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Fatorisation Algorithms for Univariate and Bivariate Polynomialsover Finite FieldsFatima Khaled Abu SalemTrinity Term, 2004AbstratIn this thesis we address algorithms for polynomial fatorisation over �nite �elds. In theunivariate ase, we study a reent algorithm due to Niederreiter [102℄ where the fatorisationproblem is redued to solving a linear system over the �nite �eld in question, and the solutions areused to produe the omplete fatorisation of the polynomial into irreduibles. We develop a newalgorithm for solving the linear system using sparse Gaussian elimination with the Markowitzordering strategy, and onjeture that the Niederreiter linear system is not only initially sparse,but also preserves its sparsity throughout the Gaussian elimination phase [3℄. We develop anew bulk synhronous parallel (BSP) algorithm based on the approah of G�ottfert (1994) forextrating the fators of a polynomial using a basis of the Niederreiter solution set over F2 . Weimprove upon the omplexity and performane of the original algorithm, and produe binaryunivariate fatorisations of trinomials up to degree 400000 [1℄.We present a new approah to multivariate polynomial fatorisation whih inorporates ideasfrom polyhedral geometry, and generalises Hensel lifting [2℄. The ontribution is an algorithmfor fatoring bivariate polynomials via polytopes whih is able to exploit to some extent thesparsity of polynomials. We further show that the polytope method an be made sensitiveto the number of nonzero terms of the input polynomial. We desribe a sparse adaptation ofthe polytope method over �nite �elds of prime order whih requires fewer bit operations andmemory referenes for polynomials whih are known to be the produt of two sparse fators[4℄. Using this method, and to the best of our knowledge, we ahieve a world reord in binarybivariate fatorisation of a sparse polynomial with degree 20000. We develop a BSP variant ofthe absolute irreduibility testing via polytopes given in [45℄, produing a more memory andrun time eÆient method that an provide wider ranges of appliability [5℄. We ahieve absoluteirreduibility testing of a bivariate and trivariate polynomial of degree 30000, and of multivariatepolynomials with up to 3000 variables.
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Chapter 1Introdution1.1 MotivationSymboli omputation has been the objet of omputer algebra systems for deades now, fousingon the use of omputers to perform symboli mathematis. The rudimentary elements of aomputer algebra system onsist in numbers and polynomials over a �eld, and the basi domainsare the natural numbers, rational numbers, �nite �elds and polynomial rings [29, 55℄. One majorproblem in this area has been the fatorisation of polynomials over �nite �elds, an ative areaof researh that has gained a lot of interest in the last few deades. Finite �elds in general, andfatorisation of polynomials over suh �elds in partiular, have widespread appliations in boththeory and pratie. In many instanes it beomes essential to be able to fator any large degreepolynomial or otherwise establish its irreduibility. Appliations within mathematis appear ina variety of situations: Equation solving, suh as in modeling the Cylohexane moleule andstudying the spatial onformations of Cylohexane ([55℄, Chapter 24), and symboli summationand integration [111, 112, 126℄. In number theory, univariate polynomial fatorisation an beused in �nding omplete partial fration deompositions, and omputing the number of points onellipti urves [37℄. In oding theory, univariate polynomial fatorisation is used in onstrutinga useful lass of yli odes, the BCH odes [9, 69, 95℄, some of whih use polynomials over thebinary �eld [16℄. Some ryptosystems, in turn, are based on the Goppa odes, a generalisation ofBCH odes [92, 93℄. In ryptography, the fatorisation of random polynomials over �nite �eldsis used in some randomised methods for omputing disrete logarithms over �nite �elds [37℄.High degree sparse univariate polynomials in this respet have reently been used in developingpubli key ryptosystems: SPIFI [7℄, based on the diÆulty of �nding a sparse polynomial withspei�ed values at some given points, and EnRoot [61℄, based on the diÆulty of �nding asolution to a given system of sparse polynomial equations over ertain large rings.Binary trinomials are also important in their role in onstruting linear feedbak shift regis-ters, hene ontributing to uses in random number generation, to onstruting stream iphers inryptography, and to generating Hamming and BCH error orreting odes [9, 93, 98℄. Primitivetrinomials over F 2 [18, 19℄ also play an important role in onstruting �elds of even harateristiand for omputing with elements within suh �elds. In general, omputation over the binary�eld is partiularly fashionable beause of its simpliity in omputation, serving as an exampleto illustrate some of the attrative features of a partiular algorithm over �nite �elds. It is alsooften used as the underlying �eld where appliations in ryptography and oding theory employ1



omputations over �nite �elds [93℄.Bivariate polynomial fatorisation an be used to solve systems of polynomial equationsusing Gr::obner bases ([55℄, Chapter 21). Methods for solving systems of algebrai equationshave also been developed using multivariate fatorisation [28℄. Algebrai simpli�ation andproving ombinatorial identities an also make use of bivariate polynomial fatorisations [55℄.Absolute irreduibility testing of families of multivariate polynomials an be an important toolin deformation theory and number theory [47℄. Multivariate fatorisation has also been used inthe lassi�ation of algebrai varieties [109℄Apart from appliations in these domains, univariate polynomial fatorisation over �nite�elds serves as a subproblem of other fatorisation problems, namely, those pertaining to multi-variate polynomials over �nite �elds, and univariate and multivariate polynomials over the �eldof rational numbers and �nite extensions of the rationals [56℄.Contemporary researh in omputer algebra aims both at wide funtionality of the presentalgorithms (by solving a wide range of di�erent problems) and at their speed (how large an theproblems to solve be made, using reasonable resoures of time and mahinery) [55℄. Our motivesbehind undertaking this line of researh from a omputational point of view stem from our beliefthat algorithmi trends in mathematis need to be examined and re-evaluated using the verysame tools for whih the algorithms were originally intended, whih is the atual \omputer"mahine. A ontinuous hallenge lies in onneting the new mathematial ideas on how to bestperform a ertain algorithm, with the omputing approahes and tools that help materialise apartiular algorithm. A variety of tools are made available towards this end. Improvements antouh upon issues exploiting sparsity, memory management and spae redution. Parallelismin omputer algebra has also been interestingly demonstrated [31, 118, 129℄. One of the mainontributions of this thesis is to also investigate areas of parallelism whenever an improvementin run time or spatial omplexity is desired. The main fous is on reent algorithms whihhave still not been thoroughly used: Niederreiter's algorithm for univariate polynomials and thepolytope method for bivariate polynomials. The ultimate aim of our work is to bring about thebest performane possible in those two approahes using a given hardware and reasonable time,ahieving ompetitive fatorisation reords that in some ases have not been ahieved before.In partiular, we ahieve the fatorisation of a sparse binary bivariate polynomial with degree20000, and the absolute irreduibility testing of a bivariate and trivariate polynomial of degree30000, and of multivariate polynomials with up to 3000 variables.1.2 OutlineChapters 2 and 3 ontain a preview of the mathematial ideas on whih our work is based. InChapter 4 we examine the Niederreiter algorithm [102, 103, 104, 105℄ whih has been preditedto perform very well for sparse polynomials over the binary �eld. This prompts us to investigatethe sparsity feature for trinomials in partiular, those providing the most immediate model forsparse polynomial fatorisation. We prove that the Niederreiter matrix is sparse in the ase of atrinomial, and establish the exat sparsity pattern and density of the Niederreiter matrix [3℄. Wealso develop a new algorithm for solving the sparse linear system diretly to produe a basis forthe solution set through Gaussian elimination and using the data struture of Gustavson [65℄,and show how the new algorithm irumvents the problems that have always been assoiatedwith this data struture in terms of elbow spae and ompression. Although it an be easily2



modi�ed to beome a general linear solver for other various appliations over F 2, our experimentsshow that the algorithm an be very eÆient in the ases when the matrix maintains a highlevel of sparsity throughout the redution phase, typially an observed feature of the Niederreitermatrix.These results are later inorporated into an algorithm for extrating the fators using a ba-sis for the solution set, based on G�ottfert's aeleration of the Niederreiter algorithm over F 2[59℄. In Chapter 5, we develop a new BSP (bulk synhronous parallel) algorithm that outlinesa lear dependeny between the major omputations involved in the fators extration proess,so that the resulting algorithm omprises a ompletely new task distribution proess [1℄. Ourmain reasons behind adopting suh a model of parallelism are due to its features simplifyingthe ost analysis and its lear distintion between the three important phases of omputation,ommuniation, and synhronisation. Our BSP theoretial model results in an eÆient BSPost requiring relatively small ommuniation and synhronisation osts, and the parallel algo-rithm ahieves very good eÆieny as on�rmed by our experimental results. Combining theresults of Chapters 4 and 5, the resulting hybrid algorithm provides a heaper and more mem-ory eÆient alternative to the fatorisation of trinomials over F 2 than previously known denseimplementations of the Niederreiter algorithm [110℄.In Chapter 6 we beome interested in algorithms for bivariate polynomial fatorisations over�nite �elds. Based on joint work with Shuhong Gao and Alan Lauder [2℄, we introdue a newapproah to bivariate polynomial fatorisation whih inorporates ideas from polyhedral geome-try, and generalises Hensel lifting. The method exploits the sparsity of input polynomials so thatbivariate polynomials an be proessed signi�antly more quikly than using ordinary Hensellifting. Given a bivariate polynomial over a �eld, one may assoiate with it a onvex polytopein the two dimensional real spae alled its Newton polytope. A well known result is that if thepolynomial fators, then its Newton polytope deomposes, in the sense of the Minkowski sum,into the Newton polytopes of the fators. If the polytope does not deompose, one immediatelydedues that the polynomial must be irreduible. However, the onverse is not neessarily true,and we are faed with the following problem: Given a deomposition of the polytope, an wereover a fatorisation of the polynomial whose fators have Newton polytopes of that shape,or show that one does not exist. Our approah, motivated by Hensel lifting, is to assume that,along with the deomposition of the polytope, we are given appropriate fatorisations of thepolynomials de�ned by the edges of the Newton polytope. These polynomials will be essen-tially in one variable less, and the boundary fatorisation of the input polynomial is then liftedinto the Newton polytope, where the oeÆients of the possible fators of the polynomial arerevealed in suessive layers. In standard Hensel lifting, instead of lifting from the boundary,one does so from a single edge. Uniqueness of the linear systems enountered during liftingan then be ensured by randomising the polynomial to enfore oprimality onditions and tomake sure the edge being lifted from is suÆiently long. However, this randomisation is bysubstitution of linear forms, and this destroys the sparsity of the input polynomial. With thepolytope method, uniqueness an be shown to hold in the bivariate ase, only under ertainoprimality onditions, and without restritions on the lengths of the edges. As with Hensellifting, the polytope method has an exponential worst-ase running time, sine the number ofsummands of a Newton polytope ould in the worst ase be exponential in the total degree ofthe assoiated polynomial. However, our experiments performed very eÆiently in fatorisationsof sparse polynomials whose polytopes have few edges, and hene very few Minkowski deompo-sitions. This leads us to onsider possible extensions of this work, in the belief that it ould be3



a promising new method with fast performane in pratie, despite its worst-ase exponentialtime.In Chapter 7, we pursue this work in an attempt to get as lose as possible to solving theopen problem of devising a sparse bivariate algorithm. The polytope method has potentialfeatures that one an exploit, but as it stands above, it argues for one major advantage suitingsparse polynomials, namely, the fat that the worst-ase exponential searh for summands anin fat be very small if the input polynomial is sparse with a Newton polytope having fewdeompositions. However, for an input bivariate polynomial of total degree d, the amount ofwork per extension of a given boundary fatorisation is still of the order O(d4). We investigatewhether this omplexity an be redued, in the ase when the ground �eld is of prime order,to some bound whih is diretly dependent on the number of terms, say t. The method, whihexploits both the fat that many of the oeÆients orresponding to lattie points in the Newtonpolytope of the input polynomial (and hopefully its fators) are zero, and also the fat that manyof the polynomials generated during the lifting steps are zero in general and sparse in the worst-ase analysis, results in very high degree, sparse, bivariate binary fatorisations for input degreeequal to 20000. To the best of our knowledge, this is by far the highest binary fatorisationahieved to date [4℄.In Chapter 8, we examine multivariate polynomial absolute irreduibility over �nite �elds, asub-problem whih is indispensable for examining input polynomials before feeding them into apossibly expensive and nontrivial fatorisation algorithm. In partiular, we revisit an algorithmdue to Gao and Lauder [45℄ that is also based on the use of polytopes. Motivated by their original�ndings and the speial feature whih makes absolute irreduibility testing largely dependent onthe shape and the size of Newton polytopes, we investigate a BSP sheme that serves to extendthe range of appliability of the algorithm, by making it possible to takle signi�antly higherdegrees, and by allowing a more eÆient performane for low degree yet denser polynomials thanthose reported in [47℄. We show that the algorithm an be optimally parallelised by onstrutinga balaned load sheme using the pattern of omputations in the sequential ase as in [45℄, andby adopting a orresponding data distribution representing lattie points inside polytopes in R 2.The distribution not only adheres to the proposed load sheme, but also allows for a salableparallel performane whose eÆieny is reeted in our experiments. This then paves the way forthe multivariate ase, where a model involving parallelism at two di�erent levels is desribed.The resulting improvement is shown to perform well for a wide range of input polynomials,ahieving absolute irreduibility testing of bivariate and multivariate polynomials up to degree30000, and of lower degree multivariate polynomials with up to 3000 variables [5℄.We onlude with a summary of our work in Chapter 9, and outline possible lines of researhof relevane to this thesis that an be undertaken in the future.
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Chapter 2PreliminariesIn this hapter we present a brief olletion of lassial terminologies and results desribing thetools upon whih the rest of the thesis is based. We start our disussion by de�ning severaltypes of algebrai strutures and properties neessary for the onstrution of �nite �elds. Wealso disuss issues related to the representation of polynomials over suh �elds, and for per-forming arithmeti of univariate polynomials over �nite �elds. We �nally onlude with a briefdesription of the BSP model that we will adopt in all our parallel algorithms.2.1 Rings and �eldsFor a omplete overview of the statements and proofs of all assertions oming forward, we referthe reader to [9, 40, 55, 85, 93, 97℄.De�nition 2.1.1 A group G is a set together with a binary operation � operating on elementsof G suh that:i. � is assoiative.ii. There exists a unique element e in G (alled the identity element) suh that for all a 2 Gwe have: a � e = e � a = aiii. For eah a 2 G, there exists a unique element a�1 2 G suh that:a � a�1 = a � a�1 = eIf the group also satis�es a � b = b � a for all a; b 2 G, then the group is alled abelian (orommutative).In what follows, 0 denotes the identity under + and 1 the identity under �.De�nition 2.1.2 A ring (R;+; �) is a set R endowed with two binary operations + and � (notneessarily the ommon operations of addition and multipliation) suh that:i. R is an abelian group under +.ii. � is assoiative.iii. The distributive laws hold. That is, for all a; b;  2 R, we have:5



a � (b+ ) = a � b+ a �  and (b+ ) � a = b � a+  � a.aDe�nition 2.1.3 i. A ring R is alled a ring with identity if the ring has a multipliativeidentity; that is, if there exists an element e 6= 0 suh that a � e = e � a = a for all a 2 R.ii. A ring is ommutative if � is ommutative.iii. An integral domain is a ommutative ring with identity e 6= 0 in whih a � b = 0 impliesa = 0 or b = 0.iv. A ring is alled a division ring (or skew �eld) if its nonzero elements form a group underthe operation �.v. A �eld is a ommutative division ring.In what follows we write ab as a shorthand for a � b.De�nition 2.1.4 A subset S of a ring R is alled a subring of R provided S is losed under +and � and S forms a ring under these operations.De�nition 2.1.5 Let J � R. Then J is alled an ideal of R if J is a subring of R and we havera 2 J and ar 2 J for all a 2 J and r 2 R.For a ommutative ring R, the smallest ideal ontaining a given element a 2 R is the ideal(a) = fra+ na : r 2 R;n 2 Zg. If R ontains an identity, then (a) = fra : r 2 Rg.De�nition 2.1.6 Let R be a ommutative ring and J an ideal of R. If there exists an a 2 Rsuh that J = (a), then J is alled the prinipal ideal generated by a.De�nition 2.1.7 Let J be an ideal of a ring R. We say that b and  in R belong to the sameresidue lass modulo J if b�  2 J .If a 2 R, the residue lass of a modulo J will be denoted by [a℄ = a + J , onsisting of allelements of R of the form a+  for some  2 J .De�nition 2.1.8 The ring of residue lasses of the ring R modulo the ideal J under the oper-ations: (a+ J) + (b+ J) = (a+ b) + J(a+ J)(b+ J) = ab+ Jis alled the residue lass ring (or fator ring) of R modulo J . We denote this ring by R=J .Theorem 2.1.1 The ring Zp of residue lasses of the integers modulo the prinipal ideal gen-erated by a prime p is a �eld.De�nition 2.1.9 Let p be a prime and let F p = f0; 1; :::; p � 1g. Let� : Z=(p)! F pbe the mapping de�ned by �([a℄) = a for a = 0; 1; :::; p � 1. Then � indues a �eld struture onF p whih we all the Galois �eld of order p. 6



Theorem 2.1.2 The mapping �, as de�ned above, is an isomorphism, i.e.:�([a℄ + [b℄) = �([a℄) + �([b℄) and �([a℄[b℄) = �([a℄)�([b℄):It is lear that the �nite �eld F p has zero element 0 and identity 1. Moreover, its struture isidential to that of Zp. An obvious advantage to this is the fat that omputing with elementsof F p redues to ordinary arithmeti of integers modulo p.De�nition 2.1.10 Let R be an arbitrary ring. Suppose that there exists a positive integer nsuh that nr = 0 for every r 2 R. We all the harateristi of R the least suh positive integern. If no suh positive integer exists, R is said to have harateristi 0.Theorem 2.1.3 A �nite �eld has prime harateristi.Theorem 2.1.4 Let R be a ommutative ring of prime harateristi p. Let a; b 2 R and n 2 N.Then (a+ b)pn = apn + bpn :In the following, all polynomials are assumed to be in one variable.De�nition 2.1.11 Let R be an arbitrary ring. The ring formed by polynomials over R with theusual operations of polynomial addition and multipliation is alled the polynomial ring over Rand denoted by R[x℄.De�nition 2.1.12 Let F be a �eld. The �eld of frations of the polynomial ring F [x℄ is the setF (x) of rational funtions in x with oeÆients in the �eld F .De�nition 2.1.13 Let f(x) = Pni=0 fixi be a nonzero polynomial over R suh that fn 6= 0.Then we all n the degree of the polynomial f (denoted by deg(f)), fn the leading oeÆient off(x), and f0 the onstant term. If R has identity 1 and the leading oeÆient of f(x) is 1, thenf(x) is alled a moni polynomial.De�nition 2.1.14 A Laurent polynomial with oeÆients in the �eld F is a polynomial of theform a�mx�m + a�(m�1)x�(m�1) + :::+ a�1x�1 + a0 + a1x+ :::+ anxnwhere ai 2 F , for �m � i � n, m;n 2 Z�0, and where only �nitely many of the ai's are nonzero.De�nition 2.1.15 Given a nonzero Laurent polynomial f = Pni=m aixi, where m;n 2 Z, itsdegree is de�ned to be the di�erene n�m.De�nition 2.1.16 A regular polynomial is a polynomial whose indeterminates annot have neg-ative exponents.Within appliations involving only regular polynomials, we set deg(0) = �1 or �1 depend-ing on the suitability of eah. If f = 0 is treated as a Laurent polynomial, we set deg(0) = �1.Polynomials of degree equal to zero are the nonzero onstant polynomials. In all the following,F denotes an arbitrary �eld. 7



Theorem 2.1.5 Let g 6= 0 be a polynomial in F [x℄. Then for any f 2 F [x℄ there exist polyno-mials q; r 2 F [x℄ suh that f = qg + r; where deg(r) < deg(g):De�nition 2.1.17 A polynomial f 2 F [x℄ is said to be irreduible over F if f has positive degreeand f = b with b;  2 F [x℄ implies that either b or  is a onstant polynomial (equivalently, eitherb or  belongs to F ). In other words, f is irreduible if and only if it has only trivial fators.Theorem 2.1.6 Let f 2 F [x℄ have positive degree. Then f an be written in the formf = age11 � � � gerr ;where a 2 F , g1; :::; gr are distint irreduible polynomials in F [x℄, and e1; :::; er are positiveintegers. Moreover, this fatorisation is unique up to the order of fators and multipliation byunits (the nonzero onstants from F ).Theorem 2.1.7 Let f 2 F [x℄. Then the residue lass ring F [x℄=(f) is a �eld if and only iff is irreduible over F . In partiular, the residue lasses omprising F [x℄=(f) are of the formr + (f), where r runs through all polynomials in F [x℄ with deg(r) < deg(f). Thus, if F = F pand deg(f) = n � 0, then F p[x℄=(f) has pn elements.Theorem 2.1.8 Let f 2 F [x℄ be a polynomial of degree n over F . Then f an have at most ndistint roots in F .2.2 Field extensions and struture of �nite �eldsWe all a sub�eld K of F that subset of F whih itself is a �eld under the operations of F . Weall F an extension �eld of K.Let K be a �eld and F a �nite extension of it. Then F an be viewed as a vetor spae overK. F is alled a �nite extension if it is a �nite dimensional vetor spae. Its degree (denoted by[F : K ℄) is preisely its dimension as a vetor spae.Lemma 2.2.1 Let F be a �nite �eld ontaining a sub�eld K with q elements. Let m = [F : K ℄.Then F has qm elements.Theorem 2.2.1 The order of a �nite �eld F is a power of its harateristi. Consequently,every �nite �eld has order pn, where p is prime and n is the degree of an irreduible polynomialover F p suh that F is isomorphi to F p[x℄=(f).De�nition 2.2.1 A �eld F is said to be algebraially losed if every univariate polynomial ofdegree at least 1 with oeÆients in F has a zero in F .De�nition 2.2.2 A �eld extension L of F is said to be algebrai if every element of L is a rootof a nonzero polynomial with oeÆients in F .De�nition 2.2.3 An algebrai losure F of a �eld F is an algebrai extension of F that isalgebraially losed. 8



Theorem 2.2.2 The algebrai losure of a �eld F is unique up to isomorphism whih �xes allelements of F .De�nition 2.2.4 Let F be a �nite �eld and K a sub�eld of F . Let f 2 K [x℄ be a polynomialof degree n > 0 and leading oeÆient a. Then f is said to split in F if it an be written as aprodut of linear fators in F [x℄ or equivalently, if there exists some �1; :::; �n 2 F suh thatf(x) = a(x� �1) � � � (x� �n):The �eld F is alled a splitting �eld of f .The following theorem states that �nite �elds of any prime power order exist and are essen-tially unique in struture though their representation may vary.Theorem 2.2.3 For every prime p and every positive integer n there exists a �nite �eld withpn elements. Any �nite �eld with q = pn elements is isomorphi to the splitting �eld of xq � xover F p.Theorem 2.2.4 Let F be a �nite �eld with q elements and a 2 F . Thenaq = a:Theorem 2.2.5 Let F be a �nite �eld with q elements and K a sub�eld of F . Then the polyno-mial xq � x in K [x℄ fators in F [x℄ and the fatorisation is given by:xq � x = Ya2F (x� a):In this ase, F is a splitting �eld of xq � x over K .Theorem 2.2.6 For q = pm, F q ontains an isomorphi opy of F p as a sub�eld. In otherwords, F q is an extension �eld of F p of degree m.Theorem 2.2.7 Let F q be a �nite �eld and n 2 N. The produt of all moni irreduible poly-nomials over F q whose degrees divide n is equal to xqn � x.In what follows let F �q denote the set of nonzero elements of F q.Theorem 2.2.8 The nonzero elements of F q form a group under multipliation. Furthermore,this group is yli of order q � 1.De�nition 2.2.5 An irreduible polynomial f(x) 2 F p[x℄ of degree m is alled a primitivepolynomial if x is a generator of F �pm, the yli multipliative group of nonzero elements inF pm = F p[x℄=(f(x)).Theorem 2.2.9 For eah m � 1, there exists a moni primitive polynomial of degree m overF p. 9



In onlusion, we de�ne the formal derivative over �elds bearing in mind that the de�nitionentailed does not involve the idea of a limit (beause of the absene of the notion of distaneor topology on a �eld). Instead, we adopt the following de�nition whih applies to arbitraryommutative rings and not just �elds :De�nition 2.2.6 Let R be an arbitrary ommutative ring with 1. Let f =P0�i�n fixi 2 R[x℄.We de�ne the formal derivative of f byf 0 = X1�i�nifixi�1:Theorem 2.2.10 Let R be a ommutative ring with 1, g1; :::; gr 2 R[x℄, and e1; :::; er positiveintegers. We then have:(ge11 � � � gerr )0 = X1�i�reig0igei�1i Yj 6=igejj = X1�i�reig0i fg iwhere f = ge11 � � � gerr .2.3 Constrution of �nite �eldsWe have seen in the previous setion that, given q = pm for somem � 1, we an always determinea �nite �eld of order q. In addition, any two �elds of the same order are isomorphi, i.e.struturally the same; however, the di�erene in representing isomorphi opies of those �eldsis essential to pratial appliations where one has to ome up with the most suitable hoie of�eld representation.We start our disussion on how to onstrut �nite �elds by onsidering the ase q = p. Inthis ase, we know that F p is isomorphi to Zp and so the �nite �eld an be taken to be the setof integers f0; :::; p � 1g. If q = pm where m > 1, the representation an beome more diÆult.One eÆient way to onstrut �elds of prime power order is the following. We have seen that, iff(x) is an irreduible polynomial of degree m over F p, for some m � 1 and p a prime number,then F p[x℄=(f(x)) is a �eld onsisting of pm elements. By the uniqueness (up to isomorphism)of �nite �elds, we know that F p[x℄=(f(x)) an represent all �elds F q of order q = pm. Thus,elements of F q an be represented as polynomials taken modulo the polynomial f . Moreover,if f(x) is primitive, we know that x is a generator of the group F �q; in other words, all q � 1nonzero elements of F q are obtained by omputing xi mod f(x) for i = 1; :::; q � 1, where f(x)is the primitive polynomial of degree m over F p used to onstrut the �nite �eld. It is nowobvious that elements of the �nite �eld F q, where q = pm, an be represented by polynomials inF p[x℄ of degree less than m. Subtration and addition of elements of F q are the usual operationsas performed among polynomials in F p[x℄. The produt of two elements g1(x) and g2(x) ofF q, however, is obtained by multiplying g1(x) with g2(x) and reduing the result modulo f(x).Multipliative inverses and gds of elements of F q an be obtained using the Extended EulideanAlgorithm in F p[x℄, always followed by redution modulo f(x) [97, 98℄.As a result, the representation of a univariate polynomial in F q[x℄ beomes, informally speak-ing, that of a bivariate polynomial (a polynomial with two variables) in F p[x℄. To illustrate, ifh(x) 2 F q[x℄, then we an writeh(x) = X0�i�nhixi where hi 2 F q:10



