(1) bit operations per term. Combining the 
osts of the previous tasks,the whole pro
ess of 
onstru
ting the univariate edge polynomials is of the order O(md) = O(td)bit operations, and requires no more than O(mt) = O(t2) bits of memory.106



7.3.5 Interse
ting arbitrary lines with the polytopeIn many of the sub-routines to follow it be
omes essential to investigate how a geometri
 in-terse
tion between arbitrary straight lines and Newt(f) 
an be performed under the restri
tionthat all 
omputations have to re
eive and produ
e only integer values. Determining the inter-se
tion between an arbitrary straight line `0 and the polytope redu
es to �nding the interse
tionbetween `0 and all edges Æ 2 Edge(f). The main problem then lies in that the interse
tion pointsbetween any two lines may not be latti
e points. But then, they would simply not 
ontributeto any terms in the lifted polynomials and hen
e the algorithm as a whole, whi
h makes themdispensable for our appli
ation. A possible solution resides in 
onsidering other suitable pointswhi
h 
an still serve the same purpose, that of identifying all possible points of the polytope
orresponding to terms in parti
ular lifted polynomials. For this, we alternatively introdu
e thenotion of a near interse
tion point, to be that latti
e point (
ommon to the line and the edgeof the polytope) that is 
losest (or at best identi
al) to the real interse
tion point. The 
ru
ialidea behind our approa
h depends on that if `0 interse
ts an edge of Newt(f) in some point,this should lie in the smallest re
tangle R 
ontaining Newt(f) and whose edges fall on the linesof equations x = 0; x = xmax; y = 0 and y = ymax. That this 
an be found is a result of thefa
t that the 
onvex hull 
omputed above is the smallest 
onvex polygon 
ontaining all points
orresponding to terms of f . The entire sub-routine is then as follows:Algorithm 7.3.1 Interse
tion(Newt(f); u; v; w)Input: The vertex des
ription of Newt(f) and an arbitrary line `0 of generi
 equationux+ vy +w = 0.Output: The near interse
tion points of `0 and Newt(f), or the empty set (where the latterimplies that the line does not 
ontribute to any terms in the lifted polynomials).Step 1: Set k0  0, and i0; i00  �1;repeat1.1: If (vk0 + w) mod u = 0 and �(vk0 + w)=u 2 f0; :::; xmaxg, set i0  �(vk0 + w)=u.1.2: If (i0; k0) 2 Newt(f) then exit the loop;1.3: Set k0  k0 + 1.while k0 � ymax;Step 2: If k0 < ymax, set k00  ymax and repeat:2.1: If (vk00 + w) mod u = 0 and �(vk00 +w)=u 2 f0; :::; xmaxg, set i00  �(vk0 + w)=u.2.2: If (i00; k00) 2 Newt(f) then exit the loop.2.3: Set k00  k00 � 1.while k00 > k0;Step 3: If i0 6= �1 output (i0; k0), and if i00 6= �1 output (i00; k00).Corre
tness of the algorithm 
an be shown as follows. If ux+vy+w = 0 denotes the generi
equation of `0, we know that all latti
e points (a; b) of `0 and lying in R have a y 
oordinatein the range f0; :::; ymaxg su
h that (�vb � w)=u is an integer between 0 and xmax. A possibleapproa
h to �nding near interse
tions 
onsists in identifying (and then ex
luding) latti
e pointsthat belong to `0\R but not in Newt(f). By 
onvexity of Newt(f), the latter 
olle
tion of points107



are non-adja
ent, and form lower and upper latti
e points in `0 \R, whose ordinates belong tothe union of the two intervals [0; k0℄ [ [k00; ymax℄for some integers k0 and k00.Before establishing the 
ost of the above algorithm, we need to dis
uss how to de
ide whetheran arbitrary latti
e point of the plane belongs to Newt(f). In a rather straightforward approa
hone would just 
ompute the set of all points belonging to the polytope, so that testing anarbitrary point for in
lusion be
omes almost an immediate task. However, this requires about#Newt(f) = O(d2) bits of storage, whi
h is highly restri
tive for high degree fa
torisations.Furthermore, our up
oming sub-algorithm for 
omputing all integral points of Newt(f) requiresthat we perform interse
tions between arbitrary lines and the polytope, so that a more eÆ
ienttest for in
lusion in Newt(f) is needed. The test we propose works best when the numberof edges is signi�
antly less than #Newt(f). Re
all that, in Graham's algorithm above, we
onstru
ted the verti
es and edges in a 
ounter-
lo
kwise dire
tion around the pivot. A simple
onsequen
e of this and the fa
t that Newt(f) is 
onvex is that an arbitrary latti
e point belongsto the polytope if and only if it belongs to one of its edges, or it lies to the left of the dire
ted lineof ea
h edge Æ 2 Edge(f). For this, we adopt the test for \leftedness" suggested in [107℄: Giventhree arbitrary points A = (a1; a2); B = (b1; b2), and C = (
1; 
2), C is to the left of the dire
tedline AB if and only if the signed area of the 
ounter
lo
kwise triangle ABC is positive. Theformula we use, derived from the 
ross produ
t of the two ve
tors B �A and C � A, produ
estwi
e the value of the above area, and is given by(b1 � a1)(
2 � a2)� (
1 � a1)(b2 � a2):Combining, we have the following:Algorithm 7.3.2 Input: An arbitrary point C = (
1; 
2), and the vertex des
ription of Newt(f).Output: PASS if C 2 Newt(f), FAIL otherwise.Step 1; For i = 0; :::;m � 1 do1.1: Retrieve Vi+1 = (b1; b2) and Vi = (a1; a2); 
omputeE = (b1 � a1)(
2 � a2)� (
1 � a1)(b2 � a2):1.2: If E < 0 return(FAIL).Step 2: Return(PASS);Proposition 7.3.1 Algorithm 7.3.2 works 
orre
tly and requires O(t) bit operations.Proof: Corre
tness of the above pro
edure relies on that of the signed area test as dis
ussedin [107℄. It suÆ
es for an arbitrary point to fail the test for only one edge of Newt(f) for us to
on
lude that it does not belong to the polytope. The run time of the algorithm is dominatedby the 
ost of 
omputing the signed area for every edge of Newt(f). Assuming the integer
omputations in E are all 
orre
t and �tting in a ma
hine word, this brings the total 
ost toO(m) = O(t) bit operations. 108



Corollary 7.3.1 Algorithm 7.3.1 for 
omputing the near interse
tion points of an arbitrarystraight line with Newt(f) requires O(td) bit operations.Proof: The two major loops in Algorithm 7.3.1 iterate at most O(d) times, during whi
hone multipli
ation, one addition, and one division operation of integers are performed, alongwith a test for in
lusion in Newt(f). The 
ost of the inner loop 
omputations is dominated bythat of testing for in
lusion in Newt(f), whi
h is of the order O(t). The 
laim now follows.7.3.6 Computing the set of all integral points in Newt(f)Often throughout the rest of the algorithm, we will need to test for in
lusion of arbitrary pointsin the polytope. Although the test in Algorithm 7.3.2 is 
ru
ial for the Interse
tion sub-routine,it 
an be 
ostly to invoke this test very frequently. Hen
e, we introdu
e a more eÆ
ient methodfor identifying all integral points in Newt(f), whi
h uses the above version of Interse
tion onlyon
e, but whi
h 
an later be used as a less expensive test for in
lusion.Let IP denote the set of all integral points in Newt(f). The solution we provide is enhan
edby the fa
t that nowhere in our sparse adaptation will we need to have all elements of IPavailable at one and the same time. A

ordingly, it is suÆ
ient to store a signi�
antly smallersubset of IP that still allows us to either retrieve all of its elements or 
he
k whether an arbitrarypoint of the plane belongs to it. As dis
ussed previously, one possible idea is to examine latti
epoints of the polytope that lie on every horizontal line y = k, for k = 0; :::; ymax. This 
an bedone by 
omputing the near points of interse
tion between all su
h horizontal lines and Newt(f).Sin
e these 
an be either a
tual integral points of interse
tion or integral points that are 
losestto the interse
tion, we are sure that all elements of IP falling on the line y = k should liebetween the two near points of interse
tion. Repeating the pro
edure for all y = 0; :::; ymaxlabels in this way all elements of IP , and more. Given an arbitrary point of the plane (a; b), we
an de�ne a boolean fun
tion whi
h returns whether (a; b) 2 IP or not, by simply retrieving thenear interse
tion points between Newt(f) and y = b. Obviously, a is an integer lying betweenthe abs
issas of the two near interse
tion points if and only if (a; b) 2 IP .The data stru
ture we de�ne for this sub-routine will be a re
ursive one, where an ar-ray of ymax pointers Int�pts is su
h that Int�pts[y℄ points to another array of two integers,Int�
oordinatesy, representing the x 
oordinates of the two possible points of interse
tion withordinate equal to y. Sin
e we know that the line y = k interse
ts the polytope for k = 0; :::; ymaxin at least one near point, the �rst entry of Int�
oordinatesy 
ontains its 
oordinate. If thereexists another near point of interse
tion, we use the remaining entry of Int�
oordinatesy; else,we set this to be �1.Algorithm 7.3.3 Input: The vertex des
ription of Newt(f).Output: The set IP of all integral points in Newt(f).Step 1: For y = 0; :::; ymax do1.1: Call Interse
tion(Newt(f); 0; 1;�y); store the x 
oordinate of the �rst near point ofinterse
tion in the 
orresponding lo
ation of Int�
oordinatesy;1.2: If there is another near point of interse
tion store its 
oordinates in the 
orrespondinglo
ation of Int�
oordinatesy, and output all points lying between the two interse
tion109



points.1.3: Else, output the only near point of interse
tion.Proposition 7.3.2 Algorithm 7.3.3 works 
orre
tly as spe
i�ed and produ
es a des
ription ofIP in O(td2) bit operations and O(d) bits of memory.Proof: Corre
tness follows easily from the dis
ussion above. The run time depends on thesize of the range y = 0; :::; ymax as well as the 
ost of one 
all to the fun
tion Interse
tion, whi
his of the order O(td). In total, this brings the 
ost of �nding all integral points to O(td2). Sin
eat most two integers less than or equal to d (and hen
e �tting in a ma
hine word) are stored fory = 0; :::; ymax, where ymax = O(d), the spatial 
omplexity follows.Assuming this subset of points in IP is produ
ed only on
e at the beginning of the algorithm,testing for in
lusion of an arbitrary point in the plane 
omes at no 
ost beyond that of referen
ingtwo array entries. In the remainder of this 
hapter, we shall denote by In(IP; a; b) the fun
tion
all whi
h tests whether a point (a; b) belongs to IP . Moreover, we 
an now obtain a moreeÆ
ient pro
edure for determining the interse
tion of an arbitrary straight line with Newt(f).In parti
ular, we have:Corollary 7.3.2 Assuming that the above representation of IP is obtained as a pre
omputation,Algorithm 7.3.1 for �nding the interse
tion of an arbitrary straight line with Newt(f) 
an bemodi�ed to require O(d) bit operations.Proof: The proof is immediate to establish, by noting that Interse
tion 
an repla
e itssub-routine for testing in
lusion by the test In(IP ).Here and hereafter, we shall refer to the modi�ed interse
tion sub-routine as Interse
tion0.7.3.7 Counting fa
tors of univariate fa
torisationsOn
e the edge polynomials have been stored in univariate form, we are ready to perform thefa
torisations over the de�ning �eld. For simpli
ity of 
ode we 
hoose to make use of the
omputer algebra pa
kage MAGMA �, whereby the output of all previous stages is dire
tedto a �le that 
an serve as a MAGMA 
ode �le within whi
h lies its input. The input in this
ase 
omprises the following: all pie
es of data previously 
omputed and that will be needed inthe lifting stage, among whi
h are the verti
es of Newt(f), and the list of sets of dominatingedges. Also available are the univariate polynomials whi
h MAGMA has to fa
torise using itsbuilt-in fun
tion (based on the Berlekamp algorithm [8℄) for univariate polynomial fa
torisationover �nite �elds. The output of the MAGMA 
ode is now dire
ted into a �le whi
h has, inaddition to the original information above, the full fa
torisation of univariate edge polynomialsinto powers of irredu
ibles, and whi
h 
an be fed into the following sub-routines forming thethird phase of the implementation.In all what follows let F (Æ)0 denote the univariate edge polynomial asso
iated with Æ and let dÆdenote its degree. Assuming that irredu
ible fa
tors of F (Æ)0 are stored in sparse representation,we de�ne a list irredÆ of integer pointers su
h that element s of irredÆ points to the address�See http://magma.maths.usyd.edu.au/magma/ 110



in memory of the s irredu
ible fa
tor of f (Æ)0 produ
ed by the MAGMA 
ode above. We alsode�ne an integer array head�irred of size at most O(d) su
h that head�irredÆ[j℄ points to thelo
ation in the list irredÆ of the �rst irredu
ible polynomial of degree j, for j = 0; :::; dÆ . Let hdenote the total number of irredu
ible fa
tors of F (Æ)0 . We de�ne two integer arrays, mulÆ anddegÆ, of size h ea
h, su
h that mulÆ[s℄ denotes the multipli
ity in F Æ0 , and degÆ[s℄ denotes thedegree, of the s irredu
ible in irredÆ. The 
ru
ial idea behind our approa
h is that any degreej fa
tor Rj of F (Æ)0 has to satisfy the following:1. Rj = (irred(0)Æ )p0 � (irred(1)Æ )p1 � � � (irred(s)Æ )ps , where firred(k)Æ gk=0;:::;s represents the set ofall irredu
ible fa
tors of F (Æ)0 of degree less than or equal to j,2. pk � mulÆ[k℄, for k = 0; :::; s,3. Pk=0;:::;s degÆ[k℄ � pk = j.Using this notation, 
ounting the number of all possible polynomials Rj redu
es to 
ounting allpossible ways one 
an 
onstru
t an obje
t with s+ 1 spots, ea
h of whi
h 
an be o

upied bysome integer 
ag pk, for pk = 0; :::;mulÆ[k℄, and then to ex
luding those 
hoi
es of Rj whi
hfail 
ondition 3 above. We restate this simple 
ounting problem through the following re
ursivepro
edure:Algorithm 7.3.4 Input: A degree dÆ univariate polynomial F (Æ)0 fa
torised 
ompletely into pow-ers of irredu
ibles.Output: the number m(Æ)j of degree j fa
tors of F (Æ)0 , for j = 0; :::; dÆ .Part I:Count�divisors(dÆ)Step 1: for j = 0; :::; dÆ , do1.1: Let tail denote the address in memory of the last irredu
ible fa
tor of F (Æk)0 of degreej, and setspot tail.1.2: V ary�
ount(spot; j; tail).Part II:V ary�
ount(spot; j; tail)Step 1: Set pspot  �1;repeat1.1: Set pspot  pspot + 1;1.2: If (spot = 0) doIf Pk=0;:::;tail degÆ[k℄ � pk = j, set m(Æ)j  m(Æ)j + 1.1.3: Else if (spot > 0), 
all V ary�
ount(spot� 1; j; tail).while (pspot < mulÆ[spot℄).Proposition 7.3.3 Algorithm 7.3.4 works 
orre
tly as spe
i�ed. When used to determine thenumber of fa
tors of all possible degrees, the algorithm requires at most O(d1+hh) bit operations111



and O(td) bits of memory, where h denotes the maximum number of irredu
ible fa
tors of edgepolynomials F (Æ)0 over all Æ 2 Newt(f)y.Proof: For a �xed j = 0; :::; dÆ , Part I invokes the re
ursive fun
tion V ary�Count usingall irredu
ible fa
tors of the edge polynomial of degree less than or equal to j. Those fa
torshave indi
es 0; :::; tail in the list irredÆ, so that ea
h o

upies a \spot". We shall establish
orre
tness of the re
ursive fun
tion by indu
tion on the number of spots. Let N denote thisnumber. If N = 1, the 
all to the re
ursive fun
tion determines the number of ways one 
anform fa
tors of F (Æ)0 using only the �rst irredu
ible fa
tor, irred0. All su
h possible fa
tors areof the form irredp00 , for p0 = 0; :::;mulÆ[0℄. Now, suppose that the algorithm is true for N � 1.The 
all to V ary�
ount(N; j; tail) lists all possible powers that 
an o

upy spot N , and hen
eall possible powers of the irredu
ible having index N in the list irredÆ. For ea
h su
h 
hoi
e, a
all to V ary�
ount(N � 1; j) is assumed to have produ
ed all possible ways to form produ
ts ofpowers of irredu
ibles o

upying lo
ations 0; :::; N � 1 in the list irredÆ. Combining, this resultsin new ways to form produ
ts of powers of irredu
ibles o

upying lo
ations 0; :::; N in the list.When ea
h su
h produ
t has total degree j, a suitable fa
tor would have been found, and m(Æ)jis in
remented by 1.For a �xed j, 1 � j � d, sin
e h denotes the maximum number of irredu
ible fa
tors of edgepolynomials F (Æ)0 over all Æ 2 Newt(f), there are O(h) irredu
ibles (or spots) for every edge,and ea
h spot k 
an have at most mulÆ[k℄ � O(d) 
hoi
es. When ea
h 
hoi
e is made a test isperformed involving at most O(h) multipli
ations and additions of integers bounded by d. Sin
ej � d, the total run time now follows.It 
an be easily seen that the list irredÆ has size at most O(h). The array head�irredÆ isof size O(d) sin
e ea
h of its entries points to lo
ations in memory of the �rst irredu
ible fa
torof F (Æ)0 of some degree less than or equal to d. Hen
e, its entries are also bounded by O(h) invalue and thus �t in a ma
hine word, as h � d. Sin
e multipli
ities and degrees of all irredu
iblefa
tors are bounded by d, the arrays mulÆ and degÆ are of size O(h) and have entries whi
h �tin a ma
hine word. In total, the algorithm will require O(d) bits per edge polynomial, and soO(td) bits in total.7.3.8 Summand 
ounting and re
overing algorithmThe summand 
ounting algorithm used in Chapter 6 requires all elements of IP to be availablein about O(d2) bits of memory, whi
h makes it one of several bottlene
ks we would like toaddress before attempting very high degree fa
torisations. Sin
e our appli
ation is designedso as to spe
i�
ally target sparse polynomials, we allow again the use of a \naive" summand
ounting algorithm, whi
h, despite its being exponential in the number of edges m of Newt(f),requires negligible storage. Sin
e m = O(t), we expe
t this trade-o� between memory and runtime to be e�e
tive only for signi�
antly sparse polynomials. The pro
ess 
an be des
ribed invery similar terms as in the 
ounting pro
edure in Algorithm 7.3.4. By Lemma 13 of [45℄, anintegral polygon is a summand of Newt(f) if and only if it has an edge sequen
e of the form 
iei,for 0 � 
i � ni, for some 
i 6= 0 and 
m�1 6= nm�1, andP0�i<m 
iei is the zero ve
tor (the othersummand is understood to have the edge sequen
e f(ni� 
i)eig, for i = 0; :::;m� 1). Hen
e, weyNote that although h � d, it has been shown in [83, 84, 100℄ that h is approximately log d, so that in pra
ti
e,the 
ounting algorithm a
hieves its output in a reasonable amount of time112




an view any possible summand of Newt(f) as an obje
t 
onsisting of m spots, ea
h of whi
hhas a ve
tor ei asso
iated with it, and 
an be o

upied by a 
omponent 
i = 0; :::; ni, su
h thatXi=0;:::;m�1 
iei = 0:This again entails a re
ursive pro
edure examining all possible 
hoi
es of a summand with medges, ea
h of whi
h has a possible length in the range 
i = 0; :::; ni. The extra restri
tions wepla
e over the 
i's are that they should mat
h the degrees of the known univariate fa
tors ofthe edge polynomials f Æ0 su
h that Æ = niei. In parti
ular, we ex
lude any value for 
i su
h thatm(Æ)
i = 0. On
e a 
omplete 
hoi
e using some 
ombination of s
alar multiples of ve
tor edgeshas been formed, we 
he
k if the resulting ve
tor sum is zero, in whi
h 
ase a summand wouldhave been found.Sin
e the above approa
h uses information about the edges rather then the verti
es ofNewt(f), any of its possible summands will be produ
ed using an edge sequen
e des
ription.The data stru
ture we use for edges is a 
ir
ular doubly linked list of pointers: Ea
h elementof the list links to previous and following neighbours, and the last element links to the �rst.Ea
h pointer is asso
iated with some edge Æ0 in the summand, and points to an array Edge ofintegers su
h that EdgeÆ0 [0℄ and EdgeÆ0 [1℄ denote the respe
tive x and y 
omponents of Æ0. Thealgorithm 
an now be des
ribed as follows:Algorithm 7.3.5 Input: The edge des
ription fnieigi=0;:::;m�1 of Newt(f), the set fm(i)j j 0 �j � deg(F Æi0 )g, where m(i)j is the number of degree j fa
tors of F Æi0 , and an upper bound M onthe total number of summands.Output: The edge des
ription of all possible pairs Q;R su
h that Newt(f) = Q+R, or \failure"if the number of su
h de
ompositions ex
eeds M .Part I: Count�summands()Step 1: Set spot m� 1, first�spot 0.Step 2: Call V ary�
hoi
e0(spot; first�spot);Part II: V ary�
hoi
e0(spot; first�spot)Step 1: Set 
spot  �1; repeat1.1: 
spot  
spot + 1;1.2: If m(spot)
spot > 0 do1.2.1: If spot = first�spot, 
he
k if the 
hosen edge sequen
e forms the zero ve
tor andthat the sequen
e 
iei, for i = 0; :::;m � 1, is not trivial. If so, output this summand.1.2.2: Else, if spot > last�spot, 
all V ary�
hoi
e0(spot� 1; f irst�spot).while (
spot < nspot).Step 2: If total number of summands ex
eeds M , halt the polytope algorithm.Proposition 7.3.4 Algorithm 7.3.5 works 
orre
tly and requires O(tdt) bit operations and nomore than O(t) bits of memory to list all pairs of summands.113