However, hi 2 F q implies that hi is a polynomial over F p, exept that it is regarded as a\onstant" in F q.The following example illustrates how we an onstrut a �nite �eld and represent a poly-nomial in the ring of polynomials over that �eld.Example [98℄We are given p = 2, m = 4, and f(x) = x4 + x+ 1 a primitive polynomial over F 2.i. Elements of F 24 an be generated in two ways as follows:Method 1 :We know that F 24 onsists of all polynomials over F 2 of degree less than 4. As a result, we have:F 24 = fa3x3 + a2x2 + a1x+ a0 j ai 2 f0; 1gg;whih on�rms that F 24 onsists of 16 elements.Method 2 :Sine f(x) is a primitive polynomial of degree 4 over F 2, we an generate all elements of F 24 byomputing xi for i = 0; :::; 24 � 2 and reduing the result modulo f(x). The omputations aresummarised in table 1. t xt mod f(x)0 11 x2 x23 x34 x+ 15 x2 + x6 x3 + x27 x3 + x+ 18 x2 + 19 x3 + x10 x2 + x+ 111 x3 + x2 + x12 x3 + x2 + x+ 113 x3 + x2 + 114 x3 + 1Table 2.1: The powers of x modulo f(x) = x4 + x+ 1.ii. We an add any two elements of F 16 using regular polynomial addition. Sine all elementsare redued modulo f(x), the resulting polynomial sum would need only be redued modulo 2.iii. Two elements in F 16 an be multiplied as polynomials and then redued modulo f(x).For instane,(x3 + x2 + 1) � (x3 + 1) = x6 + x5 + x2 + 1 � (x3 + x2 + x+ 1) mod f(x):It is worth noting that multipliation an be performed more easily using a look-up of indies11



only. For example, x3 + x2 + 1 = x13 mod f(x);x3 + 1 = x14 mod f(x);and thus to perform the produt (x3 + x2 + 1) � (x3 + 1) we alulatex13 � x14 = x27 � x12 mod f(x) = (x3 + x2 + x+ 1):This kind of table look-up (alled the Zeh logarithms representation) an be preomputed andis eÆient for small values of q only.iv. The inverse of x3 + x + 1 in F 16 is given by x2 + 1. Using the Extended Eulideanalgorithm for polynomials, we an verify that(x3 + x+ 1) � (x2 + 1) = x5 + x2 + x+ 1 � 1 mod f(x):v. Polynomials in F 16[x℄ an be onstruted with the help of elements of the �eld serving asthe onstant oeÆients. For instane, an example of a polynomial of degree 5 over F 16 is givenby: f(y) = (x3 + x+ 1)y5 + (x+ 1)where x+ 1 is the onstant term of the polynomial.2.4 Univariate polynomial arithmeti over �nite �eldsArithmeti of univariate polynomials over �nite �elds overs operations suh as addition, multi-pliation, division with a remainder, gd omputation, and repeated squaring. Suh algorithmsfall into two ategories, the �rst of whih is the lassial arithmeti, where the operations areimplemented literally as in their de�nition. The omplexity of these algorithms is hopefullygreater than the orresponding ones in the seond ategory of \fast" arithmeti, suh as Karat-suba's multipliation algorithm, Sh�onhage and Strassen's multipliation algorithm, and theFast Fourier Transform [55℄. Sine fast arithmeti does not always provide an improvement inperformane for input size under ertain ross-over points, one has to make a areful hoie onwhih options to use based on the problem at hand. In our implementations, we use the lassialalgorithms for general arithmeti purposes. Detailed disussions of lassial and fast arithmetialgorithms an be found in [21, 29, 55℄.The omplexity of the algorithms below is measured in terms of the maximum number ofarithmeti operations required over F q, where q = pm for m � 1, and all polynomials areunderstood to be univariate. In what follows, let F q be again a �eld with q elements where,as usual, q = pm for some prime p and a positive integer m. log x denotes the binary (base 2)logarithm of x.Theorem 2.4.1 Two polynomials of degree at most n over F q an be added using at most O(n)operations in F q.We note that there is no useful alternative to the lassial addition algorithm.12



Theorem 2.4.2 Two polynomials of degree at most n over F q an be multiplied by the lassialalgorithm using at most n2 operations in F q. Fast algorithms perform this multipliation usingO(n log n log logn) operations in F q.De�nition 2.4.1 Let R be a ommutative ring with 1. LetM : N>0 ! R>0be a funtion suh that two polynomials in R[x℄ of degree less than n an be multiplied using atmost M(n) operations in R. Then M is alled a multipliation time for R[x℄.We have the following from [55℄: M(n) � n;M(n)=n �M(k)=k if n � k;M(nk) � k2M(n);M(nk) � kM(n);M(n+ k) �M(n) +M(k);for all m;n 2 N>0 .Theorem 2.4.3 Let f be a polynomial of degree n > 0 over F q and g be a polynomial of degreem suh that 0 < m � n. Then the division with remainder of f by g requires O(M(n)) operationsin F q.The Eulidean algorithm an be applied to ompute the gd of polynomials over �nite �elds.In partiular, the Extended Eulidean algorithm an also be used to determine the inverse of apolynomial over a �nite �eld. There are also two lasses (lassial and fast) orresponding tothese algorithms.Theorem 2.4.4 Let f and g be two polynomials of degree at most n over F q. Then gd(f; g) anbe found using O(M(n) log(n)) operations in F q, where M(n) is the multipliation ost de�nedabove.Theorem 2.4.5 Let F be a �eld and f 2 F [x℄ of degree n. Let R be the orresponding residuering F [x℄=(f). Then a multipliation in R an be performed using 6M(n) + O(n) arithmetioperations in F , and an inverse with at most (24M(n) +O(n)) log n operations in F .Corollary 2.4.1 Every arithmeti operation in the �nite �eld of order pm for some prime pand positive integer m an be performed using at most O(m logm log logm) operations in F p.2.5 The bulk synhronous parallel model (BSP)The bulk synhronous parallel model is a model for parallel programming whih provides asimple framework to ahieve portable parallel algorithms independent of the arhiteture of theomputer on whih the parallel work is arried out. The model is attrative beause of its simpleost funtion whih helps predit the running time of parallel algorithms before implementingthem, and has been suessfully used in a variety of appliations (see [14, 71℄ for instane). For13



a detailed desription of the BSP model, we refer the reader to [15, 127℄. In our implementationof the BSP model, we use the standard BSP library [15, 66, 67℄. An alternative is the PaderbornUniversity BSP (PUB) library [20℄ whih has the extra feature of allowing subset synhronisationand hene, very importantly, nested parallelism.A BSP omputer onsists of a set of p proessors eah with its own private memory, andhaving remote aess to other proessors' private memories through a ommuniation network.A BSP algorithm onsists of a sequene of parallel steps, denoted by supersteps. A omputationsuperstep is a series of omputations performed on loal data available to the proessor beforethe superstep. A ommuniation superstep is a series of ommuniations in the form of sendingor reeiving a number of non-loal data between proessors that are needed to perform loalomputations. Communiation supersteps are followed by synhronisation barriers, whereby alltransferred data is updated. A BSP omputer an be desribed by the following four parameters:� p, the number of proessors available;� s, the proessor speed in op/se;� g(p), the time (in op time units) it takes to ommuniate (send or reeive) a data elementamong p proessors;� `(p), the time (in op time units) it takes all p proessors to synhronise.We distinguish between the BSP ost of an algorithm and its expeted running time. TheBSP ost is established using the parameters g and ` and the estimate of the exeution time isobtained by dividing the BSP ost in op time units by s, the single proessor speed. The BSPost of an algorithm is simply the sum of the BSP osts of its supersteps. The omplexity of asuperstep is de�ned as wmax + g(p) � hmax + `(p);where wmax is the maximum number of ops performed, and hmax is the maximum number ofmessages sent or reeived by any one proessor during that superstep. In our appliations overthe binary �eld, oating point operations orrespond to binary operations, and thus all ostsare understood to be expressed in bit operations.
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Chapter 3Fatorisation algorithmsIn this hapter we present the key algorithms in the literature of polynomial fatorisation onwhih our work is based. We disuss in more detail Niederreiter's algorithm and G::ottfert'sre�nement of the algorithm over �elds of harateristi 2, give a brief outline of Hensel liftingfor bivariate polynomial fatorisation, and present a review of Newton polytopes in relationto absolute irreduibility of multivariate polynomials. For a broad survey on the origins ofpolynomial fatorisation we refer the reader to [29, 55, 74, 79℄.3.1 Univariate fatorisationA basi premise in the disussion of polynomial fatorisation is its uniqueness, the fat that forany �eld F the polynomials in F [x1; :::; xn℄ an be uniquely fatored into a produt of irreduiblepolynomials, and that this fatorisation is unique up to the order of the fators and the mul-tipliation by units (whih are the nonzero onstants in F [x1; :::; xn℄). Sine we are interestedin polynomials over �nite �elds, we restrit the disussion to the ase when F q is a �nite �eldof order q = pm, for some m � 1, and where the orresponding ring of polynomials over F isdenoted by F q[x℄.De�nition 3.1.1 A polynomial f is square-free if and only if it is not divisible by a non-onstantsquare.De�nition 3.1.2 If f = ge11 :::gerr for some irreduible polynomials g1; :::; gr and exponentsei � 0, for i = 1; :::; r, then the produt g1:::gr is alled the square-free part of f .In what follows, let f 2 F q[x℄ denote a polynomial of degree n. The fatorisation of f overF q onsists of determining pairwise distint moni irreduible polynomials g1; :::; gr 2 F q[x℄ andpositive integers e1; :::; er suh that f(x) = l(f)ge11 :::gerr ;where l(f) denotes the leading oeÆient of f .The algorithms fall into two lasses: deterministi algorithms and probabilisti (or ran-domised) ones. The general aim is to devise algorithms with running time bounded by a polyno-mial in the input size, i.e. the total degree of the polynomial to be fatorised and the logarithmof the order of the �nite �eld. Musser presented an algorithm for the square-free deomposition15



of univariate polynomials over the integers [101℄, whih has been extended to the multivariatease by Yun [133℄. Berlekamp gave the �rst deterministi algorithm for univariate fatorisationover a �nite �eld [8℄. Kaltofen and Shoup [82℄ and Shoup [120℄ provided an algorithm withsubquadrati time based on asymptotially fast power series omposition algorithms from [17℄,and the algorithm is known to perform best for large �nite �elds. Kaltofen and Lobo intro-dued a blak box representation for fatoring high degree polynomials over �nite �elds usingthe Berlekamp algorithm [81℄. The work of Berlekamp [8, 10℄, Cantor and Zassenhaus [22℄, andKaltofen and Shoup [82℄ are among many examples where univariate fatorisation algorithmshave suessfully ahieved quadrati or subquadrati running times in the input size.Perhaps the simplest approah with whih to view fatoring univariate polynomials over�nite �elds onsists of performing the three stages of:� square-free fatorisation,� distint-degree fatorisation, and� equal-degree fatorisation.Square-free fatorisation onerns eliminating multiple fators of a non-square-free polynomialf , whih amounts to omputing g1:::gr suh that f = l(f)ge11 :::gerr for positive integers ei.A well known algorithm in this respet is due to Yun [133℄, and returns the square-free partof f deterministially using O(M(n) log n + n log(q=p)) operations in F q. One a polynomialis redued to a square-free form, its fatorisation an be ahieved by simply deomposing thesquare-free part. First, one alls Gauss's distint-degree fatorisation, whih operates on thepolynomial to separate its fators aording to their degree. Let f be a non-onstant, square-free polynomial of degree n over F q. The distint-degree deomposition of f onsists of thesequene (w1; :::; ws) (ws 6= 1) of polynomials suh that wi is the produt of all moni irreduiblepolynomials in F q[x℄ of degree i that divide f . Moreover, the distint-degree fatorisation is theproess of omputing this sequene [55, 56℄. The proess is deterministi and an be shownto require O(sM(n) log(nq)) operations in F q, where s is the largest degree of an irreduiblefator of f . Finally, equal-degree fatorisation solves the remaining problem by splitting all thefators of the same degree whose produt has been generated by the preeding algorithm fordistint-degree fatorisation. Proposed in probabilisti form by Cantor and Zassenhaus [22℄, thealgorithm takes as input a moni byprodut of the distint-degree fatorisation, say g, with rmoni irreduible fators all known to have some degree d � n. It returns all suh irreduiblefators with probability of failure less than or equal to half, using an expeted number ofO((d log q + logn)M(n) log r) �eld operations. For more extensive details related to the abovealgorithms, we refer the reader to [29, 55, 56℄.3.1.1 Niederreiter's algorithm for small �nite �eldsWe now disuss an important lass of Linear algebra based algorithms, so alled sine theyredue the fatorisation algorithm to solving a linear system over the �eld in question, andusing the solutions to produe non-trivial fators of the input polynomial. The earliest work inthis respet was due to E. Berlekamp, and appeared suessively in two versions, a deterministiand a probabilisti one, designed to work over small and large �nite �elds respetively [8, 9, 10,22, 29, 55, 93℄. Berlekamp's algorithm for small �nite �elds ahieves deterministially a ompletefatorisation into irreduibles in O(n! + rqM(n) logn) �eld operations, where r is the number16



of distint moni irreduible fators of f and ! the exponent for solving an n� n linear systemover F q, and where r � O(log n) [83, 84, 100℄. Note that ! = 3 using lassial diret methodsand ! = log2 7 using for instane Strassen's fast matrix multipliation algorithm. For large �nite�elds, it sueeds with probability at least 1=2 and requires O(n! + rM(n) logn log q log r) �eldoperations. The bottleneks assoiated with these methods usually onern the linear algebraphase, where the osts of setting up the linear system, solving it or even storing it dominatethe operational and spatial omplexities. However, it is perhaps paradoxially this very aspetwhih makes these algorithms attrative in pratie, sine many tehniques already known toimprove upon the performane of linear solvers over �nite �elds an be used to expedite theentire fatorisation algorithm, as an be demonstrated in the fatorisation reords of [1, 38, 39,110, 117℄.In this setion we report on a relatively reent fatorisation algorithm for univariate polyno-mials in the linear algebra based lass. For proofs of the results given below, we refer the readerto [102, 103, 104, 105℄. First proposed by Niederreiter in [102℄, the algorithm has reeived a lotof attention partiularly for its e�etiveness over binary �elds. Niederreiter's original ontribu-tion �rst addressed small �nite �elds, spei�ally, �elds of prime order only. At the heart of thealgorithm is the study of the di�erential equation:y(p�1) + yp = 0of order p� 1 in the rational �eld F p(x). Here, y(p�1) denotes di�erentiation of order p� 1 andyp denotes exponentiation of order p. Although this equation an still be used for fatorisationover �elds with prime power order, we shall restrit our disussion to the ase when the ground�eld is F p, where p is a prime. Sine we have seen that any arbitrary polynomial an be madesquare-free, we an also assume that f is a square-free polynomial of degree n > 0 over F p, andthat we aim to determine its moni irreduible fators g1; g2; :::; gr 2 F p[x℄.3.1.2 The square-free aseLet L(y) denote the expression y(p�1) + yp. Several properties haraterise the di�erentialequation L(y) = 0, most important of whih are that L(y) is a linear operator on the vetorspae F p(x) over F p, and that the solutions of L(y) = 0 form a linear subspae of F p(x) [102℄.Niederreiter onsiders those solutions of L(y) = 0 with �xed denominator f : If we write y = h=fwith h 2 F p[x℄, the orresponding solution spae de�ned by:N = fh 2 F p[x℄ : �hf�(p�1) +�hf�p = 0gonstitutes the so alled Niederreiter linear spae, whih forms an F p-vetor spae [102℄. Ele-ments of this set an be desribed expliitly as follows:Theorem 3.1.1 [102℄ Let f = g1:::gr be the deomposition of f into distint irreduible fatorsand let deg(f) = n > 0. The solutions to L(y) = 0 suh that y = hf are given byy = rXj=1ajf g0jgj with a1; :::; ar 2 F p:17



If f is as above and h is an unknown polynomial of degree less than deg(f) = n, then thepolynomials on both sides of the equationfp�hf�(p�1) = �hp (3.1)have degrees less than or equal to (n � 1)p, and both sides of the equation are polynomials inxp. The major impliations of this lead to the ruial result:Theorem 3.1.2 [102℄ If y = hf with f �xed of degree n and h(x) is an unknown polynomial inF p[x℄ of degree less than n, then solving y(p�1)+yp = 0 redues to solving an n�n linear systemover F p.For the sake of larity and illustration we shall repliate the proof of the above theorem from[102℄:Proof: Write h(x) = n�1Pk=0hkxk. Rewrite y(p�1) + yp = 0 asfp�hf�(p�1) = �hp:Sine the polynomials on both sides of Eq. (3.1) are of degree less than or equal to (n � 1)pand are polynomials in xp, this indiates that (3.1) holds if and only if the oeÆients of xjp,0 � j � n � 1, agree on both sides of the equation. Identifying the oeÆients of fp �hf �(p�1)with those of �hp results in an n � n system of linear equations in h0; :::; hn�1, the unknownoeÆients of h. Let Nf be the n� n oeÆient matrix of fp �hf �(p�1). Then sineh(x)p = h(xp) = n�1Xk=0hkxkp;this system an be rearranged as (Nf � In)hT = 0where h = (h0; :::; hn�1) 2 Fnp and (Nf � In) is an n� n matrix over F p.It an be shown, as a onsequene of the above in relation to polynomial reduibility, thatRank(Nf � In) = n � r, where n is the degree of f and r is the number of irreduible fatorsof f . In partiular, f is irreduible over F p i� Rank(Nf � In) = n� 1 [102℄. Upon reduing thematrix (Nf � In), and if we �nd that its rank is n� 1, then f is irreduible and the algorithmhalts. So, we may assume that the rank is less than or equal to n � 2 or equivalently thatr � 2. Now let h be a solution of (3.1). By theorem 3.1.1, h an be expressed as Pri=1 aif g0igi 2F p[x℄, for some a1; :::; ar 2 F p. Let J(h) = f1 � j � r : aj = 0g. One an then show thatgd(f; h) = Qj2J(h)gj , and that:Theorem 3.1.3 [102℄ The probability that a random solution h produes a nontrivial fatori-sation of f is approximately rp , if p� r. 18



3.1.3 The algorithmThe following algorithm returns a moni nontrivial fator of f (or all fators of f if p and rare not too large). In the former ase, all irreduible fators an be found by reursing on theoutput of the algorithm.Algorithm 3.1.1 Input: f a square-free moni polynomial of degree n over F p and r the numberof its distint irreduible fators.Output: A nontrivial fator of f .1. Determine the matrix Nf then alulate the rank of (Nf � In). If the rank is equal ton� 1, output f as an irreduible polynomial and halt the algorithm.2. If r � 2, solve the linear system of equations(Nf � In)hT = 0over F p. Eah solution h results in a polynomial h over F p whose oeÆients are the oordinatesof h.3. Consider a nonzero polynomial h produed in step 2 and alulate gd(f; h). Repeat untilgd(f; h) 6= 1 or gd(f; h) 6= f . Then, gd(f; h) is a nontrivial fator of f . If p and r are nottoo large, then we an onsider all pr polynomials h from step 2, so that gd(f; h) yields allmoni fators of f (with repetitions if p > 2).3.1.4 Aeleration of Niederreiter's algorithm over the binary �eldWe now disuss how Niederreiter's algorithm an be extended to deal with the ase when f isnot square-free and when the �nite �eld is of order q = 2. The approah taken here beomesmore ompliated for �elds of order qt, for t > 1, and we refer the reader to [41, 103, 104, 105℄for more details.The algorithm lends itself to major simpli�ations in the ase p = 2. Let us onsider againthe di�erential equation fp�hf�(p�1) + hp = 0:For p = 2, this simpli�es tof2�hf�0 + h2 = 0() (h0f � f 0h) + h2 = 0() (fh)0 = h2:Theorem 3.1.4 [103℄ Let F q be an arbitrary �eld of harateristi 2, and f 2 F q[x℄ a monipolynomial suh that f = ge11 :::gerr , where the gi's are distint moni irreduible polynomials andei � 1, for 1 � i � r. Let b be a polynomial running through all square-free moni fators of f .Then the polynomials h solving the di�erential equation(fh)0 = h2 (3.2)are given by h = fb b0:19



Furthermore, di�erent solutions h are determined for di�erent hoies of b, and hene the abovedi�erential equation has exatly 2r distint solutions.Again, for the sake of ontinuity in further arguments, we shall repliate the proof from [103℄:Proof: Let b be a moni fator of f . Thenb = rYi=1gii ; for 0 � i � ei and 1 � i � r:For h = (f=b)b0, we have hf = b0b = rXi=1i g0igi :Sine F q has harateristi 2, the i's are either 0 or 1, and hene it suÆes to let b range over thesquare-free moni fators of f only. Let h be a solution to the di�erential equation (hf)0 = h2.We an assume that h 6= 0, sine the ase h = 0 is obtained by hoosing b = 1. Let a = gd(f; h).Then we an �nd b and  suh that f = ab, h = a, and gd(b; ) = 1. Now(hf)0 = h2 () (f=h)0 = 1() (b=)0 = 1() b0� b0 = 2:Hene,  j b0, and with gd(b; ) = 1 we get that  j 0. But this happens only when 0 = 0.Sine we also have b0� b0 = 2, we must have  = b0 or equivalently h = fb b0.On the other hand, if h = (f=b)b0 for some moni square-free fator b of f , then(fh)0 = h�f2b � b0i0= �� fb�2 bb0�0= �� fb�2�0 bb0 + � fb�2 (bb0)0= 2� fb��fb�0 bb0 + � fb�2 (b0b0 + bb00)= � fb�2 �(b0)2 + bb00� (sine all arithmeti is performed modulo 2)= � fb0b �2 = h2;where here we have used the fat that g00 = 0 for all g 2 F q[x℄ when F q is a �eld of harateristi2 (this an be seen as a result of the fat that the only nonzero summands appearing in g0 ourat powers xi where i is divisible by 2). Thus, h satis�es (fh)0 = h2.To show that di�erent hoies of b result in distint solutions h, we proeed as follows. Sineb is square-free, this is equivalent to gd(b; b0) = 1, and so for h = (f=b)b0 we havegd(f; h) = fb gd(b; b0) = fb :Thus, it is lear that di�erent hoies of b lead to distint solutions h.The above theorem provides an expliit desription of elements that solve the di�erentialequation (fh)0 = h2, and one an proeed as in the general ase for F = F p. In partiular, wehave: 20



Theorem 3.1.5 [103℄ The di�erential equation (fh)0 = h2 results in a system of quadratiequations in the unknown oeÆients of h.As a result of the above theorem, we have:gd(f; h) = fb gd(b; b0) = fbwhere gd(b; b0) = 1 sine b is square-free. At this stage, the r irreduible fators an bedetermined using any of the following strategies:1. Choose any solution h of the linear system suh that the orresponding polynomial whoseoeÆients form the row vetor h is not equal to zero or f 0. If h 6= 0, then gd(f;h) 6= fand if h 6= f 0, then b 6= f and so gd(f;h) 6= 1. We an apply the same fatorisation againto this non-trivial fator and its omplement and all the proedure reursively on theoutput. This may beome inonvenient in pratie, as it requires setting up a new matrixand solving the assoiated system one again. For an input polynomial of degree n, therewill be about O(log n) irreduibles [83, 84, 100℄, eah with multipliity at most n. Inthe worst-ase analysis, one will have to all the Niederreiter algorithm about O((log n)n)times.2. Determine the 2r solution polynomials h. The orresponding polynomials fgd(f;h) = b willthen over all 2r moni fators of the square-free part g1:::gr of f and in partiular, all theirreduible fators of f .In this ontext, R. G�ottfert introdued a third strategy leading to a polynomial time al-gorithm for extrating all irreduible fators of f [59℄. Perhaps more striking is that G�ottfertrestrited his attention to the set of basis elements fh1; :::; hrg spanning the solution set of(fh)0 = h2, rather than an arbitrary solution of the linear system. In [59℄, G�ottfert showedhow this an be used together with at most r2 gd and division operations to obtain a ompletefatorisation. We shall reall the algorithm briey and refer the reader to the original paper fordetails and proofs of the forthoming results.Consider the set of basis elements fh1; :::; hrg of the Niederreiter linear system and theorresponding polynomials bi = fgd(f; hi) 2 F q[x℄; for i = 1; :::; rrepresenting moni square-free fators of f . Those fators are then listed in a olletion of atmost r rows as follows. The �rst row ontains only b1. The seond row onsists of at most threepolynomials, spei�ally, the non-onstant polynomials amonggd(b2; b1); b1gd(b2; b1) ; b2gd(b2; b1) :
21



The third row onsists of gd(b3; r1); r1gd(b3; r1) ;gd(b3; r2); r2gd(b3; r2) ;gd(b3; r3); r3gd(b3; r3) ;b3gd(b3; r1) gd(b3; r2) gd(b3; r3)where r1 = gd(b2; b1); r2 = b1gd(b2; b1) and r3 = b2gd(b2; b1) :In general, the polynomials of row k, for k = 2; :::; r, onsist of the non-onstant polynomialsamong d1; r1d1 ; :::; ds; rsds ; bkd1:::ds ;where r1; :::; rs are the polynomials in row k � 1 and dj = gd(bk; rj), for j = 1; :::; s.Theorem 3.1.6 [59℄ Any polynomial row onstruted in this way has the following properties:i. The polynomials in any row are pairwise relatively prime moni square-free fators of f .ii. The polynomial bk appears in row k, either in its original form or split up into somenon-trivial fators.iii. Every polynomial in row k � 1 also appears in row k, either in its original form or splitup into two non-trivial fators.Theorem 3.1.7 [59℄ The irreduible moni square-free fators of f are determined one a rowontaining r polynomials has been reahed.The following theorem shows that this proedure always results in a row with r elements:Theorem 3.1.8 [59℄ The row of index at most r ontains the polynomials g1:::gr, the distintmoni irreduible fators of f .Summarising all, G�ottfert's algorithm takes up the following form :Algorithm 3.1.2 [59℄Input: A polynomial f of degree n over F q where q = 2t, for some t � 1.Output: The r irreduible fators of f .1. Set up the n � n matrix Nf � I. By a rank omputation, determine the number ofirreduible fators of f . If this is equal to 1, output f as an irreduible polynomial and halt thealgorithm.2. Determine a basis fh1; :::; hrg of the solution spae of the system(Nf � In)hT = 0: (3.3)22



3. Compute b1; :::; br de�ned asbi = fgd(f; hi) for i = 1; :::; r:4. Set up a table of polynomials of at most r rows as has been desribed earlier. The rows areset up indutively and non-onstant polynomials are removed from eah row. Stop the proesswhen a row ontaining r non-onstant polynomials is obtained. This may be row r or any otherearlier one. The polynomials found on that row are the r irreduible fators of f .Sine at most r rows have to be set up, eah ontaining at most r polynomials, we need atmost r2 gd operations and at most r2 division operations to �nd all irreduibles. Over F 2, thisbrings the total ost of suh omputations to O(r2M(n) log n) bit operations, where logn is thebinary logarithm of n, M(n) is the time to multiply (or divide) two polynomials of degree atmost n over F 2, and O(M(n) log n) is the time to perform the gd of two suh polynomials overF 2.Theorem 3.1.9 [59℄ Using G�ottfert's aeleration of Niederreiter's algorithm, a polynomial fof degree n over F 2 an be fatorised using O(n! + r2M(n) log n) operations in F 2.3.2 Bivariate fatorisationIn the multivariate ase, algorithms have been onerned with two types of fatorisations over�nite �elds: Rational fatorisation into irreduible fators over the ground �eld, and absolutefatorisation of the input polynomial into irreduible fators over the algebrai losure of theground �eld. In the former ase, Lenstra, Lenstra and Lov�asz [91℄ gave the �rst polynomial timealgorithm for fatoring univariate polynomials over rational numbers, through the so alledLLL lattie basis redution. This was used later on by A. K. Lenstra [88, 89, 90℄, Chistov[23, 24, 25℄, Grigoryev [63℄, and Chistov and Grigoryev [62℄, to obtain polynomial time algorithmsfor multivariate polynomials over various �elds, inluding �nite �elds. Kaltofen [75℄, and von zurGathen and Kaltofen [51℄, introdued polynomial time algorithms using Newton approximationfor multivariate fatorisation over rational numbers and �nite �elds. Algorithms for fatoringmultivariate polynomials using a blak box representation were given by Kaltofen and Trager[78℄, Diaz and Kaltofen [32℄, and Rubinfeld and Zippel [113℄. The work in [78℄ and [113℄ also usedmodular interpolation to redue the problem to univariate fatorisation. Bernardin developed apolynomial time extension of Yun's algorithm [133℄ for square-free fatorisation of multivariatepolynomials over �nite �elds [11℄.Among the well known algorithms for absolute fatorisation are the following: Duval [34℄used speial funtion spaes based on algebrai geometry to obtain an algorithm that is onlyonjetured to run in polynomial time. Kaltofen proposed algorithms for absolute fatorisationalso using Newton approximation [77, 80℄. Gao obtained an algorithm for multivariate polyno-mial fatorisation over any �eld of harateristi zero or of relatively large harateristi that isbased on a simple partial di�erential equation [44℄. All the above algorithms run in polynomialtime or are onjetured so. For instane, given a bivariate polynomial f 2 F q[x; y℄ of total degreen, where the input size is of the order N = O(n2), Lenstra's algorithm for rational fatorisationrequires O(N4) �eld operations [89℄, ignoring logarithmi fators. The work of von zur Gathen23



and Kaltofen based on Newton approximation requires O(N6) �eld operations [51℄. When ap-plied to �nite �elds, Gao's algorithm using PDE's requires the harateristi of the �eld to beat least 6mn, where m and n denote the upper bounds on the degrees in x and y respetively.In that ase, Gao's algorithm has a ost of O(N2:5) �eld operations [44℄.Another speial lass of rational multivariate fatorisation are Hensel lifting based tehniqueswhih have been shown to be eÆient in pratie [13, 101, 128, 131℄. Despite its worst-aseexponential running time, Gao and Lauder showed that the appliation of suh algorithms tobivariate polynomials over �nite �elds has an average running time that is almost linear in theinput size [46℄, whih explains why they are fast in pratie. Sine this relates strongly to thefatorisation via polytopes algorithm in Chapter 6, we shall dediate the rest of the disussionto a summary of Hensel lifting.3.2.1 Hensel lifting for bivariate polynomialsWe reall briey the main ideas behind this approah following the bivariate version in [46℄.Let F q denote a �nite �eld of order q and let T (n; q) denote the set of all polynomials inF q[x; y℄ of total degree n that are moni in x and have degree n in x. As shown in [46℄, thismodel of polynomials on whih the Hensel lifting algorithm will be based is not trivial beauseany polynomial of total degree n an be transformed into a polynomial in T (n; q) that hasthe same fatorisation pattern. In partiular, let h(y) = Pni=0 iyi where Pni=0 ixn�iyi is thehomogeneous part of f of degree n (in other words, eah j0 represents the oeÆient of a terma(j;j0)xjyj0 in f suh that j + j0 = n). Then g = f(x; y + �x) still has total degree n and theoeÆient of xn in g is h(�). Sine h is nonzero and has degree at most n, we only have tohoose � 2 F q suh that h(�) 6= 0. When h(�) 6= 0, g an be made moni in x, and hene anbe viewed as belonging to T (n; q). Obviously, the fators of f are easily obtained from those ofg by the inverse transformation (say f = g(x; y � �x)) [46℄.Let f 2 T (n; q) and suppose that f = gh, where f , g and h are all lying in F q[x; y℄. Letn = deg(f), r = deg(g), and s = deg(h), so that n = r + s. Writef = nXk=0fkyk; g = rXk=0gkyk and h = sXk=0hkyk;where deg(gk) � r � k and deg(hk) � s � k, for k = 0; :::; n (here we onsider gk and hk to bezero whenever r� k and s� k are negative). Equating the oeÆients of yk, for k = 0; :::; n, onboth sides of f = gh, we see that f0 = g0h0 and for k � 1:fk = kXi=0gihk�i;or g0hk + gkh0 = fk � k�1Xi=1gihk�i: (3.4)Let d = gd(g0; h0) with u and v hosen so thatug0 + vh0 = d (3.5)24



and deg(u) < deg(h0), deg(v) < deg(g0). Then d divides g0hk + gkh0 = fk �Pk�1i=1 gihk�i. By(3.4) we have gkh0 � (fk � k�1Xi=1gihk�i) mod g0;and by (3.5) we have vh0 � d mod g0:Thus, gkvh0 � v(fk � k�1Xi=1gihk�i) mod g0or gkd � v(fk � k�1Xi=1gihk�i) mod g0:Sine d divides fk �Pk�1i=1 gihk�i, we an �nd wk 2 F q[x℄ suh thatgk = vfk �Pk�1i=1 gihk�id + wk g0d : (3.6)On the other hand, we haveg0hk = fk �Pk�1i=1 gihk�i � gkh0= fk �Pk�1i=1 gihk�i � v h0(fk�Pk�1i=1 gihk�i)d � wk g0h0d= (d� vh0)fk�Pk�1i=1 gihk�id � wk g0h0dso that hk = ufk �Pk�1i=1 gihk�id � wk h0d : (3.7)Turning this observation around, assume we have been given a polynomial f 2 F q[x; y℄ oftotal degree n and a fatorisation of the redution of f modulo y given as f0 = g0h0, wheref = Pnk=0 fkyk and g0; h0 2 F q[x℄. Assume further that f 2 T (n; q) so that deg(f0) = n. Letr = deg(g0) and s = deg(h0), so that n = r + s. The question one seeks now is whether itwould be possible to use Equations (3.6) and (3.7) to de�ne a sequene of polynomials fgkgk�0and fhkgk�0 suh that g =P0�k�n gkyk, h =P0�k�n hkyk, and f = gh, under the restritionsdeg(gk) � r � k, deg(hk) � s � k, gk = 0 if r � k < 0 and hk = 0 if s � k < 0. It turnsout that this is possible provided at eah stage wk is hosen so that d divides the polynomialsfk �Pk�1i=1 gihk�i. If d 6= 1, then the hoie we make of wk may not be unique, resulting inexponentially many hoies for gk's and hk's. If d = 1, however, there will be at most one wayof doing this, and the equations (3.6) and (3.7) uniquely determine gk and hk, for k � 1, asgk � v(fk � k�1Xi=1 gihk�i) mod g0 (3.8)25



hk � u(fk � k�1Xi=1 gihk�i) mod h0 (3.9)and the lifting an be arried out uniquely as high as one wishes, after heking whetherdeg(gk) � r � k and deg(hk) � s � k. In the parlane of Chapter 6, the Newton polytopeof f as given above lies in a triangle with verties (n; 0); (0; n); (0; 0), and lifting is initiatedalong the horizontal edge, sine all terms in f0 have a zero exponent in the variable y.The algorithmFor n � 1, let M(n; q) � T (n; q) denote the subset of all polynomials whose redution moduloy is square-free. The ondition in the previous setion requiring that d = gd(g0; h0) = 1 showsthat Hensel lifting works for all polynomials in M(n; q). We shall �rst present a version from[46℄ whih aepts only polynomials in M(n; q). With slight modi�ations, this an later beused to fator polynomials in T (n; q).Algorithm 3.2.1 (Hensel Fatorisation)Input: A polynomial f =Pnk=0 fkyk in M(n; q), where fk 2 F q[x℄.Output: All moni fators of f with total degree between 1 and bn=2.Step 1: Use a univariate polynomial fatorisation algorithm to fator f0, a square-free polyno-mial. If f0 is irreduible, then halt the algorithm.Step 2: List all pairs (g0; h0) of moni fators of f0 suh that f0 = g0h0, and deg(g0) < deg(h0),say. Let r = deg(g0) (so that 1 � r � bn=2). For eah pair (g0; h0), repeat Steps 3-5:Step 3: Compute polynomials u and v with ug0 + vh0 = 1 and deg(u) < deg(h0), deg(v) <deg(g0).Step 4: For k = 1; :::; r, omputegk � v(fk � k�1Xi=1gihk�i) mod g0;and hk � u(fk � k�1Xi=1gihk�i) mod h0:In the ase that r � k hek whether deg(gk) � r � k and in the ase that k > r hek whethergk = 0. Also, in the ase that s � k hek whether deg(hk) � s� k and in the ase that k > shek whether hk = 0. If any of those two hekings fail, halt the omputation for this pair of(g0; h0).Step 5: Chek whether g =Prk=0 gkyk divides f . If so, then output g.Corretness of the above algorithm follows easily from the preeding disussion. The worst-ase running time is learly dependent on the total number of pairs of moni fators (g0; h0),whih is exponential in the total number of irreduible fators of f0. The average suh numberfor a univariate polynomial of degree n is about O(logn) [83, 84, 100℄. For eah pair (g0; h0),26



the inner-most omputations of the algorithm is dominated by O(n) polynomial divisions inF q. If d(n; q) denotes the bound on the worst-ase number of F q operations required to fatorunivariate polynomials of degree n over F q, the above algorithm has a worst-ase omplexity ofthe order O(d(n; q) + 2log nn3) �eld operations, assuming lassial polynomial arithmeti.In general though, f0 = f mod y may not be square-free in F q[x℄, and hene, annot befatorised using the above version of Hensel lifting. To this end, a randomisation tehnique isintrodued in [46℄ addressing square-free polynomials f in F q[x; y℄ whose redution modulo y isnot square-free. In partiular, it was shown the following:Lemma 3.2.1 [46℄ Let S be a subset of F q and f 2 T (n; q) square-free. For random � 2 S, wehave g = f(x; y + �) 2M(n; q) with probability at least 1� n(2n� 1)=jSj.Thus, if q > 4n2, one an take S = F q and so the probability in the above lemma will be atleast 1=2. If q is small, one needs to go to an extension of F q of suÆient size and fator f overthere, then ombine the fators to go down to F q. For more details on this and on Hensel liftingtehniques in general, we refer the reader to [29, 101, 128, 130, 131, 134℄.3.3 Polynomials and Newton polytopesFor an extensive review of the theory of onvex polytopes we refer the reader to [64℄. Let Rdenote the �eld of real numbers and Rn the Eulidean n-spae. A onvex polytope in Rn is thesmallest onvex set ontaining a given nonempty �nite set of points in Rn. A point of a polytopeis a vertex if it does not belong to the interior of any line segment in the polytope. A hyperplaneuts the polytope if both of the open half-spaes determined by it ontain points of the polytope.A hyperplane whih does not ut a polytope, but has a non-empty intersetion with it is alleda supporting hyperplane. The intersetion of a supporting hyperplane and a polytope is alleda proper fae, and the union of all proper faes is the boundary. 1-dimensional faes are edges.By proper we simply refer to the non-trivial ase when the dimension of the fae is less than thedimension of the polytope.Let F [X1;X2; : : : ;Xn℄ be the ring of polynomials in n variables over an arbitrary �eld F .For any vetor e = (e1; : : : ; en) of non-negative integers, de�ne Xe := Xe11 � � � Xenn . Let f 2F [X1; : : : ;Xn℄ be given by f :=Xe aeXewhere the sum is over �nitely many points e in N n alled support vetors of f , and ae 2 F . LetSupp(f) denote the set of all its support vetors. The total degree of f when f is not a onstantis de�ned to be the maximum value of P1�i�n ei over all (e1; :::; en) 2 Supp(f). The Newtonpolytope of f , denoted by Newt(f), is the polytope in Rn obtained as the onvex hull of allexponents e for whih the orresponding oeÆient ae is nonzero. It has integer verties, sineall the e are integral points. We all suh polytopes integral. Given two polytopes Q and R,their Minkowski sum is de�ned to be the setQ+R := fq + r j q 2 Q; r 2 Rg:When Q and R are integral polytopes, so is Q+R. If we an write an integral polytope P as aMinkowski sum Q+R for integral polytopes Q and R then we all this an integral deomposition.27



The deomposition is trivial if Q or R has only one point, and P is integrally deomposable if ithas at least one non-trivial deomposition. If a polytope has no non-trivial deompositions thenit is integrally indeomposable. The Minkowski sum of two onvex polytopes is also a onvexpolytope.The following result, demonstrated in [36, 64, 117℄, desribes how faes deompose in aMinkowski sum of polytopes:Lemma 3.3.1 Let Q and R be polytopes in Rn and P = Q+R.1. Eah fae of P is a Minowski sum of unique faes of Q and R.2. Let P1 be any fae of P and v0; :::; vm�1 be all of its verties. Suppose that vi = qi + rifor some qi 2 Q, ri 2 R, and i = 0; :::;m � 1. Let Q1 and R1 denote the onvex hullsof fq0; :::; qm�1g and fr0; :::; rm�1g, respetively. Then Q1 and R1 are faes of Q and R,respetively, and P1 = Q1 +R1.A polytope of dimension 2 is a polygon, where the only proper faes are edges and verties.The above lemma an then be rephrased as follows:Corollary 3.3.1 [45℄ Let P , Q and R be onvex polygons in R 2 with P = Q+ R. Then everyedge of P deomposes uniquely as the sum of an edge of Q and an edge of R, possibly one ofthem being a point. Conversely, any edge of Q or R is a summand of exatly one edge of P .Let P be a onvex polygon in R 2, and let v0; :::; vm�1 denote its verties ordered ylially ina ounter-lokwise diretion. The edges of P are vetors of the form Ei = vi+1 � vi = (ai; bi),for 0 � i � m�1, where ai; bi 2 Z and the indies are taken modulom. A vetor v = (a; b) 2 Z2is alled a primitive vetor if gd(a; b) = 1. If ni = gd(ai; bi) and ei = (ai=ni; bi=ni), then Ei =niei, where ei is a primitive vetor, for 0 � i � m � 1. The sequene of vetors fnieig0�i�m�1is alled the edge sequene or polygonal sequene and uniquely identi�es the polygon up totranslation determined by v0. Sine the boundary of a polygon forms a losed path, we havethat P0�i�m�1 niei = (0; 0). For onveniene, an edge sequene an be identi�ed with thatobtained by extending the sequene by inserting an arbitrary number of zero vetors, and so wean assume that the edge sequene of a summand of P has the same length as that of P . Thefollowing lemma gives an expliit desription of edge sequenes desribing all possible summandsof a given integral polygon.Lemma 3.3.2 [45℄ Let P be a polygon with edge sequene fnieig0�i�m�1 where ei 2 Z2 areprimitive vetors. Then an integral polygon is a summand of P i� its edge sequene is of theform fkieig0�i�m�1, 0 � ki � ni, with P0�i�m�1 kiei = (0; 0).For proof, see [45℄.We onlude with a �nal useful result desribing the notion of the length of an edge of anintegral polygon, designating the number of integral points falling on the edge:Lemma 3.3.3 [43℄ Given v0 and v1 two distint integral points in R 2, the number of integralpoints on the line segment v0v1, inluding v0 and v1, is equal to gd(v0 � v1).For proof, see [43℄. 28



3.3.1 Indeomposable polytopes and absolute irreduibilityReall from the above disussion that f is absolutely irreduible over F if it has no non-trivialfators over F , the algebrai losure of F . Absolute irreduibility forms a stronger irreduibilityriterion than rational irreduibility beause f has no irreduible fators over F if it is ab-solutely irreduible. The multivariate fatorisation algorithms presented earlier an all serveas irreduibility tests. The following theorem is at the heart of a di�erent kind of absoluteirreduibility riterion:Theorem 3.3.1 (Ostrowski) [108℄ Let f; g; h 2 F [X1; : : : ;Xn℄. If f = gh then Newt(f) =Newt(g) + Newt(h).Corollary 3.3.2 (Irreduibility Criterion) [43℄ Let f 2 F [X1; :::;Xn℄ with f not divisibleby any non-onstant Xi, for 1 � i � n. If Newt(f) is not integrally deomposable, then f isabsolutely irreduible.For proof, see [43℄.We onlude this setion with a brief disussion on a relevant onept of homotheti deom-posability [42, 43, 64, 96, 99, 115, 121, 122℄ a�eting integral deomposability. The relevane ofthis will beome learer towards the end of this setion.De�nition 3.3.1 Let P and Q be polytopes in Rn (not neessarily integral). We say that Q ishomotheti to P if there exists a real number t � 0 and a vetor a 2 Rn suh thatQ = tP + a = ftb+ a : b 2 Pg:De�nition 3.3.2 A polytope P is alled homothetially indeomposable whenever P = P1 + P2for two polytopes P1 and P2 implies that P1 or P2 is homotheti to P . Otherwise, P is alledhomothetially deomposable.The following proposition outlines the relationship between homotheti and integral polytopeindeomposability:Proposition 3.3.1 [45℄ Let Q be an integral polytope in Rn with verties vi, where 0 � i � k.If Q is homothetially indeomposable and gd(v0 � v1; :::; v0 � vk) = 1, then Q is integrallyindeomposable.For proof, see [45℄Remark: Note that ifQ is integrally indeomposable, thenQ is homothetially indeomposable.To see this, write Q = T + S for some integral polytopes T and S. Then T , say, must be atrivial summand onsisting of one point, v, in whih ase T = 0 �Q+ v.3.3.2 Testing indeomposability of polytopesPolygonsFollowing the disussion above, testing absolute irreduibility of multivariate polynomials overarbitrary �elds is thus redued to deiding whether a given polytope is integrally deomposable.Assuming that the polytope is given as a list of its verties, the input size of this problem is the29



length of the binary representation of the oordinates of the verties. It was established in [45℄that deiding polygon indeomposability (and hene indeomposability of higher dimensionalpolytopes) is NP-omplete, and thus it remains an open problem to develop an eÆient, polyno-mial time, deterministi or even randomised algorithm for testing general integral polytopes forindeomposability. Gao and Lauder developed a pseudo-polynomial time algorithm (see [48℄)with a run-time omplexity that is polynomial in the lengths of the sides of the polygon, ratherthan in the logarithm of the lengths [45℄. We reall the algorithm and refer the reader to theoriginal paper [45℄ for more details.Algorithm 3.3.1 Input: The edge sequene fnieig0�i�m�1 of an integral onvex polygon Pstarting at a vertex v0 where ei 2 Z2 are primitive vetors.Output: Whether P is deomposable.Step 1: Compute the set IP of all the integral points in P , and set Ai = ;, for i = �1; :::;m�1.Step 2: For i = 0; :::;m � 2, ompute the set of points in IP that are reahable via the vetorse0; :::; ei:2.1: For eah k = 1; :::; ni, if v0 + kei 2 IP , then add it to Ai;2.2: For eah u 2 Ai�1 and k = 0; :::; ni, if u+ kei 2 IP , then add it to Ai.Step 3: Compute the last set Am�1: For eah u 2 Am�2 and k = 0; :::; nm�1 � 1, if u+ kem�12 IP , add it to Am�1.Step 4: Return \Deomposable" if v0 2 Am�1 and \Indeomposable" otherwise.Theorem 3.3.2 [45℄ The above algorithm deides deomposability orretly in O(tmN) vetoroperations where t is the number of integral points in P , m is the number of its edges, and N isthe maximum number of integral points on an edge.For a detailed proof of the above theorem we refer the reader to [45℄ and we sketh only thebasi idea for the sake of larity. All the points in Am�1 that are points in IP reahable viathe vetors e0; :::; em�1 are onstruted to be of the form v0 +Pm�1i=0 kiei, 0 � ki � ni. If oneof the points in Am�1 is equal to v0, then Pm�1i=0 kiei = (0; 0), and so the sequene fkieig formsthe edge sequene of an integral summand Q of P . On the other hand, it an be easily shownthat the edge sequene of every proper integral summand of P will be deteted by the abovealgorithm.Higher dimensional polytopesCarrying this work further to deal with general polytopes in Rn, Gao and Lauder integratedthe above algorithm into a heuristi randomised test for higher dimensional polytope indeom-posability. Their approah relies on the use of random integral linear maps whih projet agiven polytope into a polygon in a plane. If the projeted polygon is indeomposable, and un-der ertain onditions presented in the lemma below, one dedues that the original polytope isindeomposable.Lemma 3.3.4 [45℄ Let P be any integral polytope in Rn and let � : Rn 7! Rm be any integrallinear map whih maps integral points in Rn to integral points in Rm. If �(P ) is integrally30



indeomposable, and eah vertex of �(P ) has only one pre-image in P , then P must be integrallyindeomposable.For proof, see [45℄.Corollary 3.3.3 [45℄ Let Q be any integrally indeomposable polytope in Rm and � : Rn 7! Rmany integral linear map. Let S be any set of integral points in ��1(Q) having exatly one pointin ��1(v) for eah vertex v of Q. Then the polytope in Rn onsisting of the onvex hull of allpoints in S is integrally indeomposable.The above results an be used in a multivariate polynomial absolute irreduibility test asfollows. Given a non-onstant polynomial f 2 F [X1; :::;Xn℄, let S = Supp(f), and let P denotethe onvex hull of the �nite set of points in S. We need to deide whether P is integrallyindeomposable. Note that P need not be omputed at this stage, sine the points of S that aremapped to verties of a polygon by a random integral linear map will be verties of P , providedeah vertex of the polygon has only one pre-image in S.To desribe a suitable projetion, we write the points of S in Rn as olumn vetors. If S has points, then it an be represented as an n�  matrix, where eah olumn stands for a point.For onveniene, we shall also denote the matrix by S. Its olumns are distint sine the supportvetors of f are so. Let u; v 2 Rn be two integral points; then for any w 2 Rn, the matrix-vetorprodut (u; v)Tw represents a point in R 2. This de�nes an integral projetion � : Rn 7! R 2where (u; v)TS is the image of S under � in R 2. The polygon de�ned by the onvex hull of thepoints in this image is alled the shadow of P . The next statement is a speial ase of Lemma2.9 in [44℄ and determines how likely it is that the projetion is injetive on the set S, whereelements of Supp(f) are viewed as vetors with entries from Q :Lemma 3.3.5 [44℄ Let S be an n� matrix over Q with no repeated olumns, and let K be any�nite subset of ardinality k of Z. Choose ui 2 K randomly and independently, for 1 � i � n,and let (a1; :::; a) = (u1; :::; un)S:Then the entries a1; :::; a are all distint with probability at least 1� (�1)2k .The above lemma an be used to establish a lower bound on the probability that a randomlyhosen linear integral map satis�es the onditions in Lemma 3.3.4 above. In partiular, if wehoose K = f�2; :::;�1; 0; 1; ::; 2g, then K has k = 22 + 1 integers. If we further hoose theentries of u and v from K randomly and independently, then the points in (u; v)TS are distintwith probability at least 3=4. In this ase, eah vertex of the shadow has only one pre-imagewith the same probability, whih an be inreased arbitrarily lose to 1 if one inreases thesize of the set K [45℄. The polytope deomposability test (and hene the multivariate absoluteirreduibility test) is now as follows:Algorithm 3.3.2 [45℄Input: f 2 F [X1; :::;Xn℄ with no non-onstant monomial fators, and Sf the set of exponentvetors of nonzero terms of f of ardinality .Output: Absolutely irreduible or Failure, where the latter ase means that deomposability of31



onv(Sf ) (and hene absolute irreduibility of f) is not deided.Step 1: Re-arrange the points in Sf as an n� matrix S. If n = 2, let A be the trivial projetionand go to Step 4. Else, hoose positive integers b and e. Let M(b) denote the set of all 2 � nmatries with integer oeÆients bounded in absolute value by b. Repeat Steps 2-4 up to e times.Step 2: Selet a matrix A uniformly at random from M(b) and ompute the set of points in R 2de�ned by A(S) := fAsjs 2 Sg.Step 3: Compute the onvex hull, onv(A(S)), of A(S) and hek that eah vertex of onv(A(S))has only one pre-image in S under the projetion A. If this ondition is not met, return to Step2.Step 4: Call Algorithm 3.3.1 above using the edge sequene of onv(A(S)). If this polygon isintegrally indeomposable, output \Absolutely Irreduible" and halt. Else, if n > 2, return toStep 2. Else, if n = 2, output \Failure".Step 5: Output \Failure".Theorem 3.3.3 [47℄ Algorithm 3.3.2 works orretly and requires at mosteO(((nbd)3 + (+ n)) log2(nbd))binary operations and O((nbd)2 log(nbd)) bits of storage for a polynomial in n variables, with nonzero terms, and degree at most d in eah variable. If f has no more that  = O(nd) nonzeroterms, the run-time beomes ubi in the total degree of the input polynomial.For proof, see [47℄.Though promisingly eÆient for polynomials whose number of terms is not muh greaterthan their total degree, the above method is still onsidered a heuristi for the following reasons:Although the probability that the ondition in Step 3 is satis�ed an be determined, it still needsto be determined how likely it is that the algorithm will show indeomposability if Newt(f) isindeomposable, sine it is possible that there are indeomposable polytopes whose shadowpolygons are always deomposable [45℄. On the other hand, sine it has been proven that mostpolytopes in Rn, for n � 3, are homothetially indeomposable [117℄, a diret onsequene ofProposition 3.3.1 is that, most random integral polytopes may be expeted to be indeomposable.Algorithm 3.3.2 may detet these quikly in most of the ases, and hene should be partiularlye�etive for random sparse polynomials.3.3.3 Construting onvex hulls in two dimensionsWe now onlude with a disussion of a fast algorithm for omputing onvex hulls in two dimen-sions, based on the pioneering work of R. Graham [60℄, who gave the �rst O(n logn) algorithmfor omputing the hull of n points in the plane. We shall give a brief desription and refer thereader to the omprehensive texts in omputational geometry [35, 107℄.The input to the onvex hull algorithm will be a set S of n arbitrary points in the plane,and the output we seek will be a subset of these points representing extreme points or vertiesordered in a ounter-lokwise diretion around a hosen pivot. By verties we refer to thosepoints of the hull at whih the interior angle is stritly onvex (less than �). Also, a point is32



extreme if and only if there exists a line through that point whih otherwise does not touh theonvex hull. Alternatively, a point is non-extreme if and only if it is inside some triangle whoseverties are points of S and it is not itself a orner of that triangle. An edge of a onvex hull isalso alled extreme if every point of S is on or to one side of the line determined by the edge.We shall do this by treating the edge as direted, speifying the left side of a direted edge tobe the \inside". As suh, a direted edge is not extreme if there exists some point that is notleft of it or on it.The above de�nition of extreme points and edges will be ruial to our understanding of thesimple Graham's algorithm. In partiular, the onvex hull of points of S will be onstrutedsuessively in a stak of points, eah representing an extreme point. The stak is onstrutedusing a subset of S representing sorted points around a hosen pivot. The sorting rule is asfollows. The pivot, say p0, is hosen as the lowest rightmost point in S, whih is learly on thehull. The remaining n � 1 points are then sorted around the pivot, aording to \leftedness"from p0, or aording to inreasing values of their ounter-lokwise angles from the horizontalray emanating from p0. If there exist two points forming the same angle with p0, we de�ne ato be less than b if the distane from a to p0, de�ned by the eulidean distane ja� p0j, is lessthan jb� p0j. In that ase, point a is deleted, sine it belongs stritly to the interior of the hull.Assume that the number of sorted points (after deletion) is s � n, and let p0; :::; ps�1 denote theordered set of points around the pivot. The stak is now built iteratively as follows. As indiatedabove, the �rst point is the pivot, sine it belongs to the hull. The seond point is p1, sine itforms an extreme angle with p0 (no point of the hull is to the right of the direted edge p0p1).The rest of the points are then proessed in their sorted order inrementally around the set. Atany step, the hull will be orret for the points examined so far, but newly added points mayause earlier deisions to be reverted. To illustrate, suppose that we wish to examine whether p2belongs to the hull. Sine the edge p0p1 is extreme, the direted sequene of points (p0; p1; p2)makes a strit left turn at p1, so that p2 is pushed to the head of the stak. Now, if p3 is alsosuh that the direted sequene of points (p1; p2; p3) forms a left turn, p3 is pushed to the headof the stak. Else, the earlier deision (i.e. to add p2) is reversed, and p2 is deleted. One thenheks for the new direted sequene of points p0; p1; p3, and repeats the above proess, for allpoints pi, i = 3; :::; s � 1. The algorithm an be simply stated as follows; for a detailed proof ofits orretness as well as several important implementation issues, we refer the reader to [107℄:Algorithm 3.3.3 (Graham's algorithm for omputing onvex hulls)Input: A set S of n points in the plane.Output: onv(S), the onvex hull of S, as a list of verties ordered ylially in a ounter-lokwise diretion around a pivot.Step 1: Find the rightmost lowest point and label it as the pivot p0.Step 2: Sort all other points angularly around p0; if two points have the same angle with thehorizontal ray emanating from p0, delete the point loser to p0. Let s denote the total numberof sorted points.Step 3: Set onv(S) (p1; p0) = (pt; pt�1); t indexes top.Step 4: Set i 2; while i < s do:4.1: If pi is stritly left of pt�1pt then push pi to the top of the stak onv(S), and seti i+ 1. 33