Proof: Corre
tness follows similarly as in the proof of Proposition 7.3.3 above, and we leavethe details for the reader. To establish the running time, we �rst know that the maximum overall ni's, denoting the maximum number of integral points along any edge of Newt(f), is O(d).The naive method has to 
ount over O(dm) = O(dt) di�erent summands of Newt(f), whereevery 
ount is a

ompanied by O(m) additions and multipli
ations of ve
tor 
oordinates, ea
hof whi
h is an integer less than or equal to d, and hen
e 
an �t in a ma
hine word for values ofd used in our appli
ation. If the number of all possible pairs of summands is larger than somelarge parameter M , the entire 
ode is halted produ
ing Failure as in Algorithm 6.8.1 above.Note that we do not need to keep information about more than one pair of summands at atime. For ea
h su
h non-trivial pair, we 
an 
arry out further 
omputations in
luding the liftingstage. If unsu

essful, the pro
ess 
an be repeated using a di�erent pair of summands whi
ho

upies the spa
e of its prede
essor. As su
h, the amount of storage needed is O(m) = O(t)bits of memory, where we understand that the 
omponent ve
tors des
ribing the edges of anysummand are bounded in size by the 
omponent ve
tors of edges of Newt(f).Re
overing a vertex des
ription of the summandsIn the above algorithm, we obtained only the edge sequen
e des
ribing a pair of summands Qand R of Newt(f), whi
h des
ribes a unique de
omposition up to translation with an arbitraryve
tor in R 2. However, it is essential that we identify whi
h of these translated summands will
orrespond to possible fa
tors of f . In parti
ular, the following 
onsequen
e of Corollary 7.2.1requires that we seek a vertex des
ription allowing the proper translation of Q and R a

ordingto the fa
t below:Corollary 7.3.3 Let f 2 F p[x; y℄ be of total degree d su
h that f has no trivial monomial fa
torsof the form f(i;j)xiyj for some positive integers i and j, f(i;j) 2 F p, and let Q be any summandof Newt(f) that 
orresponds to a possible fa
tor g of f . Then Q must have at least two verti
esor edges on the x-axis and y-axis respe
tively.Proof: Suppose Q is a summand of Newt(f) 
orresponding to a possible non-trivial fa
torg of f . For f as above, g must have no trivial monomial fa
tors of the form f(i;j)xiyj. ByCorollary 7.2.1, Q must have at least two verti
es on the x and y axes.The data stru
ture we use for the vertex des
ription of the summands is the sta
k of pointsas used in the representation of Newt(f). For 
onsisten
y, we will always assume that ea
h ofthe summands has m verti
es and edges, though some of the edges may be trivial, in whi
h 
asewe also de�ne appropriate trivial verti
es with 
oordinate values (�1;�1), as we show in thefollowing pro
edure.Let fqi = 
ieigi=0;:::;m�1 denote the edge sequen
e of a summand of Newt(f). We �rst 
hoosean arbitrary point to be the pivot V0, su
h as the origin of 
oordinates (0; 0) for instan
e, andthen de�ne an auxiliary ve
tor sum, sum, initialised to zero. We then build around the pivot byadding to sum the ve
tor edges given one at a time. Sin
e the edges are dire
ted in a 
ounter-
lo
kwise fashion around the pivot as in Newt(f), we expe
t to build the verti
es in a sta
kstru
ture. If some edge qi = Vi+1 � Vi is trivial, we insert a trivial vertex at the appropriateindex of the sta
k as follows. If qi is followed by a non-trivial edge qj, for some j = i+1; :::;m�1,then Vi+1 is a trivial vertex. Else, if qi is not followed by any non-trivial edge, then, sin
e the114



last non-trivial edge of the summand is qi�1, it must 
onne
t Vi to V0, so that Vi 
oin
ides withthe pivot, at whi
h point the edge sequen
e forms a 
losed zero sum. A

ordingly, we de�neall the remaining verti
es Vj, for j � i, to be trivial. When all non-trivial verti
es have beendetermined with (0; 0) as the pivot, we translate the polytope so that the following is satis�ed:1. Q lies 
ompletely in the positive quadrant f(x; y)jx; y � 0g,2. Q interse
ts the x-axis and y-axis in at least one point respe
tively.In simpler terms, the lowest abs
issa and ordinate among all 
oordinates of verti
es should bezero. As a result, it suÆ
es to determinea = min(xi)i=0;:::;m�1 and b = min(yi)i=0;:::;m�1for Vi = (xi; yi) and to translate ea
h of the verti
es of Q by the ve
tor (�a;�b). The pro
edure
an now be summarised as follows:Algorithm 7.3.6 Input: The edge sequen
e qi = f
ieigi=0;:::;m�1 of a summand Q of Newt(f),where not all the 
i's are zero and where 
m�1 6= nm�1.Output: The verti
es V0; :::; Vm�1 of Q.Step 1: Set sum (0; 0), V0  (0; 0);For i = 0; :::;m � 1 do1.1: If qi is not trivial, set Vi+1  sum+ qi and sum sum+ qi;1.2: Else, if qi is followed by a non-trivial edge, set Vi+1  (�1;�1);1.3: Else, for j = i; :::;m � 1, set Vj  (�1;�1).Step 2: Let a and b denote the lowest abs
issas and ordinates among all 
oordinates of thenon-trivial verti
es; translate all non-trivial verti
es of Q by (�a;�b).The proof of 
orre
tness and that the algorithm requires O(t) bit operations is immediate,bearing in mind that m = O(t) and that a ve
tor sum in our appli
ation redu
es to the additionof two integers whi
h do not ex
eed d, and hen
e whi
h �t in a ma
hine word.Computing the integral points belonging to Q and ROn
e a vertex des
ription of the appropriate translated images of summands has been 
omputed,we 
an determine the sets of integral points IPg and IPh belonging to Q and R respe
tively, as wehave seen earlier in the 
ase of Newt(f), in O(td2) bit operations. We further keep tra
k of twoindi
es, denoted by remg and remh, and initialised to #IPg and #IPh respe
tively. The indi
esare de
reased by 1 every time a new 
oeÆ
ient is spe
ialised, so that a total spe
ialisationof 
oeÆ
ients of g or h is rea
hed when any of remg or remh is zero. For future use, wealso determine the number of integral points gnÆ0i falling on every edge Æ0i of Q, using the O(d)te
hnique of Subse
tion 7.3.4. We also note that the lo
ation in memory used to store informationabout the summands 
an be reused upon ea
h new 
hoi
e.
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7.3.9 Choosing 
oprime dominating edges fa
torisationsAs a result of the 
hanges we have introdu
ed to the summand 
ounting algorithm re
ommendedin Chapter 6, the pro
edure with whi
h we 
hoose a 
oprime edges fa
torisation has to be mod-i�ed as well. Given a �xed pair of summands of Newt(f) and a set of all irredundant sets � ofdominating edges, we want to identify all resulting 
oprime dominating edges fa
torisations. Forevery pair of verti
es Vi and Vj su
h that i < j and whose 
onne
ting edges form a dominatingset, we 
an 
hoose � to be the (forward) sequen
e of edges niei; :::; nj�1ej�1 or the (ba
kward)sequen
e njej ; :::; nm�1em�1; n0e0; :::; ni�1ei�1. Let � denote a �xed irredundant set of domi-nating edges of 
ardinality m0, and suppose that all edges in � have been relabelled to o

upyan index in f0; :::;m0 � 1g. We 
an generate a sequen
e of 
oprime edges fa
torisations by ex-amining all possible ways we 
an form a m0 sequen
e of polynomials G(Æi)0 , for i = 0; :::;m0 � 1,ea
h satisfying the following:1. G(Æi)0 = irredp00 � � � irredpss , where firredkgk=0;:::;s denotes the list of all irredu
ible fa
torof F (Æi)0 of degree less than or equal to length of Æi.2. pk = 0 or pk = mulÆi [k℄, for k = 0; :::; s.3. Pk=0;:::;s ps � degÆi [k℄ = jjÆijj.Here, jjÆijj denotes the length of edge Æi. The se
ond 
ondition above guarantees a 
oprimeedges fa
torisation, sin
eH(Æi)0 = F (Æi)0G(Æi)0 = irredmulÆi [0℄�p00 � � � irredmulÆi [s℄�pss ;so that G(Æi)0 and H(Æi)0 have a non-trivial fa
tor in 
ommon if and only if there exists at leastone k su
h that irredk has a non-trivial multipli
ity di�erent from 0 and mulÆi [k℄ in both G(Æi)0and H(Æi)0 . Sin
e we need only one edge polynomial de
omposition F Æi0 = GÆi0 HÆi0 at a time tomake a sequen
e of fa
torisations using all Æi 2 �, and only one sequen
e of edges fa
torisationsat a time to initiate lifting, we 
an interleave the two pro
esses as follows:Algorithm 7.3.7 Input: A �xed integral de
omposition Newt(f) = Q+R and all fa
torisationsof the edge polynomials into powers of irredu
ibles.Output: All possible 
oprime dominating edges fa
torisations asso
iated with Q and R.Part I: Choose�
oprime�fa
torisationsStep 1: For all pairs of verti
es (Vi; Vj) of Newt(f), where i = 0; :::;m�1 and j = i+1; :::;m�1,and where the edges 
onne
ting Vi and Vj form an irredundant set of dominating edges:while no fa
torisation has been a
hieved and any of the irredundant sets has not been used, do:1.1: Consider the edge sequen
e 
omprising �:1.1.1: Set m0  #� and perform a 
hange of index so that the edgesin � are relabelled as fÆ0; :::; Æm0�1g.1.1.2: Let fÆ00; :::; Æ0m0�1g be the 
orresponding set of edges in Q su
hthat Æ0k is a summand of Æk, for k = 0; :::;m0 � 1.116



1.1.3: Let tail denote the address in memory of the last irredu
ible fa
tor of F (Æk)0 ofdegree equal to jjÆ0kjj.1.1.4: Set k  m0�1, and spot tail, and 
all V ary�
hoi
e�a
ross�edges(Æk ; Æ0k; spot; tail).Part II: V ary�
hoi
e�a
ross�edges(Æk ; Æ0k; spot; tail)Step 1: Set power(spot)  �1;repeat1.1: If power(spot) = �1, set power(spot)  power(spot) + 1.1.2: Else, set power(spot)  mulÆk [spot℄.1.3: If spot = 0, 
he
k if a 
oprime edges fa
torisation 
orresponding to the lengths of thesummand edges has been found:1.3.1: If jjÆ0kjj = 0, set G(Æk)0 = 1 and H(Æk)0 = F (Æk)0and go to 1.3.3.1.3.2: Else, �nd the produ
t Poly of all polynomials polyr, for r = 0; :::; tail,su
h that polyr = irredÆk [r℄power(r). If deg(Poly) = jjÆ0kjj, setG(Æk)0  Poly and H(Æk)0  F (Æk)0 =G(Æk)0and go to 1.3.3. This will 
onstitute the 
oprime fa
torisation asso
iated with edge Æ0k.1.3.3: If Æk is the �rst edge in �, all edges now have a 
oprime fa
torisation asso
iatedwith them, and we start lifting using all dominating boundary fa
torisations.1.3.4: Else, repeat Step 1 in Part II above for the pre
eding edge Æk�1:Let tail denote the address in memory of the last irredu
ible fa
tor of F (Æk�1)0 of degreeequal to jjÆ0k�1jj, set spot tail, and 
all V ary�
hoi
e�a
ross�edges(Æk�1; Æ0k�1; spot; tail).Step 1.4: Else if spot > 0, we still need to 
hoose powers of irredu
ible fa
tors of F (Æk)0of index spot� 1; spot� 2; :::; 0: Call V ary�
hoi
e�a
ross�edges(Æk; Æ0k; spot� 1; tail).while (power(spot) < mulÆk [spot℄ and fa
torisation still not a
hieved).Proposition 7.3.5 Algorithm 7.3.7 works 
orre
tly and requires O(t2d1+hh) bit operations andO(td) bits of memory, where h denotes the maximum number of irredu
ible fa
tors of edgepolynomials F (Æ)0 over all Æ 2 Newt(f).Proof: We establish 
orre
tness by indu
tion on the number of edges in �. If m0 = 1, thepro
edure above redu
es to �nding all possible fa
tors of F (Æ0)0 of degree jjÆ00jj. Corre
tness in this
ase 
an be proven by indu
tion as in the proof of Proposition 7.3.3 above. Now, suppose the al-gorithm is 
orre
t when the number of edges in � is less thanm0. For the �xed edge Æm0�1 2 �, themain loop in Part II examines all possible fa
tors of F (Æm0�1)0 of degree jjÆ0m0�1jj, whi
h is 
orre
tas shown in Proposition 7.3.3. For ea
h su
h fa
tor whose degree mat
hes the length of Æ0m0�1,and by the indu
tion hypothesis, the 
all to V ary�
hoi
e�a
ross�edges(Æm0�2; Æ0m�2; spot; tail)determines all possible 
oprime edges fa
torisations along edges Æk, for k = 0; :::;m0�2. But nowa full 
hoi
e using one fa
tor of F (Æm0�1)0 and all possible fa
tors of F (Æk)0 , for k = 0; :::;m0 � 2,117



has been made. At this stage, one 
an then initiate lifting using 
oprime fa
torisations for alledges in �.The worst-
ase run time of the algorithm 
an be derived from the fa
t that one would have totry all possible 
oprime fa
torisations using �. By Proposition 7.3.3, �nding all possible 
hoi
esof polynomials per edge is of the order O(d1+hh). A
ross all edges of �, this be
omes of the orderO(md1+hh). Assuming that there are at most O(m) pairs of verti
es (Vi; Vj) 
onne
ting two setsof dominating edges, the total worst-
ase 
omplexity is of the order O(m2d1+hh) = O(t2d1+hh).Now, sin
e any of the summands Q and R will have at most #Newt(f) = O(d2) integralpoints, the maximum number of integral points found along any edge of Q or R is bounded bythat same number found along any edge of Newt(f), whi
h is O(d). The amount of storageneeded in the above algorithm is for one 
oprime edges fa
torisation only, where the univariateedge polynomials 
orresponding to Q or R have degrees bounded by O(d), so that the memoryneeded is about O(td) bits.On
e a 
oprime dominating edges fa
torisation has been 
hosen, we 
an perform further
hara
terisations of the 
orresponding edge polynomials in Q and R. First, and for all pairs of
oprime edge polynomials G0 and H0, we 
ompute the unique polynomials U and V su
h thatUG0 + V H0 = 1and deg(U) < deg(H0);deg(V ) < deg(G0), using the Extended Eu
lidean algorithm for polyno-mials. Even though G0 and H0 are sparse, the polynomials U and V may be dense themselves,having about O(d) terms. However, we shall store these in a sparse data stru
ture whereby onlyinformation about the terms is available. We also determine other edge 
hara
teristi
s, su
h asthe primitive aÆne fun
tion asso
iated with every edge of the summands. Given Æ 2 Edge(f)and Æ0 its summand in Q, we have thatlÆ0(x; y) = lÆ(x; y)� 
Æ = �1x+ �2y + � � 
Æfor some unique integer 
Æ [2℄. Sin
e �1; �2 and � have already been 
omputed, it suÆ
es todetermine and store only 
Æ , by �nding the equation of the straight line with slope ��1=�2 andpassing through one of the verti
es of Æ0, as shown in Se
tion 7.3 above. This immediatelydetermines the primitive aÆne fun
tion of the edge Æ00 = Æ � Æ0. Furthermore, we 
an now usethe 
oprime dominating edges fa
torisation 
hosen above to spe
ialise a subset of the 
oeÆ
ientsof the possible fa
tors g and h 
orresponding to the �xed pair of summands we have used above.In parti
ular, if we write G(Æ0k)0 = Xs=0;:::;jjÆ0kjj�1 gszs;and if (a; b) denotes the 
oordinates of the head of the edge Æ0k, then, by Lemma 9 of [2℄, ea
hterm gszs of G(Æ0k)0 will result in the spe
ialisation of a 
oeÆ
ient of a term gsxiyj in g, su
h thati = �2:s+ a and j = ��1:s+ b;where (a; b) denote the 
oordinates of the starting vertex of Æ0. As in the sparse representationof terms of f , we store only these terms of g and h spe
ialised so far. The data stru
ture isidenti
al to the one des
ribed in Se
tion 7.3 for representing terms of f , with gymax and hymax,gxmax and hxmax, gterms and hterms, and gabs and habs the analogous terms of ymax, ymin,yterms, and fabs respe
tively. This would require at most O(td) bits of memory.118



7.4 The sparse lifting algorithmWith the ex
eption of the summand 
ounting algorithm and the 
orresponding subroutine fordetermining dominating 
oprime edges fa
torisations, all the previous tasks 
omprise the pre-
omputation phase, whose 
omplexity bounds are dominated by O(d1+hh) bit operations andO(t2 + d) bits of storage. As noted in [2℄, the summands and boundary fa
torisations need notbe all 
omputed at on
e. Lifting 
an be initiated for ea
h 
oprime edges fa
torisation one at atime until a fa
tor is found or the lifting pro
edure fails. Our empiri
al �ndings in Tables 7.1and 7.2 demonstrate that in pra
ti
e, and given very sparse polynomials su
h as those de�nedin Se
tion 7.2, the total number of dominating 
oprime edges fa
torisations is 
onsiderably lessthan the total degree of the input polynomial. For su
h 
lass of polynomials, we will 
onsiderthat the sparse lifting pro
edure will be invoked a number of times that is bounded by somesmall 
onstant M . It is re
ommended that the polytope method be dis
arded on
e the numberof 
oprime edges fa
torisations attempted ex
eeds this bound, and one revert to other \dense"methods [2℄.The main sub-routine of the polytope lifting stage is as follows:Algorithm 7.4.1 Input: A (�;K;Q;R) 
oprime dominating edges fa
torisation, where K =(1)Æi2�, for i = 0; :::;m0 � 1.Output: A fa
torisation of f , or \failure".While a fa
tor of f has not been found and not all 
oeÆ
ients in Q and R have been spe
ialised,do: Step 1: For every Æi 2 � do1.1: Retrieve its summand Æ0i 2 Q and the 
orresponding primitive aÆne fun
tion lÆ0i .1.2: Count the number of unspe
ialised terms uÆ0i on the kÆi+1 translate of the supportingline of Æ0i into Q, and whose equation is de�ned by lÆ0i = (kÆi + 1).Step 2: Choose one edge Æi whose summand satis�es:. uÆ0i < gnÆ0i. uÆ0i = max(uÆ0s)s=0;:::;m0�1Step 3: Set kÆi  kÆi + 1 and perform a K lifting of the given partial fa
torisation. If thisextension produ
es failure, exit the loop and 
hoose a new 
oprime edges fa
torisation.End.The pseudo-
ode above mostly re
e
ts the operations in Step 4 of Algorithm 6.8.1, whi
h hasbeen proven to terminate either with a failure or with a fa
tor of f (see [2℄ for full details). Theonly slight modi�
ation is in 
hoosing the suitable edge to lift from. Primarily, one has to 
hooseÆ0 su
h that the number of unspe
ialised terms on its kÆ + 1 translate is less than the numberof integral points on Æ0. In the dense implementation of [2℄, preferen
e was given to \shorter"edges even though lifting from these edges revealed a smaller number of 
oeÆ
ients of g and h,sin
e their 
orresponding lifted univariate polynomials had smaller degrees, and hen
e 
ould bepro
essed faster by polynomial arithmeti
 sub-routines. However, this argument does not hold inour sparse adaptation, where the 
omplexity of sparse polynomial arithmeti
 be
omes dependenton the number of terms in a polynomial rather than its degree. Also, sin
e we expe
t many ofthe lifted univariate polynomials to be zero, non-trivial polynomial arithmeti
 is performed only119



very rarely. Preferen
e is thus shifted to longer edges whi
h reveal more 
oeÆ
ients per liftingstep.To establish the run time and spatial 
omplexity of the above lifting module, we shall needto investigate ea
h of its inner sub-routines, for whi
h the rest of this se
tion is dedi
ated.7.4.1 Dete
ting spe
ialised 
oeÆ
ientsA 
ru
ial aspe
t of our sparse adaptation 
onsists in that only nonzero terms of g or h getstored as they are revealed during the lifting stages. Consequently, it be
omes essential to �ndeÆ
ient ways of identifying whether or not an arbitrary point in Q (or R) 
orresponds to aspe
ialised term of g (or h), a task whi
h is otherwise immediate in a dense implementation,where information about all the latti
e points is stored. For this, we propose the followingalgorithm:Algorithm 7.4.2 Input: An arbitrary point (i; j) of Q, and a partial (�;K)-fa
torisation ex-tending a 
oprime dominating edges fa
torisation.Output: PASS if (i; j) 
orresponds to a spe
ialised 
oeÆ
ient of g, and FAIL otherwise.Step 1: For every Æ 2 �, let Æ0 denote its summand in Q, let kÆ denote the entry in the K ve
torindexed by Æ, and let lÆ0 denote the primitive aÆne fun
tion asso
iated with Æ0.Step 1.1: If lÆ0(i; j) < kÆ return(PASS).Step 2: Return(FAIL).Proposition 7.4.1 Algorithm 7.4.2 works 
orre
tly and requires O(t) bit operations.Proof: The input to the algorithm presupposes a partial (�;K) fa
torisation, where exa
tlythe 
oeÆ
ients of g indexed by latti
e points in Qj�;K have been spe
ialised [2℄. But these arepre
isely the points given by:Qj�;K := fe 2 Q j 0 � lÆ0(e) < kÆ where Æ0 is a summand of some Æ 2 �g;whi
h establishes 
orre
tness. Assuming that no integer over
ow o

urs as a result of 
omputinglÆ0(i; j), the main loop of the algorithm iterates at most O(m) = O(t) times, during whi
h onlymultipli
ation and addition of bits is performed.The algorithm above still does not produ
e whether (i; j) 
orresponds to a nonzero termof g, if at all spe
ialised. However, this 
an be readily 
he
ked by a simple s
an of the list ofnonzero terms of g that have already been spe
ialised, so that in general, the following s
hemewould work best:Algorithm 7.4.3 Spe
ialised(i; j)Input: An arbitrary point (i; j) of Q, and a partial (�;K)-fa
torisation extending a 
oprimedominating edges fa
torisation.Output:� The 
oeÆ
ient of g(i;j)xiyj in g, if (i; j) 
orresponds to a nonzero term of g,120