4.2: Else, delete pt.Step 5: Output onv(S).
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Chapter 4A new sparse Gaussian eliminationalgorithm and the Niederreiter linearsystem for trinomials over F 24.1 IntrodutionVarious methods have been used to solve the Niederreiter linear system using expliit and denselinear algebra in [110℄ and impliit linear algebra in [39℄. While those implementations haveahieved fatorisation reords for polynomials over F 2, on�rming the argument that the Nieder-reiter algorithm is a very eÆient linear algebra based algorithm for the fatorisation of suhpolynomials (see [8, 102, 103, 104, 105℄), we attempt to investigate the sparsity feature of thealgorithm whih renders it more eÆient for sparse polynomials, and in partiular, trinomials.Trinomials are very sparse and hene provide a good model for investigating this aspet of theNiederreiter algorithm. In this hapter, we prove the argument that the Niederreiter matrix issparse in the ase of a trinomial, and establish the exat sparsity pattern and density of theNiederreiter matrix. We also develop a new algorithm for solving the sparse linear system di-retly to produe a basis for the solution set through Gaussian elimination and using the datastruture of Gustavson [65℄. The new algorithm is mainly aimed at irumventing the problemsthat have always been assoiated with this data struture in terms of elbow spae and ompres-sion (see Setion 4.4). Although it an be easily modi�ed to solve general sparse linear systemsover F 2, the algorithm proves to be very eÆient when the matrix maintains a high level ofsparsity throughout the redution phase. Our experimental results on�rm that the Niederre-iter matrix is initially sparse, and maintains its sparsity throughout the redution phase. Ourresults an then be inorporated into G�ottfert's aeleration of the Niederreiter algorithm overF 2 whih uses all the elements of the basis set [59℄.We refer to Chapter 3 for the earlier summary of the Niederreiter algorithm over the binary�eld, and to [38, 41, 87, 102, 103, 104, 105℄ for an extensive review of the algorithm. In Setion4.2, we prove the assumption that the Niederreiter matrix is sparse for trinomials, and establishthat the initial number of entries in the sparse matrix of dimension d � d does not exeed 3d.In Setion 4.3 we review some of the widely used data strutures for storing sparse matries. Insetion 4.4 we disuss the new algorithm for performing sparse Gaussian elimination with pivotalordering using the Markowitz strategy. In Setion 4.5, we report on our experimental results,35



from whih we onjeture that the Niederreiter linear system maintains a high perentage ofsparsity throughout the Gaussian elimination phase.4.2 Setting the Niederreiter matrix over F2Let F 2 be the binary �eld of order 2 onsisting only of the elements 0; 1; it is thus understoodthat all polynomials desribed in this hapter are moni. Let f be a polynomial of degree d overF 2, and f = ge11 :::gemm be its anonial fatorisation over the �eld. Let Nf denote the Niederreitermatrix de�ned in Chapter 3. In [102℄, Niederreiter proposes that, due to the simple form of Eq.(3.2), the system (3.3) has the form:min(2j+1;d�1)Xk=max(2j+1�d;0)f2j+1�khk = hj for 0 � j � d� 1: (4.1)The proof of this assertion an be skethed as follows:First, we know that h2(x) = h(x2) in F 2[x℄ and so the oeÆients of x2j in the right-handside of Eq. (3.2) are given by hj for 0 � j � d � 1. On the other hand, reall that the matrixNf is obtained by omparing the oeÆients of x2j for 0 � j � d� 1 in both (fh)0 and h2. Letf(x) = dXi=0fixiand h(x) = d�1Xk=0hkxk:The oeÆient of x2j in (fh)0 is the oeÆient of x2j+1 in fh, and so the oeÆients of (fh)0an be expressed as min(2j+1;d�1)Xk=max(2j+1�d;0)f2j+1�khkfor 0 � j � d� 1. The bounds on k follow beause of the following fats:a. Sine deg(h) � d � 1, hk = 0 for all k > d � 1 and so k has to satisfy k � d � 1. Also,sine f2j+1�k = 0 for all 2j + 1� k < 0, we have to maintain k � 2j + 1. As a result, an upperbound for k would be min(2j + 1; d� 1).b. In a similar way, hk = 0 for k < 0 and f2j+1�k = 0 for 2j + 1� k > d (sine deg(f) = d).Therefore, k has to satisfy k � 0 and k � 2j+1�d and so a lower bound for k is max(2j+1�d; 0).The above proposition establishes a �xed struture for the Niederreiter matrix from whihthe algorithm derives many of its attrative features over F 2. The following result appearsoriginally in [102℄. For a detailed proof of it, we refer the reader to our report in [3℄.36



Theorem 4.2.1 [102℄ Let f = fdxd + ::: + f1x+ f0 be a polynomial of degree d over F 2. Theelements in the Niederreiter matrix Nf an be obtained as follows:1. If d is even, then:a. f2k0 appears in rows i = k0 + 1; :::; d=2 + k0 and oupies olumn 2(i � k0) in row i, fork0 = 0; :::; d=2.b. f2k0+1 appears in rows i = k0 + 1; :::; d=2 + k0 and oupies olumn 2(i � k0)� 1 in row i,for k0 = 0; :::; d=2 � 1.2. If d is odd, thena. f2k0 appears in rows i = k0 + 1; :::; d�12 + k0 and oupies olumn 2(i � k0) in row i, fork0 = 0; :::; d�12 .b. f2k0+1 appears in rows i = k0+1; :::; d�12 + k0+1 and oupies olumn 2(i� k0)� 1 in rowi, for k0 = 0; :::; d�12 .In other words, the Niederreiter matrix over F 2 an be written as0BBBBBBBBBBBBBB�
f1 f0 0 0 0 0 0 ::: ::: ::: 0f3 f2 f1 f0 0 0 ::: ::: ::: ::: 0f5 f4 f3 f2 f1 f0 0 ::: ::: ::: 0::: ::: ::: ::: ::: ::: ::: ::: ::: ::: :::fd�1 fd�2 ::: ::: ::: ::: ::: ::: ::: ::: f00 fd fd�1 ::: ::: ::: ::: ::: ::: ::: f20 0 0 fd fd�1 ::: ::: ::: ::: ::: f4::: ::: ::: ::: ::: ::: ::: ::: ::: ::: :::0 0 ::: ::: ::: ::: 0 0 fd fd�1 fd�20 0 ::: ::: ::: ::: ::: ::: ::: 0 fd

1CCCCCCCCCCCCCCAif d is even, and0BBBBBBBBBBBBBB�
f1 f0 0 0 0 0 0 ::: ::: ::: 0f3 f2 f1 f0 0 0 ::: ::: ::: ::: 0f5 f4 f3 f2 f1 f0 0 ::: ::: ::: 0::: ::: ::: ::: ::: ::: ::: ::: ::: ::: :::fd fd�1 ::: ::: ::: ::: ::: ::: ::: ::: f10 0 fd fd�1 ::: ::: ::: ::: ::: ::: f30 0 0 0 fd fd�1 ::: ::: ::: ::: f5::: ::: ::: ::: ::: ::: ::: ::: ::: ::: :::0 0 ::: ::: ::: ::: 0 0 fd fd�1 fd�20 0 ::: ::: ::: ::: ::: ::: ::: 0 fd

1CCCCCCCCCCCCCCAif d is odd.Theorem 4.2.1 is at the basis of the assumption that the matrix Nf is sparse if the polynomialf is sparse. It also establishes that there is no ost assoiated with arithmeti operations forsetting up the matrix Nf , in the sense that the matrix oeÆients an be read o� immediatelyfrom those of f . In this hapter, we support the main argument that the Niederreiter matrixis sparse by determining exatly the perentage of sparsity of the matrix upon set-up. Thefollowing theorem not only desribes a onsistent pattern of where the entries our in thematrix Nf � I if f is a trinomial over F 2, but also the exat number of entries that initially37



our in Nf � I. By a simple abuse of notation, we de�ne the length of a row to be the numberof nonzero entries appearing in it, rather than its atual length d. We then laim the following:Theorem 4.2.2 Let f(x) = fdxd + fsxs + f0 denote a trinomial over F 2. Let M = Nf � Iwhere Nf is the d� d Niederreiter matrix and I the d� d identity matrix over F 2. Then:a. if d is even, the matrix M ontains exatly one row of length 0, one row of length 1, d2 �1rows of length 2, and d2 � 1 rows of length 3.b. if d is odd, the matrix M ontains exatly one row of length 0 and one row of length 1.In addition, if s is odd, then M ontains exatly d�32 rows of length 2 and d�12 rows of length 3;else, if s is even, then M ontains d�12 rows of length 2 and d�32 rows of length 3.Proof: Suppose that d is even and write i = j + 1. By Theorem 4.2.1, f0 falls along rowsi = j + 1 of Nf , for j = 0; :::; d=2, and fd falls along rows i = j + 1 of Nf , for j = d=2; :::; d.Sine f is a trinomial, Theorem 4.2.1 also implies that the maximum number of entries in anyrow of Nf is two, those onsisting of the pair (fs; f0) or (fd; fs), and so, the maximum numberof entries in any row of M is three. LetSeth = fj : 0 � j � d� 1j row i of M ontains h entriesg;for h = 0; 1; 2; 3. We aim to show that jjSet0jj = 1; jjSet1jj = 1; jjSet2jj = d=2 � 1, andjjSet3jj = d=2� 1. LetRf0 = fj : 0 � j < d2 jf0 appears in row i of matrix Mg;Rfd = fj : d2 � j < djfd appears in row i of matrix Mg;Rfs = fj : 0 � j < d2 jfs appears in row i of matrix Mg;R0fs = fj : d2 � j < djfs appears in row i of matrix Mg:We �rst laim that f0 an never appear as a diagonal entry in Nf ; otherwise, if we write f0 = f2kfor k = 0, and sine f0 oupies the position (i; 2(i� k)) for some i = 1; ::; d=2 (Theorem 4.2.1),we must have i = 2(i � k) = 2i, a ontradition, sine i � 1. Thus, when omputing row i inM for i = 1; :::; d=2, f0 in Nf is never anelled out by a diagonal entry in Id, or equivalently,jjRf0 jj = d2 . Similarly, if we write fd = f2k for k = d2 , then for fd to be a diagonal entry, wemust have i = 2(i � d2) or that i = d. It follows that fd appears as a diagonal entry of Nf onlyin the last row d, and so never appears in row d of M . This implies thatjjRfd jj = d2 � 1:Note that s 6= 0; d. For fs to oupy a diagonal entry in Nf , Theorem 4.2.1 implies thati = 2(i � t)$ i = 2tif s = 2t for t � 1, or that i = 2(i� t)� 1$ i = 2t+ 138



if s = 2t+1, for t � 0. It follows that fs is a diagonal entry of Nf (and hene disappears in M)only in row s, whih as suh ontains either f0 or fd alongside fs. Also, by Theorem 4.2.1, fsappears in d2 rows of Nf . As a result,jjRfs jj+ jjR0fs jj = d2 � 1:Now, sine f0 is never a diagonal entry in rows i = 1; :::; d=2 of Nf , sine fd is a diagonal entryonly in row d of the last d=2 rows, and sine row d does not ontain fs, it follows that Set0 = fdg.Sine fs is a diagonal entry of Nf only in row s 6= 0; d (whih also ontains either f0 or fd),Set1 = fsg. Also, (Rf0 �Rfs) [ (Rfd �R0fs) = Set2 [ fi = sgwhere Set2 ontains the diagonal entry and one of f0 or fd. Thus,jjSet2jj = jjRf0 �Rfs jj+ jjRfd �R0fs jj � 1= jjRf0 jj+ jjRfd jj � (jjRfs jj+ jjR0fs jj) � 1= d2 � 1:Sine jjSet0jj+ jjSet1jj+ jjSet2jj+ jjSet3jj = d;we have jjSet3jj = d=2 � 1.A similar proof an be skethed when d is odd and we refer the reader to our report in [3℄for details.4.3 Data strutures for the sparse matrix MIn this setion we desribe briey the data strutures that are widely used to represent sparsematries. A major review of the subjet an be found in [33℄ (see also [123℄). Without loss ofgenerality we assume the matrix to be a square d�d matrix. Let � denote the number of nonzeroelements appearing in the sparse matrix, and entries refer to the nonzero elements. Initially, itis always onvenient to supply the matrix in a oordinate sheme, a set of triples ontaining thevalue of eah entry, together with its row and olumn indies. Sine we are working modulo 2,an entry an only have the value 1, hene our disposal of the data struture and algorithmidetails whih deal with storing the nonzero values, modifying them, or maintaining the numerialstability of the algorithm. The oordinate sheme is one favoured form of supplying the matrixelements, but not for performing Gaussian elimination, for instane, sine this would requireeasy aess to rows and olumns. For this, two main data strutures an be used. In [65℄, adata struture whih transforms the matrix into a olletion of sparse row and olumn vetorsis introdued. For simpliity, we assume that the indexing of arrays starts at 1 (not 0). In theolletion of sparse row vetors, and for eah row of the matrix, we store a pointer to its startingentry and its length. For eah entry in that row, we store its olumn loation. For this, we usetwo integer arrays (say, row�start and row�length) of size d, and one integer array (say jn) of39



size � . The omponents in eah row vetor an be ordered or unordered. As suh, all entries alonga partiular row i have indies s = row�start[i℄; :::; row�start[i℄ + row�length[i℄ � 1. Settingthe row vetor representation from the oordinate sheme an be established using O(�) +O(d)operations (see [33℄). The olletion of rows allows aess for entries along a partiular row,but not along olumns. To perform this, a similar struture designating a olletion of sparseolumns is established, with arrays ol�start, ol�length, and irn allowing aess to the start ofeah olumn and information about its length, as well as the row indies of entries found in theolumn vetors. This data struture requires four integer arrays of size d and two integer arraysof size � in total. One main diÆulty assoiated with it arises when a new row beomes longeras a result of row operations introduing new entries. In this ase, the urrent spae alloatedfor the row vetor has to be wasted temporarily, so that the new row vetor is added to theend of the struture. Subsequently, rows beome disordered, and after several suh additionsrequiring what is alled elbow room at the end of the data struture, one is fored to ompressthe struture by re-ordering the rows to oupy the free spae wasted previously, a proess thatis known as ompression. This onstitutes the only major disadvantage of the data struture,hene the alternative of linked lists.A sparse matrix an be represented as a olletion of rows, eah in a linked list. For eahrow we store a pointer to its starting entry, say in a one dimensional integer array of lengthd, denoted by row�header. All subsequent elements in the row are forwardly linked by links,stored in a one dimensional integer array of length � , denoted by row�fwd�link. The olumnloations of all entries are stored in a one dimensional integer array jn of length � . The fatthat the list an be updated without referene to the atual physial loation of entries allowsproper insertion of new elements upon �ll-in without having to have elbow room or performompression. The list an be ordered or unordered by inreasing index of entries. To makeinsertion or deletion easier and less expensive, the list an be modi�ed into a doubly linked onewhere entries in a partiular row are further linked to their bakward neighbors in the list (thisis made possible through the use of a one dimensional integer array row�bakwd�link of length�). Sine the olletion by rows allows only aess to entries within a partiular row but not aolumn, a similar solution as above onsists in establishing a olletion of the matrix olumns aslinked lists and storing the row indies of entries found along the olumns. This transforms thestruture into a two dimensional list, whose elements an be singly or doubly linked, ordered orunordered. However, this sheme results in large memory overheads by assoiating four integerswith eah entry if the list is not doubly linked, and six integers otherwise. Curtis and Reid[27℄ suggested that the arrays irn and jn an be disarded, so that the negation of the row(olumn) indies of entries along a partiular row (olumn) are stored in the last link of the row(olumn). A basi diÆulty assoiated with this data struture is that the integers stored an beas large as � , in ontrast to the orresponding upper bound d assoiated with the Gustavson'sdata struture, whih allows for the use of half-word storage if the array entries �t in 16-bit(32-bit) omputer words. Although the issues of elbow room and ompression are irumvented,the initial memory requirements an be larger than that of Gustavson's if the doubly linked listis used, onsisting of two arrays of size d, and four arrays of size � .Summarising, the advantages and disadvantages of the data strutures an be listed asfollows. The singly linked lists need the same amount of memory as that required by Gustavson'sdata struture at the time of set-up, but less memory than the doubly linked lists. However,their use requires extensive searhes as entries are added or deleted, and the alternative is atthe expense of inreasing memory requirements through the use of doubly linked lists, or elbow40



room and ompression through Gustavson's struture. The sequential operational omplexitiesfor performing sparse Gaussian elimination using all of the strutures above are the same (see[33℄), although di�erenes emerge for parallel appliations, where the two dimensional unordereddouble list is of lowest operational omplexity (see [123℄ for a detailed aount of omplexities).The deision as to whih data struture to use beomes a problem-dependent hoie whih servesthe priorities of the appliation, those being either improvements on running time or savings inmemory.4.4 A new sparse Gaussian elimination algorithmSolving the linear system onstitutes the bottle-nek in the Niederreiter algorithm for very largepolynomial degrees. As a result, the hallenges in implementing polynomial fatorisation onsistin �rst, performing the algorithm for as large an input size as feasible, and seond, performing itin the fastest possible way. Aordingly, our main interest in this hapter is aimed at ahievingsavings in memory to deal with very large sparse linear systems over F 2. These fats, oupledwith our interests in fatorising as large a trinomial as our resoures an a�ord, motivated usto onsider an e�etive data struture suh as Gustavson's and investigate how the problems ofelbow room and ompression assoiated with it an be avoided to yield a more spae-eÆientdata struture. Our new algorithm for performing sparse Gaussian elimination using Gustavson'sdata struture onsists of a series of major sub-tasks, eah of whih is desribed in due ourse,together with its operational omplexity. We �rst give a few de�nitions and notations. Reallthat we have to ompute the left nullspae of the system (3.3), and as a result we have to performrow operations onsisting in interhanging two rows, adding a multiple of one row to another,and multiplying any row by a nonzero �eld element. Sine we are working over the binary �eld,our algorithm onsists of the �rst two operations only, where the seond operation simpli�esto adding one row to another modulo 2. To further apply the pivotal Markowitz strategy, wealso have to perform olumn interhanges. To establish the representation of the matrix M asa olletion of sparse row vetors, we laim that this does not require that the matrix be givenin a oordinate struture. In partiular, we haveProposition 4.4.1 The matrix M for a trinomial over F 2 an be represented as a olletion ofordered sparse row vetors without the use of a oordinate sheme.Proof: By Theorem 4.2.2, entries along any row ofM an be spei�ed aording to their olumnloation. This diretly provides the information in arrays row�start, row�length, and jn.The olletion of sparse olumn vetors an be easily set up by sanning the rows, in whatrequires O(�) operations. We de�ne A(a0 ! b0; 0 ! d0) to be the blok matrix omprisingrows a0 to b0 and olumns 0 to d0 of some matrix A. We let  and r denote the maximumnumber of entries along a nonzero olumn or row respetively, M (q) the transformed matrixorresponding to M during some stage of Gaussian elimination, and M 0 the image of M (q)under a transformation whih involves any of the following:1. An interhange I of olumns.2. An interhange Ir of rows.3. Replaing row i with i + j where j is some other row in the matrix. Over F 2, this stepredues to a proess of adding and/or removing 1's from row i wherever appliable, and hene41



onstitutes a omposition of a �nite number of transformations of the form Ae and Re, whereAe and Re represent adding and removing an entry respetively.The row and olumn operations in a sparse algorithm appear di�erently from what an beseen in dense algorithms, where any of these operations is performed as in their literal de�nition,suh that elements of the dense data struture are interhanged whenever rows/olumns are so,or added together whenever a row is added to another. In our sparse algorithm, the operationsare ahieved through a series of hanges updating the information in the various arrays desribingthe data struture, based on the assumption that the transformed matrix is still sparse and henean be represented by the same struture as that of the original matrix. The sequene aordingto whih the updates are performed is not arbitrary, in that some arrays need to be modi�edbefore others. For instane, the lengths of rows and olumns have always to be updated �rst,a�eting the pointers to the starts, whih then a�et the row or olumn indies of entries. Ouralgorithm maintains this order of dependene among arrays and this is impliitly assumed tohold in all forthoming desriptions of the sub-tasks.4.4.1 Aessing entries along a olumnOften enough during any stage of Gaussian elimination one has to be able to loate entriesbelow the pivotal element. To hek whether there exists an entry in some position (a; b), wean hoose to either aess the row a looking for an entry whose olumn is b, or aess the olumnb looking for an entry whose row is a. If we know that this entry is likely to be situated in thestart of a olumn (for instane, if b happens to be a pivotal olumn), then aessing the entriesby olumns would be more eÆient. Loating an entry in some position (a; b) an be performedby sanning all entries s 2 fol�start[b℄; :::; ol�start[b℄ + ol�length[b℄ � 1g. In the remainderof this hapter we denote by Loation�by�olumn(a; b) the sub-routine whih when input thelength and starting index of olumn b, returns PASS if there exists an entry in loation (a; b)and FAIL otherwise. It an be seen that the sub-routine requires at most  �eld operations,sine in the worst-ase analysis, one would have to san an entire olumn before �nding an entryin loation (a; b).4.4.2 Implementing the Markowitz strategyIn our present implementation we use the Markowitz riterion [94℄ for loally minimising the�ll-in during eah step of the Gaussian elimination, as opposed to other global methods whihpreserve the general sparsity pattern of the matrix [33℄. The Markowitz strategy onsists inloating good andidates for pivotal elements during eah step of Gaussian elimination. By agood pivotal andidate aij we mean a nonzero entry in the ative part of the matrix whihminimises the Markowitz ount (ri � 1)(j � 1), where ri and j represent the lengths of row iand olumn j respetively, and where the minimum is over all entries of the ative sub-matrix.Note that the Markowitz ount represents the maximum amount of �ll-in that ould arise usinga pivotal entry aij . The Markowitz riterion requires a further numerial stability test to besatis�ed by the pivotal andidate, but this is not of onern in our implementation over F 2, sineall arithmeti is exat. A straightforward implementation of the Markowitz searh is likely torequire sanning all entries in the ative sub-matrix before a andidate is found. Curtis and Reid(see [27℄) introdued methods to avoid an expensively naive searh. We desribe the methodonly very briey here and refer the reader to [33℄ for more details. In priniple, the approah42



onsists of storing the various row and olumn lengths and searhing for a pivotal andidatethrough the rows and olumns in inreasing order of ounts (i.e. number of entries). This anbe ahieved by olleting all the rows (olumns) in a set of doubly linked lists of rows (olumns)having the same ount. The row (olumn) lists an be onstruted using two integer arrays,row�fwd�link and row�bakwd�link (or ol�fwd�link and ol�bakwd�link), eah of size d,and an be aessed through header pointers, stored in a one dimensional integer array of lengthd and denoted by row�header (ol�header). The searh for pivotal elements begins along rowsand olumns of least ount, and progresses in inreasing order, whereby the orresponding rowand olumn lists are sanned. For a �xed ount w, one �rst sans all rows of length w, thenall olumns of the same length. At any stage of the searh, one an determine a bound on theMarkowitz ount of all unsearhed entries, whih helps terminate the searh before all rows andolumns are sanned. The following desription an be found in [33℄ and we repeat it only brieyhere. Suppose that one is about to searh rows with ri entries, so that all olumns whose ountis less than ri have been sanned. This leaves only entries whose ount is(ri � 1)(j � 1) � (ri � 1)(ri � 1) = (ri � 1)2:Thus, the �rst entry whose ount is equal to (ri� 1)2 is hosen as pivot. If no suh entry exists,one simply hooses an entry having least ount among all other entries in the ative sub-matrix.On the other hand, if one is searhing olumns with ount j , then, sine rows of ount j havealready been sanned, the ount of remaining unsearhed entries along olumns with ount j is(ri � 1)(j � 1) � (j + 1� 1)(j � 1) = j(j � 1);so that as above the searh is terminated as soon as an entry whose ount is equal to j(j�1) isenountered. Else, one again hooses an entry having least ount among others in the ative sub-matrix. Although there is no theoretial justi�ation that this method always improves uponthe O(�) proess through a naive searh, experiene has shown that it is likely to be suessfulafter looking through only a few rows and olumns (see [33℄ for experimental results).Updating lists of olumns having the same lengthAs before, all following arguments work for olumns as well as rows, by replaing the arrays withappropriate ones. A number of row and olumn operations may result in the olumn lengthsbeing hanged, and as a result, the lists of olumns having the same ount must undergo aorresponding modi�ation. Suppose, for instane, that olumn i, of original length a, beomesof a new length b. This orresponds to removing i from the list of olumns of length a andinserting it into the list of olumns of length b. There are several positions into whih one anhoose to insert the olumn, the most natural being the head of the list. Obviously, this does notpreserve the order of olumns by inreasing indies, something whih, we argue, has advantagesin the following:1. Our appliation of the Markowitz strategy requires that we have an eÆient way of deter-mining the rows and olumns of minimum ount but only those in the ative sub-matrix.Ordering the linked lists allows for a quik way of loating the ative rows and olumns ofsome partiular ount.2. Interhanging olumns takes plae when a pivotal andidate is hosen having some mini-mum Markowitz ount  and along a olumn j that is di�erent from the pivotal olumn,43



say i. As will beome learer later on, our algorithm for interhanging two olumns i andj is most eÆient when the total number of entries found along olumns k = i; :::; j is theleast possible. All other olumns ontaining entries whose ount is  and having the samelength as j belong to the same list, whih when ordered in inreasing order of olumnindies helps that we hoose olumn j suh that j is losest to i among all olumns of itslist.With these advantages, we are inlined to aept the extra ost of maintaining ordered linkedlists. We denote the sub-routine for updating the lists as a result of hanges in olumn lengthsColumn�hain(i; a; b)�, whih updates the lists of lengths a and b as the length of i hangesfrom a to b. This an be easily seen to require at most O(d) operations by onsidering theworst-ase analysis of inserting a olumn to the end of a list of d olumns.4.4.3 Interhanging olumnsBeause of the symmetry involved in exhanging rows and olumns, we disuss only olumninterhanges. For k = 1; :::; d, let k denote the vetor oupying olumn k, L(k) the lengthof k in M (q) and I(L(k)) its length in M 0 = I(M (q)). Similarly, if s denotes the index ofan entry in the representation of M , then I(s) denotes the index of that same entry in therepresentation of M 0, whether viewed as a olletion of sparse rows or olumns. We will furtherrequire information about the greatest olumn index  less than k suh that olumn  is nonzero.This integer an be stored at loation k of the integer array previous�olumn of size d.y If nosuh integer exists, previous�olumn[k℄ is set to �1. The array previous�olumn an be set atthe start of the algorithm and later modi�ed only when a zero olumn is displaed, a nonzeroolumn has beome of length zero, or a zero olumn has beome nonzero. This modi�ation willbe assumed to hold impliitly in any of these ases and we leave it to the reader to verify thatthis omes at a negligible ost. We note that, if  6= �1, thenolumn�start[k℄ = olumn�start[℄ + olumn�length[℄:The interhange of olumns fores us to keep trak of the orresponding hange in the order ofthe oordinate entries of the unknown olumn vetor hT solving the linear system (3.3). Thisis neessary for the orretness of the �nal solution of the system after olumn interhangeshave been performed. For every olumn k = 1; :::; d, we assoiate an integer y representingthe original index of k in M and store it in original�olumn[k℄, where original�olumn is aninteger array of size d. The array an also be initialised at the beginning of the program suhthat original�olumn[k℄ = k for k = 1; :::; d and modi�ed aordingly when two olumns getinterhanged.Now, let i and j denote the two olumns to be interhanged suh that i < j. The matrixM 0 =I(M (q)) an be obtained through a series of hanges a�eting its olumn lengths and starts, aswell as the row and olumn indies of its entries appearing. The algorithm for interhangingolumns is presented as follows:Algorithm 4.4.1 Interhange�Columns(i; j)Input: The matrix M (q);�A similar algorithm, Row�hain, an be analogously onstruted, by hanging referene to the appropriatearrays.yA similar array, previous�row, an be used in the olletion of rows.44



Output: The matrix M 0 = I(M (q)), where I represents the interhange of two olumns i and jof M (q). Without loss of generality we may assume that i < j and that at most one of i or j iszero.1. Swith(original�olumn[i℄,original�olumn[j℄);2. y  ol�length[i℄, ol�length[i℄ ol�length[j℄;3. Column�hain(i; y; ol�length[i℄);4. ol�length[j℄ y;5. Column�hain(j; ol�length[i℄; y);for k 2 fi; :::; jg doIf (ol�length[k℄ = 0) do6. ol�start[k℄ 0;else do7.  previous�olumn[k℄;If ( = �1) do8. ol�start[k℄ 1;else do9. ol�start[k℄ ol�length[℄ + ol�start[℄;end;end;end;10. Initialise�to�zero(new�array), sum 0;for k 2 fi+ 1; :::; j � 1g do11. sum sum+ ol�length[k℄;end;If (ol�length[i℄ 6= 0) do12. a sum+ ol�length[j℄;for y 2 fol�start[i℄; :::; ol�start[i℄ + ol�length[i℄� 1g do13. new�array[y℄ irn[y + a℄;end;end;14. a ol�length[j℄ � ol�length[i℄;for k 2 fi+ 1; :::; j � 1g doIf ol�length[k℄ 6= 0 dofor y 2 fol�start[k℄; :::; ol�start[k℄ + ol�length[k℄� 1g do15. new�array[y℄ irn[y + a℄;end;end;end;If (ol�length[j℄ 6= 0) do16. a sum+ ol�length[i℄;for y 2 fol�start[j℄; :::; ol�start[j℄ + ol�length[j℄ � 1g do17. new�array[y℄ irn[y � a℄;end;end;18. Copy(new�array; irn), Initialise�to�zero(new�array);for k 2 f1; :::; dg do 45



If (row�length[k℄ 6= 0) do19. sum 0;for s 2 frow�start[k℄; :::; row�start[k℄ + row�length[k℄� 1g doIf (jn[s℄ > i) and (jn[s℄ < j) do20. sum sum+ 1;end;end;21. t1 Loation�by�olumn(k; i), t2 Loation�by�olumn(k; j);If (t1 = PASS) and (t2 = FAIL)do for s 2 frow�start[k℄; :::; row�start[k℄ + row�length[k℄� 1gdo If (jn[s℄ > i) and (jn[s℄ < j) do22. new�array[s� 1℄ jn[s℄;else if (jn[s℄ = i) do23. new�array[s+ sum℄ j;end;end;end;If (t1 = FAIL) and (t2 = PASS) dofor s 2 frow�start[k℄; :::; row�start[k℄ + row�length[k℄ � 1gdo If (jn[s℄ > i) and (jn[s℄ < j) do24. new�array[s+ 1℄ jn[s℄;else if (jn[s℄ = j) do25. new�array[s� sum℄ i;end;end;end;end;end;27. Copy(new�array; jn), Initialise�to�zero(new�array).Proposition 4.4.2 Algorithm 4.4.1 performs orretly and requires O (d(r + )) �eld opera-tions.Proof: Steps 1-5 of the algorithm perform the initial hanges that have to do with swithingthe lengths of olumns as well as the original indies of olumns oupying positions i and j.As a result of hanges in olumn lengths, the orresponding lists of olumns of the same ounthave to be updated through alls to Column�hain, eah requiring O(d) operations.In steps 6-9 we perform the hanges to the starting pointers of olumns. We laim thatonly olumns i; :::; j of M (q) an have the pointers to their starting entries hanged in therepresentation of M 0. Let s denote the index of the starting entry of any olumn in the matrix.Sine olumns less than i� 1 retain the same number and distribution of entries, it follows thatall olumns k 2 f1; :::; i�1g retain the same pointers to their starting entries. Suppose k = i andlet  = previous�olumn[i℄. If i is a zero olumn in M 0 (i.e. has no nonzero entries, something46



whih, aording to our original assumption, implies that i is not a zero olumn in M (q)), thenI(s) = 0 6= s. Else, if i is not a zero olumn, and if  = �1, then I(s) = 1 = s; else, if i is nota zero olumn and  6= �1, let S() denote the starting index of olumn . We then haveI(s) = I(L()) + I(S())= L() + S() sine 1 �  < i= s:Now suppose that k = i+1; :::; j and olumn k is not zero. If I(L(i)) 6= L(i), the start of olumnk hanges as a result. In partiular, if  = previous�olumn[k℄, then I(S(k)) = L() + S()if  6= �1, and I(S(k)) = 1 otherwise. If k > j, then sine the total number of entries in thematrix blok M 0(1 ! n; 1 ! j) is the same as that in the matrix blok M (q)(1 ! n; 1 ! j),the start of olumn k remains unhanged. The loop aross steps 6-9 is iterated j � i+ 1 times,involving only array aesses, so that it requires at most O(j�i) steps. In the worst-ase analysiswhen i = 1 and j = d, the operational ount is of the order O(d).It is immediate to see that the lengths of rows in M 0 do not hange as a result of olumninterhanges, and hene, the pointers to the starts of rows remain unhanged.Steps 10-18 update the row indies of entries in the representation of M 0 as a olletion ofolumns. When i and j are interhanged, some entries in that olletion will be displaed andas a result, the values in irn will have to be updated aordingly to �t the new displaement.Beause of the dependene of the new values of irn on former values of the same array, theupdates on irn are opied �rst into the auxiliary array new�array whih is then opied ontoirn when all neessary hanges have been performed. Sine only olumns k = i; :::; j in M 0 hadthe pointers to their starting entries hanged, it follows that only entries along these olumnsundergo a shift in their indies whih then a�ets the values in irn. In partiular, if s denotesthe index of an entry e in M (q) as a olletion of olumns and I(s) is its index in M 0, then therow index of s in M (q) is equal to the row index of I(s) in M 0. To establish what the exathanges to irn will be, it suÆes to determine the exat value of I(s) in eah of the followingases:a. Suppose e 2 j in M (q), then e 2 i in M 0. Sine i < j, and sine the indexing of entriesalong the olletion of olumns is ordered inreasingly, the index of e in M 0 dereases as e getsdisplaed from j to i. Furthermore, the amount of redution orresponds to the total numberof entries being moved ahead of e as i and j are interhanged. In partiular, this amounts tothe total number of entries found on olumns k = i; :::; j � 1 in M . Summarising, I(s) an bewritten as I(s) = s� a, wherea = Xi�l<jL(l) = sum+ L(i) = sum+ I(L(j))and sum is as de�ned in the algorithm. Write s0 = I(s). Then s0 2 fol�start[i℄; :::; ol�start[i℄+ol�length[i℄ � 1g. Sine new�array[s0℄ = irn[s℄, we have new�array[s0℄ = irn[s0 + a℄. Analo-gously, it is easy to see that, if e 2 i in M (q), then e 2 j in M 0 so that I(s) = s+ a, wherea = Xi<l�jL(l):The loops in steps 13 and 17 over all entries in olumns i and j and involve mainly arrayaesses so that their total ost amounts to O() �eld operations.47



b. Suppose e 2 k suh that k = i + 1; :::; j � 1. Interhanging i and j would result indereasing the index of e by L(i)� L(j), sine i < j, so that I(s) = s� a, wherea = L(i)� L(j) = I(L(j)) � I(L(i)):The loop overs all entries of indies s0 = I(s) along k and assigns new�array[s0℄ = irn[s0+ a℄.The iterations of the loop over all entries e along olumns k = i+ 1; :::; j � 1 involving mainlyarray aesses so that the total ost of step 15 is O ((j � i)). When all the updates areperformed, we opy new�array onto irn and re-initialise new�array to zero. This requiresO(�) operations. In the worst-ase analysis when j = d and i = 1, the total ost for updatingirn thus beomes O (� + d).Steps 19-27 aim at updating the olumns of entries as their indies in the olletion by rowshange. As before, we store the new values of jn in new�array. Upon interhanging olumnsi and j, we have seen that only entries found along olumns k0 = i; :::; j get displaed. Also, ifs denotes the index of an entry in the representation of M (q) as a olletion of rows suh thatI(s) is the index of that same entry in the representation of M 0, then the olumn index of s inM (q) is equal to the olumn index of I(s) in M 0. For all rows k = 1; :::; d we argue as follows:a. If k has entries in both olumns i and j, or does not have entries in both olumns i andj, then its representation in the olletion by rows does not hange as a result of interhangingthe two olumns. As a result, the olumn indies of all its entries remain unhanged.Let S denote the number of entries oupying position (k; k0) for k0 = i+ 1; :::; j � 1 and letsum = #S.b. If k has an entry e in olumn i but not in olumn j of M (q), and sine i < j, theninterhanging the two olumns augments the index s of e by an amount equal to sum as aresult of displaing elements of S to the left. In other words, we have I(s) = s+ sum, and inpartiular, new�array[I(s)℄ = j. On the other hand, if e0 is an entry along row k of M (q) suhthat jn[e0℄ = i+ 1; :::; j � 1, then swithing olumns i and j auses only e to be shifted to theright ahead of e0. If s0 denotes the index of e0 in M (q), we haveI(s0) = s0 � 1, and new�array[s0 � 1℄ = jn[s0℄:. In a very similar way, if there exists an entry e in olumn j but not in olumn i of M (q),then I(s) = s� sum where s is the index of e in M (q) and sum is as above. In partiular, wehave new�array[I(s)℄ = i. Also, for e0 oupying (k; k0) and k0 = i+1; :::; j � 1, I(s0) = s0+ 1so that new�array[s0 + 1℄ = jn[s0℄.The updates on the olumn indies an thus be performed through a loop ranging over allrows of the matrix. Eah loop involves two alls of the funtion Loation�by�olumn, whoseost was seen to be O(), as well as a series of updates on entries falling between olumns i andj. In the worst-ase analysis when j = d and i = 1, steps 19-27 require d(r + ) operations.Summing up the sub-osts of this algorithm, and using  < d, it an be seen to requireO (d(r + )) +O(�) = O (d(r + )) �eld operations.4.4.4 Adding rowsLet i denote the pivotal row in a partiular stage of Gaussian elimination. We hoose to viewthe proess of replaing row j > i with j + i as a series of a omposition of two sub-tasks whih48



involve inserting a new entry to, or removing an already existing one from, row j, resulting in�ll-in and �ll-out respetively. Sine we are working with integers modulo 2, where an entryis either zero or one, the �ll-out beomes of onsiderable signi�ane, for the zeros we obtainas a result of elimination are not aidental zeros. In other words, if there exists some entry ein the loation (i; k) and another entry e0 in (j; k), then e0 is de�nitely (and not aidentally)transformed to zero as a result of the operation j  j + i. Furthermore, our algorithm forreplaing row j with one that is probably longer than itself esapes previous restritions in thatit does not require adding a fresh opy of the modi�ed row at the end of the data struture. Inpartiular, our approah does not require the use of any elbow room beyond what is needed toaommodate for only the extra number of �ll-in - �ll-out. In some ases when this quantity isnegative, the empty spae is simply alloated at the end of the struture. Most of the updatesapable of ahieving this involve a shifting proedure as desribed in the previous setion, andsine this omes at a higher operational ost than using ompression and elbow room, the tradeo� we establish is between savings in memory versus inrease in running time.We �rst present the following two sub-algorithms:Algorithm 4.4.2 Remove�entry(j; k)Input: M (q), where loation (j; k) is oupied by a nonzero entry.Output: M 0 = Re(M (q)), where loation (j; k) is empty.1. �  � � 1, x row�length[j℄, row�length[j℄ row�length[j℄ � 1;2. Row�hain(j; x; row�length[j℄);3. x ol�length[k℄, ol�length[k℄ ol�length[k℄� 1;4. Column�hain(k; x; ol�length[k℄);If (row�length[j℄ = 0) do5. row�start[j℄ 0;end;If (ol�length[k℄ = 0) do6. ol�start[k℄ 0;end;for s 2 fj + 1; :::; dg doIf (row�start[s℄ 6= 0) do7. row�start[s℄ row�start[s℄� 1;end;end;for s 2 fk + 1; :::; dg doIf (ol�start[s℄ 6= 0) do8. ol�start[s℄ ol�start[s℄� 1;end;end;9. new�array[� + 1℄ 0;If row�start[j℄ 6= 0 dofor s 2 frow�start[j℄; :::; row�start[j℄ + row�length[j℄ � 1g doIf (jn[s℄ � k) do10. new�array[s℄ jn[s+ 1℄;end;end; 49



end;for t 2 fj + 1; :::; dg doIf (row�start[t℄ 6= 0) dofor s 2 frow�start[t℄; :::; row�start[t℄ + row�length[t℄� 1g do11. new�array[s℄ jn[s+ 1℄;end;end;end;12. Copy(new�array; jn), Initialise�to�zero(new�array);13. new�array[� + 1℄ 0;If (ol�start[k℄ 6= 0) dofor s 2 fol�start[k℄; :::; ol�start[k℄ + ol�length[k℄ � 1g doIf (irn[s℄ � j) do14. new�array[s℄ irn[s+ 1℄;end;end;end;while t 2 fk + 1; :::; dg doIf (ol�start[t℄ 6= 0) dofor (s 2 fol�start[t℄; :::; ol�start[t℄ + ol�length[t℄� 1g do15. new�array[s℄ irn[s+ 1℄;end;end;end;16. Copy(new�array; irn), Initialise�to�zero(new�array).Proposition 4.4.3 Algorithm 4.4.2 performs orretly and requires O(d)+O(�) �eld operations.Proof: As one entry is deleted, the total number of entries in the matrix and the lengths ofrow j and olumn k are all dereased by 1. Any hange in the lengths of rows or olumnshas to be followed by the orresponding hanges in the lists of rows and olumns of the sameount. In total, steps 1-4 of the algorithm require O(d) �eld operations through the two alls toRow�hain and Column�hain.Steps 5-8 perform the updates on row and olumn starts. If row j beomes zero, we set itsrow start to be zero. Else, let s denote the index of the starting entry of j in M (q). If j = 1,then Re(s) = s = 1. Now suppose that j > 1 and let M 0 = Re(M (q)). Sine the total numberand distribution of entries in the matrix blok M 0(1 ! j � 1; 1 ! d) is the same as that inM (q)(1 ! j � 1; 1 ! d), it follows that all rows less than or equal to j retain the same pointerto their starting entries. If we further have j < d, we laim that, for rows r = j + 1; :::; d,Re(s) = s�1 (where s is the index of the starting entry of r) sine removing one entry from rowj shifts all entries in the remaining rows one unit to the left. As suh, the updates on row startsrequire O(d � j) operations, whih in the worst-ase analysis (j = 1) require O(d) operations.A similar argument holds for the updates on olumn starts and hene an be skipped.Steps 9-12 perform the updates on the olumn indies of entries in the olletion by rows.As one entry e is removed from row j, the loation at the end of the array jn is freed and the50



indies of all entries following e in the olletion by rows are dereased by 1. As before, the newupdates are stored in new�array whih is then opied onto jn before being re-initialised tozero. A very similar argument holds for the row indies of entries in the olletion by olumnswhen an entry is removed from olumn k, and we leave the details to the reader. The updateson jn and irn thus require at most O(�) steps, onsidering the worst ase when j = k = 1.This brings the total ost of the algorithm to O(d) +O(�) �eld operations.Algorithm 4.4.3 Add�entry(j; k)Input: M (q), where loation (j; k) is empty.Output: M 0 = Re(M (q)), where loation (j; k) is oupied by a nonzero entry.1. �  � + 1, x row�length[j℄, row�length[j℄ row�length[j℄ + 1;2. Row�hain(j; x; row�length[j℄);3. x ol�length[k℄, ol�length[k℄ ol�length[k℄ + 1;4. Column�hain(k; x; ol�length[k℄);If (row�start[j℄ = 0) do5.  previous�row[j℄;If ( 6= �1) do6. row�start[j℄ row�start[℄ + row�length[℄;else do7. row�start[j℄ 1;end;end;for t 2 fj + 1; :::; dg doIf (row�start[t℄ 6= 0) do8. row�start[t℄ row�start[t℄ + 1;end;end;for t 2 fk + 1; :::; dg doIf (ol�start[t℄ 6= 0) do9. ol�start[t℄ ol�start[t℄ + 1;end;end;10. t PASS;If (row�length[j℄ = 1) do11. new�array[row�start[j℄℄ k, t FAIL;else dofor s 2 frow�start[j℄; :::; row�start[j℄ + row�length[j℄) � 2g doIf (jn[s℄ > k) and (t = PASS) do12. new�array[s℄ k, t FAIL;end;If (jn[s℄ > k) and (t = FAIL) do13. new�array[s+ 1℄ jn[s℄;end;end;end; 51



If (t = PASS) do14. new�array[s℄ k;end;for t 2 fj + 1; :::; dg doIf (row�start[t℄ 6= 0) dofor s 2 frow�start[t℄; :::; row�start[t℄ + row�length[t℄� 1g do15. new�array[s℄ jn[s� 1℄;end;end;end;16. Copy(new�array; jn), Initialise�to�zero(new�array);17. t PASS;for s 2 fol�start[k℄; :::; ol�start[k℄ + ol�length[k℄) � 2g doIf (irn[s℄ > k) and (t = PASS) do18. new�array[s℄ j, t FAIL;end;If (irn[s℄ > j) and (t = FAIL) do19. new�array[s+ 1℄ irn[s℄;end;end;If (t = PASS) do20. new�array[s℄ j;end;for t 2 fk + 1; :::; dg doIf (ol�start[t℄ 6= 0) dofor s 2 fol�start[t℄; :::; ol�start[t℄ + ol�length[t℄� 1g do21. new�array[s℄ irn[s� 1℄;end;end;end;22. Copy(new�array; irn), Initialise�to�zero(new�array).Proposition 4.4.4 Algorithm 4.4.3 performs orretly and requires O(d) +O(�) operations.Proof: When an entry is added to the loation (j; k), the total number of entries in the matrixinreases by 1, and so do the lengths of row j and olumn k. The orresponding lists of rows andolumns of the same length are modi�ed through the alls to Column�hain and Row�hain.Steps 1-4 as suh require O(d) �eld operations.Steps 5-9 perform the updates on the row and olumn starts. As in algorithm 4.4.2, and forrows r = 1; :::; j, we have Ae(s) = s (where s is the index of the starting entry of a nonzero rowr -hek proof of Proposition 4.4.3 above), unless j was originally a zero row, in whih ase weargue as follows. If j beomes the �rst nonzero row of M 0, then Ae(s) = 1; else,Ae(s) = row�start[℄ + row�length[℄where  = previous�row[j℄. If we further have j < d, then for rows r = j+1; :::; d, Ae(s) = s+1sine adding one entry to row j shifts the indexing of all entries in the remaining rows one unit52



to the right. A similar argument holds for the updates on the starts of olumns in the matrix.For olumn k, however, we argue that Ae(s) = s, sine the inserted entry will always appearafter the start of olumn k when this is the pivotal olumn. It an be further established thatthe operational omplexity of the updates on the starts of rows and olumns is of the orderO(d � j) + O(d � k) �eld operations, whih in the worst-ase analysis (j = k = 1) beomes ofthe order O(d).Steps 10-16 perform the updates on the olumn indies of entries in the olletion of rows.Let e0 denote the entry to be inserted. If row j beomes of length 1, then e0 is given the olumnindex k, and the algorithm skips to step 15 where updates on the olumn indies for entriesin rows r > j take plae. Else, suppose that row j beomes of length greater than 1. Let edenote an entry in j and of index s in M (q). If jn[s℄ < k, then e also represents an entry ofj in M 0 whose index is not a�eted, sine it appears before e0. Else, if e is the �rst entry ofj in M (q) suh that jn[s℄ > k, then e0 takes up the index of e so that new�array[s℄ = k inM 0. For all entries e in row j whose olumns are greater than k in M (q), Ae(s) = s + 1 sothat new�array[s + 1℄ = jn[s℄. If no entry e of row j in M (q) was found to have a olumnindex greater than k (step 14), then e0 is the last entry to appear in row j and hene has indexs = row�start[j℄+row�length[j℄�1, whih is ahieved through exit of the loop in the preedingstep 12. For all entries e along rows r greater than j and of index s in M (q), Ae(s) = s+ 1 as aresult of inserting e0 in j. When all updates are performed, new�array is opied onto jn andre-initialised to zero. In total, and onsidering the worst-ase analysis when j = 1, this step anbe seen to require at most O(�) �eld operations. A very similar argument an be establishedfor updating the row values of entries in M 0 as a olletion of olumns and we leave the detailsto the reader. Summing up the sub-osts of the algorithm, the total ost is O(d) + O(�) �eldoperations.The algorithm for adding rows an now be desribed using the previous two sub-tasks. Ourdisussion above also demonstrates that no ompression or reation of elbow room is required toaommodate for new opies of modi�ed rows (or olumns). Whatever extra spae reated or-responds only to the amount of �ll-in minus �ll-out, when this amount is positive. In partiular,the algorithm an be stated as follows:Algorithm 4.4.4 Add�Rows(i; j)Input: Rows i and j suh that i is the pivotal row during one stage of Gaussian elimination andj is some other row in the ative sub-matrix of M (q).Output: Row j suh that j  j + i.for s 2 frow�start[i℄; :::; row�start[i℄ + row�length[i℄� 1g do1. k  jn[s℄;If loation�by�olumn(j; k) = PASS do2. Remove�entry(j; k);else do3. Add�entry(j; k);end;end.Proposition 4.4.5 Algorithm 4.4.4 performs orretly and requires O(d2r ) �eld operations.53