� 0 if (i; j) 
orresponds to a zero term of g,� and �1 otherwise.Step 1: S
an the list gabsj�1; if there exists an element with value i, return the value of its
oeÆ
ient.Step 2: Invoke Algorithm 7.4.2 with input (i; j); if output is PASS, return (0), else return (-1).It is trivial to see why the above algorithm works 
orre
tly and requires an order of O(t) bitoperations, the 
ost for both s
anning the list gabsj�1 and 
alling Algorithm 7.4.2.7.4.2 Counting unspe
ialised termsIn this se
tion we dis
uss another frequently used pro
edure for 
ounting unspe
ialised terms ontranslated edges of Q. The approa
h mirrors in many aspe
ts that of identifying integral pointsinterior to Newt(f), and is des
ribed as follows:Algorithm 7.4.4 Input: Æ in �, Æ0 its summand in Q, and a partial (�;K)-fa
torisation ex-tending a 
oprime dominating edges fa
torisation.Output: The number of unspe
ialised 
oeÆ
ients 
orresponding to integral points on the kÆ + 1translate of the supporting line of Æ0 into Q.Step 1: Retrieve the primitive aÆne fun
tion lÆ0 = �1x+ �2y+ �� 
Æ, and 
onsider the equationof the line `0 given by lÆ0 = kÆ + 1; set num 0.Step 2: Call Interse
tion0(IPg; �1; �2; � � (
Æ + kÆ + 1)).Step 3: For every integral point (i; j) between and in
luding the two near points of interse
tionprodu
ed in Step 2 above, if Spe
ialised(i; j) = �1, set num num+ 1.Step 4: Return num.Proposition 7.4.2 Algorithm 7.4.4 works 
orre
tly as spe
i�ed and requires at most O(td) bitoperations.Proof: Given a partial (�;K)-fa
torisation, the algorithm aims to 
ount the number ofunspe
ialised terms of the polynomial G(Æ)kÆ+1, for all Æ 2 �. This is done by examining the
orresponding number of integral points on the kÆ + 1 translate of Æ0 into Q, su
h that Æ0 is asummand of Æ. By Lemma 8 of [2℄, if GÆkÆ+1 has a nonzero number of unspe
ialised terms thatis stri
tly less than the number of integral points on Æ0, then all of these have exponents whi
hare adja
ent integral points on the kÆ+1 translate of the supporting line of Æ0 into the polytope,whose equation is de�ned by l0Æ� (kÆ+1) = 0, where l0Æ = lÆ� 
Æ = �1x+�2y+�� 
Æ. The abovealgorithm 
alls the interse
tion fun
tion Interse
tion0 to determine integral points on this linewhi
h are then tested for spe
ialisation.Interse
tion0 with the given input requires O(d) bit operations, while a 
all to Spe
ialisedrequires O(t) bit operations. Sin
e there are about O(d) integral points lying on `0 and insideQ, the total amount of time required by the above algorithm is at most O(td) bit operations.121



7.5 Investigating one lifting stepThe following se
tion is dedi
ated to analysing the 
omplexities of a number of major sub-routines used per one step of lifting from a �xed edge in �. It is in these tasks that other strongaspe
ts exploiting sparsity will be highlighted.Sparse univariate polynomial arithmeti
 over F pThe most basi
 of these tasks is related to sparse arithmeti
 of univariate polynomials over F p.Assuming that terms of sparse polynomials are stored in in
reasing order of their exponents,the following algorithm performs the summation of two sparse polynomials in time linear in theinput size; in parti
ular, we have:Algorithm 7.5.1 Sum(f0; f2)Input: Two polynomials f0, f1 2 F p[z℄ in sparse format su
h that fj[i℄ represents the exponentof the i'th term in fj, j = 1; 2. Also given are t0 and t1, the total number of terms in f0 and f1respe
tively. We may also assume that f0 and f1 are nonzero.Output: f0 + f1 in sparse format.Step 1: index 0, index0  0, index1  0;Step 2: while (index0 < t0 and index1 < t1) do2.1: If f0[index0℄ > f1[index1℄ and index1 < t1 do2.1.1: Set sum[index℄ f1[index1℄.2.1.2: Set index1  index1 + 1.2.1.3: Set index index+ 1.2.2: Else, if f0[index0℄ < f1[index1℄ and index0 < t0 do2.2.1: Set sum[index℄ f0[index0℄.2.2.2: Set index0  index0 + 1.2.2.3: Set index index+ 1.2.3: Else, if f0[index0℄ = f1[index1℄ do2.3.1: Let 
0 and 
1 denote the 
oeÆ
ients of terms whose exponents are f0[index0℄ andf1[index1℄ respe
tively.2.3.2: If 
0 + 
1 6= 0 mod p, set sum[index℄ f0[index0℄, and index index+ 1.2.3.3: If index0 < t0 set index0  index0 + 1.2.3.4: If index1 < t1 set index1  index1 + 1.Step 3: If index0 < t0 set the remaining terms of sum to be the remaining terms of f0; else, ifindex1 < t1, set the remaining terms of sum to be the remaining terms of f1.Proposition 7.5.1 The above algorithm works 
orre
tly as spe
i�ed, requiring O(t) bit opera-tions and O(t) bits of memory, for input polynomials in sparse format with at most O(t) terms.Proof: The algorithm is based on a 
omparison pro
edure whereby terms of f0 and f1 are
olle
ted together in in
reasing order of exponents, su
h that any two terms from f0 and f1respe
tively and having the same exponent are added modulo p. When any one summand isexamined entirely, the remaining terms in the other polynomial will all belong to the sum. Thesub-routine above is linear in the number of 
omparisons it makes between exponents of terms,122



so that it requires no more than O(t) bit operations for input polynomials with at most O(t)terms, whose exponents do not ex
eed a ma
hine word. The sum produ
ed has at most t0 + t1terms, and hen
e requires O(t) bits of memory.Note: The produ
t of two polynomials with O(t0) and O(t1) terms respe
tively 
an now bea
hieved using repeated 
alls, say O(t0) of them, to the fun
tion Sum, using input of at mostO(t1) terms. This 
osts O(t0t1) bit operations, and requires O(t0t1) bits of memory for storingthe �nal produ
t.7.5.1 A 
omplete des
ription of a sparse lifting stepThe most 
omputationally extensive part of a single lifting step 
onsists in solving for the knownpolynomial e(z) su
h thatGkÆ � V [(FkÆ � kÆ�1Xj=1 GjHkÆ�j) mod G0℄ = e(z)G0; (7.1)where Gs (or Hs), for s = 1; :::; kÆ � 1, are fully spe
ialised univariate polynomials. In theworst-
ase analysis, one would expe
t to lift at most O(d) times from any edge of Newt(f) (anumber we will denote by max�lift), where this measure is derived from the dimensions of thed � d square embedding Newt(f). Consequently, we would require to preallo
ate a region ofmemory suÆ
ient to hold about O(d) polynomials per edge, ea
h having degree bounded byO(max�int�pts) = O(d). But this amounts to O(d2) bits of memory, despite the fa
t thatmany of these polynomials may turn out to be zero. A 
ru
ial modi�
ation to the above denses
enario 
aters not only to the fa
t that these polynomials would at worst be as sparse as g orh, but that very few of them will be nonzero. Parti
ularly, we have the following:Lemma 7.5.1 Let f 2 F p[x; y℄ be a polynomial of total degree d and at most t nonzero terms.Let r be a ve
tor in R 2 and let � be an irredundant dominating set of Newt(f) in dire
tion r.Assume furthermore that f = gh for two non-trivial monomial fa
tors g; h 2 F p[x; y℄ with tg andth terms respe
tively, su
h that max(tg; th) = O(t�) for some 
onstant � satisfying 0 < � < 1.Then, given the de
omposition Newt(f) = Newt(g) +Newt(h) su
h that Newt(g) is not a singlepoint or a line segment parallel to rR�0, and for any 
oprime dominating edges fa
torisation off relative to �;Newt(g) and Newt(h), there will be at most O(t�) non-
onstant polynomials gkÆand hkÆ relative to any Æ 2 �, for kÆ � 0, and satisfying the Hensel lifting equations in (6.2).Proof: Consider all possible liftings from some edge Æ 2 �, and let Æ0 denote its summandin Newt(g). Sin
e g has O(t�) nonzero terms, Newt(g) will have O(t�) latti
e points whi
h
orrespond to spe
ialised nonzero terms of g. In the worst-
ase analysis, none of these pointswill fall on the same translate of the supporting line of Æ0 into Newt(g). In that 
ase, the liftedpolynomials whose terms 
orrespond to latti
e points of Newt(g) on these translates will benonzero, and there will be at most O(t�) of them. An identi
al argument applies for the liftedpolynomials in Newt(h).The dis
ussion we shall present below applies for the representation of both G and H poly-nomials. The data stru
ture we 
hoose treats the distribution of the Gs's as a sparse one, fromwhi
h information 
an be derived only about the nonzero lifted polynomials. We de�ne a singly123



linked ordered list G, whose elements point only to nonzero polynomials Gs, ordered in in
reas-ing order of their translate index s. Another integer array, Ghead, of size O(max�lift) = O(d),is used to provide qui
k a

ess to the list as follows. If Ghead[s℄ = �1, for some s < max�lift,then Gs is understood to be zero; else, if Ghead[s℄ � 0, then Gs is nonzero and o

upies positionGhead[s℄ in G. Furthermore, ea
h polynomial in the list is represented by a sparse array, Gpoly,whose entries 
ontain the exponents of its nonzero terms only. As before, we make impli
it the
onstru
tion of a similar stru
ture for obtaining the 
oeÆ
ients of terms whose exponents arestored. The 
ost for updating G is 
onstant, due to the fa
t that it's ordered in the same orderin whi
h nonzero polynomials appear during the entire lifting stage, so that new elements areappended to the end of the list. The total memory required per edge for this entire s
heme isO(max�lift) = O(d) bits of memory for Ghead, t bits of memory for G, and O(t�) bits for thearray Gpoly. For all edges, this amounts to O(m(d+ t)) = O(t(d+ t)) bits of memory. With thisstru
ture, the sub-routine for 
omputing PkÆ�1j=1 GjHkÆ�j is as follows:Algorithm 7.5.2 Form�sum(kÆ)Input: A partial (�;K)-fa
torisation extending a 
oprime dominating edges fa
torisation, a�xed edge Æ to lift from, and all univariate polynomials Gs and Hs, for s = 1; :::; kÆ � 1, as fullyspe
ialised polynomials.Output: PkÆ�1j=1 GjHkÆ�j in sparse format.Step 1: Set sum 0; for j = 1; :::; kÆ � 1 doIf Ghead[j℄ 6= �1 doIf Hhead[kÆ � j℄ 6= �1 do1.1: Retrieve the polynomials in G and H pointed to by Ghead[j℄ and Hhead[kÆ � j℄;1.2: Invoke a sparse multipli
ation sub-routine to form their produ
t prod;1.3: Invoke a sparse addition sub-routine to form the summation of sum and prod;1.4: Store the result in sum.Proposition 7.5.2 Algorithm 7.5.2 works 
orre
tly as spe
i�ed, and requires at most O(t) bitoperations per any lifting step and O(t) bits of temporary storage.Proof: Corre
tness of the use of the data stru
ture is an immediate 
onsequen
e of thedis
ussion above. To establish the run time 
ost, we know that the main loop iterates at mostO(max�lift) = O(d) times. However, sin
e there are at most O(t�) nonzero polynomials Gjor Hj, for j = 1; :::; kÆ � 1, we know that in many 
ases the pro
edure will never perform theinner-most arithmeti
 polynomial 
omputations. Hen
e, we need to rede�ne what a worst-
ases
enario will be. By Lemma 7.5.1, there will be a 
olle
tion G0 of at most O(t) polynomialpairs (Gj;HkÆ�j) per any lifting step su
h that both polynomials are nonzero. In the worst-
aseanalysis, there will be one pair (Gj0;HkÆ�j0) in G0 with O(t�) terms per polynomial. The produ
tof one su
h pair requires O(t) bit operations. The remaining pairs in G0� (Gj0 ;HkÆ�j0) will haveO(1) terms per polynomial, so that the produ
t of one su
h pair requires O(1) bit operations,and the sum of produ
ts of pairs in G0 � (Gj0 ;HkÆ�j0) requires O(t) bit operations. Adding thissum to Gj0HkÆ�j0 is dominated by O(t) bit operations, and produ
es a polynomial of at mostO(t) terms. 124



Unlike the lifted polynomials Gs and Hs, the polynomial FkÆ is used only on
e in a parti
-ular 
al
ulation and so need not be stored for any edge. Hen
e, we represent this polynomialtemporarily in a sparse data stru
ture that 
an be reused by any edge from whi
h one is lifting.The pro
edure for determining FkÆ is as follows:Algorithm 7.5.3 Input: A partial (�;K)-fa
torisation extending a 
oprime dominating edgesfa
torisation, and a �xed edge Æ 2 � to lift from.Output: The univariate polynomial FkÆ stored in sparse format in array Fpoly.Step 1: Set index  0; retrieve the primitive aÆne fun
tion lÆ = �1x + �2y + � and 
onsiderthe equation of the line `0 : lÆ = kÆ.Step 2: Call Interse
tion0(IP; �1; �2; � � kÆ).Step 3: For every integral point (i; j) lying between the two near points produ
ed in Step 2 abovedo: 3.1: S
an the list fabsj�1; if there exists an element i in this list, do. Let (a; b) denote the 
oordinates of the starting vertex of edge Æ. Computeexponent = (j � (b+ (�2:kÆ)))= � �1; if �1 6= 0or exponent = (i� (a+ (�1:kÆ)))=�2; if �2 6= 0:. Set Fpoly[index℄ exponent and index index+ 1.Step 4: Rearrange the entries in Fpoly in in
reasing order of exponents and return Fpoly.Proposition 7.5.3 Algorithm 7.5.3 works 
orre
tly and requires at most O(td) bit operations.Proof: The above algorithm determines all possible integral points found along the kÆtranslate of the supporting line of Æ into Newt(f), using O(d) bit operations. The maximumnumber of su
h integral points is O(d), and for every integral point, we s
an the lists of termsof f in no more than O(t) bit operations to see if the point 
orresponds to some nonzero termof f . If su
h a term f(i;j)xiyj is found, a 
orresponding z term is formed using integer addition,multipli
ation, and division, all of whose input does not ex
eed a ma
hine word size. Finally, theterms of the produ
ed polynomial are rearranged in in
reasing order of exponents, to 
onformto the representation required by sparse polynomial arithmeti
 sub-routines. In total, the 
ostof the above algorithm is at most O(td) bit operations.Now that we have 
omputed FkÆ , we 
an formFkÆ � kÆ�1Xj=1 GjHkÆ�j (7.2)using sparse addition over F p, and(FkÆ � kÆ�1Xj=1 GjHkÆ�j) mod G0 (7.3)125



using division with remainder for Laurent polynomials (see Chapter 6). Note that the num-ber of terms in G0 is bounded by the number of terms in g, and its degree is bounded byO(max�int�pts) = O(d). Also, the dividend in (7.3) has at most O(t) terms and has degreeat most O(d). Despite that both dividend and divisor are sparse, the intermediary remaindersmay not be ne
essarily so. The above will then require O(d2) operations over F p, produ
ing aremainder with degree at most O(d) and that has up to O(d) terms. Finally, we 
an 
omputethe produ
t V [(FkÆ � kÆ�1Xj=1 GjHkÆ�j) mod G0℄ (7.4)using O(d2) bit operations, sin
e deg(V ) < deg(G0) = O(d). From the dis
ussion on Laurentpolynomial division with remainder in Chapter 6, the result is a regular polynomial of degreeO(d) and is stored temporarily in sparse format using an integer array, say temp, of size O(d).7.5.2 Representing unknown polynomials and expressionsAll the 
omputations so far have involved fully spe
ialised polynomials, whi
h led us to exploit
ommonly known data stru
tures in their representation. We now dis
uss the more 
omplexsymboli
 representation of polynomials with unknown 
oeÆ
ients and systems of equationsinvolving several unknowns. The �rst su
h example is in representing the polynomialGkÆ , whose
oeÆ
ients are not all known at the time we start performing a partial (�;K)-fa
torisation. Werepresent GkÆ temporarily using an array, tempg, of whi
h one 
opy 
an be used by any edgeduring any lifting stage. The array will have size bounded by max�int�pts = O(d), and theentries of the array will 
ontain the exponents in z of every possible term (whether zero, nonzero,or simply unknown) in GkÆ . In a standard sparse polynomial stru
ture, one 
an initialise theentries of the 
orresponding array to some negative number, assuming that the polynomial isregular and hen
e 
annot have negative exponents. However, sin
e GkÆ is a Laurent polynomialwhose terms 
an have negative exponents, it be
omes essential to keep tra
k of the maximumpossible number of terms in GkÆ , in order to avoid a

essing unwanted entries in tempg thatmay 
ontain information from previous 
omputations. If lbG and ubG denote the respe
tivelowest and highest exponents among terms of GkÆ that are either nonzero or unspe
ialised,and assuming that entries in tempg are stored in in
reasing order of exponents, we de�ne thepossible degree of the unknown polynomial GkÆ to be the di�eren
e ubG � lbG. GkÆ 
an then berepresented using at most O(td) bit operations as follows:Algorithm 7.5.4 Input: A partial (�;K)-fa
torisation extending a 
oprime dominating edgesfa
torisation, and a �xed edge Æ 2 � to lift from.Output: The polynomial GkÆ stored in sparse format in array tempg.Step 1: Set index  0; retrieve the primitive aÆne fun
tion lÆ0 = �1x + �2y + � � 
Æ, and
onsider the equation of the line ` : lÆ0 = kÆ.Step 2: Call Interse
tion0(IPg; �1; �2; � � (
Æ + kÆ)).Step 3: For every integral point (i; j) lying between the two near points produ
ed in Step 2 abovedo 126



3.1: Call Spe
ialised(i; j); if this returns 1 or �1, do3.1.1: Let (a; b) denote the 
oordinates of the starting vertex of edge Æ0.Compute exponent = (j � (b+ (�2:kÆ)))= � �1; if �1 6= 0or exponent = (i� (a+ (�1:kÆ)))=�2; if �2 6= 0:Set tempg[index℄ exponent, and index index+ 1.Step 4: Rearrange the �rst index entries of tempg in in
reasing order of exponents, and returnarray tempg.Data stru
ture for expressions using unknown polynomialsAnother example of an unknown symboli
 entity is the expressionGkÆ � V [(FkÆ � kÆ�1Xj=1 GjHkÆ�j) mod G0℄ (7.5)where as we have seen above, GkÆ is a polynomial whose 
oeÆ
ients are partially spe
ialised, andwhere the se
ond summand is a fully known polynomial. Let this quantity be denoted by LHS,representing the left hand side of the main lifting equation (7.1). Be
ause we need a symboli
stru
ture mat
hing the nature of LHS before the unknown 
oeÆ
ients are spe
ialised, this hasto deal with its two separate summands, the �rst of whi
h is treated as a dense polynomial.Suppose we 
hoose to use an array lhs: Two issues to resolve are the size and nature of lhs.We have seen that GkÆ and the polynomial in (7.4) both have degree at most O(d), so that intotal LHS will have at most O(d) terms. We store these in sparse format and only temporarily.Furthermore, the expression in (7.4) is a regular polynomial, but sin
e GkÆ 
an be a Laurentpolynomial, LHS inherits the same stru
ture. Let lbG and ubG be as de�ned above, and lb andub denote the smallest and largest exponents of terms appearing in (7.4), so that ub� lb = O(d).Then lhs should have entries whose exponents range from min(lbG; lb) to max(ubG; ub), whi
hwe shall denote by lowlhs and highlhs respe
tively. As su
h, highlhs � lowlhs represents thehighest possible degree that LHS 
an attain after being fully spe
ialised.Be
ause we have to use LHS in a pro
ess whi
h involves 
omparing 
oeÆ
ients of terms onboth sides of equation (7.1), it will be more 
onvenient to store LHS in dense format, wherebyinformation about the 
oeÆ
ients of terms rather than their exponents is revealed. A

ordingly,the entries of lhs should point to the 
oeÆ
ients of the polynomial expression in (7.5). Sin
e lhsrepresents a Laurent polynomial whose terms 
an have negative exponents, we have to dis
ussnot only the dense stru
ture of 
oeÆ
ients but also their address in the memory lo
ations, whi
hare always labelled by indi
es starting from zero. In parti
ular, sin
e the lowest term of LHShas exponent lowlhs, and as its 
oeÆ
ient has to be stored in the zero lo
ation of the array lhs,all remaining 
oeÆ
ients 
i of the left hand side, for i = lowlhs+1; :::; highlhs, have to be storedin lo
ations i� lowlhs. Now, sin
e the 
oeÆ
ients 
an inherit two pie
es of input, one from GkÆ ,representing an unknown, and one from (7.4), whi
h is fully spe
ialised, we allow ea
h 
oeÆ
ientto re
e
t this stru
ture, by asso
iating with the i � lowlhs entry of lhs two integers: the �rst127




ontaining the 
oeÆ
ient of zi in GkÆ , and the se
ond 
ontaining the 
oeÆ
ient of zi in (7.4).In total, this requires that we treat lhs as a double array of size 2 � O(d). We now have thefollowing:Algorithm 7.5.5 Input: A partial (�;K)-fa
torisation extending a 
oprime dominating edgesfa
torisation, and a �xed edge Æ 2 � to lift from. Also given is the representation of GkÆ inarray tempg with indg entries, the representation of (7.4) in temp with ind entries, and lowlhsand highlhs designating the lowest and highest exponents in the unknown expression:GkÆ � V [(FkÆ � kÆ�1Xj=1 GjHkÆ�j) mod G0℄:Output: The dense representation of the expression LHS in the array lhs.Step 1: Initialise array lhs to zero.Step 2: For i = 0; :::; indg � 1 do2.1: Set e tempg[i℄, and use the 
hange of basis in Step 4 of Algorithm 6.8.1 to determinethe integers a and b su
h that g(a;b)xayb is the bivariate term in gkÆ 
orresponding to zein GkÆ .2.2: Set lhse�lowlhs[0℄ Spe
ialised(a; b).Step 3: For i = 0; :::; ind � 1, set e  temp[i℄ and lhse�lowlhs [1℄ to be the 
oeÆ
ient of ze in(7.4).The above pro
edure is obviously 
orre
t, as it reads from lo
ations of the sparse arraystemp and tempg and writes to proper data lo
ations of the dense array lhs. Data found intempg represents powers of univariate terms of GkÆ that are then transformed into equivalentpowers (a; b) of bivariate terms, whose 
oeÆ
ients are determined by a 
all to Spe
ialised(a; b).Data in the array temp however is simply translated into lhs at the proper lo
ations, as itrepresents exponents of terms that are known to be nonzero. Sin
e the number of terms in lhsis bounded by O(d), and sin
e ea
h 
all to Spe
ialised requires O(t) bit operations, the entirepro
ess requires O(td) bit operations and O(d) bits of temporary storage.We now need to dis
uss how to make use of all the above representations to solve for theunknown polynomial e(z) in (7.1). The trivial 
ase when deg(G0) is greater than the highestpossible degree of the left hand-side results in e(z) being the zero polynomial, so that LHS itselfis zero. The unknown 
oeÆ
ients of zi in GkÆ 
an then be spe
ialised as follows:Algorithm 7.5.6 Input: A partial (�;K)-fa
torisation extending a 
oprime dominating edgesfa
torisation, and a �xed edge Æ 2 � to lift from. Also given is LHS as a fully spe
ialised poly-nomial in the form Pj=lowlhs;:::;highlhs 
jzj, for some known values 
j 2 F p.Output: GkÆ as a fully spe
ialised polynomial, and the spe
ialisation of the 
orresponding 
oeÆ-
ients of the polynomial g.Step 1: For i = lbG; :::; ubG, if lhsi�lowlhs [0℄ = �1 do1.1: Set lhsi�lowlhs [0℄ (lhsi�lowlhs [1℄ + 
i) mod p and tempg[i� lbG℄ lhsi�lowlhs [0℄.1.2: Use the 
hange of basis in Step 4 of Algorithm 6.8.1 to determine the integers a and b128



su
h that g(a;b)xayb is the bivariate term in gkÆ 
orresponding to zi in GkÆ .1.3: If Spe
ialised(a; b) = �11.3.1: If lhsi�lowlhs [0℄ 6= 0, add g(a;b)xayb to the list of nonzero terms of g, and redu
eremg by 1.1.4: Else if Spe
ialised(a; b) is not equal to the 
oeÆ
ient of the term in g whose exponentis tempg[i� lbG℄, output \failure" for this 
hoi
e of 
oprime dominating edgesfa
torisation.Step 2: For i = lbG; :::; ubG, form the polynomial in z whose nonzero terms have exponents storedin tempg; if this polynomial is nonzero, add it to the end of the list G, store it permanently insparse format in the array Gpoly, and let Ghead[kÆ ℄ point to its lo
ation in the list.Proposition 7.5.4 Algorithm 7.5.6 works 
orre
tly as spe
i�ed and requires O(td) bit opera-tions.Proof: The above pro
edure identi�es those entries in LHS whose partial summands areterms in GkÆ . For all unspe
ialised terms gizi of GkÆ , the 
orresponding 
oeÆ
ients are deter-mined su
h that the 
oeÆ
ient of zi in LHS is zero. This spe
ialisation of terms in GkÆ leads toa spe
ialisation of g 
oeÆ
ients, among whi
h only the nonzero elements are added to the sparserepresentation of g. A 
he
k is made so that g 
oeÆ
ients mat
h previously known values, ifthose exist. Finally, if the polynomial GkÆ is nonzero, the polynomial (in fa
t, its address inmemory) is appended to the end of Glist, with Ghead[kÆ ℄ pointing to its position in the list.Obviously, the above pro
ess requires O(td) bit operations, sin
e only O(d) terms of GkÆ requirea 
all to Spe
ialised.If deg(G0) is greater than highlhs � lowlhs, we know from the dis
ussion in Lemma 9 of [2℄that ea
h triangular system arising from 
omparing 
oeÆ
ients on both sides of LHS = e(z)G0
an be solved uniquely. We now 
laim the following:Lemma 7.5.2 The triangular systems resulting from equating 
oeÆ
ients of polynomials onboth sides of LHS = e(z)G0 are sparse linear systems with at most O(t�d) nonzero elementsover F p, for some 
onstant � su
h that 0 < � < 1.Proof: Write G0(z) = Xj=0;:::;deg(G0) gjzj ;where at most tO(1) number of the gj 's are nonzero over F p, and writeLHS = Xj=lowlhs;:::;highlhs 
jzj ;where not all of the 
j 's are spe
ialised. We know that e(z) is a Laurent polynomial satisfyingLHS = e(z)G0. Let lowe and highe denote the respe
tive lowest and highest exponents of termsof e(z). Then, sin
e G0 is a regular polynomial with a nonzero 
onstant term over F p, we havelowe = lowlhs and highe = highlhs � deg(G0):129



Write e(z) =Pi=lowe;:::;highe eizi. Using our data stru
ture for LHS above, there exist two inte-gers, say low�range and high�range, su
h that the known lower and higher terms of LHShave exponents lying in the two intervals [lowlhs; low�range℄ and [high�range; highlhs℄ re-spe
tively. Suppose, for instan
e, that we wish to solve for the unknown 
oeÆ
ients of e(z)using the lower known terms of LHS. Let B be the matrix of 
oeÆ
ients of terms 
izi inLHS, for i = lowlhs; :::; low�range, su
h that ea
h 
i o

upies row i � lowe in the 
olumnve
tor B. Let A be the matrix of 
oeÆ
ients in e(z)G0 
orresponding to 
oeÆ
ients 
i, fori = lowlhs; :::; low�range. We then have
i = Xj=lowe;:::;highe ejgi�j ;so that row i � lowe of A 
ontains ejgi�j in 
olumn j � lowe, for j = lowe; :::; highe. Sin
e atmost O(t�) 
oeÆ
ients of G0 are nonzero, for 0 < � < 1, it follows that ea
h row of A 
ontainsat most O(t�) nonzero entries over F p. Sin
e the number of spe
ialised lower terms in LHS isbounded by O(d), the system Ax = B
ontains at most O(d) 
olumns and so O(t�d) nonzero entries in total.Assuming the entries of any of the triangular systems belong to a �nite �eld with prime orderwhi
h �ts in a ma
hine word, one 
an now obtain a solution using O(t�t�d) = O(t2d) bit opera-tions with no more than O(t�d) bits of temporary storage memory using any of the well knownsparse dire
t methods (see for instan
e [33℄ on a broad survey of data stru
tures and algorithmsfor sparse Gaussian elimination). When one or two of the triangular systems have been solveduniquely, and assuming the results of the two triangular systems have been 
onsistent, one 
anthen immediately retrieve e(z). Note that Algorithm 7.5.6 above 
an be applied in the general
ase when LHS is a fully spe
ialised, not ne
essarily zero polynomial, and hen
e 
an be invokedto determine the polynomial GkÆ and the 
orresponding g 
oeÆ
ients when e(z) is not zero.7.5.3 Re
overing HkÆInvoking Algorithm 7.5.4 using the polynomial HkÆ and the summand Q, we 
an set up arepresentation of HkÆ using a temporary array temph and solve for the unknown 
oeÆ
ients ofHkÆ using the equation HkÆ = (FkÆ �PkÆ�1j=1 GjHkÆ�j)�GkÆH0G0 : (7.6)Note that the only new 
omputations are for determining the produ
t GjHkÆ�j if GkÆ is nonzero,and �nding the quotient over G0, with both divisor and dividend having at most O(t) and t�terms respe
tively. The intermediary remainders have degree at most O(d), and hen
e at mostO(d) terms. When the numerator is non-trivial, this will require at most O(d2) bit operationsand O(d) bits of temporary storage. The unknown 
oeÆ
ients of temph are mat
hed with their
orresponding 
oeÆ
ients in the quotient, and the 
orresponding 
oeÆ
ients of h are spe
ialisedthrough a pro
ess similar to Step 2 of Algorithm 7.5.6, using at most O(td) bit operations.130



7.6 Total run time and memoryWe are now ready to establish the total 
omplexity of the sparse adaptation, 
ombining theabove sub
osts a
ross all possible liftings per one 
oprime dominating edges fa
torisation. Inparti
ular, we shall distinguish between two 
ategories of sub-tasks, those that will be 
arriedout during every possible lifting step, and those whi
h will be performed a number of times thatis dependent on the sparsity fa
tor t of f . We have the following 
on
luding result:Theorem 7.6.1 Let f 2 F p[x; y℄ be a polynomial of total degree d and at most t nonzero termssu
h that t < d. Let r be a ve
tor in R 2 and let � be an irredundant dominating set of Newt(f) indire
tion r. Assume furthermore that f = gh for two non-trivial monomial fa
tors g; h 2 F p[x; y℄with tg and th terms respe
tively, su
h that max(tg; th) = O(t�) for some 
onstant � satisfying0 < � < 1. Then, there exists an integral de
omposition Newt(f) = Newt(g)+Newt(h) su
h thatNewt(g) is not a single point or a line segment parallel to rR�0. Furthermore, for any 
oprimedominating edges fa
torisation of f relative to �;Newt(g) and Newt(h), there exists one fullfa
torisation of f whi
h extends it in O(td2)+O(t3d) bit operations and O(t�d) bits of memory,assuming that d and p �t in a ma
hine word.Proof: That there exists an integral de
omposition of Newt(f) into two Newton polytopes
orresponding to g and h, and that the algorithm 
an re
over the two fa
tors using any 
oprimedominating edges fa
torisation is a result of Ostrowski's theorem and Theorem 6.6.1 of Chapter6. We now establish the total running time and memory required by the sparse method. In thefollowing, Æ denotes an edge in � from whi
h lifting 
an take pla
e, and Æ0 denotes its summand inNewt(g). During a single lifting step, one �rst has to determine the fully spe
ialised polynomialFkÆ and 
onstru
t the unknown polynomials GkÆ and HkÆ , all using at most O(td) bit operationsand O(d) temporary bits of temporary storage. Hen
e, the total 
ost of representing the liftedpolynomials is max�lift �O(td) = O(td2) bit operations and a temporary O(d) bits of memory.We have also shown that 
omputing the quantity in (7.2) requires in the worst-
ase analysisO(t) bit operations and O(t) bits of temporary storage, so that the total 
ost is max�lift �O(t)= O(td) bit operations and O(t) bits of memory. Computing the polynomial in (7.4) may in theworst-
ase require O(d2) bit operations and O(d) bits of temporary storage per any lifting step.However, we 
laim that this need not be done during every lifting step. In parti
ular, and sin
ethe modular operation is non-trivial only when the polynomial (7.2) is nonzero, it suÆ
es todetermine the maximum number of times that the latter 
an happen in order to obtain the total
ost of long division throughout the lifting stage. Note that the polynomial (7.2) is nonzero inat most one of these 
ases:� FkÆ is nonzero,� or Pj=1;:::;kÆ�1GjHkÆ�j is nonzero.However, there are at most O(t) nonzero polynomials FkÆ for all kÆ � max�lift, sin
e at most tlatti
e points in Newt(f) 
orrespond to nonzero terms of f . By Lemma 7.5.1, there exist at mostO(t�) nonzero polynomialsGj and Hi, for i; j = 1; :::; kÆ�1, where i+j = kÆ � max�lift, and sothere will be at most O(t) nonzero polynomial expressions of the form GjHi. In the worst-
aseanalysis, no two su
h produ
ts GjHi and Gj0Hi0 will be su
h that j + i = j0 + i0 = kÆ, so thatPj=1;:::;kÆ�1GjHkÆ�j is nonzero whenever one pair GjHkÆ�j 6= 0 for some �xed j. Hen
e, therewill be at most O(t) nonzero sums of the formPj=1;:::;kÆ�1GjHkÆ�j, for all kÆ � max�lift. This131



implies that the polynomial (7.3) is nonzero in at most O(t) of the total number of lifting steps,whi
h brings the total 
ost of 
omputing its remainder modulo G0 to O(td2) bit operations, andO(d) bits of temporary storage.The quantity in (7.4) has been shown to require at most O(d2) bit operations and O(d) bitsof temporary storage. But as seen above, this should only be performed when the polynomialin (7.3) is nonzero. In the worst-
ase analysis, this in turn is nonzero whenever the polynomial(7.2) is nonzero, whi
h has been seen to happen in at most O(t) of the total number of liftingsteps. Hen
e, 
omputing the polynomial in (7.4) requires at most O(td2) bit operations andO(d) bits of memory in total.The sparse triangular system(s) for solving for the unknown 
oeÆ
ients of e(z) in LHS =e(z)G0 have been shown to require at most O(t2d) bit operations and O(t�d) bits of temporarystorage. However, we now 
laim that one does not require to set up and solve a triangularsystem when� The polynomial in (7.4) is zero, and� GkÆ has no spe
ialised terms.To see this, let uÆ and gnÆ denote respe
tively the number of unspe
ialised terms on the kÆ + 1translate of the supporting line of Æ0 into Newt(g), and the number of integral points on Æ0 ofNewt(g). We know that if GkÆ has no spe
ialised terms, the possible degree of GkÆ is given byuÆ�1, whi
h is less than deg(G0) = gnÆ�1, be
ause of the inequality uÆ < gnÆ. This, 
ombinedwith the fa
t that (7.4) is zero, results in the degree of LHS being less than deg(G0), from whi
hone 
on
ludes that e(z) is zero. Consequently, one has to set up a triangular system in at mostone of the two following 
ases:� the polynomial in (7.4) is nonzero, or� GkÆ has at least one spe
ialised term.Sin
e the �rst 
ondition 
an happen in at most O(t) of the 
ases, and the se
ond 
an happenin at most O(t�) of the 
ases, one has to set up and solve a triangular system at most O(t)times. The total 
ost for solving any of the triangular systems is hen
e O(t3d) bit operations,and O(t�d) bits of temporary storage, throughout the entire lifting stage.Determining HkÆ per one lifting step has been seen to require O(d2) bit operations and O(d)bits of temporary storage. Similarly as above, the long division to be performed in (7.6) isnon-trivial only when the numerator is nonzero. This, in turn, happens in at most one of thetwo 
ases:� The polynomial in (7.2) is nonzero, or� GkÆH0 is nonzero.This 
an be easily seen to happen in at most O(t) of the 
ases, whi
h brings the total 
ost ofdetermining an expression of HkÆ to O(td2) bit operations and O(d) bits of temporary storage.When fully spe
ialised, only the nonzero polynomials among all GkÆ 's and HkÆ 's ought tobe stored in sparse form. Spe
ialising the 
oeÆ
ients of these polynomials during one liftingstep and using Algorithm 7.5.6 requires at most O(td) bit operations, so that in total this willbe at most max�lift � O(td) = O(td2) bit operations. Sin
e the total number of terms of all132



su
h polynomials should not ex
eed O(t�), the total amount of memory for storing the liftedpolynomials is of the order O(t2) = O(td), for t < d.Combining all of the above, any 
oprime dominating edges fa
torisation asso
iated with thede
omposition Newt(f) = Newt(g) + Newt(h) 
an be extended using at most O(td2) + O(t3d)bit operations and O(t�d) bits of memory.The above result helps justify the earlier 
onditions we imposed on t as follows: Sin
e thelifted polynomials are bounded in degree by O(d), and sin
e Newt(f) = O(d2), the standardpolytope method requires O(max�lift � d3) = O(d4) bit operations in total and O(d2) bits ofmemory. When t3 < d2;we 
ertainly have that t < d, and hen
eO(t2d) +O(t3d) � O(d3):By Theorem 7.6.1, the sparse adaptation outperforms the dense one in both the operational andspatial 
omplexity.7.7 Computational resultsThe work was 
arried out at the Oxford University Super
omputing Centre (OSC) on the Os-well ma
hine, using an UltraSPARC III pro
essor running at about 122 M
op/se
 and with 2GBytes of memory. All experiments were 
arried out over F 2. The input polynomials have been
onstru
ted as explained in Se
tion 7.2 above. For ea
h of the random polynomials g and h theexponent ve
tors (e1; e2) were 
hosen uniformly at random su
h that 0 � e1 + e2 � d=2, and atleast three of them are of the form (e1; 0), (0; e2) and (e3; (d=2) � e3), so that f was of degreed and had no monomial fa
tors. The table below gives the running times (in se
onds) of thetotal fa
torisation pro
ess to �nd at least one non-trivial fa
tor f . In the following, t denotesthe number of terms of the input polynomial f , T:Sum: denotes the total number of non-trivialintegral de
ompositions Newt(f) = Q + R, ss denotes the run time in se
onds of the sparsemethod, 
orresponding only to the su