Proof: Replaing j with j + i modulo 2 an be performed in distint steps as follows. If bothrows i and j ontain an entry in the same olumn k, then performing j + i will anel out thisentry in loation (j; k); else, this will introdue a new entry in (j; k). The loop through steps1-3 iterates r times during whih a all to Remove�entry or Add�entry is performed. ByPropositions 4.4.3 and 4.4.4, and sine � = O(rd), the total running time of algorithm 4.4.4 isat most O(d2r ) �eld operations.4.4.5 A omplete sparse Gaussian elimination algorithmThe results of the previous subsetions an now be used to onstrut a omplete sparse GaussianElimination algorithm. The forward sweep of the algorithm whih redues the matrix intoEhelon form onsists of at most d pivotal steps. In eah step, a Markowitz searh is performedto �nd a suitable pivotal element. Aordingly, an interhange of rows and/or olumns isperformed, and/or an elimination of entries falling below the pivotal element is performed byadding suitable rows. If we onsider the worst-ase analysis in whih the Markowitz searhrequires O(�) operations, and ombining the osts in Propositions 4.4.2 and 4.4.5, we �nd thatthe forward sweep is of the order O �d2(max(r; ))2� (4.2)�eld operations. Our experiene has shown that roughly speaking, the maximum number ofentries in a row or olumn is negligible ompared to d (see table 4.1 below). In partiular,if � denotes the maximum ratio �=d attained during any stage of the redution, we have � =O(max(r; )) and the ost in (4.2) is of the orderO(�2d2). It an also be seen that the bakwardsweep of the algorithm, whih produes the basis elements one the matrix is redued, requiresO(dr) �eld operations, so that the total ost of the algorithm involving both its forward andbakward sweeps is bounded by O(�2d2). When ompared with the dense and expliit Gaussianelimination of order O(d3), our algorithm performs faster provided that � < pd. In terms of itsmemory requirements, we have shown that the algorithm requires twelve integer arrays of sized, and three integer arrays of size � = O(�d). Compared to the spatial requirement d2 of theexpliit methods, our algorithm is more memory eÆient provided � < (d� 12)=3. Both upperbounds hold easily in our implementations.4.5 Implementation and run timesAll programs were written in C. The work was arried out at Oxford University Superomputingenter (OSC) on the Oswell mahine. Only one proessor of the Sun luster was used to per-form the serial work. The UltraSPARC III proessors run at about 122.2 Mop/se eah. Wegenerated a number of trinomials over F 2 ompletely randomly. Table 4.1 lists the run times inminutes for setting up and solving the Niederreiter linear system for random binary trinomialsof degree d and having m irreduible fators over F 2. As before, � denotes the maximum ratio�=d attained at any stage, and max(; r) denotes the maximum number of entries appearingin any row or olumn during the entire Gaussian elimination phase. We note the negligiblevalues of max(r; ) ompared to d. The run times verify the e�et of inreasing values of �or d on the total exeution time, and our �ndings assert that the matrix remains onsiderably54



d m � = max(�=d) max(r; ) Time in minutes8000 6 6 253 39:48000 7 2 33 1:28000 30 4 150 7:516000 7 2 34 4:716000 10 9 430 258:516000 14 2 126 6:132000 31 3 240 54:932000 10 15 854 1940064000 7 2 40 77:864000 10 3 248 215:7128000 10 3 363 812:9128000 14 2 178 343:5256000 14 2 288 1896:1300000 11 2 52 1634:3400000 11 2 49 5061:1Table 4.1: Run times for setting up the Niederreiter matrix and solving the assoiated system.sparse throughout the redution phase no matter how large the degree of the trinomial grows.As a result, our sparse algorithm performs eÆiently well without having to be transformedinto a dense algorithm towards the �nal stages of Gaussian elimination. Our impression is thata similar behaviour might still be observed for sparse polynomials of more than three terms,partiularly beause of the distribution of the Niederreiter matrix, whih heuristially seems topreserve its sparsity throughout the elimination phase.4.6 ConlusionIn this hapter we have investigated the initial and most limiting phase of the Niederreiteralgorithm for trinomials over the binary �eld and determined the exat initial sparsity level ofthe assoiated Niederreiter linear system. A new sparse Gaussian elimination algorithm usingthe Markowitz strategy was developed for produing a basis of the solution set of the sparselinear system. The new algorithm exploits the Gustavson data struture but irumvents theproblems assoiated with it regarding reation of elbow room and ompression. The problem ofrequiring extra spae and modifying the data strutures is however shifted within the subroutinesfor adding one row to another. Yet, our approah does not require the use of any elbow roombeyond what is needed to aommodate for only the extra number of �ll-in - �ll-out, whihin the ase of Niederreiter's linear system for trinomials over F 2 remains onsiderably small.This was supported by our experimental results where the linear system remained onsiderablysparse throughout the Gaussian elimination phase. The resulting algorithm is also more memoryeÆient than the two dimensional doubly linked list whih has been the most eÆient strutureamong linked-lists based data strutures. The gains in spatial requirements ome at the expenseof running time where our new algorithm requires O(�2d2) �eld operations, in ontrast to theO(�2d) ost of other sparse algorithms, where � = �=d. Our algorithm was used in solvingvery large sparse Niederreiter linear systems for trinomials over F 2, but an also serve as an55



irreduibility test for trinomials over F 2, where a trinomial is irreduible if and only if the rankof the redued Niederreiter system is suh that m = d�rank = 1 [102℄. Although our algorithman be easily modi�ed to beome a general linear solver in various other appliations, we expetit to be partiularly e�etive in solving the Niederreiter linear system for sparse polynomials overF 2. Our work in this hapter an be ombined with results of [1℄ where the irreduible fators of fare extrated from a basis of the solution set using a parallel approah to the G�ottfert algorithmover F 2. When ompared with work in [110℄ for a dense expliit linear algebra approah to theNiederreiter algorithm, the resulting hybrid algorithm is of a better spatial omplexity for thefatorisation of large trinomials over F 2, provided � < (d � 12)=3, a riterion that is easy toestablish in the sparse Niederreiter linear system. Our algorithm ahieves fatorisation degreesthat are inaessible to the dense implementation up to 16 proessors (see [1℄), and performsthe nullspae stage for d = 300000 in about 27 hours using only one proessor in ontrast tothe performane in [110℄ requiring about 10 hours and 256 nodes for a random (possibly dense)polynomial of the same degree. Our algorithm also ahieves fatorisations beyond this degree.
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Chapter 5A BSP model of the G�ottfertalgorithm for polynomialfatorisation over F 25.1 IntrodutionThe solutions of the Niederreiter linear system an lead to a omplete fatorisation in a varietyof ways, one of whih was presented by G�ottfert [59℄ for �elds of harateristi 2, leading to asimple and polynomial time algorithm for extrating the fators using only the basis elementsof the solution set of the Niederreiter linear system.In this hapter, we develop a new BSP parallel approah to the G�ottfert algorithm over F 2.The BSP model o�ers simpliity in terms of its ost analysis and its lear distintion between thethree important phases of omputation, ommuniation, and synhronisation. It also has theadvantage of being independent of the underlying arhiteture of the mahine, thus providingportable software that an be used eÆiently in a variety of appliations (see [14, 71℄). Ouralgorithm ahieves high eÆieny in many of our test ases and an thus be used eÆiently tofatorise very large polynomials over F 2 provided a basis of the solution set is given. For a briefsurvey of the algorithms underlying our work and some bakground information desribing theBSP parallel model, we refer the reader to Chapter 3. In Setion 5.2 we present our parallelalgorithm, prove its orretness and disuss its BSP ost analysis. In Setion 5.3 we report onour experimental results and disuss the salability of the algorithm.5.2 A parallel approah to G�ottfert's re�nement of the Nieder-reiter algorithmAs in the earlier hapter, let F 2 be the binary �eld of order 2 onsisting only of the elements0; 1; it is thus understood that all polynomials desribed in this hapter are moni. Let f be apolynomial of degree d over F 2, and f = ge11 � � � gemmbe its anonial fatorisation over the �eld. Let Nf be the Niederreiter matrix of oeÆients off . Let h = (h0; :::; hd�1) denote the oeÆient row vetor of an unknown polynomial h over F 257



of degree less than d. In [102℄, Niederreiter establishes that the solutions h of the system (3.3)form a linear subspae of the vetor spae F 2[x℄ of dimension m over F 2 and that they are givenby h = fb b0where b denotes a fator of g1 � � � gm. Sine b is square-free (so that gd(b; b0) = 1), we have alsoseen that gd(f;h) = fb gd(b; b0) = fb :Let fh1; :::;hmg be a basis spanning the solution set of the system (3.3). The orrespondingpolynomials bi = fgd(f;hi) 2 F 2[x℄ for i = 1; :::;mare square-free fators of f . In the present hapter, all ops are onsidered as binary operations,sine we are working over the binary �eld.5.2.1 Deteting parallelism in the G�ottfert settingLet #rn denote the maximum number of non-onstant polynomials Pi, for i = 1; :::;#rn, thatan appear in any row n desribed in the G::ottfert onstrution of Chapter 3. Eah Pi an bethe result of a gd or a division operation, in whih ase we denote it by a D-polynomial or anR-polynomial respetively. Furthermore, we assert the following:Claim 5.2.1 #rn = 2n � 1 for n = 1; :::;m.Proof: We prove the laim by indution on n. For n = 1, we know that row 1 onsists of thepolynomial b1 only. Suppose the assertion is true for n. We know that any row n + 1 has atmost one plus twie the number of non-onstant polynomials in row n so that#rn+1 = 2#rn + 1 = 2 � (2n � 1) + 1 = 2n+1 � 1:It is easy to see that there are at most (#rn � 1)=2 non-onstant D-polynomials and at most(#rn + 1)=2 non-onstant R-polynomials in eah row n. We denote D and R-polynomials inrow n by n;Dj and n;Rj0 respetively, where j and j0 are the polynomials' indies along rown. For onsisteny throughout the text, we an arrange the omputations along rows so thatall the D polynomials are omputed �rst, their orresponding R polynomials next, and thepolynomial bn=Qj n;Dj (where the produt is over non-onstant polynomials n;Dj) last. Withthis notation, it is also easy to see that, if the polynomials in row n� 1 are written as(n� 1);Di; for some i = 1; :::; (#rn�1 � 1)=2;and (n� 1);Ri; for some i = (#rn�1 + 1)=2; :::;#rn�1;58



then row n onsists ofn;Di = � gd(bn; (n� 1);Di); if 1 � i � (#rn�1 � 1)=2,gd(bn; (n� 1);Ri�(#rn�1�1)=2); if (#rn�1 + 1)=2 � i � #rn�1,n;Ri = � (n� 1);Di=n;Di; if 1 � i � (#rn�1 � 1)=2,(n� 1);Ri�(#rn�1�1)=2=n;Di; if (#rn�1 + 1)=2 � i � #rn�1,and n;R#rn�1+1 = bn#rn�1Qi=1n;Di 6=1n;Di :The �rst step in our parallel approah onsists of studying the dependenies between the gdand division omputations and struturing these dependenies in a parallel hierarhy. Withoutloss of generality we may assume that the number of threads oinides with the number ofproessors available. We introdue the onept of a parallel queue, whih onsists of a list ofpolynomials that an be omputed independently by a number of p proessors using a numberof supersteps. The queue omprises a set of jobs that are not neessarily performed in the sameparallel superstep; however, the jobs are entirely independent (and hene an be performed inany order) and do not require that the proessors synhronise at any point before the queue isfully takled. The �rst parallel queue onsists of the polynomials bi, for i = 1; :::;m, where mpolynomials an be omputed simultaneously in parallel. The seond parallel queue onsists ofthe polynomial 2;D1 only, sine all other polynomials (in its row or in following rows) dependon it. This onstitutes the only queue where not enough distint tasks are available to engageall proessors. In fat, the ensuing queues start �lling up immediately aording to an iterativeformula derived from the dependenies that we desribe in the following algorithm:Algorithm 5.2.1 Set�Queues(queuek; queuek0)Input: queuek = fP1; :::; Psg, a list of non-onstant polynomials from the G�ottfert setting om-puted in a parallel queue k � 2.Output: queuek0 , a list of polynomials that an be omputed in the parallel queue k0 > k.1. queuek0 = ;;for j 2 f1; :::; sg doif Pj = n;Di for some n = 2; :::;m and some i = 1; :::;#rn�1 do2. queuek0  queuek0 [ fn;Rig [ f(n+ 1);Dig.end;if Pj = n;Di for some n = 2; :::;m and i = #rn�1 do3. queuek0  queuek0 [ fn;R#rn�1+1g.end;if Pj = n;Ri for some n = 2; :::;m and some i = 1; :::;#rn�1 + 1 do4. queuek0  queuek0 [ f(n+ 1);Di+((#rn�1)=2)g.end;end. 59



Theorem 5.2.1 The algorithm works orretly as spei�ed, produing all the rows in the G�ottfertalgorithm required to ahieve a omplete fatorisation. As a result, the algorithm requires at most3s steps for a list of size s.Proof: We assume that the polynomials b1; :::; bm are already omputed. Corretness of thealgorithm follows as a result of justifying the steps 2-4:Step 2: Suppose Pj = n;Di for some n = 2; :::;m and some i = 1; :::;#rn�1. If 1 � i �(#rn�1 � 1)=2, then Pj = gd(bn; (n� 1);Di) and n;Ri = (n� 1);DiPj :Sine Pj has already been omputed in queue k, we know that (n�1);Di must be a non-onstantpolynomial omputed in queue j < k. As suh, n;Ri has both its omponents available and anbe assigned to queuek0 . Else, if (#rn�1 + 1)=2 � i � #rn�1, thenPj = gd(bn; (n� 1);Ri�((#rn�1�1)=2)) and n;Ri = (n� 1);Ri�((#rn�1�1)=2)Pj :Again, (n � 1);Ri�((#rn�1�1)=2) must be a non-onstant polynomial omputed in queue j < k,so that n;Ri an be assigned to queuek0 . On the other hand, for i = 1; :::;#rn�1 (or i =1; :::; (#rn � 1)=2) we know that(n+ 1);Di = gd(bn+1; n;Di):The proof now follows as above.Step 3: Suppose Pj = n;Di for some n = 2; :::;m and i = #rn�1. Sine n;D#rn�1 is theD-polynomial to be omputed last in row n, and sinen;R#rn�1+1 = bn#rn�1Qi=1n;Di 6=1n;Di ;the proof follows as above.Step 4: Suppose that Pj = n;Ri for some n = 2; :::;m and some i = 1; :::;#rn�1 + 1. Weknow that i also satis�es i = 1; :::; (#rn + 1)=2 or(#rn + 1)2 � i+ (#rn � 1)2 � #rn:Moreover, we have(n+ 1);Di = gd(bn+1; n;Ri�((#rn�1)=2)) if (#rn + 1)2 � i � #rn;or equivalently(n+ 1);Di+#rn�12 = gd(bn+1; n;Ri) if (#rn + 1)2 � i+ (#rn � 1)2 � #rn:The proof now follows as above.With the orretness of the algorithm now established, it beomes immediate to see thatany polynomial in queuek an lead to at most 3 polynomials in queuek0 (e.g. the polynomialsatisfying the onditions in steps 2 and 3 above).60



5.2.2 The parallel G�ottfert algorithmOne major harateristi of the algorithm is that it onsists of task parallelism, sine distributingthe data would require muh more synhronisation between proessors in the inner loops thanwould be the ase in our present algorithm. To minimise the number of synhronisation barriers,we hoose to make all initial data available globally at the beginning of the algorithm and allreently omputed data available to all proessors one they are obtained. The following detailsare ruial in following up on the algorithm and desribe some of the data strutures as wellas the notations we adopt throughout this setion. The polynomials are represented by integerarrays whose entries are either zero or one. The oeÆients are paked into bit-words (wherewl is the bit-size of the omputer word being used). This not only speeds up the polynomialarithmeti sub-routines but also minimises the number of messages to be transmitted amongproessors, and hene the BSP ost of the algorithm. We desribe several arrays that storeeither the values of the polynomials or information about them. Unless otherwise stated, allarrays are global.We �rst de�ne two opies of three integer arrays, Typej;j0, Rowj;j0, and Indexj;j0, eah of sizem. Those serve to hold temporarily information about a polynomial Pi being omputed in someparallel queue. In partiular, Typej;j0[i℄ denotes the type of the polynomial (whether a D or anR polynomial), Rowj;j0[i℄ the row to whih it belongs, and Indexj;j0[i℄ its index within that row.Those arrays are embedded within two queues queuej and queue0j suh that queuej is a sequeneof triples (Typej[i℄; Rowj [i℄; Indexj [i℄), for i = 0; :::;#(queuej)�1, and eah suh triple desribesa polynomial already omputed in some parallel queue. On the other hand, queuej0 onsists ofsimilar triples desribing polynomials to be omputed in a forthoming parallel queue.By a simple abuse of notation we also de�ne what we all an array of polynomials Polykof size dd=wle (where wl is the bit-size of the omputer word being used). By this we simplymean a two dimensional array of integers Poly suh that the k'th row of the two dimensionalarray ontains the oeÆients of the polynomial Polyk. The array is used to store permanentlythe values of all non-onstant polynomials omputed in the parallel proess. Similarly, wede�ne an array of polynomials Bk of size dd=wle ontaining the oeÆients (in bit-words) ofthe polynomials bi = f=gd(f;hi), for i = 0; :::;m � 1. We note that the polynomial indies areglobal variables indiating that Polyk and Bk are global polynomials whose individual values areomputed by one partiular proessor then broadast to all at one �xed loation k independentof the proessor id. To keep trak of the number of non-onstant polynomials in eah row,we de�ne the integer array Length of size m suh that Length[i℄ denotes the total number ofnon-onstant polynomials loated along row i during any phase of the parallel proess. We alsode�ne two dimensional arrays of pointers, D and R, of approximate sizes m� (2m � 1). D[n℄[i℄points to null if the polynomial n;Di is onstant; else, it ontains the address of the row in Polywhere the polynomial n;Di is stored. A similar desription holds for the array R. Finally, wede�ne two integer arrays sum, and loal�sums, of sizes m and p�m respetively, that are usedto update the lengths of rows individually by eah proessor, as will be desribed later on.All ommuniation between proessors is ahieved through the bsp�put ommand [66, 67℄.We use the short-hand of the funtion all as iny  BSP�Put(s;N; x):where N is an integer greater than or equal to zero. If N = 0, this indiates that the proessormeeting the ommand is sending its individual value of variable x onto variable y found on61



proessor s. Otherwise, x denotes a polynomial whose oeÆients form the �rst N entries ofarray x and are being sent to proessors s at the same orresponding loations in the globalarray y. Signal is an indiator whih ontrols the ow of the loops in that, if the length of anyrow beomes equal to m, we set Signal to Stop, indiating that all irreduibles have been found(see Theorem 3.1.7); else, we set it equal to OK in whih ase all loops ontinue to operate.queue�length always designates the number of polynomials to be omputed in a new parallelqueue, and total�poly designates the total number of non-onstant fators determined duringany stage of the parallel algorithm. Our parallel algorithm now takes the following form:Algorithm 5.2.2 Parallel�G�ottfert(f; d;m; fh0; :::hm�1g; p; id)Input: f a polynomial of degree d over F 2, m > 1 the number of irreduible fators of f ,fh0; :::;hm�1g a basis for the solution set of (3.3), p the total number of proessors operating inparallel, and id the proessor identi�ation number ranging from 0; :::; p � 1.Output: the m irreduible fators of f and their multipliities in f .1. Signal  OK, k  id;while (k < m) do2. bk  f= gd(f;hk), degree deg(bk);for y 2 f0; :::; p � 1g do3. bk  BSP�Put(y; degree + 1; bk);end;4. k  k + p;end.5. BSP�synhronise().6. P0  gd(b0; b1);if (P0 6= 1) do7. Poly0  P0, D[2℄[1℄ &Poly0, total�poly  1, Length[2℄ 1;else do8. total�poly  0;end;9. queuej  fP0g, Set�Queues(queuej ; queuej0), queue�length #queuej0;while (Signal = OK) do10. k  id, Set�to�zero(sum; loal�sums);while (k < queue�length) do11. Type Typej0 [k℄, n Rowj0 [k℄, i Indexj0 [k℄,Pk  Compute�Polynomial(Type; n; i);if (Pk 6= 1) do12. Poly(k+total�poly)  Pk;if (Type = D�type) do13. D[n℄[i℄ &Poly(k+total�poly);else do14. R[n℄[i℄ &Poly(k+total�poly);end;15. sum[n℄ sum[n℄ + 1, degree deg(Polyk);for y 2 f0; :::; p � 1g do16. Poly(k+total�poly)  BSP�Put(y; degree + 1; P oly(k+total�poly));end; 62



if (Type = D�type) dofor y 2 f0; :::; p � 1g do17. D[n℄[i℄ BSP�Put(y; 0;D[n℄[i℄);end;else dofor y 2 f0; :::; p � 1g do18. R[n℄[i℄ BSP�Put(y; 0; R[n℄[i℄);end;end;end;19. k  k + p;end;for y 2 f0; :::; p � 1g dofor w 2 f2; :::;mg do20. loal�sums[y℄[w℄ BSP�Put(y; 0; sum[w℄);end;end;21. BSP�synhronise();for (y 2 f0; :::; p � 1g) dofor (w 2 f2; :::;mg) do22. Length[w℄ Length[w℄ + loal�sums[y℄[w℄,total�poly total�poly + loal�sums[y℄[w℄;if (Length[w℄ = m) do23. Signal  Stop, last�row w;end;end;end;if (Signal = OK) do;24. queuej  queuej0, queue�length Sort(queuej), queuej0  (),Set�Queues(queuej ; queuej0);end;end;25. i id+ 1;while (i � 2last�row�1) doif (D[last�row℄[i℄ 6= NULL) do26. fator �D[last�row℄[i℄, exp Multipliity(f; fator),return (fator; exp);end;if (R[last�row℄[i℄ 6= NULL) do27. fator �R[last�row℄[i℄, exp Multipliity(f; fator),return (fator; exp);28. i i+ p;end.The algorithm is alled by all proessors whih implement the same opy of it for variousdata, onforming to the SPMD model: A single program with multiple data is enountered by63



all proessors, whih then exeute their own version of the program, distinguished by their ownidenti�ation number, id = 0; :::; p�1. In step 1 of the algorithm, few initialisations are set. The�rst \while" loop is a parallel loop met by all proessors whih ompute the square-free fatorsbk = f= gd(f;hk), for k = 0; :::;m�1. k is a global variable whih when �rst set to id and theninremented by p guarantees that all proessors ompute almost an equal number of polynomialsbk. This onstitutes the �rst parallel queue aording to Algorithm 5.2.1. Every proessor thenbroadasts its own value of bk to all other proessors, but no synhronisation barrier is met untilall the bk's are omputed, sine they are not needed in any loop omputation. A synhronisationpoint in the loop as suh would only inur an extra ost of synhronisation without atuallybeing required.The seond parallel queue onsists of the polynomial 2;D1 (see Algorithm 5.2.1) whih isomputed by all proessors. Although this onstitutes a sequential step, the proessors start toengage in distint omputations soon after the seond queue is set up. If P0 = 2;D1 is not trivial,it is stored in a permanent loation in Poly0, D[2℄[1℄ is set to point to the loation of Poly0(whih we denote by &Poly0), and the length of row 2 and the total number of non-onstantfators omputed so far are updated. We all Algorithm 5.2.1 to set up the ensuing queuej0 ofpolynomials to be omputed in parallel. queue�length denotes #queuej0 .Thereafter, the main loop of the algorithm is iterated so long as Signal is not set to Stop(indiating that none of the rows has attainedm non-onstant polynomials). The global variablek loops over indies in queuej0 , and as above, the inrement it reeives arranges for the proessorsto ompute almost an equal number of polynomials Pk in queuej0 . The proessors reeiveinformation about the polynomials they should ompute through the global data found in Type =Typej0 [k℄, n = Rowj0 [k℄, and i = Indexj0 [k℄, and all the sub-routine Compute�Poly whihdetermines the polynomial Pk as de�ned in the G�ottfert setting. If Pk is non-onstant, proessorid stores it permanently in Poly(k+total�poly), and sets D[n℄[i℄ (or R[n℄[i℄) to point to the addressof Poly(k+total�poly). Beause total�poly represents the total number of non-onstant fatorsomputed so far, this partiular index of Poly is suh that all new polynomials do not overwriteprevious ones, and no two proessors store their results in the same loation. The loal valueof the polynomial and its pointer are then broadast by proessor id to all proessors, andthe total number of non-onstant fators found along row n by proessor id during the set upof queuej0 is inreased by 1 in the proessor's loal opy of sum[n℄ (it is assumed that sumand loal�sums are initialised to zero before every new iteration of the main loop of step 10).When all polynomials in queuej0 have been omputed, eah proessor id plaes its own opiesof sum[n℄, for n = 2; :::;m in global loations at loal�sums[id℄[n℄. A synhronisation barrieris now met, whih updates the values of the non-onstant polynomials, their pointers, and thepartial lengths of rows as omputed by every individual proessor. We note the absene of asynhronisation point immediately after the broadasting of Poly(k+total�poly) and the pointerto it, due to the fat that they were not needed in any omputation within the loop of step 11.We also note that, although updating the total row lengths inside the loop of step 11 (i.e. whileproessors are still operating within the same parallel queue) de�nitely disards any unneessarygd or division operations remaining in the queue, our hoie not to perform aordingly anbe justi�ed by the fat that this will require a synhronisation point within the innermost loop,one whose repeated appliation ould prove to be ostly. Eah proessor now has all the partialsums available to it globally in loal�sums[id℄[n℄ and an thus sum them all up into one globalquantity in Length[n℄. The total number of non-onstant fators is also updated as being thesum of all row lengths. If any row length beomes equal to m, all proessors are signalled to64



stop. Else, queuej0 is transferred onto queuej (so that the most reent polynomials an helpdetermine what the new parallel queue will be), and queuej is sorted through a all to Sort.Sine some proessors ompute onstant polynomials whose index k leaves the orrespondingloation in the array Poly empty, the Sort sub-routine re-arranges the elements stored in Poly(and their orresponding pointers in the arrays D or R) so that the non-onstant fators arestored onseutively after eah other. Sort also returns the length of the sorted list. Finally, anew queuej0 is set aording to Algorithm 5.2.1. The loop of step 10 an be shown to end, sinewe are bound to reah a row ontaining m non-onstant polynomials whih onstitute all theirreduible fators of f (Theorem 5.2.1). At this point, last�row ontains the index to that row.All proessors san in parallel the non-onstant D and R pointers to the polynomials found alonglast�row (using our notation, the polynomials are aessed by applying � to a partiular loationin the D or R arrays). By Claim 5.2.1, there is a maximum of #rlast�row�1 = (2last�row�1�1) D-polynomials and #rlast�row�1+1 = 2last�row�1 R-polynomials in last�row, whih by Theorems3.1.7 and 3.1.8 onstitute the m non-onstant fators of f . Eah proessor then determines themultipliity of that fator in f (by a all to the sub-routine Multipliity). At this stage, wean hoose not to distribute the results globally so that eah proessor outputs its own set of(fator; exp) pairs. The algorithm terminates with the last iteration of this loop.5.2.3 The BSP ost of the algorithmIn this setion we establish the parallel omplexity of our algorithm. To this end, we �rst stateand prove several preliminary results.Lemma 5.2.1 In the parallel setting desribed in Algorithm 5.2.1, every row n has its �rstelement n;D1 omputed in the parallel queue n and its last element n;R#rn�1+1 omputed inthe parallel queue 2n� 1.Proof: We prove the result by indution on n. For n = 2, we know that queue 2 starts with2;D1, and by Algorithm 5.2.1, queue 3 ontains the polynomials 3;D1, 2;R1 and 2;R2, where2;R2 is the last polynomial to be omputed in row 2. Suppose that n;D1 an be �rst omputedin queue n. Sine (n+1);D1 = gd(bn+1; n;D1), the �rst queue whih assigns the omputation of(n+1);D1 is n+1. Furthermore, suppose that queue 2n�1 ontains the polynomial n;R#rn�1+1whih is omputed last in row n. Sine(n+ 1);D#rn = gd(bn+1; n;R#rn�1+1);this polynomial an be determined at the earliest in the parallel queue 2n. But (n+1);R#rn+1depends on the values of all polynomials (n+1);Di, for i = 1; :::;#rn, and hene an be an beomputed at the earliest when (n+ 1);D#rn is available, whih is in the parallel queue 2n+ 1.Corollary 5.2.1 It takes at most 2m� 1 parallel queues for a omplete fatorisation into irre-duibles to be established.Proof: By Theorem 3.1.8 it takes at most m rows to ompute all irreduible fators of f (see[59℄ for proof). By Lemma 5.2.1, row m requires at most 2m � 1 parallel queues before allnon-onstant polynomials appearing in it are omputed. This onludes the proof.65



Lemma 5.2.2 If n is odd, then queue n ontains polynomials belonging only to rows (n+1)=2+j,for j = 0; :::; (n � 1)=2, if 2 � n � m, and for j = 0; :::;m � (n + 1)=2, if m < n � 2m � 1.Else, if n is even, then queue n ontains polynomials belonging only to rows n=2 + 1 + j, forj = 0; :::; n=2 � 1, if 2 � n � m, and for j = 0; :::;m � (n=2 + 1), if m < n � 2m� 1.Proof: For all queues n appearing in the parallel set-up, Corollary 5.2.1 maintains that 1 �n � 2m� 1. Suppose now that n is odd. Let k be a row oupying queue n. By Lemma 5.2.1,we must have n � 2k � 1 (or k � (n+ 1)=2). Write k = (n+ 1)=2 + j for j � 0 (sine n is odd,this expression is an integer). For n = 2; :::; 2m�1, we must have k � n (so that j � (n�1)=2);otherwise, row k starts appearing in queues n+1 onwards, a ontradition. If m < n � 2m� 1,the upper bound on k an be strengthened to satisfy k � m (or j � m� (n + 1)=2), sine thelast row to be set up in the G�ottfert representation is row m.If n is even, n � 2k � 1 implies that n � 2k � 2 sine 2k � 1 is odd, or that k � n=2 + 1.Write k = n=2 + 1 + j for j � 0 (again, this expression is an integer sine n is even). A similarargument as above follows to establish the upper bounds on j, and we leave the straightforwardproof to the reader.Lemma 5.2.3 Eah parallel queue onsists of at most 2m gd and division operations andontributes to at most m non-onstant polynomials.Proof: First, we note that, sine eah row k in the G�ottfert representation requires at most2m gd and division omputations and has at most m non-onstant polynomials appearing init, and sine eah suh row requires a number of at most k queues to be fully set up, we wouldexpet, roughly and on average, eah parallel queue n to require a number of 2m=k gd anddivision operations leading to about m=k non-onstant polynomials for eah row k assigned toqueue n. Let n be odd (the ase when n is even an be proven similarly and hene an beomitted). If 2 � n � m, Lemma 5.2.2 implies that queue n has polynomials belonging to rowsk = (n + 1)=2 + j, for j = 0; :::; (n � 1)=2, where eah row k has roughly m=k non-onstantpolynomials appearing in queue n. Thus, the total number of gd and division operations to beperformed in queue n is approximately(n�1)=2Xj=0 2mn+12 + j < �n� 12 + 1� 2m(n+ 1)=2 = 2m:Furthermore, if m < n � 2m� 1, this number is approximatelym�(n+1)=2Xj=0 2mn+12 + j < �m� n+ 12 + 1� 2m(n+ 1)=2< (m� m+ 12 + 1) 2m(m+ 1)=2 = 2m:Using a very similar alulation, the total number of non-onstant polynomials produed is easilyshown to be at most m.Sine the number of proessors will be �xed throughout the text, we shall refer to theommuniation and synhronisation BSP parameters as simply g and ` respetively, where it isimpliitly understood that the two parameters depend on p.66