essful liftings whi
h produ
e at least one fa
tor of f , andsd is the 
orresponding run time in se
onds of the dense method wherever appli
able (as allowedby the ma
hine's memory resour
es). Also, T:Bd:F: denotes the total number of 
oprime edgesfa
torisations asso
iated with all possible summands and irredundant set of dominating edges ofNewt(f), whereas A:Bd:F: denotes the number of 
oprime edges fa
torisations attempted beforea su

essful extension produ
es the two fa
tors g and h. Finally, #Nf , #Ng, and #Nh denotethe number of latti
e points in the Newton polytopes of f , g and h respe
tively.The run times in Table 7.1 indi
ate that the sparse algorithm is faster than the dense one forinput polynomials whi
h 
an be handled by both methods. Obviously, the run times also in
reasefor in
reasing input degrees. For larger degree polynomials where the dense algorithm no moreapplies, we monitor the variations in running times by �xing all parameters apart from thenumber of terms of the input. For this, we 
onstru
t families of random polynomials having thesame Newton polytope as well as the same boundary fa
torisations along a �xed dominating setof edges. Di�erent polynomials with varying number of terms 
an then be 
hosen by randomlysele
ting the appropriate number of latti
e points in the interior of the polytope. As predi
ted133



earlier, the run times in Table 7.2 in
rease upon in
rementing either the degrees or the termsof the input polynomials. Note that in almost all 
ases Newt(f) has extremely few non-trivialintegral de
ompositions, as predi
ted earlier in [2℄ for sparse polynomials. Although the numberof all possible 
oprime edges fa
torisations is not small in all 
ases, it is still signi�
antly smallerthan the input degree of the polynomial, and hen
e the size of Newt(f).Table 7.1: Smalll degree polynomialsd t ss sd T:Sum: T:Bd:F: A:Bd:F: #Nf #Ng #Nh50 14 4 3 1 8 2 561 166 50100 16 8 12 2 15 0 2234 472 222500 15 13 22 1 25 17 52940 12758 112822000 28 540 620 1 21 9 848849 133797 132932Table 7.2: Large degree polynomialsd t ss T:Sum: T:Bd:F: A:Bd:F: #Nf #Ng #Nh6000 36 2305000 3 36 16 8496181 502330 26156346000 100 2802800 ... ... ... ... ... ...6000 196 590510 ... ... ... ... ... ...10000 12 2205700 1 15 7 15521707 2417337 306317910000 60 3803600 ... ... ... ... ... ...20000 16 48hr 405300 1 42 18 39374376 5716256 99144297.8 Con
lusionIt has been previously shown that, despite the fa
t that a randomly 
hosen bivariate polynomialover a �nite �eld is unlikely to be redu
ible, there is still a signi�
ant number of bivariatepolynomials that are redu
ible [46℄, whi
h justi�es 
ontinuing e�orts in developing eÆ
ientfa
torisation algorithms. Of parti
ular interest in real life appli
ations are sparse polynomials,for whi
h no well de�ned `sparse' fa
torisation algorithm has still been devised. In this 
hapterwe have attempted to address the open question of �nding su
h an algorithm by investigatingpotentially strong areas of the polytope method in appli
ation to sparse bivariate polynomialsover F p. In addition, we have been able to address another signi�
ant aspe
t in whi
h thealgorithm 
an be adapted so that the run time of the lifting stage is made dependent on thenumber of terms belonging to the input polynomial, rather than its degree only. Assumingan upper bound on the sparsity of the possible fa
tors of the input polynomial, the gains forsparse polynomials that are a produ
t of sparse fa
tors are demonstrated not only through theimproved run time of the algorithm during its lifting stage, but also in the redu
ed memoryrequirements, so that the sparse adaptation requires O(td2) +O(t3d) bit operations and O(t�d)bits of memory, 0 < � < 1, 
ompared to the 
orresponding dense 
osts of O(d4) and O(d2).In addition to the above, this 
hapter has 
overed 
omplete details of the implementation wehave 
arried out, where problems related to 
omputing with geometri
 stru
tures and maintain-ing 
orre
t exa
t arithmeti
 have been highlighted. The 
ombination of our sparse adaptation134



has led to a very fast and high re
ord in sparse binary bivariate fa
torisation of degree 20000,whi
h we believe has not been previously a
hieved using any other di�erent algorithm. We ex-pe
t our adaptation of the polytope method to perform equally well for sparse and high degreebivariate polynomials over �elds of other prime orders. To the best of our knowledge, the high-est dense bivariate fa
torisation to date a
hieved using Hensel lifting te
hniques is for a densepolynomial of degree 2000 over F 17 [13℄.
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Chapter 8Parallel absolute irredu
ibilitytesting via polytopes8.1 Introdu
tionAbsolute irredu
ibility testing of polynomials is of importan
e in various �elds in algebra andgeometry (see for instan
e [6, 68, 92, 124, 125℄). Convex polytopes have been studied in 
on-ne
tion with multivariate polynomials over arbitrary �elds. We have seen how re
ent work hasexamined the 
onne
tion that 
onvex polytopes bear to fa
torising bivariate polynomials [2℄,and to testing absolute irredu
ibility of multivariate polynomials [43, 45℄, over arbitrary �elds.In the latter 
ase, the problem of testing inde
omposability of Newton polytopes formed part ofa pseudo-polynomial time algorithm (see [48℄) for bivariate absolute irredu
ibility testing, andof a heuristi
 and randomised algorithm in the multivariate 
ase. The fa
t that the nonzero
oeÆ
ients of the input polynomial do not matter in the testing pro
ess makes it possible toshow absolute irredu
ibility of families of polynomials, rather than single polynomials [45℄. Theempiri
al sequential tests and timing results reported in [47℄ indi
ated a high su

ess rate for alarge 
lass of low degree and sparse multivariate polynomials, whose number of terms is boundedby O(nd), where n is the number of variables and d is the upper bound on the degree in ea
hvariable. In the instan
es when the algorithm is highly su

essful and the input polynomialshave a number of nonzero terms bounded by a 
onstant multiple of their total degree, the run-times have been shown to be at most 
ubi
 in the total degree of the input polynomial [47℄. Fora degree q polynomial with n variables and 
oeÆ
ients from a �nite �eld, for instan
e, the inputsize of the irredu
ibility problem is N = O(qn), ignoring logarithmi
 fa
tors. Expressing the
omplexity of Gao and Lauder's algorithm [45℄ in terms of the input size, this requires O(N 3n ),whi
h for polynomials with more than 3 variables implies a run time that is almost linear in theinput size. As su
h, the algorithm 
an be used as a fast pretest before any of the infallible yetslower irredu
ibility tests are invoked [34, 44, 51, 63, 75, 89, 90℄.Motivated by these original �ndings and the spe
ial feature whi
h makes absolute irredu
ibil-ity testing dependent in large upon the shape and the size of Newton polytopes, we investigatea parallel s
heme mainly set to widen the range of appli
ability of the algorithm, by makingit possible to ta
kle signi�
antly higher degree, sparse polynomials, and by allowing a moreeÆ
ient performan
e for low degree yet denser polynomials. We show that the algorithm 
anbe eÆ
iently parallelised, thanks to some of its inherent features: First, we dis
uss a balan
ed136



load s
heme whi
h 
an be 
onstru
ted using the pattern of 
omputations in the sequential 
asein [45℄. Se
ond, we dis
uss how a 
orresponding data distribution representing latti
e pointsinside polytopes in R 2 
an be 
onstru
ted, adhering to the balan
ed load s
heme, and allowinga s
alable parallel algorithm aimed at high degree irredu
ibility testing. We adopt the BSPmodel for parallel 
omputation [15, 66, 67, 127℄, and we analyse the 
onditions ne
essary foran eÆ
ient parallel performan
e in the bivariate 
ase. This then serves as a sub-problem forthe multivariate 
ase, where a model involving parallelism at two di�erent levels is des
ribed.The BSP algorithm makes it possible to test signi�
antly higher degree polynomials than 
anbe allowed in the sequential 
ase in [45℄, and hen
e, to the best of our knowledge, using anyother known absolute irredu
ibility testing algorithm. We further study both parallel modelsfor issues relating to eÆ
ien
y, and establish some 
onditions under whi
h a good performan
eis guaranteed. Our empiri
al results agree 
losely with the theoreti
al estimates, and we reporton our implementation in this respe
t.The reader may wish to re
all some terminology and results relating to polynomials andpolytopes from Chapter 3. In Se
tion 8.2 we study a parallel s
heme for bivariate polynomialirredu
ibility testing, and in Se
tion 8.3 we address the multivariate 
ase. Finally, empiri
alresults are presented and analysed in Se
tion 8.4.8.2 Parallel bivariate absolute irredu
ibility testingIn all the following we shall assume that nd �ts in a ma
hine word for an input polynomialwith n variables and upper bound d on ea
h variable. We will thus measure run-time in bitoperations and spa
e in bits.Sin
e the Newton polytope of a bivariate polynomial already lies in R 2, a strong feature ofAlgorithm 3.3.2 is that it will always de
ide inde
omposability of polygons, and hen
e will alwaysestablish absolute irredu
ibility of the input bivariate polynomial f if Newt(f) is inde
omposable.Initial empiri
al results in [47℄ indi
ate that the algorithm has a high su

ess rate when thenumber of terms is bounded by a 
onstant fa
tor of the total degree, and that the probabilityof su

ess in
reases with in
reasing degrees of input polynomials. While these observationsstill stand as 
onje
tures based on empiri
al results, it is important to extend the range ofappli
ability of the algorithm for higher degrees, and to support initial arguments related to therate of su

ess of the algorithm. However, as degrees of the input bivariate polynomials in
rease,so do the sizes of their Newton polytopes, and hen
e one major diÆ
ulty limiting attempts toimprove the performan
e of Algorithm 3.3.1 be
omes the spa
e requirement. Yet, the fa
t thatone 
an shift the fo
us from a data stru
ture and distribution representing bivariate polynomialsto one that represents shapes of Newton polytopes in R 2 suggests that a parallel re-
onstru
tionof the irredu
ibility testing algorithm whi
h exploits the shapes of the polygons 
an a
hieve
onsiderable improvements, both in the operational and spatial 
omplexities. In the remainderof this se
tion, we dis
uss our �rst BSP model for a bivariate absolute irredu
ibility testingbased on a parallel polygon inde
omposability testing algorithm.Let f 2 F [x; y℄ be of total degree q with no non-
onstant monomial fa
tors and let IP denotethe set of integral points belonging to Newt(f). Sin
e all ve
tors in Supp(f) have positive integral
oordinates that are at most equal to q, Newt(f) 
an be embedded within a square of dimensionO(q2). Moreover, Algorithm 3.3.1 requires a des
ription of IP in two di�erent ways. First, onehas to have, at the beginning of the algorithm, a stru
ture by whi
h one 
an test an arbitrary137



point for in
lusion in IP . Se
ond, the algorithm re-
onstru
ts integral points in IP followingpaths of the form v0 +P0�i�j kiei, for 0 � ki � ni and j = 0; :::;m � 1. In the followingdis
ussion, we aim to show how the problems asso
iated with ea
h of the two representations
an be 
ir
umvented by redu
ing the quadrati
 spatial fa
tor.8.2.1 Computing the set of all integral points in a polygonOften in the innermost loops of Steps 2 and 3 of Algorithm 3.3.1, one will have to test for in
lusionof arbitrary points in IP . Computing and then storing the set of all integral points belongingto the polytope requires about O(q2) bits of storage, whi
h 
an be
ome highly restri
tive evenfor moderately large input degrees. As has been already noted in Chapter 7, the alternativeapproa
h whi
h does not require that we store any latti
e points but performs a test of in
lusionbased on the \leftedness" of an arbitrary point with respe
t to all dire
ted edges of the polytopehas a 
ost of O(m) integer operations. In our appli
ation, it 
an be 
ostly to invoke this testvery frequently, in
urring a 
ost of O(m2) for ea
h loop iteration in Steps 2 and 3 of Algorithm3.3.1 above, and hen
e a 
ost of O(t0m3N) integer operations in total, where t0 is the totalnumber of latti
e points in Newt(f) and N is the maximum number of integral points along anyedge of Newt(f). We hen
e adopt the strategy earlier introdu
ed in Chapter 7 whi
h requiresthat we store only a \useful" subset of IP with no more than O(q) points. Let xmin, xmax,ymin and ymax denote respe
tively the lowest and highest x 
oordinates, and the lowest andhighest y 
oordinates, of all e 2 Supp(f). We then store only the interse
tion points betweenall horizontal (or verti
al) lines y = k, for k = ymin; :::; ymax, using only ymax � ymin+1 = O(q)bits of memory. However, unlike the 
ase in Chapter 7 where 
omputations are performed su
hthat all output is integral, we need a weaker 
ondition a�e
ting the following. The interse
tionof the polytope with a horizontal straight line is obtained by interse
ting the line with at mostall of the polytope's edges (until two points of interse
tion are found, not ne
essarily distin
t).If ux + vy + w = 0 denotes the generi
 equation of a line `0 de�ning an edge of Newt(f), then�nding the interse
tion of `0 with y = k requires that we solve for x inux+ vk + w = 0 or x = �w � vku ;when u 6= 0. Although this division operation involves only integral values, the quotient itselfmay not be an integer, in whi
h 
ase x has to be de
lared as a 
oat or a double, for otherwise, thedivision might produ
e a rounded-o� integral value bx
, whi
h may not 
orrespond to a latti
epoint in IP . Note that 
omputing this subset of IP must be performed as a pre-
omputation,requiring at most O(qm) 
oating point operations, where m is the number of edges in Newt(f).8.2.2 Constru
ting sets of points along paths of edgesObviously, the above strategy of redu
ing the des
ription of IP by preserving only a smallersubset of it 
annot be extended when dealing with the main 
omputations of Algorithm 3.3.1.Spe
i�
ally, one needs to have all points of IP that are rea
hable via a subset of edges e0; :::; ei,for 0 � i � m� 2, in order to �nd a larger subset rea
hable via e0; :::; ei+1. Eventually, the lastpath requires that one has available almost all of the points in IP , and hen
e, the best thatone 
an attempt is to distribute the points in IP among a �xed number of pro
essors. Sin
ethis task is never so immediate, we need to address several of the following issues: Whetherthere exists at all any potential parallelism in the main 
omputations of Algorithm 3.3.1 that138




an make su
h an approa
h possible, whether there exists a balan
ed load s
heme that ensuresall pro
essors are almost equally engaged in the independent 
omputations, and �nally, whetherthere exists a data distribution whi
h not only ensures that a given number of np pro
essors,say, store at most O(q2)=np latti
e points in IP , but also adheres to the pattern of the proposedbalan
ed load s
heme.8.2.3 Dete
ting independent 
omputationsRe
all that the main 
omputations in Algorithm 3.3.1 build up iteratively by 
onstru
ting subsetsof IP in ea
h step of the iteration. However, it is almost immediate to see that the inner-most
omputations of the iterative loop 
an themselves be independent, generating a \horizontal"inherent parallelism a
ross ea
h iteration of the main loop over edges of the input polygon. Inparti
ular, we have:Lemma 8.2.1 Algorithm 3.3.1 for polygon inde
omposability testing 
ontains two patterns of
omputations, one whi
h des
ribes a sequen
e of inter-dependent iterative steps for 
onstru
tingnew subsets of IP using previous subsets, and another pattern des
ribing 
ompletely independenttasks for ve
tor operations a
ross a �xed iterative step.Proof: During a �xed stage i = 0; :::;m�2 of the main loop iteration (Step 2) of Algorithm3.3.1, one �nds all points u0 2 Ai satisfying the following:1. u0 = v0 + kei, for 0 < k � ni, in whi
h 
ase the 
omputations over all k require noinformation from the previous loop iteration of index i � 1, and ea
h 
omputation per�xed k requires no information apart from ei.2. u0 = u+kei, for 0 � k � ni and for all u 2 Ai�1, in whi
h 
ase the 
omputations over all urequire information from the previous loop iteration of index i� 1, ea
h 
omputation per�xed u and over all k = 0; :::; ni requires no information apart from ni and ei, and ea
h
omputation per �xed u and �xed k requires no information apart from ei.For i = m � 1, one �nds all points u0 2 Ai satisfying u0 = u + kem�1, for 0 � k < nm�1 andu 2 Am�2, whi
h involves the dependen
ies des
ribed in 2 above.8.2.4 Constru
ting a balan
ed load s
hemeWe will now attempt to examine the geometri
 pattern of the 
omputations above, on whi
h we
an base a possible load balan
ing s
heme. To this end, we will 
onsider a slight modi�
ationof Algorithm 3.3.1 to produ
e sets of points Bi in R 2, for 0 � i � m� 1, 
onstru
ted as follows:1. Initialise Bi  ;, for i = �1; :::;m � 1.2. For i = 0; :::;m � 1, 
ompute the set of points of the plane that are rea
hable from v0 viathe ve
tors e0; :::; ei, and store them in Bi:3. For ea
h u 2 Bi�1 and k = 0; :::; ni, add u+ kei to Bi.139



The di�eren
es between the sets Ai (de�ned in Algorithm 3.3.1 in Chapter 3) and Bi arethat v0 is in every single set Bi, that Bi 
ontains points rea
hable via e0; :::; ei whi
h are notne
essarily in IP , and that the points v0+kem�1, for k = 0; :::; nm�1, do lie in Bm�1. As su
h, itis 
lear that Ai � Bi for every i. Note that Newt(f) � Bm�1 by 
onstru
tion of Bm�1. Be
ausethe sets Bi have weaker 
onditions 
hara
terising their points, it will be simpler to des
ribethe geometri
 pattern they follow. Sin
e Ai � Bi for every i, any su
h pattern will apply toelements of Ai. Moreover, we will de�ne every region Bi to be an a
tive region in the sensethat all 
omputations and possible 
ommuni
ations a
ross a main loop iteration of index i inAlgorithm 3.3.1 are restri
ted to only those points belonging to Bi, but not to R 2 �Bi.Let P denote a 
onvex polygon and w a ve
tor in R 2, and let Trw(P ) denote the image ofP under translation by w. The following result gives an expli
it geometri
 des
ription of Bi, for0 � i � m� 1.Lemma 8.2.2 Let P be a 
onvex polygon with verti
es v0; :::; vm�1 and edge sequen
e fnieig,for 0 � i � m� 1, where ei 2 Z2 are primitive ve
tors. For ea
h iterative step i = 0; :::;m� 1 ofthe polygon inde
omposability test in Algorithm 3.3.1, the 
omputations are restri
ted to a
tiveregions Bi of the plane representing points rea
hable from v0 via e0; :::; ei. Furthermore, theregions 
an be de�ned indu
tively as follows:1. For i = 0, B0 = 
onv(v0; v1),2. For 1 � i � m� 1, Bi = 
onv([fTrkei(Bi�1)g0�k�ni).Proof: We prove the assertion by indu
tion on i. For i = 0, B0 
onsists only of the pointsv0 + ke0, for k = 0; :::; n0. But this spans all integral points along the �rst edge E0 = n0e0, sothat B0 = 
onv(v0; v1). We now assume the assertion is true for i � m� 2, i.e., that the set ofpoints in Bi of the form v0 +P0�i�m�2 kiei, for ki = 0; :::; ni, 
onstitutes a 
onvex polygon asde�ned in 2 above. Sin
e all the points u 2 Bi lead to points u0 in Bi+1 obtained asu0 = u+ jei+1 = (v0 + X0�i<m�1 kiei) + jei+1; (8.1)for ki = 0; :::; ni and j = 0; :::; ni+1, this redu
es to translating all points of Bi by jei+1, for allj. Sin
e Bi is 
onvex, its image is also a 
onvex set, whose verti
es are de�ned by the imagesunder the translation Trjei+1 of verti
es of Bi. Let C denote the 
onvex hull of all verti
es inthe union of the sets Trjei+1(Bi) over all j = 0; :::; ni+1. We shall show that C = Bi+1. Sin
e C
ontains all possible points in the sets Trjei+1(Bi), we have that C � Bi+1. On the other hand,and by Eq. (8.1) above, any point in Bi+1 belongs to some set Trjei+1(Bi), so that Bi+1 � C.This establishes our indu
tive proof.8.2.5 Constru
ting a balan
ed data distributionThe above lemma provides the general guidelines under whi
h a balan
ed load s
heme 
an be
hosen. In parti
ular, it is immediate that the bulk of the work during any iterative step ofAlgorithm 3.3.1 takes pla
e in well-de�ned a
tive zones of the plane. One should thus avoidany form of data distribution whereby the polygon is triangulated into zones and ea
h zoneis ex
lusively assigned to one single pro
essor. Spe
i�
ally, this risks having some pro
essors
ompletely idle when others are engaged in the a
tive zones. Instead, we propose the following:140



Lemma 8.2.3 Let Bi, for 0 � i � m � 1, denote an a
tive region of the plane as de�ned inLemma 8.2.2 above, and let bi denote the total number of latti
e points belonging to the smallestsquare 
ontaining Bi. Let np denote the total number of pro
essors operating in parallel su
hthat 1 � np < pbi. The data distribution of integral points in IP whi
h allo
ates every point(k; k0) 2 Bi to the pro
essor with identi�
ation number id � (k+k0) mod np allows for a balan
edload s
heme as required by Lemma 8.2.2 above, and assigns to ea
h pro
essor O(bi)=np integralpoints, where bi represents an upper bound on the number of integral points in Bi.Proof: Consider ea
h of the 
onvex a
tive regions Bi of the plane, for i = 0; :::;m � 1,de�ned in Lemma 8.2.2 above. Let x1, y1, x2 and y2 denote respe
tively the lowest x and y
oordinates and the highest x and y 
oordinates appearing in any point in Bi. Assume withoutloss of generality that Bi is translated so that x1 = y1 = 0. Then an upper bound on (k + k0)over all k = x1; :::; x2 and k0 = y1; :::; y2 is equal to pbi. Let t0id denote the total number oflatti
e points of Bi assigned to a pro
essor with identi�
ation number id = 0; :::; np�1. For anyinteger z � 0 de�ne the 
lass asso
iated with z:[z℄ = f(x; y)jx; y 2 Z; x; y � 0; and x+ y = zg;and let #[z℄ denote the number of elements in this 
lass. Then #[z℄ = z+1. Given an arbitrarypoint (k; k0) of Bi and 0 � id < np, the distribution whi
h maps (k; k0) to pro
essor id � (k+k0)mod np assigns to it all 
lasses of the form [id + hnp℄ su
h thatid � id+ hnp �pbi:Sin
e np < pb0, we have that np < pbi, for i = 1; :::;m � 1, and we 
an require0 � h � j(pbi � id)=npk :Hen
e, the total number of points in Bi that are assigned to pro
essor id is at mostt0id = b(pbi�id)=np
Xh=0 (id+ hnp + 1):For 0 � id � np � 1, we havet0id � Pb(pbi�id)=np
h=0 (np + hnp)� Pbpbi=np
h=0 (np + hnp)= �pbinp �(�pbinp �+1)2 np + (jpbinp k+ 1)np� pbinp (pbinp +1)2 np + (pbinp + 1)np= pbi(pbi+np)+2np(pbi+1)2np< 2(pbi)2+2pbi(pbi+1)2np for np < pbi; i = 0; :::;m � 1< 2(pbi)2+4(pbi)22np sin
e pbi > np � 1= 3binp : 141



This establishes t0id = O(bi)np .In pra
ti
e, and even though the 
ondition np < pb0 may not easily hold (as B0 is simplythe �rst edge of Newt(f), in whi
h 
ase b0 denotes the number of integral points on that edge),we note that the sizes of the sets Bi, for i > 0, start growing fast immediately afterwards;spe
i�
ally, sin
e the number of latti
e points in B1 is at least four, we expe
t many morepro
essors to be engaged in their assigned 
omputations as soon as the �rst edge of the inputpolygon is examined. Another similar result a�e
ting the data distribution is the following:Lemma 8.2.4 Let f 2 F [x; y℄ be a non-
onstant polynomial with no non-
onstant monomialfa
tors and IP denote the set of integral points in Newt(f). Let xmin, ymin, xmax and ymaxdenote respe
tively the lowest x and y 
oordinates and the highest x and y 
oordinates appearingin any point belonging to Newt(f), and write 
 = max(ymax�ymin; xmax�xmin). Let np denotethe total number of pro
essors operating in parallel su
h that 1 � np < 2
. The data distributionof integral points in IP whi
h allo
ates every point (k; k0) 2 Newt(f) to the pro
essor withidenti�
ation number id � (k + k0) mod np assigns to ea
h pro
essor O(
2)=np integral points,where 
2 is an upper bound on the number of latti
e points in Newt(f).Proof: Assume without loss of generality that Newt(f) is translated so that xmin = ymin =0. Note that an upper bound on (k + k0) over all k = xmin; :::; xmax and k0 = ymin; :::; ymax isequal to 2
. Let t0id denote the total number of latti
e points of Newt(f) assigned to a pro
essorwith identi�
ation number id = 0; :::; np� 1. For any integer z � 0 
onsider the 
lass asso
iatedwith z de�ned in the proof of Lemma 8.2.3 above. Given an arbitrary point (k; k0) of Newt(f)and 0 � id < np, the distribution whi
h maps (k; k0) to pro
essor id � (k + k0) mod np assignsto it all 
lasses of the form [id+ hnp℄ su
h thatid � id+ hnp � 2
:Sin
e np < 2
, we 
an require 0 � h � b(2
 � id)=np
 :Hen
e, the total number of points in Newt(f) that are assigned to pro
essor id is at mostt0id = b(2
�id)=np
Xh=0 (id+ hnp + 1):We 
an now pro
eed similarly as in the proof of Lemma 8.2.3 above and we obtain t0id = O(
2)np .8.2.6 Removing repetitions in 
omputationRe
all that in Algorithm 3.3.1 above, one has to test for repetitions in appending points u to ea
hset Ai. The reason that this needs to be done is that it may be possible to �nd two points u and u0in Ai�1, and two positive integers k; k0 � ni, su
h that u+kei = u0+k0ei 2 IP . If left un
he
ked,this may produ
e up to O(N) 
opies of the same point, so that in the worst-
ase s
enario, ea
hmulti-set Ai will have O(t0N i) points, and the run-time of polygon inde
omposability testing142



will be
ome exponential in the edges of the input polygon. Che
king for repetitions in thesequential 
ase 
an be made at a 
ost not ex
eeding that of an integer operation per point. Inparti
ular, one 
an use a double array of integers, say F lag, of total size t0, and whose entriesare all initialised to PASS. F lag[k℄[k0℄ is then set to FAIL when a point (k; k0) is �rst added toAi, so that any future attempts to add another 
opy of the point are halted upon a simple 
he
kof the value in F lag[k℄[k0℄.The above strategy, however, 
an be
ome extremely ineÆ
ient in the parallel setting asfollows. Let Ai(id) denote the set of points in IP that are rea
hable via e0; :::; ei and that areassigned to pro
essor id. Assume that i < m � 1 and that some pro
essor pa 
omputes theve
tor operation v = u+ kei, for some u 2 Ai(a), and some k = 0; :::; ni. Suppose further thatall pro
essors have their own 
opy of a F lag array, F lag(id), labelling points that have alreadybeen added to their sets Ai(id). If v 2 IP and v has to be assigned to some other pro
essor pb,then pa has to read the information in the entry of array F lag(b) 
orresponding to point v. Thisinvolves a 
ommuni
ation step for every su
h point v. Moreover, reading from remote lo
ationsrequires a syn
hronisation barrier for all pro
essors to update their 
ommuni
ated values. Thisalso requires a syn
hronisation step for every su
h point v. Consequently, a pro
ess like theabove will require extremely expensive 
ommuni
ation and syn
hronisation 
osts whi
h 
aneven overwhelm the 
omputational 
ost of the sequential algorithm. Alternatively, we introdu
ethe following iterative strategy that will later be shown to 
ome at a very modest 
ost: For anypro
essor id = 0; :::; np � 1, we know that A0(id) does not 
ontain any redundant points. Fori > 0, we pro
eed as follows:� Start with a set Ai�1(id) that 
ontains no repeated o

urren
es of points in IP .� Add all relevant points to their 
orresponding lo
ations in Ai(id0), for some pro
essor id0di�erent from or equal to id, without any 
he
k on repetitions.� When the 
omputations a
ross the iterative step of index i are over, remove all repetitionsin Ai(id).More details illustrating where 
ommuni
ation and syn
hronisation steps should be invoked inthe above will be given next in our parallel algorithm for polygon inde
omposability testing.8.2.7 A BSP algorithm for testing polygon inde
omposabilityWe are now ready to present our parallel algorithm based on the BSP model for parallelisa-tion. The algorithm is designed as an SPMD model, where a single program with multipledata is en
ountered by all pro
essors, whi
h then exe
ute their own version of the program, asdistinguished by their own identi�
ation number, id = 0; :::; p � 1.Algorithm 8.2.1 (Parallel Polygon De
omposability Test)Input: The edge sequen
e fnieig0�i�m�1 of an integral 
onvex polygon P starting at a vertex v0where ei 2 Z2 are primitive ve
tors, and a number np of pro
essors su
h that np � 1. Let ymin,ymax, xmin and xmax denote the respe
tive smallest and largest y 
oordinates, and the smallestand largest x 
oordinates, of verti
es of P , and assume further thatnp < 2
;where 
 = max(xmax � xmin; ymax � ymin). 143



Output: Whether P is de
omposable.Step 1: De�ne a double integer array Int of size 2(ymax� ymin+1). Let id denote the pro
essoridenti�
ation number, and N denote the maximum over all ni's, for i = 0; :::;m � 1.Step 2: Set h ymin + id, and while h � ymax, do:2.1: Compute the points of interse
tion of the line y = h with P .2.2: Broad
ast the x 
oordinates of the points of interse
tion to allpro
essors at the entries Int[h℄[0℄ and Int[h℄[1℄ respe
tively.2.3: Set h h+ np.Step 3: bsp�syn
().Step 4: Set Ai  ;, for i = �1; :::;m � 1, and Result Inde
omposable. De�ne an auxiliaryarray of integer ve
tors, Aux, of size O(
2N)=np, an index array of integers, Index, of size np,and a 
ag double array of integers, F lag, of size O(
2)=np.Step 5: For i = 0; :::;m� 2, 
ompute the set Ai(id) of points (k; k0) in IP that are rea
hable viathe ve
tors e0; :::; ei and satisfying (k + k0) � id mod np:5.1: For h = 0; :::; np � 1, set Index[h℄ 0.5.2: Set l id+ 1, and while (l � ni) do:5.2.1: If v0 + lei = (k; k0) 2 IP , set id0  (k + k0) mod np, and send (k; k0) topro
essor id0 in the array Aux at lo
ation Index[id0℄.5.2.2: Set l  l + np and Index[id0℄ Index[id0℄ + 1.5.3: For ea
h u 2 Ai�1(id) and l = 0; :::; ni, if u+ lei = (k; k0) 2 IP , setid0  (k + k0) mod np, send (k; k0) to pro
essor id0 in the array Aux at lo
ationIndex[id0℄, and set Index[id0℄ Index[id0℄ + 1.5.4: bsp�syn
().5.5: Initialise all 
ags in array F lag to PASS. For ea
h u = (k; k0) 2 Aux do:5.5.1: Find the smallest integer j � ymin su
h that k + j � id mod np.5.5.2: Set h (k0 � j)=np; if F lag[k � xmin℄[h℄ 6= FAIL, add u to Ai(id) andset F lag[k � xmin℄[h℄ to FAIL.Step 6: Compute the last set Am�1(id):6.1: For h = 0; :::; np � 1, set Index[h℄ 0.6.2: For ea
h u 2 Am�2(id) and l = 0; :::; nm�1 � 1: if u+ lem�1 = (k; k0) 2 IP ,set id0  (k + k0) mod np and send (k; k0) to id0 in the array Auxat lo
ation Index[id0℄, and set Index[id0℄ Index[id0℄ + 1.Step 7: bsp�syn
().Step 8: Remove the repetitions in Aux as des
ribed in 5.5 above and store the unique points inAm�1(id).Step 9: Let v0 = (k; k0). If id � (k + k0) mod np and if v0 2 Am�1(id), set Result  De
omposable and broad
ast Result to all pro
essors.Step 10: bsp�syn
().Step 11: Return \Result". 144



Theorem 8.2.1 Let ymin, ymax, xmin and xmax denote the respe
tive smallest and largest y
oordinates, and the smallest and largest x 
oordinates, of verti
es of P , and assume as abovethat np < 2
, where 
 = max(xmax � xmin; ymax � ymin). Then the above algorithm works
orre
tly as spe
i�ed, has a BSP 
ost equal toO(
2mN)np +�O(
2mN)np +O(
 + np)� g(np) + (m+ 2) � `(np)
ops, and requires O(
2N)np bits of storage per pro
essor, assuming that the maximum of absolutevalues of all 
oordinates of verti
es of P �ts in a ma
hine word. Here, m denotes the numberof edges in P , N denotes the maximum number of integral points along any edge in P , and 
2denotes an upper bound on the total number of integral points in P .Proof: The algorithm is exe
uted by all pro
essors whi
h implement their own 
opy of theensuing instru
tions. In the �rst step, all pro
essors de�ne a global array that will be usedto store the x 
oordinates of points of interse
tion between horizontal lines y = ymin; :::; ymaxand P . We assume that there are always two points to be stored even if they were identi
al,in whi
h 
ase they designate a vertex. The amount of memory required to keep this globalinformation about IP is 2(ymax � ymin + 1) bits. Step 2 is done in parallel where pro
essorsperform almost an equal number of interse
tions between horizontal lines and the polygon. Sin
eea
h su
h interse
tion 
onsists of at most m(ymin� ymax+1) 
oating point operations followedby a 
ommuni
ation of two integers to np pro
essors, the 
omputation and 
ommuni
ation 
ostsfor this step are dm(ymin � ymax + 1)=npe+ 2np d(ymin � ymax + 1)=npe g(np)
ops. Step 3 is a syn
hronisation point needed for all pro
essors to update the values of theabove points of interse
tion and hen
e for ea
h to have a 
omplete des
ription of IP . Note thatymax � ymin + 1 � 
 + 1 and hen
e Steps 1-3 requireO(m
)=np +O(
)g(np) + `(np)
ops and O(
) bits of storage.In the remaining steps, ea
h pro
essor id 
omputes its own subset of Ai, for i = 0; :::;m� 1,denoted by Ai(id). A

ording to our data distribution in Lemma 8.2.4, ea
h pro
essor willbe in 
harge of O(
2)=np points, but makes use of a private 
opy of an auxiliary array, Aux,whi
h temporarily stores the points as they build up in one iterative step, even when they o

urredundantly up to N times. The inner-most 
omputations in ea
h iteration in Steps 5 and 6require that ea
h pro
essor id performs a ve
tor sum (�nding a new point v = u + lei), twointeger 
omparisons (
he
king for in
lusion of v in IP ), an integer division (determining therelevant pro
essor id0), and a 
ommuni
ation of two ma
hine words representing the 
oordinatesof the 
ommuni
ated point. Note that the 
ommuni
ation is done only to the relevant pro
essorid0 in the auxiliary array Aux, and that pro
essor id keeps an updated index on the addressin Aux(id0) where it 
an 
ommuni
ate v to its relevant pro
essor id0. By Lemma 8.2.1, all the
omputations within a single iteration of the loops over the edges of the polygon are independent,and hen
e, a syn
hronisation barrier is needed only at the end of the sequen
e of 
omputationsand 
ommuni
ations dete
ting paths along e0; :::; ei for i = 0; :::;m � 1. This ensures that all145



pro
essors update the values of the newly added points in the array Aux. When this is done,ea
h pro
essor 
an then remove the repetitions in its storage as follows. For k = xmin; :::; xmax,pro
essor id stores all points (k; k0) su
h that k + k0 � id mod np, and ymin � k0 � ymax. Inremoving repetitions, ea
h point (k; k0) has to have a 
ag asso
iated with it, whi
h is initiallyset to PASS but then permanently set to FAIL signalling that it has been 
opied from Auxto Ai(id) exa
tly on
e. We have seen in Lemma 8.2.4 that this distribution allo
ates O(
2)=npintegral points per pro
essor, hen
e the size of the array F lag. The 
ag of (k; k0) has to o

upyan address in F lag that is dependent solely on both the order of the entries and their valuesin the pair (k; k0). Flags also have to o

upy entries in the double array su

essively startingfrom the lo
ation (0; 0). This justi�es the index k � xmin, spe
ifying the row in whi
h the 
agof (k; k0) will be found, where k � xmin = 0; :::; xmax � xmin � 
. For a �xed su
h k, the 
hoi
eof the integer j su
h that j is the �rst integer greater than or equal to ymin (and of 
ourse lessthan or equal to ymax sin
e np � ymax � ymin + 1 and ymin � j � ymin + np � 1) and satisfyingk + j � id mod np implies that any k0 su
h that (k; k0) 2 Ai(id) has to satisfyk0 = j + hnp; for some integer h = 0; :::;�ymax � jnp �(note that j � k0 � ymax for (k; k0) to belong to IP ). For h = (k0 � j)=np, we have that huniquely identi�es k0 su
h that k+ k0 � id mod np and that the 
ags of (k; k0) for a �xed k andin
reasing values of k0 o

upy 
olumns h = 0; :::; b(ymax � j)=np
 of array F lag. Sin
e j � ymin,this ensures that the number of 
olumns per row of the array F lag is at most O(
)=np, andhen
e the total size of the array does not ex
eed 
 �O(
)=np = O(
2)=np.The BSP 
ost of Steps 5-8 
an then be 
omputed as follows. The loop over all edges of thepolygon iterates m times. In ea
h iteration, every pro
essor performs at most O(
2N)=np ve
toroperations, 
ommuni
ates a set of possibly redundant O(
2N)=np points, ea
h to one pro
essoronly, removes the repetitions in its auxiliary array using at most O(
2N)=np integer operations,and syn
hronises with other pro
essors on
e. The BSP 
ost of Steps 5-8 is thenO(
2mN)np + O(
2mN)np g(np) +m � `(np)
ops.By the end of all 
omputations, the pro
essors assume the result to be \Inde
omposable".The pro
essor whi
h is assigned the pivot v0 
he
ks whether v0 is in its 
opy of Am�1(id). Onlythen does it broad
ast to all other pro
essors the result \De
omposable" (say in the form of a bitword FAIl = 0 or PASS = 1). A syn
hronisation barrier is �nally met to update the ultimateresult. The total 
ost of this superstep is npg(np)+ `(np). Summing up the above sub-
osts, the�nal estimate in the theorem is established. Sin
e np < 2
, the spatial 
omplexity is dominatedby the spa
e required by the array Aux, whi
h is O(
2N)=np bits, assuming that the maximumover absolute values of all 
oordinates of verti
es of P �ts in a ma
hine word.Corollary 8.2.1 Given a bivariate polynomial f over F of degree q with no non-
onstant mono-mial fa
tors and with 
 nonzero terms, absolute irredu
ibility testing 
an be performed in parallelusing O(
q3)np +�O(
q3)np +O(q + np)� g(np) +O(
)`(np)146




ops and O(q2)np bits of storage, assuming q �ts in a ma
hine word, and 1 � np = O(q).Proof: Let ymin, ymax, xmin, xmax and 
 be as de�ned above. Sin
e ymax � ymin � q andxmax � xmin � q, Newt(f) 
an be embedded in a q � q square whose lowest leftmost vertex isthe origin of 
oordinates. Let u denote some unit of length on the horizontal or verti
al axes.Then, the longest edge of Newt(f) will have length that is bounded by p2qu representing thelength of the diagonal of the square, and hen
e will have O(q) integral points so that N = O(q).Moreover, sin
e 
 = max(ymax � ymin; xmax � xmin), we have 
 � q. We also know that thenumber of edges of Newt(f) is bounded by the number of terms 
 of f . Summarising, the inputto Algorithm 8.2.1 will then satisfy N = O(q), 
2 = O(q2) and m = O(
), and by Theorem 8.2.1above, the result follows immediately.Let Ts denote the sequential run time in 
ops of Algorithm 3.3.1 and Tnp denote the parallelrun time in 
ops using np pro
essors of the parallel version 8.2.1. We have seen that Ts =O(
2mN) where 
2 represents an upper bound on the number of integral points in P . Let Enpdenote the absolute eÆ
ien
y (see [86℄) de�ned by Enp = Ts=(npTnp), measuring the s
alabilityof the above parallel algorithm. The following result establishes the 
onditions under whi
h ourBSP algorithm 
an a
hieve linear speed-up, where eÆ
ien
y approa
hes 1.Corollary 8.2.2 Then Algorithm 8.2.1 for testing inde
omposability of a 
onvex polygon P inparallel a
hieves eÆ
ien
y Ep � 1=2 under the 
onditions1. g(np) = O(1), (see note below)2. np < 
mN ,3. np < 
 �
mNnp � 1�,4. np`(np) = O(
2mN).Proof: Re
all from Theorem 8.2.1 thatTnp = Ts=np + �O(
2mN)=np +O(
 + np)� g(np) + (m+ 2)`(np):For g(np) = O(1) we have Tnp = Ts=np +O(
 + np) + (m+ 2)`(np):If np < 
mN , 
mNnp � 1 > 0 and hen
e we 
an require np < 
 �
mNnp � 1� or 
+np < 
2mN=np,so that Tnp = Ts=np + (m+ 2)`(np):If we also have np`(np) = O(
2mN), then (m+ 2)`(np) = O(
2mN)=np andTnp = Tsnp (1 +O(1))147