Theorem 5.2.2 Assuming lassial polynomial arithmeti with multipliation time M(d) =O(d2), the BSP ost of Algorithm 5.2.2 is of the orderO�m2p M(d) log d+ gm2(� dwl�+ p) +m`�ops. (5.1)Proof: In our proof, we note the following remarks. Sine all polynomials appearing in theourse of the algorithm are fators of f , their degrees are at most equal to d = deg(f). It isalso understood that any omputational omplexity is the maximum work load ahieved by anyone proessor. Sorting a list of size at most k an be ahieved in O(k log k) ops (e.g. see [26℄).Computing the multipliity of a fator of f requires at most d polynomial multipliations overF 2 (and hene in our ase, M(d) ops). We also assume that aessing an array entry requiresalmost as muh time as one op. A message denotes one omputer word (i.e. a message ofsize 1). The total ost of the algorithm is the summation of the osts of its supersteps. Theindividual BSP osts of the main supersteps (i.e. those whose ost is not onstant) an bedetailed as follows:Supersteps 2-4: we have seen earlier that this loop is divided almost equally among allproessors. As a result, the parallel loop is aessed at most dm=pe times. Eah iteration of theouter loop involves mainly one gd and one division omputation, and an inner loop onsistingof a bsp�put operation, whereby eah proessor sends ddegree=wle � dd=wle messages to allproessors (and hene p opies of these) and reeives pddegree=wle � pdd=wle messages. Thus,hmax = pddegree=wle < pdd=wle. Superstep 5 is a synhronisation point, so that the total BSPost of supersteps 2-4 is at mostO��mp ��M(d) log d+ gp� dwl��+ `� ops. (5.2)Supersteps 6-9: onsist mainly of one gd operation and a all to Set�Queues with inputqueuej = fP0g, whih aording to Theorem 5.2.1 requires at most 3 steps. Thus, the BSP ostof these supersteps is of the order O(M(d) log(d)) ops. (5.3)Supersteps 10-28: onstitute the main body of the parallel algorithm. The outer{most loopdesignates the total number of times the proessors set up parallel queues before a ompletefatorisation is ahieved. This number has been shown in Corollary 5.2.1 to be at most 2m� 1.Supersteps 11-19 are embedded within an inner loop ranging over all polynomials along queuej0 .The tasks within the queue, onsisting mainly of gd and division operations, are divided almostequally among proessors (hek the initial value of the loop variable k and the inrement itreeives). By Lemma 5.2.3, eah queue onsists of at most 2m gd and division operations toperform equally among all proessors, and hene the loop is aessed at most d2m=pe times.The bulk of the work appears in the following: step 11 onsists of either a gd or a divisionoperation, step 16 onsists of sending at most pdd=wle messages and reeiving at most pdd=wlemessages (resulting in hmax = pdd=wle), and step 17 or 18 onsists of sending p messages andreeiving one message (resulting in hmax = p). Within eah inner loop iteration, the BSP ostof supersteps 11-19 is at most O�M(d) log(d) + gp� dwl��67



whih aross both the outer and inner loops beomes of the orderO�m�mp � �M(d) log(d) + gp� dwl��� ops. (5.4)Supersteps 20-28 are found outside the inner loop of step 11 but inside the loop of step 10. In theommuniation superstep 20 eah proessor sends pm messages and reeives pm messages (sothat hmax = pm). Superstep 21 is a synhronisation point, and superstep 22 onsists of about2pm additions. Superstep 24 onsists mainly of a all to Sort with input list of size at most2m (produing a list of size at most m by Lemma 5.2.3), as well as a all to Set�Queues withinput list of size at most m (this requiring at most 3m ops). Summing up, a single appliationof supersteps 20-28 requires at mostO (m(p+ logm) + gpm+ `)ops whih when iterated aross the outer loop of step 10 beomes of the orderO(m2(p+ logm) + gpm2 +m`) ops. (5.5)Supersteps 25-28 onsist of omputing the multipliity of all m fators in parallel, where eahproessor takes up almost an equal number of D and R-fators. If eah all to Multipliityrequires about M(d) ops, the supersteps will requireO��mp �M(d)� ops. (5.6)Summing up the individual osts (5.2), (5.3), (5.4), (5.5), and (5.6), the total BSP ost an befound to be of the orderO�m�mp �M(d) log d+m2(p+ logm) + gp(m� dwl��mp �+m2) +m`�ops. Sine �mp � < mp + 1; p = O(d);M(d) = O(d2) and m = O(d);(where the seond inequality easily holds in implementations involving large polynomial degrees {see Table 5.2, the third estimate holds in our implementations of lassial polynomial arithmeti[55℄), it follows that m2(p+ logm) = O(m2d) = O�m�mp �M(d) log d� ;from whih the total BSP ost (5.1) an be derived.Corollary 5.2.2 Assuming the given in Theorem 5.2.2 above, Algorithm 5.2.2 has low synhro-nisation and ommuniation requirements. 68



Proof: We laim that our algorithm has very good synhronisation and ommuniation re-quirements, in that the number of ops required by both an be negligible ompared to theomputation ost. In partiular, and based on the values of the BSP parameters in table 5.2, itan be easily attained thatg = O(d log dp ); p = O(d); and ` = O(mp M(d) log d)for large values of d, so thatgm2�� dwl�+ p�+m` = O(m2p M(d) log d):
5.2.4 Redution of the algorithm's memory requirementsAs de�ned in Algorithm 5.2.2, the two dimensional arrays D and R of size m � (2m � 1) eahan be easily seen to onstitute an infeasible (exponential) spae requirement unless m is verysmall. To this end, we desribe how a linked-list struture an be adopted whih redues thememory requirements to four integer arrays of size m eah and four integer arrays of size 2m2eah, requiring only a polynomial order spae omplexity.Reall that, for n = 2; :::;m and i = 1; :::; 2m�1, D[n℄[i℄ represents a pointer whih is NULLif n;Di is a onstant polynomial, and whih points to the loation of n;Di in the array Poly,otherwise. Similarly for R[n℄[i℄. We also note that there are many more onstant polynomialsthan there are non-onstant ones, and hene, the distribution of non-onstant polynomials amongall possibilities is a sparse one. Our algorithm in its present form ontains many NULL pointers,and a andidate for a more eÆient method has to replae this struture with one whih loatesonly non-onstant polynomials without any referene to the others.The improvement an be desribed as follows. We �rst order the non-onstant fators in alist F , in whih eah fator oupies an index orresponding to its position in the array Poly.For instane, if a non-onstant fator is stored at loation k in Poly, it would appear as the k+1polynomial in F . In this way, a non-onstant fator in the entire olletion an be ompared toa nonzero entry in a olletion of sparse row vetors (or olumns) representing a sparse matrix.We de�ne four global integer arrays, D�header, D�tail, R�header and R�tail, eah of sizem, and four global integer arrays, D�fwd�link, R�fwd�link, D�index and R�index, eah ofsize 2m2. The aim would be to arrange polynomials in F in lists of polynomials of the sametype and row. The desription below onerns only D-arrays but a very similar one holds forR-arrays.Suppose we want to link all D- polynomials in F appearing in row n. For n = 2; :::;m,D�header[n℄ represents the index in F of the �rst (non-onstant) D-polynomial appearing inrow n. All ensuing non-onstant D-polynomials in row n are adjoined to the list, and as suh, weneed to preserve various information desribing eah one of them as they appear together. Foreah row n, we keep trak of the index in F of the last D-polynomial appearing in the row bystoring it in D�tail[n℄. Thus, for a start, if one non-onstant D-polynomial of row n appears inF at loation k, we set D�header[n℄ = k and D�tail[n℄ = k. We also store its index along rown in D�index[k℄, whih ompletes all information about the polynomial. For eah non-onstant69



D-polynomial in row n and of index k in F , we maintain a pointer to the index in F of the nextsuh polynomial and store it in D�fwd�link[k℄. If D�fwd�link[k℄ = 0, polynomial k is thelast one in the list of non-onstant D-polynomials belonging to row n, whih an be generatedompletely as follows:Algorithm 5.2.3 Input: A non-onstant D-polynomial of index i in some row n = 2; :::;m andindex k in F .Output: The polynomial adjoined to the end of the list of non-onstant D-polynomials belongingto row n.if (D�header[n℄ = 0) do1. D�header[n℄ k, D�tail[n℄ k, D�index[k℄ i, D�fwd�link[k℄ 0;else do2. D�fwd�link[D�tail[n℄℄ k, D�tail[n℄ k, D�index[k℄ i;end.It is trivial to see that the all to this algorithm omes at a very negligible onstant ost andhene an be embedded within the estimate of (5.1). We now illustrate the use of this struture inloating non-onstant fators whenever required for new omputations. Suppose, for instane,that we need to ompute n;Di for some n = 3; ::;m and i = 1; :::; (#rn�1 � 1)=2 (so thatn;Di = gd(bn; (n � 1);Di)). Using the two dimensional array D, and if D[n � 1℄[i℄ is NULL,one onludes that n;Di is onstant; otherwise, the polynomial pointed to by D[n� 1℄[i℄ is usedto ompute the required gd. Using the linked list struture, the proess an be desribed asfollows:Algorithm 5.2.4 Input: A D-polynomial of index i in some row n� 1, n = 3; :::;m.Output: The loation of (n� 1);Di in the array Poly if it is non-onstant or FAIL otherwise.1. t FAIL, x D�header[n� 1℄;if (D�header[n� 1℄ 6= D�tail[n� 1℄) dowhile (x 6= 0 and t = FAIL) doif (D�index[x℄ = i) do2. t PASS;3. k  x, x D�fwd�link[x℄;end;end;end;else doif (D�index[x℄ = i) do4. t PASS;end;5. k  x;end;if (t = PASS), return (k � 1);else return FAIL.If D�header[n � 1℄ 6= D�tail[n� 1℄, the list of D-polynomials belonging to row n ontainsmore than one polynomial and hene has to be sanned entirely; else, the list ontains only oneelement. x takes up indies in this list, starting with its header, and moving aross the forwardlinks. t is an indiator whih when set to PASS indiates that a non-onstant polynomial70



(n� 1);Di has been found whose loation in F is k (or loation in Poly is k� 1). If x beomeszero, this signals the end of the list. Finally, the loop aross the list ends either when t beomesPASS or x = 0. The algorithm demonstrates how heking D[n℄[i℄ an be substituted withsanning a list of size at most m. The inrease in the total omputational ost as a result ofusing the improved data struture an be realised as follows. We have seen that the all toCompute�Polynomial in step 11 of algorithm 5.2.2 is issued at most 2m � dm=pe times. Eahsuh polynomial omputation will require two alls to algorithms 5.2.3 and 5.2.4, thus inreasingthe total ost of Algorithm 5.2.2 by O(2m2 � dm=pe) ops. Sine m = O(M(d) log d), the upperbound estimate given in (5.1) remains of the same order, and as suh, the new improvement anbe introdued at little ost to the worst-ase analysis initially provided.5.3 Implementation and run timesTable 5.1: Parallel run times.Proessorsd m max seq. 1 2 4 8 168000 6 7446 2.37 2:32(1) 1(1:2) 0:8(0:7) 0:2(1:5) 0:6(0:2)8000 7 3200 2.62 2:6(1) 0:9(1:5) 0:7(0:9) 1:4(0:2) 1:1(0:1)8000 30 600 48.98 48:36(1) 27(0:9) 17:4(0:7) 6:8(0:9) 6:6(0:5)16000 10 10224 29.9 29:9(1) 14:2(1:1) 10:4(0:7) 10:4(0:4) 3:7(0:5)16000 14 5600 8.78 8:74(1) 4:7(0:9) 2:4(0:9) 2:6(0:4) 1:4(0:4)32000 31 19360 145.8 144:89(1) 76:4(1) 31:5(1:2) 13:8(1:3) 10:4(0:9)64000 10 26400 82.6 82:01(1) 64:2(0:6) 29:3(0:7) 27(0:4) 29:05(0:2)128000 14 44800 2629.62 2609(1) 794:8(1:7) 761:4(0:9) 760:6(0:4) 468:8(0:4)256000 14 92800 6819.12 6761:89(1) 2696:3(1:3) 1420:4(1:2) 1417(0:6) 325:1(1:3)300000 11 120000 621.8 621:32(1) 408:68(0:8) 242:2(0:6) 51:2(1:5) 57:6(0:7)400000 11 160000 1658.2 1658(1) 829(1) 592(0:7) 188:4(1:1) 148(0:7)Table 5.2: BSP parameters.p g `1 0.34 552 1.64 14964 2.48 16838 2.34 256216 4.83 343171



All programs were written in C and extended using the standard BSP library [66, 67℄. Thework was arried out at the Oxford University Superomputing Centre (OSC) using the Oswellmahine. Oswell is a Sun luster of 84 proessors and a shared memory system where theproessors are arranged in three groups of 24 proessors and a group of 12 proessors (eahproessor having 2 GBytes of memory). With this sheme, any work submitted to the mahineis queued to one of those four boxes, and the number of proessors available for use by any onejob is at most 24. In pratie, however, we had aess to 16 proessors only.The various input data were taken from the results of Chapter 4 where the Niederreiterlinear system for a trinomial over F 2 is solved and a basis for the solution set is produed. Weremark that, in spite of the input polynomial being sparse, the intermediary polynomials in theG�ottfert representation are not neessarily so, whih renders suh a ase study for trinomialsnot so speial a ase as it appears. The run times in table 5.1 represent the times in seondsfor produing the entire fatorisation using our BSP parallel algorithm given a partiular basisset. The timings orrespond to the sequential as well as the parallel results. max represents themaximum over all i = 1; :::;m of deg(geii ), and d and m are as de�ned previously. The absoluteeÆienies are shown in parentheses. All polynomial arithmeti was performed using lassialalgorithms so that the multipliation time for polynomials of degree at most d is O(d2) [55℄.Let Tp and Ts denote the parallel run time using p proessors and the sequential run timerespetively. Our run times suggest a speed gain in almost all ases, an outome that is to beexpeted aording to our BSP ost (5.1), whih roughly suggests thatTp < Ts i� m2p < m2 i� p > 1;ignoring the negligible ommuniation and synhronisation requirements of our algorithm aswell as any other parallel overheads assoiated with the reation and management of threads.To measure the salability of our parallel algorithm, we alulate the absolute eÆieny Ep [86℄for all ases, where Ep = TspTp ;whih when ahieving values lose to one indiates a good parallel performane. Aordingly,and upon examining our eÆienies, we note that almost all our experiments sale very wellfor up to 8 proessors. Thereafter, the eÆieny remains very good for a �xed d either as minreases (e.g. ompare trinomials with m > 30 to others), or as max inreases (for d = 8000,ompare the trinomials withmax = 7446 andmax = 3200). We also note that eÆieny remainsalmost onstant around 1 for d � 256000. We remark the absene of a sharp utuation in theeÆieny levels mainly beause our algorithm does not involve data partitioning (but only taskparallelism), whih results in the omputation being either entirely in ahe or out of aheaross all proessors for the same d. This has the advantage of revealing the real salability ofthe algorithm and avoiding ahe e�ets.5.4 ConlusionIn this hapter we presented and analyzed a omplete BSP algorithm for extrating the fatorsof a polynomial over F 2 using the G�ottfert re�nement of the Niederreiter algorithm, whih,72



given a basis for the solution set of the Niederreiter linear system, performs the last phase of thefatorisation algorithm in polynomial time. Our BSP theoretial model resulted in an eÆientBSP ost requiring relatively small ommuniation and synhronisation osts. The parallelalgorithm not only ahieves onsiderable speed gains as the number of proessors inreases upto 16, but maintains a moderate to very good eÆieny that is better maintained as the degree ofthe polynomial, the number of its irreduible fators or the maximum over its irreduible fators'degrees inreases. The algorithm an be applied over �elds of harateristi 2 in general, providedan input basis is available. When ombined with our work in Chapter 4 whih exploits sparsityin the Niederreiter linear system, the hybrid algorithm provides a heaper and more memoryeÆient alternative to the fatorisation of trinomials over F 2 than the implementation in [110℄,whih uses dense expliit linear algebra and a maximum of 256 nodes to ahieve a polynomialreord of degree 300000. When ompared with the Blak Box Niederreiter algorithm of [39℄, thehybrid algorithm is a simpler approah for moderately high reord fatorisations of trinomialsover F 2 as those allowed by the use of impliit linear algebra, requiring reasonable running times(see Chapter 4). Apart from the signi�ane of its experimental results, our algorithm provides agood model of how parallelism in general, and the BSP model in partiular, an be inorporatedelegantly and suessfully into problems in symboli omputation.

73



Chapter 6Fatoring polynomials via polytopes6.1 IntrodutionThis hapter is based on joint work with Shuhong Gao and Alan Lauder [2℄. As mentioned inChapter 1, fatoring multivariate polynomials is a fundamental problem in all major omputeralgebra systems. There is an extensive literature on this problem | we refer the reader tothe referenes in [23, 44, 52, 63, 75, 78, 88, 89, 90, 101, 131, 130℄. Most of these papers dealwith dense polynomials, two notable exeptions being [52, 78℄. These two papers redue sparsepolynomials with more than two variables to bivariate or univariate polynomials whih are thentreated as dense polynomials. It is still open whether there is an eÆient algorithm for fatoringsparse bivariate or univariate polynomials. The goal in this hapter is to study sparse bivariatepolynomials using their onnetion to integral polytopes.Newton polytopes of multivariate polynomials reet to a ertain extent the sparsity ofpolynomials and they arry a lot of information about the fatorisation patterns of polynomialsas demonstrated in the reent work of Gao [43℄ and Gao and Lauder [45℄. In this hapter thefous is on the more diÆult problem of fatoring sparse polynomials. We do not solve thisproblem ompletely. However, our approah is a pratial new method whih generalises Hensellifting; its running time will in general improve upon that of Hensel lifting and sparse bivariatepolynomials an often be proessed signi�antly more quikly. As with Hensel lifting, it has anexponential worst-ase running time. Also, our method does not work for all polynomials, butonly for those that are square-free on ertain subsets of the edges of their Newton polytopes (seeTheorem 6.6.1).In Setion 6.2 we present a brief introdution to Newton polytopes and their relation tomultivariate polynomials, and in Setion 6.3 we state the entral problem. Setion 6.4 ontainsan outline of our method, and highlights the theoretial problems we need to address. Themain theorem underpinning our method is proved in Setion 6.6, after a key geometri lemma inSetion 6.5. Setion 6.8 ontains a detailed desription of the algorithm. Finally in Setion 6.9we present a small example, as well as details of our omputer implementation of the algorithm.6.2 Newton polytopes and Ostrowski's theoremThis hapter onsiders polynomial fatorisation over a �eld F of arbitrary harateristi. Wedenote by N the non-negative integers, and Z, Q and R the integers, rationals and reals. For74



an earlier introdution on polytopes and polynomials we refer the reader to hapter 3.Let F [X1;X2; : : : ;Xn℄ be the ring of polynomials in n variables over the �eld F . We reallthe motivating theorem behind our investigation:Theorem 6.2.1 (Ostrowski) Let f; g; h 2 F [X1; : : : ;Xn℄. If f = gh then Newt(f) = Newt(g)+Newt(h).An immediate result of this theorem relates to testing polynomial irreduibility: In thesimplest ase in whih the polytope does not deompose, one immediately dedues that thepolynomial must be irreduible. This was explored in [43, 45, 47℄. In this hapter, we addressthe more diÆult problem: Given a deomposition of the polytope, how an we reover afatorisation of the polynomial whose fators have Newton polytopes of that shape, or showthat one does not exist?In the remainder of this hapter, we restrit our attention to bivariate polynomials, and falways denotes a bivariate polynomial in the ring F [x; y℄. For e = (e1; e2) 2 N 2, we rede�ne thenotation Xe to mean xe1ye2 .6.3 Extending partial fatorisationsLet Newt(f) = Q+R be a deomposition of the Newton polytope of f into integral polygons inthe �rst quadrant. For eah lattie point q 2 Q and r 2 R we introdue indeterminates gq andhr. The polynomials g and h are then de�ned asg := Pq2Q gqXqh := Pr2R hrXr:We all g and h the generi polynomials given by the deomposition Newt(f) = Q + R. Let#Newt(f) denote the number of lattie points in Newt(f). The equation f = gh de�nes asystem of #Newt(f) quadrati equations in the oeÆient indeterminates obtained by equatingoeÆients of eah monomial Xe with e 2 Newt(f) on both sides. The aim is to �nd an eÆientmethod of solving these equations for �eld elements. Our approah, motivated by Hensel lifting,is to assume that, along with the deomposition of the Newton polytope, we are given appropriatefatorisations of the polynomials de�ned along its edges. This \boundary fatorisation" of thepolynomial is then \lifted" into the Newton polytope, and the oeÆients of the possible fatorsg and h revealed in suessive layers. Unfortunately, to desribe the algorithm properly weshall need a onsiderable number of elementary de�nitions | the reader may �nd the �gures inSetion 6.9.1 useful in absorbing them all.Let S be a subset of Newt(f). An S-partial fatorisation of f is a speialisation of a subset ofthe indeterminates gq and hr suh that for eah lattie point s 2 S the oeÆients of monomialsXs in the polynomials gh and f are equal �eld elements. (A speialisation is just a substitution of�eld elements in plae of indeterminates.) The ase S = Newt(f) is equivalent to a fatorisationof f in the traditional sense, and we will all this a full fatorisation. Now suppose we havean S-partial fatorisation and an S0-partial fatorisation. Suppose further S � S0 and theindeterminates speialised in the S-partial fatorisation have been speialised to the same �eldelements as the orresponding ones in the S0-partial fatorisation. Then we say the S0-partialfatorisation extends the S-partial fatorisation. We all this extension proper if S0 has stritlymore lattie points than S. 75



Let Edge(f) denote the set of all edges of Newt(f). Eah edge Æ 2 Edge(f) is viewed asdireted so that Newt(f) lies on the left hand side of the edge, and this direted edge anbe de�ned by an aÆne funtion ` as follows. Suppose the edge Æ is from (u1; v1) to (u2; v2),verties with integral oordinates; (u1; v1) is alled the starting vertex of the edge. Let d =gd(u2 � u1; v2 � v1), u0 = (u2 � u1)=d, and v0 = (v2 � v1)=d. Then (u0; v0) represents thediretion of Æ and the integral points on Æ are of the form(u1; v1) + i(u0; v0); i 2 Z:Assuming the Eulidean plane is endowed with an orthonormal system of oordinates, let(�1; �2) := (�v0; u0) be a rotation of (u0; v0) by 90 degrees ounter lokwise. For any edgeÆ of Newt(f), all integral points of Newt(f) lying on the left hand side of Æ are of the form(u1; v1) + i(u0; v0) + j(�v0; u0); for some integers j � 0; i 2 Z:Let � = v0u1 � u0v1. De�ne`(e) = �1e1 + �2e2 + �; for e = (e1; e2) 2 R 2:Then ` has the property that `(e) � 0 for eah point e 2 Newt(f), with the equation holdingi� e 2 Æ, that is, Newt(f) lies in the positive side of the line ` = 0. We all this funtion ` theprimitive aÆne funtion assoiated with Æ, denoted by `Æ.The funtion `Æ has another nie property: Sine gd(�1; �2) = 1, there exist integers �1 and�2 suh that �1�1 + �2�2 = 1, and they are unique under the requirement that 0 � �2 < �1.De�ne the hange of variables z := x�2y��1 and w := x�1y�2 : (6.1)Then any monomial of the form xe1ye2 an be written as xe1ye2 = zi1wi2 , where�i1i2� = ��2 ��1�1 �2 ��e1e2� :Its inverse transform is �e1e2� = � �2 �1��1 �2��i1i2� :This hange of variables has the nie property that when (e1; e2) moves along the diretion(u0; v0) of the edge Æ, then the exponent of w remains onstant (as i2 = `Æ(e1; e2) � �), whilethe exponent of z stritly inreases (by 1 = �2u0 � �1v0 for eah inrement of (u0; v0)).For eah Æ 2 Edge(f), there exists a unique pair of faes (either edges or verties) Æ0 and Æ00of Q and R, respetively, suh that Æ = Æ0 + Æ00, and the lines supporting the edges Æ; Æ0 and Æ00are parallel (see [36℄ for instane). One an also show that there exists a unique integer Æ suhthat Æ0 = fe 2 Q j `Æ(e) = ÆgÆ00 = fe 2 R j `Æ(e) = �Æ + �g76



where � is the onstant oeÆient of `Æ. In partiular, let Æ be the unique positive integer suhthat Æ0 = fr 2 Q j lÆ(r) = Æg:For any r00 2 Æ00, we know that r00 = r � r0 for some r 2 Æ and r0 2 Æ0. Write r = r0 + r00 forr0 = (r01; r02) 2 Æ0 and r00 = (r001 ; r002) 2 Æ00. ThenlÆ(r) = �1(r01 + r001) + �2(r02 + r002) + �= �1r01 + �2r02 + �1r001 + �2r002 + �= lÆ(r0) + �1r001 + �2r002= Æ + �1r001 + �2r002 :But lÆ(r) = 0, and so �1r001 + �2r002 + � = � � Æwhih gives lÆ(r00) = � � Æ . We then haveÆ00 = fr 2 R j lÆ(r) = �Æ + �g:Let � � Edge(f), and let K = (k)2� be a vetor of positive integers labelled by �. De�neNewt(f)j�;K := fe 2 Newt(f) j 0 � l(e) < k for some  2 �g:This de�nes a strip along the interior of Newt(f), or a union of suh strips.We denote by Qj�;K and Rj�;K the subsets of Q and R respetively given byQj�;K := fe 2 Q j 0 � lÆ(e) < kÆ + Æ for some Æ 2 �gRj�;K := fe 2 R j 0 � lÆ(e) < kÆ � Æ + � for some Æ 2 �g:One again these denote strips along the inside of Q and R whose sum ontains the stripNewt(f)j�;K in Newt(f).We now ome to the main de�nition of this setion.De�nition 6.3.1 A Newt(f)j�;K-fatorisation is alled a (�;K;Q;R)-fatorisation if the fol-lowing two properties hold:� Exatly the indeterminate oeÆients of g and h indexed by lattie points in Qj�;K andRj�;K, respetively, have been speialised.� Let K 0 = (k0)2� be a vetor of positive integers with k0 � k for all  2 �, with theinequality strit for at least one . Then not all of the indeterminate oeÆients of gindexed by lattie points in Qj�;K0 have been speialised.The seond property will be used only one, in the proof of Lemma 6.6.1.In most instanes Q;R and � will be lear from the ontext. If so we will omit them andrefer simply to a K-fatorisation. Furthermore, if K is the all ones vetor, denoted (1), of theappropriate length indexed by elements of some set �, then we all this a (�;Q;R)-boundaryfatorisation. We shall simplify this to partial boundary fatorisation or (1)-fatorisation when77