from whi
h one dedu
es that Ep = TsnpTnp � 1=2:Note 1:Although the �rst 
ondition in the 
orollary above poses a heavy requirement on the 
ommuni-
ation parameter, we note that the experimental results obtained later on bene�t mainly fromthe low syn
hronisation 
ost, whi
h is dependent on the number of edges of the input poly-gon. In the 
ase of sparse polynomials, this number is usually very small, hen
e the speed-upwe report in our experiments. Furthermore, we view our 
ommuni
ation 
ost as an a�ordablerequirement in pra
ti
e, espe
ially that the parallel algorithm promises absolute irredu
ibilitytesting of polynomials with signi�
antly higher degrees than 
an be tested using a sequentialversion of the polygon de
omposability testing algorithm.8.3 Parallel multivariate absolute irredu
ibilitytestingAs dis
ussed earlier, multivariate polynomial absolute irredu
ibility testing through polytopes
an be performed only heuristi
ally with varying rates of su

ess. For a multivariate polynomialof n variables and degree bound equal to d on ea
h variable, the empiri
al results in [47℄ re
e
ta very high probability of su

ess for polynomials whose number of terms is O(nd). For poly-nomials whose number of terms ex
eeds this bound, the probability of su

ess 
an be in
reasedby loosening the bound on the absolute values of the randomly 
hosen matri
es, or the boundon the number of proje
tions that one 
an try before the algorithm outputs su

ess. The �rststrategy obviously 
omes at the expense of a larger running time, sin
e it implies in
reasingthe sizes of the shadow polygons and hen
e the run time of the polygon inde
omposability test.The se
ond option also in
reases the run time of the algorithm, simply be
ause it involves manymore shadow polygons (of roughly the same size) to be tested for inde
omposability. Unlike the
ase for bivariate absolute irredu
ibility testing, improving the sequential algorithm not only in-volves extending the range of su

ess for higher degree polynomials, but also investigating howparallel te
hniques 
an improve upon the performan
e when any of the two above strategies isinvoked, with the aim of in
reasing the 
han
es of su

ess even for polynomials that are denserthan those for whi
h the randomised algorithm is generally su

essful. A parallel approa
h tomultivariate absolute irredu
ibility testing will naturally depend on the parallel bivariate 
aseas a sub-problem; however, we shall emphasise the role that a parallel environment 
an have inthe interplay between the number of proje
tions and their \size", as one manipulates the twoparameters to improve the su

ess rate.8.3.1 A BSP algorithm for testing polytope inde
omposabilityIn the following, let np denote the maximum number of pro
essors that 
an be made available,and let p denote the number of pro
essors that are a
tually invoked. We then have p � np.As sizes of shadow polygons may 
hange (a

ording to the matrix bound one 
hooses in Step2 of Algorithm 3.3.2), so 
an their numbers, and a

ordingly we identify the two parameters148



governing the behaviour of our parallel algorithm: First, the number pr of pro
essors that weassign for testing inde
omposability of one 
ommon shadow polygon using the parallel bivari-ate version, and the total number j of shadow polygons to whi
h one applies Algorithm 8.2.1simultaneously in parallel. Sin
e pr � p, one will have j � 1 blo
ks of pr pro
essors, ea
h blo
kperforming a parallel polygon inde
omposability test, resulting in a \doubly" parallel s
hemeaimed at improving the sequential performan
e at the two levels of size and number of proje
-tions. Before presenting our algorithm, we shall need a few more notations. Let pmin denotethe minimum number of pro
essors required to test inde
omposability of one shadow polygonusing the parallel algorithm in 8.2.1. For every shadow polygon Pi, let y(i)max, y(i)min, x(i)max, andy(i)min denote respe
tively the largest and smallest y 
oordinates, and the largest and smallestx 
oordinates, among all latti
e points in Pi. Let 
i = max(y(i)max � y(i)min; x(i)max � x(i)min) andde�ne 
max = max(
i), where the maximum is taken over all possible shadow polygons Pi. Thenumber pmin thus 
orresponds to the minimum number of pro
essors required to store a numberof integral points that is bounded by 
2max using the data distribution in Lemma 8.2.4. Notethat, given a polynomial f with total degree at most nd, the proje
tions of the support ve
torsof f into the plane using a matrix whose entries are bounded by b have 
oordinates that areequal to at least �2nbd and at most 2nbd, and we 
onsequently have 
max = O(nbd).Let np, p and pr be as de�ned above, and assume in the following that more than pminpro
essors 
an be allowed to test one shadow polygon. In parti
ular, let u 2 f0; :::; np�pming besu
h that pr = pmin+u, and let j 2 f1; :::; j nppmin+ukg be su
h that jpr = p. With this stru
turewe 
an have blo
ks of j shadow polygons, ea
h of whi
h is tested for inde
omposability byAlgorithm 8.2.1 using j(pmin + u) = jpr = p � np pro
essors. Taking the maximum over allshadow polygons, let N denote the maximum number of integral points along any edge, E denotethe maximum number of edges, and 
max be as de�ned above, denoting the maximum numberof integral points belonging to any shadow polygon.Algorithm 8.3.1 (Parallel Polytope Inde
omposability Test)Input: Let f 2 F [X1; :::;Xn℄, with n > 2, be a polynomial with 
 terms and no non-
onstantmonomial fa
tors, and let Sf denote the set of exponent ve
tors of nonzero terms of f .Output: Absolutely irredu
ible or Failure, where the latter 
ase means that inde
omposability of
onv(Sf ) (and hen
e absolute irredu
ibility of f) is not de
ided.Step 1: Re-arrange the points in Sf as an n� 
 matrix S. Choose positive integers b and e. LetM(b) denote the set of all 2 � n matri
es with integer 
oeÆ
ients bounded in absolute value byb.Step 2: Determine the minimum number of pro
essors pmin ne
essary to test inde
omposabilityof a shadow polygon of size O((nbd)2).Step 3: Choose a parameter u 2 f0; :::; np � pming su
h that any shadow polygon is ta
kled bypmin + u pro
essors. Set pr = pmin + u.Step 4: Choose a parameter j 2 f1; :::; jnppr kg su
h that jpr � np.Step 5: Invoke p = jpr pro
essors to operate in parallel. If e mod j 6= 0, set e e+j�(e mod j).Step 6: De�ne an auxiliary array of integer ve
tors, Aux, of size O(
2maxN)=pr, an index arrayof integers, Index, of size pr, and a 
ag double array of integers, F lag, of size O(
2max)=pr.149



Step 7: Pro
essors are divided into j blo
ks a

ording to indi
es as follows:blo
k0 = fidjid = 0; :::; pr � 1g;blo
k1 = fidjid = pr; :::; 2pr � 1g;::::blo
kj�1 = fidjid = (j � 1)pr + jpr � 1g:All pro
essors in blo
k w, for some w = 0; :::; j � 1, perform Steps 8-18 repeatedly up to e=jtimes:Step 8: Sele
t a 
ommon matrix Matw uniformly at random from M(b) and 
ompute the set ofpoints in R 2 de�ned by Matw(S) := fMatw:sjs 2 Sg.Step 9: Compute the 
onvex hull and the edge sequen
e fnieig0�i�m�1 of Matw(S). Che
k thatea
h vertex of 
onv(Matw(S)) has only one pre-image in S under the proje
tion Matw. If this
ondition is not met, all pro
essors in blo
k w return to Step 8.Step 10: bsp�syn
();Step 11: Compute a des
ription of the set IP of all the integral points in Matw(S) as des
ribedin Steps 1 and 2 of Algorithm 8.2.1. Let A(w)i (id) denote the set of points in 
onv(Matw(S))that are rea
hable via e0; :::; ei and that are assigned to pro
essor id in blo
k w. Set A(w)i = ;, fori = �1; :::;m�1, and Result(w)  Inde
omposable. Let id denote the pro
essor's identi�
ationnumber.Step 12: For i = 0; :::; E � 2 do:12.1: If i � m� 2, 
ompute the set A(w)i (id) of points (k; k0) in IP that are rea
hable viathe ve
tors e0; :::; ei and satisfying (k + k0) � id mod pr:12.1.1: For h = w:pr; :::; (w + 1):pr � 1, set Index[h℄ 0.12.1.2: Set l id� (w:pr) + 1, and while (l � ni) do:. If v0 + lei = (k; k0) 2 IP , setid0  [(k + k0) mod pr℄ + w:pr, and send (k; k0)to pro
essor id0 in the array Aux at lo
ation Index[id0℄.. Set l l + pr and Index[id0℄ Index[id0℄ + 1.12.1.3: For ea
h u 2 A(w)i�1(id) and l = 0; :::; ni, if u+ lei = (k; k0) 2 IP , setid0  [(k + k0) mod pr℄ + w:pr, send (k; k0) to pro
essor id0 in the arrayAux at lo
ation Index[id0℄ and set Index[id0℄ Index[id0℄ + 1.12.2: bsp�syn
();12.3: Initialise all 
ags in array F lag to PASS. For ea
h u = (k; k0) 2 Aux do:12.3.1: Find the smallest integer j � ymin su
h that k + j � id mod pr.12.3.2: Set h (k0 � j)=pr; if F lag[k � xmin℄[h℄ 6= FAIL, add u to A(w)i (id) and setF lag[k � xmin℄[h℄ to FAIL.Step 13: Compute the last set A(w)m�1(id):13.1: For h = wpr; :::; (w + 1)pr � 1, set Index[h℄ 0.13.2: For ea
h u 2 A(w)m�2(id) and l = 0; :::; nm�1 � 1: if u+ lem�1 = (k; k0) 2 IP , set150



id0  [(k + k0) mod pr℄ + w:pr, send (k; k0) to id0 in the array Aux at lo
ationIndex[id0℄, and set Index[id0℄ Index[id0℄ + 1.Step 14: bsp�syn
().Step 15: Remove the repetitions in Aux as des
ribed in 12.3 above and store the unique pointsin A(w)m�1(id).Step 16: Let v0 = (k; k0). If id = [(k + k0) mod pr℄ + w:pr and if v0 2 A(w)m�1(id), set Result  De
omposable and broad
ast Result to all pro
essors.Step 17: bsp�syn
().Step 18: If this polygon is integrally inde
omposable, output \Absolutely irredu
ible" and halt.Else, all pro
essors return to Step 8.Step 19: All pro
essors output \Failure".Theorem 8.3.1 Let f 2 F [X1; :::;Xn℄, with n > 2, be a polynomial with 
 terms and no non-
onstant monomial fa
tors. Let d denote the upper bound on the degree in ea
h variable of f ,and let b denote the upper bound on the absolute values of integer 
oeÆ
ients of 2� n matri
esrepresenting random proje
tions. Let pmin denote the minimum number of pro
essors needed tostore O((nbd)2) integral points using the distribution in Lemma 8.2.4. Let k 2 f0; :::; np � pmingand j 2 f1; :::; j nppmin+kkg su
h that p = j(pmin + k) pro
essors are operating in parallel andp � np, np = O(nbd). Then Algorithm 8.3.1 
an de
ide absolute irredu
ibility of f 
orre
tly orelse produ
e \failure" using at mostTp = ej �O(
2 + 
n) + O(
2maxEN)pr �+ ej �O(
2maxEN)pr +O(p+ 
max)� g(p) + ejO(E)`(p)
ops, and requires O(
2maxN)pr bits of storage per pro
essor, assuming that nbd �ts in a ma
hineword. Here, E denotes the maximum over all shadow polygons of total number of edges, Ndenotes the maximum over all shadow polygons of number of integral points along any edge, and
2max denotes an upper bound on the total number of interior integral points belonging to anyshadow polygon.Proof: The �rst four steps of the algorithm are performed sequentially, whereby a matrixbound b is 
hosen, whi
h determines pmin a

ording to the data distribution in Lemma 8.2.4.The two parameters u and j are also 
hosen su
h that pmin + u = pr � np pro
essors 
an beassigned for any shadow polygon, and j shadow polygons 
an be tested simultaneously. Thealgorithm then invokes p = jpr � np pro
essors to operate in parallel. The minor modi�
ation tothe value of the number of proje
tions e ensures that j divides e, so that all pro
essors are madeto enter the loop starting at Step 8. The reason we enfor
e su
h full parti
ipation of pro
essorsis that syn
hronisation barriers will be met throughout that parti
ular loop, whi
h 
auses arun-time error if any of these supersteps is not met by all pro
essors. In Step 6, all arrays thatwill be used for removing repetitions in the up
oming 
omputations are de
lared. Note that theamount of memory per array is dependent on the number of pro
essors pr operating in one blo
krather than the total number of pro
essors. This is be
ause only pr pro
essors will be allowedto share the work in the parallel polygon inde
omposability testing. In Step 7, all p pro
essors151



re-
luster into j blo
ks as determined by their identi�
ation number. This re-grouping ensurespro
essors within one blo
k w = 0; :::; j�1 
ompute the same random proje
tion Matw(S), andperform the rest of the Steps 8-18 using this 
ommon input.The loop starting at Step 8 iterates at most e=j times. We analyse ea
h step in the itera-tion as follows. Step 8 is only a 
omputation whereby all pro
essors perform 
 matrix ve
tormultipli
ations using their assigned matrix Matw. Ea
h su
h multipli
ation requires 2n mul-tipli
ations and 2(n � 1) additions of integers bound in absolute value by nbd, and so Step 8has a BSP 
ost of O(
n) 
ops. In Step 9, all pro
essors in blo
k w 
ompute the edge sequen
eof the shadow polygon 
onv(Matw(S)). This is only a 
omputation step with BSP 
ost O(
2)
ops. A syn
hronisation barrier is met at Step 10 to ensure that pro
essors in a parti
ularblo
k w whi
h have found a su

essful proje
tion wait for others in di�erent blo
ks still sear
h-ing for a good 
andidate proje
tion. Without this barrier, one risks having some but not allpro
essors entering the loop of the parallel polygon inde
omposability testing phase (whi
h inturn 
ontains a syn
hronisation barrier that should be met by all p pro
essors). In Steps 11-17,ea
h pro
essor joins the others in its blo
k to test inde
omposability of their 
ommon shadowpolygon. In Step 12, we enfor
e an upper bound of E� 2 rather than m� 2, sin
e E is a globalmaximum of the number of edges belonging to any shadow polygon, whereas m is a private 
opyrepresenting the number of edges of 
onv(Matw(S)). This is again to ensure that all pro
essorsenter the loop within whi
h a syn
hronisation barrier is to be met in Step 12.2. However, therelevant 
omputations and 
ommuni
ations are performed only when the pro
essors in blo
k w
an do so (as indi
ated by the 
ondition i � m � 2 in Step 12.1). The ve
tor 
omputationsand the repetition 
he
kings in Steps 12.1, 12.3 and 13 are similar to those in the parallel poly-gon inde
omposability testing algorithm. However, we note the following essential di�eren
es.Note that any pro
essor in the above s
heme has two labels atta
hed to it, one des
ribing itsidenti�
ation number id = 0; :::; p � 1, and another des
ribing its index ind within its blo
k,for ind = 0; :::; pr � 1. Moreover, a pro
essor id operates within blo
k w = bid=pr
, and hasindex ind � id mod pr in that blo
k. Conversely, a pro
essor with index ind in blo
k w has idequal to w:pr+ ind. The data allo
ation in the present algorithm should assign arbitrary points(k; k0) of the polygon 
onv(Matw(S)) only to pr pro
essors. Thus, one 
he
ks for the value of(k + k0) modulo pr rather than p, the total number of pro
essors in a
tion. But this gives theindex of the pro
essor to whi
h (k; k0) should be allo
ated. The a
tual id 
an then be retrievedas [(k+ k0) mod pr℄ +w:pr. As seen previously, the BSP 
ost required by Steps 11-15 is at mostO(
2maxEN)pr ) +�O(
2maxEN)pr +O(
max)� g(p) + (E + 2)`(p)
ops and O(
2maxN)=pr bits of storage. Note that we make expli
it the dependen
e of g and `on p, sin
e their 
ost depends on the total number of pro
essors invoked despite the fa
t thatthe 
omputations and 
ommuni
ations are shared between blo
ks of pr pro
essors only.In Step 16, all p pro
essors resume 
onta
t to be able to know whi
h of the w shadowpolygons have been shown inde
omposable. The pro
essor in blo
k w whi
h is in 
harge of thepivot v0 of Conv(Matw(S)) de
ides whether the polygon is inde
omposable, and if so, signalsto all pro
essors in its blo
k and other blo
ks to halt the algorithm. Else, all pro
essors repeatSteps 8-18 
hoosing a di�erent proje
tion Matw. This involves p 
ommuni
ations of a booleanrepresenting \Inde
omposable", and brings the total 
ost of the entire algorithm toTp = ej �O(
2 + 
n) + O(
2maxEN)pr �+ ej �O(
2maxEN)pr +O(p+ 
max)� g(p) + ejO(E)`(p)152




ops. The memory requirement is dominated by O(
2maxN)=pr bits needed per pro
essor tostore its subset of integral points belonging to any shadow polygon.Corollary 8.3.1 Algorithm 8.3.1 for absolute irredu
ibility testing of multivariate polynomialsa
hieves eÆ
ien
y Ep � 1prunder the 
onditions1. g(p) = O(1),2. p < 
2 + 
n+ (
2maxEN=pr)� 
max,3. `(p) < 
2+
nE + 
2maxNpr .Proof: Re
all that the sequential time for testing absolute irredu
ibility of a random mul-tivariate polynomial is given by Ts = eO(
2 + 
n+ 
2maxEN)bit operations, assuming nbd �ts in a ma
hine word. Rewrite this asTs = T1 + T2where T1 = eO(
2 + 
n) denotes the 
ost of that part of the algorithm in whi
h the proje
tedpoints and their 
onvex hull are 
omputed, and T2 = eO(
2maxEN) denotes the 
ost of testingintegral inde
omposability of the shadow polygons. We also haveTp = ej �O(
2 + 
n) + O(
2maxEN)pr �+ ej �O(
2maxEN)pr +O(p+ 
max)� g(p) + ejO(E)`(p)
ops. For g(p) = O(1),Tp = ej �O(
2 + 
n) + O(
2maxEN)pr �+ ejO(p+ 
max) + ejO(E)`(p):By the 
ondition p < 
2 + 
n+ (
2maxEN=pr)� 
max, p+ 
max = O(
2 + 
n) +O(
2maxEN)=prand so Tp = ej �O(
2 + 
n) + O(
2maxEN)pr �+ ejO(E)`(p);and if `(p) < 
2+
nE + 
2maxNpr , Tp = ej �O(
2 + 
n) + O(
2maxEN)pr �153



or Tp = 1j �T1 + T2pr�for T1 and T2 as de�ned above. We then havepTp = pj �T1 + T2pr �= prT1 + T2� pr(T1 + T2)= prTsfrom whi
h one 
on
ludes that TspTp � 1pr :The above dis
ussion investigates the parallel eÆ
ien
y for an in
reasing number of pro
es-sors. However, the impli
ations play an important role in the 
hoi
e we have to make of theparameters u and j. In parti
ular, the lower bound on Ep 
an be improved for de
reasing valuesof pr, whi
h indi
ates that the best realisti
 performan
e is a
hieved by 
hoosing u = 0, sothat pr = pmin. Sin
e one 
annot invoke Algorithm 8.3.1 without less than pmin pro
essors pershadow polygon, we expe
t this to be the best 
ase s
enario des
ribing the parallel s
alabilityof the algorithm.8.4 Implementation and Run TimesAll programs were written in C and extended using the standard BSP library [66, 67℄. Thework was 
arried out at the Oxford University Super
omputing Centre (OSC) using the Oswellma
hine. In pra
ti
e, we had a

ess to 16 pro
essors only.In the following, n denotes the number of variables in the input polynomial f , D denotes itstotal degree, d denotes the upper bound on the degrees in ea
h of its variables, and 
 denotesthe number of its terms. Also, E and N denote the number of edges and the maximum numberof integral points along any edge of Newt(f) if f is bivariate. If f is multivariate, E and Ndenote the maximum over the number of edges and the maximum number of integral pointsalong any edge over all shadow polygons of Newt(f). S denotes the number of 
ases (out of100) in whi
h Newt(f) is integrally inde
omposable. In the 
ase that n > 2, MB denotes thematrix upper bound on absolute values of random 
oeÆ
ients of the proje
tions, PB denotesthe upper bound on the number of proje
tions per polytope, AP denotes the average number ofproje
tions required to show that the input polynomial is absolutely irredu
ible, and pr denotesthe number of pro
essors allo
ated per shadow polygon in the parallel multivariate algorithm.T1 denotes the sequential running time in se
onds, and Tp, for p > 1, denotes the parallel runningtime in se
onds using p pro
essors, to show absolute irredu
ibility su

essfully for one 
ase thatuses about the average number of proje
tions. An empty 
olumn lo
ation appearing beforethe �rst reported running time Tp indi
ates that there is not enough memory using less than ppro
essors to ta
kle the input polygon or shadow polygons of the input polytopes. An empty154




olumn lo
ation appearing after the last reported running time Tp indi
ates that there are nomore pro
essors available in the system for our use. The absolute eÆ
ien
ies Ep are shown inparentheses below their 
orresponding parallel times. Note that when the algorithm 
annot berun using one pro
essor for memory 
onstraints, we are 
ontended with 
al
ulating absoluteeÆ
ien
y using p pro
essors as p0Tp0=pTp, where Tp0 is the �rst reported parallel running time.The input to the two parallel algorithms is generated as follows. A 
hoi
e is �rst madeon the parameters n, D or d, 
, E and N . A hundred random polynomials satisfying theabove parameters are then 
hosen: In the bivariate 
ase, those polynomials should also satisfythe 
onditions governing their Newton polytopes (in terms of the number of edges E and themaximum number N of integral points appearing along any of their edges). In the multivariate
ase, the proje
tions 
hosen for these 100 polynomials should produ
e shadow polygons satisfyingthe parameters E and N . In the pro
ess of generating the random polynomials, we ex
lude all
ases where the 
orresponding input polygons or shadow polygons of the 
orresponding inputpolytopes have parameters E and N that do not satisfy the imposed restri
tions.In Table 8.1 we examine relatively small degree bivariate polynomials with 300 terms andwhose Newton polytopes have no more than 6 edges, and we study the e�e
t of variations in theaverage number N of integral points along any edge of the polygon. The performan
e generallyhas good eÆ
ien
y up to 4 pro
essors, but it 
an be improved for more pro
essors by in
reasingthe degree (and hen
e the total number of integral points in the polygon) or in
reasing values ofN for a �xed degree. Spe
i�
ally, and a

ording to Corollary 8.2.2 and the values in Table 5.2,we see that the �rst three 
onditions are easily satis�ed. For small degree polynomials whoseNewton polytopes have a small value for the parameter N , the fourth 
ondition might not holdas we in
rease the number of pro
essors. In this 
ase eÆ
ien
y 
an be improved by in
reasingthe maximum number of integral points along any edge of Newt(f). The rate of su

ess isgenerally high, sin
e as indi
ated previously in [47℄, one expe
ts the algorithm to perform wellfor sparse polynomials whose number of terms is O(nd). However, we note that the rate ofsu

ess de
reases with in
reasing values of N .In Table 8.2 we examine larger degree bivariate polynomials with varying numbers of terms.Mostly, eÆ
ien
y improves signi�
antly for larger degree polynomials. As noted above, and fora �xed degree polynomial whose Newton polytope has a �xed number of edges, the run-timein
reases and eÆ
ien
y improves when N in
reases for a �xed D or when D in
reases. Unlikethe examples in Table 8.1 though, varying the number of terms 
 indi
ates that the rate ofsu

ess de
reases for in
reasing ratios N=
 rather than simply for in
reasing values of N . Fixingthe degree, the number of terms, and the parameter N , we also note an in
rease in the run-timeand improvement in eÆ
ien
y when the number of edges in
reases, whi
h is to be expe
ted fromCorollary 8.2.2.In Table 8.3 we study the performan
e of the parallel algorithm in the multivariate 
aseand for small degree polynomials. The number of edges belonging to the shadow polygons is�xed. For all unstarred rows, the number of pro
essors in ea
h blo
k is set to be the minimumrequired. EÆ
ien
y improves for a �xed degree as the number of terms in
reases. This relates to
onditions 2 and 3 of Corollary 8.3.1. For a �xed degree and a �xed number of terms, eÆ
ien
yimproves when the matrix bound in
reases, sin
e this implies larger shadow polygons and hen
elarger values for 
max and N in 
onditions 2 and 3 of Corollary 8.3.1. In the starred rowswe 
ompare the performan
e of the algorithm when only pr is in
reased beyond the minimumrequired, but all other parameters remain �xed. As predi
ted at the end of Se
tion 8.3, and fora �xed total number of pro
essors p, eÆ
ien
y is better maintained when pr = pmin. As earlier155



noted in [47℄, the su

ess rate de
reases with in
reasing numbers of terms, and 
an be improvedby either in
reasing the proje
tion bound or the matrix bound.In Table 8.4 we examine the performan
e for large degree trivariate polynomials. Here, thenumber of terms is �xed, and is signi�
antly less than the total degree of the input. Also, E andN are �xed for all shadow polygons, and so are the matrix bound and proje
tion bound. Wenote a mu
h better parallel performan
e than in the 
ase of small degree trivariate polynomialsin Table 8.3. This also improves upon in
reasing degrees (as indi
ated by 
onditions 2 and 3 ofCorollary 8.3.1). The algorithm has never failed for examples using only one proje
tion per 
aseand a very small matrix bound. This emphasises the expe
ted high su

ess rate of the algorithmfor sparse polynomials [47℄.Finally, in Table 8.5, we examine the performan
e for multivariate polynomials all with thesame small bound on the degree in ea
h of their variables. Also �xed are the number of terms,E and N of the shadow polygons, and the matrix bound and proje
tion bound. Here, pr isset to be the minimum number of pro
essors required to ta
kle a shadow polygon. We in
reasethe number of blo
ks to be tested in parallel by in
reasing the number of pro
essors available.EÆ
ien
y is very good in all 
ases, even for polynomials whose total degree is less than others.This is to be expe
ted sin
e the sizes of shadow polygons are relatively large (
onditions 2 and3 of Corollary 8.3.1). The su

ess rate is also high for these sparse polynomials, and so are thenumber of proje
tions needed to produ
e a su

essful experiment.Re
all that:� n = the number of variables in the input polynomial f� D = the total degree of f� d = the upper bound on the degrees in ea
h of the variables in f� 
 = the number of terms of f� E = the number of edges of Newt(f) if f is bivariate, or else the maximum over the numberof edges over all shadow polygons of Newt(f)� N = the maximum number of integral points along any edge of Newt(f) if f is bivariate,or else the maximum number of integral points along any edge over all shadow polygonsof Newt(f)� S = the number of 
ases (out of 100) in whi
h Newt(f) is integrally inde
omposable� MB = the matrix upper bound on absolute values of random 
oeÆ
ients of the proje
tions� PB = the upper bound on the number of proje
tions per polytope� AP = the average number of proje
tions required to show that f is absolutely irredu
ible� pr = the number of pro
essors allo
ated per shadow polygon in the parallel multivariatealgorithm� Tp = the parallel running time in se
onds using p pro
essors, to show absolute irredu
ibilitysu

essfully for one 
ase that uses about the average number of proje
tions156



Table 8.1: n = 2, 
 = 300, E = 6InputD N S T1 T2 T4 T8 T161500 10 100 11 7(0:7) 9(0:3) 14(0:1) 15(0:1)1500 50 100 68 42(0:8) 24(0:7) 16(0:5) 10(0:4)1500 100 97 83 46(0:9) 26(0:8) 17(0:6) 10(0:5)1500 900 89 828 427(1) 216(1) 115(0:9) 52(1)2500 10 100 35 20(0:9) 12(0:7) 7(0:6) 4(0:5)2500 50 100 185 94(1) 58(0:8) 37(0:8) 19(0:6)2500 100 100 240 122(0:9) 67(0:9) 37(0:8) 25(0:6)Table 8.2: n = 2InputD 
 E N S T1 T2 T4 T8 T12 T163000 1000 7 2000 72 108 56(1) 30(0:9) 17(0:8) 10(0:9) 7(1)3000 1000 7 3000 6 129 65(1) 36(0:9) 18(0:9) 12(0:9) 9(0:9)5000 500 6 10 100 72 37(1) 20(0:9) 13(0:7) 9(0:7) 8(0:6)5000 500 10 10 98 168 84(1) 47(0:9) 24(0:9) 18(0:8) 15(0:7)5000 2000 10 4000 81 ... 115 60(1) 37(0:8) 27(0:7) 25(0:6)5000 2000 8 5000 5 ... 230 117(1) 64(0:9) 48(0:8) 37(0:7)10000 500 6 100 100 ... ... 60 32(0:9) 22(0:9) 18(0:8)10000 500 10 100 100 ... ... 190 95(0:8) 79(0:8) 50(1)10000 1000 8 3000 96 ... ... 133 73(0:9) 55(0:8) 40(0:8)10000 3000 8 5000 86 ... ... 371 206(0:9) 155(0:8) 116(0:8)20000 2000 8 1000 100 ... ... ... ... 131 112(0:9)20000 5000 8 7000 90 ... ... ... ... 177 142(0:9)30000 3000 8 3000 100 ... ... ... ... 329 235(1)
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Table 8.3: E = 8, N = 50Inputn D 
 pr MB PB S AP T1 T2 T4 T8 T163 75 100 1 2 100 61 16 7 6(0:6) 4(0:4) 5(0:2) 3(0:1)3 75 100 1 2 200 82 80 49 33(0:7) 20(0:6) 13(0:5) 31(0:1)3 75 100 1 6 100 80 14 127 74(0:9) 33(1) 24(0:7) 17(0:5)3� 75 100 2 6 100 80 14 ... 74(0:9) 66(0:5) 29(0:5) 26(0:3)3 75 200 1 2 100 30 18 7 5(0:7) 5(0:4) 6(0:1) 4(0:1)3 75 200 1 2 200 45 127 232 129(0:9) 72(0:8) 41(0:7) 24(0:6)3 75 200 1 6 100 51 8 51 25(1) 18(0:7) 12(0:5) 7(0:5)3� 75 200 2 6 100 51 8 ... 26(1) 19(0:7) 22(0:3) 15(0:2)Table 8.4: n = 3, 
 = 500, E = 8, N = 100, MB = 1, PB = 100InputD S AP T1 T2 T4 T8 T161500 100 1 19 10(1) 6(0:8) 3(0:8) 2(0:6)3000 100 1 ... 65 28(1) 16(1) 8(1)15000 100 1 ... ... 138 74(0:9) 39(0:9)21000 100 1 ... ... 150 83(0:9) 47(0:8)30000 100 1 ... ... ... 237 118(1)Table 8.5: d = 10, 
 = 500, E = 8, N = 50, MB = 1, PB = 100Inputn S pr AP T1 T1�pr T2�pr T3�pr T4�pr T5�pr T6�pr T8�pr500 100 2 20 ... 2460 1250(1) 828(1) 617(1) 517(1) 410(1) 313(1)1000 100 3 24 ... 3004 1501(1) 885(1:1) 800(1) 680(1) ... ...2000 100 5 24 ... 854 427(1) 280(1) ... ... ... ...3000 100 6 26 ... 3224 1543(1) ... ... ... ... ...Note 2:The eÆ
ien
ies noted in Table 8.5 seem over-optimisti
, but this 
an perhaps be attributed tothe fa
t that Ep was not 
al
ulated using a sequential time but rather using the ratio p0Tp0=pTp,for p0; p > 1. In the 
ases when it is almost impossible to get a sequential time referen
e, this158



slightly impre
ise measurement of parallel performan
e is the best available in pra
ti
e.Note 3:Although both our parallel algorithms have 
omputation and 
ommuni
ation 
osts growing al-most together, the very eÆ
ient parallel performan
e 
an perhaps be a result of a 
onstant fa
torwithin the 
omputational 
omplexity that is larger than the one in the 
omputational estimate.In pra
ti
e, this 
an happen when the 
omputations within the inner-most loops produ
e manymore latti
e points that do not belong to the given polygon (or shadow polygon) than latti
epoints whi
h do (and whi
h hen
e have to be 
ommuni
ated). In this 
ase, there is more 
om-putation that is performed and then dis
arded without being mat
hed with a 
orresponding
ommuni
ation.8.5 Con
lusionIn this 
hapter we have revisited a fast irredu
ibility testing algorithm for multivariate poly-nomials over arbitrary �elds. The algorithm works deterministi
ally in the bivariate 
ase butheuristi
ally and randomly for polynomials with more than two variables. Although �nding apolynomial time algorithm for multivariate polynomial irredu
ibility testing remains an openproblem, the work in [45℄ gives a pseudo-polynomial time algorithm, whi
h 
an be applied asa fast pre-test before any of the rigorous yet slower algorithms are invoked. Motivated by theoriginal empiri
al �ndings in [47℄ whi
h provide various ranges of appli
ability of the heuristi
algorithm, we investigated potential parallelism with the aim of extending these ranges, bothfor large degree bivariate polynomials and for multivariate polynomials of all degrees. A 
ru
ialaspe
t of our work exploited the fa
t that absolute irredu
ibility testing 
an be redu
ed to poly-tope inde
omposability testing in Rn. For n = 2, we addressed the two important issues of loadbalan
ing and data distribution. Having set the parallel framework we provided an algorithmwhose 
ommuni
ation 
ost 
an be easily bounded by the 
omputation, and whose syn
hronisa-tion 
ost has a fa
tor that is a 
onstant multiple of the number of edges in the polygon. Thisimmediately implies highly eÆ
ient parallel performan
e for sparse bivariate polynomials whoseNewton polytopes have few edges. Empiri
al results in this 
ase a
hieve overall eÆ
ien
y underreasonable parametri
 
onditions that are implied by our theoreti
al analysis of the algorithm,and by signi�
antly higher degree absolute irredu
ibility testing up to degree 30000.We in
orporated the above for the parallel multivariate 
ase into a doubly parallel s
hemewhere several shadow polygons are tested in parallel by blo
ks of pro
essors. This was doneby identifying two parameters re
e
ting the size as well as the number of the shadow polygons.Conditions under whi
h this algorithm a
hieves good eÆ
ien
y were also studied, and re
e
tedin the empiri
al results for the multivariate 
ase. Those exhibited a good eÆ
ien
y for both smalldegree polynomials and for high degree polynomials, where parallelism 
ould be exploited notonly for speeding up 
omputations but also for in
reasing the rate of su

ess of the algorithm.The algorithm was used to test absolute irredu
ibility of trivariate polynomials with degree upto 30000 and of low degree multivariate polynomials with up to 3000 variables.
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Chapter 9Con
lusion9.1 Dis
ussion and future workThe various algorithms for polynomial fa
torisation over �nite �elds and many other relatedalgorithms in symboli
 
omputation have 
ourished under the assumption that better algorithmsare those whi
h ta
kle larger input sizes and a
hieve better running times. Thus, 
ontinuity insu
h a domain does not rely solely on progress in asymptoti
 analysis, and some other aspe
tsof symboli
 
omputation have to be investigated.Over the past thirty years, the theory of polynomial fa
torisation over �nite �elds has beenlargely exhausted from a mathemati
al point of view; nevertheless, this progress has yet to befully mat
hed with advan
es 
on
erning the ma
hinery originally designed to foster su
h algo-rithms. A lot of 
hallenge lies not only in 
oming up with faster sequential algorithms, but alsoin trying to in
rease the problem sizes for the already existing algorithms, and in 
omparing thevarious algorithms when one a
tually embarks on their implementation. A sequential algorithmmay outperform another one simply be
ause it requires a smaller number of operations; however,mu
h else has to be said, for instan
e, when the algorithms are approa
hed from a parallel pointof view.Among the many approa
hes in a 
omputer algebra system are the following. Primarily,introdu
ing new mathemati
al algorithms gains most 
redit for the 
reativity that this entails,obtaining better 
omplexity bounds. However, there 
omes a time when these need to be testedin pra
ti
e, before they 
an be branded as eÆ
ient as they are 
laimed to be. Heuristi
s 
anplay an important role in bringing about improvements, espe
ially in spe
ial 
ases like sparseor binary polynomials. The disadvantage of this approa
h is that heuristi
s still need to beproven to work before they 
an be generally a

epted by the mathemati
al 
ommunity. Datastru
tures also have an important role in improving existing mathemati
al algorithms. Theseare the basi
 building tools whose 
areful manipulation 
an have a de
isive fa
tor in determiningthe eÆ
ien
y of a parti
ular algorithm. Parallelism is an a
tive area of resear
h and it be
omesalmost immediate to try and in
orporate this whenever possible. Apart from the inherentinterest in parallel design, this 
an help when either run time or memory is a problemati
 issuein a parti
ular sequential algorithm. The risk involved is that, unless problems are big enough,parallel performan
e 
an in fa
t be worse than the sequential one.Based on the above, we have dis
overed an interest in ta
kling su
h algebrai
 problems froma 
omputational point of view. In this thesis, we have fo
used on two re
ent algorithms in the160



�eld of polynomial fa
torisation algorithms over �nite �elds. The fo
us of interest in the earlier
hapters was on Niederreiter's algorithm and its appli
ability over the binary �eld. We developeda new sparse binary linear solver based on the Gustavson data stru
ture, aimed at avoiding elbowroom and 
ompression. The method 
an be easily generalised to deal with arbitrary prime �elds.This was in
orporated in the linear algebra part of Niederreiter's algorithm, and helped assertthat the algorithm performs favourably in the 
ase of sparse polynomials, spe
i�
ally trinomials.We 
onje
tured that the system remains 
onsiderably sparse over F 2.The results of the �rst 
hapter were used in the following work on a BSP model for theG::ottfert algorithm. An example where the BSP model 
an be used in 
omputer algebra, theparallel algorithm was used in that phase of Niederreiter's algorithm where the fa
tors haveto be extra
ted using a basis of the linear system solution set. We demonstrated eÆ
ient ands
alable parallel performan
e, thanks to the algorithm's low 
ommuni
ation and syn
hronisation
osts. The empiri
al results show that the algorithm 
an perform favourably in 
omparison withprevious parallel implementations of Niederreiter's algorithm.In later 
hapters we helped develop the polytope fa
torisation method with S. Gao and A.Lauder as a novel method for bivariate fa
torisation. Apart from the mathemati
al foundationsof this algorithm, the 
hallenges in that respe
t have been to develop those areas of the methodthat helped make it pra
ti
ally 
omputable and a

essible for use, and demonstrate throughpreliminary examples over the binary �eld that it 
an 
ompete with the standard Hensel lift-ing method for bivariate fa
torisation. As a follow up, we developed a sparse variant whi
h
on�rmed the original arguments in [2℄ that the method 
an work well for sparse polynomials.The 
omplexity of the new variant was determined using the number of terms of the inputpolynomial and its degree rather than the degree only, so that both the run time and memoryrequirements are made dependent on the sparsity fa
tor of the input. Although it works underspe
i�
 
onditions governing the sparsity of the expe
ted fa
tors of the input, we believe thatthe fa
torisation re
ord a
hieved through this method 
ould not have been a
hieved using anyother algorithm.We 
on
luded with another instan
e of where parallelism 
an be used to a
hieve 
ompetentresults in testing absolute irredu
ibility of multivariate polynomials. Investigating a new methodbased on the use of polytopes, we exploited the geometri
 features of the algorithm in a BSPparallel method based on a well de�ned load balan
ing s
heme and data distribution. Theparallel algorithm exhibited a s
alable and eÆ
ient performan
e, also resulting in very highabsolute irredu
ibility testing re
ords.We would always be interested in questioning some of the theoreti
al assertions labellingone algorithm as \better" than another, determining 
ross over points between the versatileapproa
hes, and many other tasks that would not be possible to a
hieve without the 
omputingtools available at the hand of a 
omputer s
ientist. In relation to our previous work on univariatefa
torisation, it would be interesting to seek theoreti
al arguments why the Niederreiter linearsystem remains 
onsiderably sparse throughout the redu
tion phase, or else refute our 
onje
turethat it does. It would also be interesting to investigate the usage of the Blo
k Lan
zos method insolving the linear systems asso
iated with either Berlekamp's or Niederreiter's algorithm, and to
ompare this to previous versions whi
h make use of bla
k box methods like the Wiedemann'smethod. In relation to our work on bivariate fa
torisation, we �rst need to perform ample
ode optimisation of the polytope method (both dense and sparse), as the software available isstill in preliminary form. We are also aiming at generalising our 
ode for the sparse polytopemethod to deal with arbitrary �elds of prime order rather than the binary �eld ex
lusively.161



We will be interested in investigating whether an average 
ase analysis 
an be developed forthe polytope method, to help explain why this performs well in pra
ti
e despite its worst 
aseexponential running time. We will also be interested in investigating whether any of the previousimprovements to Hensel lifting, su
h as quadrati
 Hensel lifting, 
an be used to improve on thepresent 
omplexity of the polytope method. An empiri
al study 
omparing Hensel lifting and thepolytope method and determining the 
ross-over points between the two methods is ne
essarybefore the latter 
an be widely made available. Last, it would be of great use to determinewhether a theoreti
al justi�
ation 
an be found at all, explaining why the probability of su

essof the absolute irredu
ibility testing via polytopes is best when the number of nonzero terms ofa multivariate polynomial is bounded by a 
onstant multiple of its total degree.
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