�, Q and R are evident from the ontext. This speial ase will be the \lifting o�" point for ouralgorithm.The entral problem we address isProblem 6.3.1 Let f 2 F [x; y℄ have Newton polytope Newt(f) and �x a Minkowski deom-position Newt(f) = Q+R where Q and R are integral polygons in the �rst quadrant. Supposewe have been given a (�;Q;R)-boundary fatorisation of f for some set � � Edge(f). Construta full fatorisation of f whih extends it, or show that one does not exist.Moreover, one wishes to solve the problem in time bounded by a small polynomial funtionof #Newt(f).6.4 The polytope method6.4.1 An outline of the methodWe now give a basi sketh of our polytope fatorisation method for bivariate polynomials.Throughout this setion � will be a �xed subset of Edge(f) and Newt(f) = Q + R a �xeddeomposition. We shall need to plae ertain onditions on � later on, but for the time beingwe will ignore them. Sine �; Q and R are �xed we shall use our abbreviated notation whendisussing partial fatorisations.We begin with K = (1) the all-ones vetor of the appropriate length and a K-fatorisation(partial boundary fatorisation). Reall this is a partial fatorisation in whih exatly theoeÆients in the sets Qj�;K and Rj�;K , subsets of points on the boundaries of Q and R, havebeen speialised.At eah step of the algorithm we either show that no full fatorisation of f exists whihextends this partial fatorisation, and halt, or that at most one an exist, and we �nd a newK 0-fatorisation with K 0 = (k0Æ) suh thatXÆ2� k0Æ >XÆ2� kÆ :(Usually the sum will be inremented by just one.) Iterating this proedure either we halt aftersome step, in whih ase we know that no fatorisation of f exists whih extends the originalpartial boundary fatorisation, or we eventually have Newt(f) � Newt(f)j�;K , for the updatedK (or just Q � Qj�;K or R � Rj�;K will do). At that point all of the indeterminates in ourpartial fators have been speialised, and we may hek to see if we have found a pair of fatorsby multipliation. (In the ase, say, that just Q � Qj�;K we only know that the partial fator ghas all of its oeÆients speialised, so we may use division to see if this is a fator.)Note that in the situation in whih Newt(f) is just a triangle with verties (0; n); (n; 0)and (0; 0) for some n, our method redues to the standard Hensel lifting method for bivariatepolynomial fatorisation. As suh, our \polytope method" is a natural generalisation of Hensellifting from the ase of \generi" dense polynomials to arbitrary, possibly sparse, polynomials.6.4.2 Hensel lifting equationsIn this setion we derive the basi equations whih are used in our algorithm.78



For any Æ 2 Edge(f) reall that lÆ is the assoiated normalised aÆne funtional. For i � 0we de�ne f Æi := XlÆ(e)=i aeXe:Thus f Æi is just the polynomial obtained from f by removing all terms whose exponents do notlie on the \ith translate of the supporting line of Æ into the polytope Newt(f)". We all thepolynomials f Æ0 edge polynomials.Given the deomposition Newt(f) = Q+ R let Æ0 and Æ00 denote the unique faes of Q andR whih sum to give Æ. As before assume lÆ(Æ0) = Æ and lÆ(Æ00) = �Æ + �. Let g and h denotegeneri polynomials with respet to Q and R. For i � 0 de�negÆi := Xq2Q; lÆ(q)=Æ+i gqXqhÆi := Xr2R; lÆ(r)=�Æ+�+ihrXr:One again gÆi and hÆi are obtained from g and h by onsidering only those terms whih lie onpartiular lines. The next result is elementary but fundamental.Lemma 6.4.1 Let f 2 F [x; y℄ and Newt(f) = Q + R be an integral deomposition with or-responding generi polynomials g and h. Let Edge(f) denote the set of edges of Newt(f) andÆ 2 Edge(f). The system of equations in the oeÆient indeterminates of g and h de�ned byequating monomials on both sides of the equality f = gh has the same solutions as the systemof equations de�ned by the following:f Æ0 = gÆ0hÆ0; and gÆ0hÆk + hÆ0gÆk = f Æk � k�1Xj=1 gÆjhÆk�j for k � 1: (6.2)Thus any speialisation of oeÆient indeterminates whih is a solution of equations (6.2) willgive a full fatorisation of f .Proof: In the equation f = gh gather together on eah side all monomials whose exponentvetors lie on the same translate of the line supporting Æ. We then have f Æ0 = gÆ0hÆ0 andf Æk = Pkj=0 gÆjhÆk�j for k � 1= gÆ0hÆk +Pk�1j=1 gÆjhÆk�j + hÆ0gÆkor that gÆ0hÆk + hÆ0gÆk = f Æk � k�1Xj=1 gÆjhÆk�j for k � 1;where a sum over the empty set is understood to be zero.These are preisely the equations whih are used in Hensel lifting to try and redue the non-linear problem of seleting a speialisation of the oeÆients of g and h to give a fatorisation79



of f , to a sequene of linear systems whih may be reursively solved. We reall preisely howthis is done, as our method is a generalisation.We begin with a speialisation of the oeÆients in the polynomials gÆ0 and hÆ0 whih yieldsa full fatorisation of the polynomial f Æ0 . Equation (6.2) with k = 1 gives a linear system forthe indeterminate oeÆients of gÆ1 and hÆ1. In the speial ase in whih standard Hensel liftingapplies this system may be solved uniquely, and thus a unique partial fatorisation of f is de�nedwhih extends the original one. This proess is iterated for k > 1 until all the indeterminateoeÆients in one of the generi polynomials have been speialised, at whih stage one hekswhether a fator has been found by division.The problem with this method is that in general there may not be a unique solution toeah of the linear systems enountered. There will be a unique solution in the dense bivariatease mentioned at the end of 6.4.1, subjet to a ertain oprimality ondition. General bivariatepolynomials may be redued to ones of this form by randomisation, but the substitutions involveddestroy the sparsity of the polynomial. Our approah avoids this problem, although again is notuniversal in its appliability. As explained earlier, our method extends a speial kind of partialboundary fatorisation of f , rather than just the fatorisation of one of its edges. In this wayuniqueness in the bivariate ase is restored.6.5 A geometri lemmaThis setion ontains a geometri lemma whih ensures our method an proeed in a unique wayat eah step provided we start with a speial type of partial boundary fatorisation. We beginwith a key de�nition.De�nition 6.5.1 Let � be a set of edges of a polygon P in R 2 and r a vetor in R2. We saythat � dominates P in diretion r if the following two properties hold:� P is ontained in the Minkowski sum of the set � and the in�nite line segment rR�0 (thepositive hull of r). Call this sum Mink(�; r).� Eah of the two in�nite edges of Mink(�; r) ontains exatly one point of P .Thus Mink(�; r) omprises a region bounded by the interior strip between its two in�niteedges and all edges in �. This de�nition is illustrated in Figure 1 where � onsists of all thebold edges on the boundary indiated by T .We will all � an irredundant dominating set if there exists a vetor r 2 R 2 suh that �dominates P in diretion r and no two edges ei, ej in �, for i 6= j, are suh thatrR>0 + ei � rR>0 + ej :The edges in an irredundant dominating set are neessarily onneted.The next lemma is at the heart of our algorithm.Lemma 6.5.1 Let P be an integral polygon and � an irredundant dominating set of edges ofP . Suppose �1 is a polygonal line segment in P suh that eah edge of �1 is parallel to someedge of �. If �1 is di�erent from � then � has at least one edge that has stritly more lattiepoints than the orresponding edge of �1. 80
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Figure 1: Dominating set of edgesThe lemma is illustrated in Figure 1, where T denotes the union of the edges in � and T1the union of the line segments in �1.Before proving this lemma we make one more de�nition. We de�ne a map �r onto theorthogonal omplement hri? := fs 2 R 2 j (s � r) = 0g of the vetor r as follows:�r(v) = v � �v � rr � r� r:We all this projetion by r, and we have that �r(P ) = �r(�). To see this, it suÆes to showthat �r(v) 2 �r(�) for any v 2 P . Sine P is ontained in Mink(�; r), we an write v = r + �for some point � 2 �. Then �r(v) = �r(r + �)= (r + �)� � (r+�):rr:r � r= r + �� �r:rr:r + �:rr:r � r= �� ��:rr:r � r= �r(�)from whih one onludes that �r(P ) � �r(�).Now, notie that if e1 and e2 are edges in an irredundant dominating set, then the lengthof the projetion by r of the polygonal line segment e1e2 is just the sum of the lengths ofthe projetions by r of the individual edges e1 and e2. For otherwise, we would have, say,�r(e1) � �r(e2) and hene rR�0 + e1 � rR�0 + e2, a ontradition, sine e1 and e2 belong toan irredundant dominating set. The same is true if we replae e1 and e2 by any line segmentsparallel to them | we still obtain an \additivity" in the lengths, whih shall be used in theproof of the lemma.Proof: We assume that � dominates P in the diretion r as shown in Figure 1. Let Æ1; � � � ; Ækbe the edges in � and Æ01; � � � ; Æ0k the orresponding edges of �1. Let ni be the number of lattiepoints on Æi, and mi that on Æ0i, 1 � i � k. We want to show that ni > mi for at least one i,1 � i � k. Suppose otherwise, namelyni � mi; 1 � i � k: (6.3)81



We derive a ontradition by onsidering the lengths of � and �1 on the projetion by �r. Notethat if mi = 0 for some i then ertainly ni > mi and we are done; thus we may assume thatmi � 1 for all i.First, ertainly �(�1) � �(�) as � is a dominating set. Sine �1 is di�erent from �, theirorresponding end points must not oinide. Hene at least one end point of �1 will not be onthe in�nite edges in the diretion r. Hene �r(�1) lies ompletely inside �r(�), so has lengthstritly shorter than �r(�).Now for 1 � i � k let �i be the length of the projetion of a primitive line segment on Æi(whih means that the line segment has both end points on lattie points but no lattie pointsin between). Certainly �i � 0. Sine the end points of Æi are lattie points, the length of �r(Æi)is exatly (ni � 1)�i for 1 � i � k, hene �r(�) has length Pki=1(ni � 1)�i. (Here we need thefat that the dominating set is irredundant, to give us the neessary \additivity" in the lengths.)For Æ0i, sine it is parallel to Æi, the projeted length of a primitive line segment on it is also �i.Hene the length of �r(�1) is at least Pki=1(mi � 1)�i and from (6.3) we know thatkXi=1(mi � 1)�i � kXi=1(ni � 1)�i:This ontradits our previous observation that �r(�1) is stritly shorter than �r(�). The lemmais proved.6.5.1 On identifying irredundant dominating setsBefore onluding this setion we desribe an algorithm for identifying all possible irredundantdominating sets of the polygon. This is preeded by some results whih we present as follows:Lemma 6.5.2 Let P denote a onvex polygon with m verties in R 2 ordered ylially arounda hosen pivot v0 in a ounter-lokwise diretion. Let vi�1; vi, and vi+1, for i � 1, denote anythree onseutive verties, and let v denote an arbitrary point in R 2 di�erent from vi�1; vi, andvi+1. Then the line (viv) uts P only at vi if and only if it does not lie in the angular setorde�ned by the two vetors (vivi�1) and (vivi+1).Proof: First, note that, sine P is onvex, the line segment joining vi�1 to vi+1 is ompletelylying in P . Suppose that (viv) lies in the setor de�ned by the angle (vivi�1; vivi+1). Then (viv)will neessarily interset the line segment [vi�1vi+1℄ at a point of P di�erent from vi. Conversely,suppose that (viv) intersets P at a point v0 di�erent from vi. By onvexity of P , an arbitrarypoint of the plane is interior to P if and only if it lies to the left of the line supporting everydireted edge of P . As a result, v0 is to the left of the lines supporting ei and ei+1, whereei = vi�vi�1 and ei+1 = vi+1�vi. Hene, the line (viv) lies in the angular setor de�ned above.Now, let vi�1; vi; vi+1 and v be as de�ned in Lemma 6.5.2. Let the range of admissible slopesof vi, denoted by admiss(i), represent the union of all possible slopes of lines (viv) suh that(viv) does not interset the angular setor de�ned by (vivi�1; vivi+1).Lemma 6.5.3 Let P be a polygon with m verties in R2 and let � denote a set of onseutiveedges of P onneting (either in the lokwise or ounterlokwise diretion) any two verties vi82



and vj, for i; j = 0; :::;m � 1, and i < j. Then � is an set of dominating faets if and only ifadmiss(i) \ admiss(j) 6= ;.Proof:1. Suppose that admiss(i) \ admiss(j) 6= ; and no two edges in � are parallel. Let a be anelement of the intersetion. We an then onstrut two parallel lines ri and rj passingthrough vi and vj respetively and having slope equal to a. Consider Mink(�; r), wherer is a vetor in R 2 having the diretion of the parallel lines. As suh, eah of the twoin�nite edges of Mink(�; r) ontains exatly one point of �. To show that P is ontainedin Mink(�; r), it suÆes to show that all verties vk, for k = j + 1; :::;m � 1, belong toMink(�; r). Suppose there is one suh vertex vk not in the Minkowski sum. Then vk liesoutside the interior strip bounded by ri and rj. But this implies that either segment [vivk℄will interset rj in a point v0 6= vi; vk or [vjvk℄ will interset ri in a point v00 6= vj ; vk. SineP is onvex, v0 or v00 is ontained in P , a ontradition, by Lemma 6.5.2 and the fat thatri and rj have admissible slopes.2. Proof of the onverse is immediate by noting that, sine � is a set of dominating faetsonneted by the two verties vi and vj, we an onstrut two parallel lines ri and rjthrough vi and vj respetively suh that P is ontained in Mink(�; r), where r is a vetorin R 2 having the diretion of the two parallel lines, and eah of the two in�nite edges ofMink(�; r) ontains exatly one point of P , whih implies that admiss(i)\admiss(j) 6= ;.The algorithm for �nding all possible irredundant sets of dominating edges an now be statedas followsAlgorithm 6.5.1 Input: A polygon P in R 2 with m verties vk, for k = 0; :::;m � 1.Output: The olletion D of all irredundant sets of dominating edges of P , in the form f(i; j; d)g,for i; j = 0; :::;m�1 and i < j, where vi and vj are the �rst and last verties to appear in any setof dominating edges, and d is the diretion (lokwise or ounterlokwise) of the path onnetingthe two verties.Step 1: S  ;, num�sets 0.Step 2: For i = 0; :::;m � 1 determine admiss(i) using Lemma 6.5.2 above.Step 3: For i = 0; :::;m � 1 doFor j = i+ 1; :::;m � 1 doIf admiss(i) \ admiss(j) 6= ;:Set S  S [ f(i; j)g, Inum�sets  admiss(i) \ admiss(j),and num�sets num�sets+ 1.Step 4: Repeat Steps 4.1-4.3 for d = lokwise and d = ounterlokwise:4.1: Consider the num�sets dominating sets found so far.For k = 0; :::; num�sets� 1 doFor h = k + 1; :::; num�sets� 1If Ik = Ih and either the direted dominating set of index h is a subset of thedireted dominating set of index k or the onverse is true:Mark the larger set for deletion from S.83



4.2: Choose only the unmarked sets in S of the form (i; j) and store (i; j; d) in D.4.3: Unmark all sets in S.Step 5: Return D.Proposition 6.5.1 Algorithm 6.5.1 works orretly as spei�ed and requires O(m4) arithmetioperations, where m is the number of verties of the polygon P .Proof: That Steps 1-3 above produe all sets of dominating edges is a diret onsequene ofLemma 6.5.3. Note that for a �xed pair of verties (i; j), both the lokwise and ounterlokwisepaths of edges onneting them are dominating. In Step 4, we sort all suh sets in order to keeponly the irredundant ones. The sorting rule is as follows. Suppose for instane that we aregiven two dominating sets (i1; j1) and (i2; j2) suh that the lokwise path of edges onnetingi1 to j1, say, is a subset of the lokwise path onneting i2 to j2. For (i2; j2; lokwise) to beirredundant, one must be able to �nd at least one diretion r 2 R 2 suh that P an be embeddedin a strip along the diretion of r using (i2; j2; d) as a dominating set, but not (i1; j1; d). This anhappen only when I1 6= I2, where I1 = admiss(i1)\admiss(j1) and I2 = admiss(i2)\admiss(j2).The same argument an be repeated for the ounterlokwise diretion along whih the pathsare onsidered.The ost an be easily established by noting the following. The loops in Step 3 iterate O(m2)times in total, produing O(m2) dominating sets. These are then sorted in Step 4, where thetwo loops iterate O((m2)2) times in total. All operations in the above algorithm require onlyarithmeti operations for alulating and omparing slopes as well as intersetion of rational sets.We will see in Chapter 7 how the latter intersetions an be made to involve stritly integralvalues.6.6 The main theoremLet � be an irredundant dominating set of Newt(f). We all a (�;Q;R)-boundary fatorisationof f a dominating edges fatorisation relative to �; Q and R. A oprime dominating edgesfatorisation is a (�;Q;R)-boundary fatorisation with the property that for eah Æ 2 � the edgepolynomials gÆ0 and hÆ0 are oprime as Laurent polynomials (see De�nition 2.1.14 of Chapter 2),up to monomial fators.We are now ready to state our main theoretial result.Theorem 6.6.1 Let f 2 F [x; y℄ and Newt(f) = Q + R be a �xed Minkowski deomposition,where Q and R are integral polygons in the �rst quadrant. Let � be an irredundant dominatingset of Newt(f) in diretion r, and assume that Q is not a single point or a line segment parallelto rR�0. For any oprime dominating edges fatorisation of f relative to �; Q and R, thereexists at most one full fatorisation of f whih extends it, and moreover this full fatorisationmay be found or shown not to exist in time polynomial in #Newt(f).We shall prove this theorem indutively through the next two lemmas.Lemma 6.6.1 Let f;Q;R and � be as in the statement of Theorem 6.6.1. Suppose we are givena K-fatorisation of f , where K = (kÆ)Æ2� (more spei�ally, a (�;K;Q;R)-fatorisation). For84



eah Æ 2 �, denote by Æ0 the fae of Q supported by lÆ� Æ. There exists Æ 2 � with the followingproperties� The fae Æ0 is an edge (rather than a vertex).� The number of unspeialised oeÆients of gÆkÆ is nonzero but stritly less than the numberof integral points on Æ0.� All the unspeialised terms of gÆkÆ have exponents being onseutive integral points on theline de�ned by `Æ = (Æ + kÆ).Proof: Let �Q be the polygon�Q := fr 2 Q j `Æ(r) � Æ + kÆ for all Æ 2 �g:Note that the lattie points in �Q orrespond to unspeialised oeÆients of g. Let � denote theset of edges Æ 2 � of Newt(f) suh that the funtional `Æ � Æ supports an edge of Q (ratherthan just a vertex). Note that � 6= ;, for otherwise Q must be a single point or a line segmentin diretion r, ontraditing our assumption. We denote the edge by Æ0, and write �Æ for the faeof �Q supported by `Æ � (Æ + kÆ). Note that eah �Æ ontains at least one lattie point. (Thisfollows from the seond property in De�nition 6.3.1.) Certainly, �Æ is parallel to Æ0 for eah Æ 2 �,and the edge sequene f�ÆgÆ2�, forms a polygonal line segment in Q. Sine � is an irredundantdominating set for Newt(f), the set of edges fÆ0gÆ2� is an irredundant dominating set for Q.By Lemma 6.5.1, there is at least one edge Æ 2 �, suh that Æ0 has stritly more lattie pointsthan �Æ. This edge Æ has the required properties. This ompletes the proof.Lemma 6.6.2 Let f;Q;R and � be as in the statement of Theorem 6.6.1. Suppose we aregiven a K-fatorisation of f , where K = (kÆ)Æ2�. Moreover, assume this fatorisation extendsa oprime dominating edges fatorisation, i.e., the polynomials gÆ0 and hÆ0 are oprime up tomonomial fators for all Æ 2 �. Then there exists Æ 2 � suh that the oeÆients of gÆkÆ are notall speialised, but they may be speialised in at most one way onsistent with equations (6.2).This speialisation may be omputed in time polynomial in #Newt(f).Proof: The basi idea of the proof is to �rst transform the bivariate equation (6.2) intoequations of univariate polynomials determined by the individual edges, then to determine theexistene or uniqueness of solutions.Selet Æ 2 � suh that the properties in Lemma 6.6.1 hold. Let nÆ and mÆ be the number ofintegral points on the edges Æ0 and �Æ respetively, where Æ0 and �Æ are de�ned as in the proof ofLemma 6.6.1. Thus we have mÆ < nÆ and mÆ � 1. With the notation from Setion 6.3, write`Æ(e1; e2) = �1e1 + �2e2 + �, where �1 and �2 are oprime.Let z and w be new variables. Using the transform (6.1), any monomial of the form xe1ye2an be written as xe1ye2 = zi1wi2 (6.4)where i1 = e1�2 � e2�1; i2 = e1�1 + e2�2 = `Æ(e1; e2)� �:85



Every monomial in gÆi is of the form xe1ye2 where `Æ(e1; e2) = Æ+i. Let the monomials s and t bethe terms of g and h respetively whose exponents vetors are the starting verties of the faes ofQ andR de�ned by `Æ�Æ and `Æ+Æ��, respetively. Thus we have gÆi (z; w) = swiGi(z) for someunivariate Laurent polynomial Gi(z). Similarly hÆi (z; w) = twiHi(z) and f Æi (z; w) = stwiFi(z),where Hi(z) and Fi(z) are univariate Laurent polynomials. With this onstrution, G0(z);H0(z)and F0(z) have nonzero onstant term and are \ordinary polynomials", i.e., ontain no negativepowers of z. For i < kÆ all of the oeÆients in the polynomials Gi(z) and Hi(z) have beenspeialised. Moreover G0(z) is of degree nÆ, and all butmÆ of the oeÆients of GkÆ(z) have beenspeialised. Equations (6.2) with this hange of variables may be written as F0(z) = G0(z)H0(z),and for k � 1 Gk(z)H0(z) +G0(z)Hk(z) = Fk(z)� k�1Xj=1Gj(z)Hk�j(z):We know that all of the oeÆients of Gi(z) and Hi(z) have been speialised for 0 � i < kÆ insuh a way as to give a solution to F0 = G0H0 and the �rst kÆ � 1 equations above. Thus weneed to try and solve GkÆH0 +G0HkÆ = FkÆ � kÆ�1Xj=1 GjHkÆ�j: (6.5)for the unspeialised indeterminate oeÆients of GkÆ and HkÆ .We �rst ompute using Eulid's algorithm ordinary polynomials U(z) and V (z) suh thatV (z)H0(z) + U(z)G0(z) = 1where degz(U(z)) < degz(H0(z)) and degz(V (z)) < degz(G0(z)). (Note that G0(z) and H0(z)are oprime sine we have a oprime partial boundary fatorisation.) Any solution GkÆ ofEquation (6.5) must be of the formGkÆ = fV (FkÆ � kÆ�1Xj=1 GjHkÆ�j) mod G0g+ "G0 (6.6)for some Laurent polynomial "(z) with undetermined oeÆients.We rearrange (6.6) asGkÆ � fV (FkÆ � kÆ�1Xj=1 GjHkÆ�j) mod G0g = "G0 (6.7)Let the degree in z of the Laurent polynomial on the left hand side of this equation be d. Nowthe degree of the polynomial G0(z) as a Laurent polynomial (and an ordinary polynomial) isnÆ�1. If d < nÆ�1 then we must have d = 0. In other words, (6.6) has a unique solution, namelythat with " = 0. Otherwise d � nÆ � 1 and the degree in z of "(z) as a Laurent polynomial isd � (nÆ � 1). Hene in this ase we need to also solve for the d � nÆ + 2 unknown oeÆientsof "(z). We know that all but mÆ oeÆients of GkÆ have already been speialised, and theseunspeialised ones are adjaent terms. Hene exatly (d+ 1)�mÆ oeÆients on the left hand86



side of (6.7) have been speialised, whih are adjaent lowest and highest terms. By assumptionwe have that mÆ < nÆ, and hene (d+ 1)�mÆ � d� nÆ + 2.All of the oeÆients of the right hand side of Equation (6.7) have been speialised, exeptthose of the unknown polynomial "(z). On the left hand side all but the middle mÆ oeÆientshave been speialised. This de�nes a pair of triangular systems from whih one an eithersolve for the oeÆients of " uniquely, or show that no solution exists (this may happen whennÆ > mÆ+1). We desribe preisely how this is done: Suppose that exatly r of the lowest termson the left hand side have been speialised, and hene also (d + 1) � (mÆ + r) of the highestterms. We an solve uniquely for the r lowest terms of "(z) using the triangular system de�nedby onsidering oeÆients of the powers za; za+1; : : : ; za+r�1 on both sides of Equation (6.6),where za is the lowest monomial ourring on the left hand side. One may also solve for theoeÆients of the (d+ 1)� (mÆ + r) highest powers uniquely using a similar triangular system.(Note that to ensure the triangular systems eah have unique solutions we use here the fat thatthe onstant term of G0 is nonzero, and the polynomial is of degree exatly nÆ � 1.) Notiingthat (d + 1) � (mÆ + r) + r = (d + 1 �mÆ) � d � nÆ + 2, we see that all the oeÆients of "have been aounted for. However, if d + 1 �mÆ > d� nÆ + 2 (i.e. nÆ > mÆ + 1) there will besome \overlap", and the two triangular systems might not have a ommon solution. In this asethere an be no solution to the Equation (6.6). If an "(z) does exist whih satis�es Equation(6.7) then the remaining oeÆients of GkÆ an now be omputed uniquely. Having omputedthe only possible solution of (6.6) for GkÆ we an substitute this into Equation (6.5) and reoverHkÆ diretly. More preisely ompute(FkÆ �PkÆ�1j=1 GjHkÆ�j)�GkÆH0G0 : (6.8)If its oeÆients math with the known oeÆients of HkÆ then we have suessfully extendedthe partial fatorisation; otherwise we know no extension exists.These omputations an be done in time quadrati in the degree of the largest polynomialourring in the above equations. Sine all polynomials are Newton polytopes whih are linesegments lying within Newt(f) this is ertainly quadrati in #Newt(f). (In fat, the runningtime is most losely related to the length of the side nÆ from whih we are performing the liftingstep. We shall show in Chapter 8 that this number is of the order O(n), where n = deg(f).)This ompletes the proof.Theorem 6.6.1 may now be proved in a straightforward manner: Spei�ally, one �rst showsthat for any partial fatorisation extending a oprime dominating edges fatorisation, there existsat most one full fatorisation extending it, and this may be eÆiently found. This is proved byindution on the number of unspeialised oeÆients in the partial fatorisation using Lemma6.6.2. Theorem 6.6.1 then follows easily as a speial ase.6.7 On long division with remainder of Laurent polynomialsIn this setion we disuss in some detail how to perform long division with remainder for Laurentpolynomials. The set of all suh polynomials forms a ommutative ring R[z; z�1℄, where divisionwith remainder between two Laurent polynomials is possible; however, this division is not aunique operation [30℄. Given two Laurent polynomials, say a(z) and b(z) 6= 0, there always exists87



a Laurent polynomial q(z) and a Laurent polynomial r(z) so that r(z) = a(z) � b(z)q(z) anddeg(r(z)) < deg(b(z)). As suh, r(z) onsists of deg(b(z)) terms or less (where some of the middleterms an be zero), and hene b(z)q(z) has to math a(z) in at least deg(a(z)) � deg(b(z)) + 1terms. However, sine the remainder is also a Laurent polynomial, there exists more than onehoie for the integer pair (i; j) suh thatr(z) = jXk=i rkzk;where j � i = deg(r(z)). As a result, we are free to hoose the mathing terms of a(z) andb(z)q(z) in the beginning, the end, or divided between the beginning and the end of a(z). Foreah hoie of terms, a orresponding long division algorithm exists.Sine division is not unique, this allows us to transform the modular operations in (6.7) tothat between two regular polynomials (see de�nition 2.1.16 in Chapter 2). We have seen earlierthat sine G0 is an edge polynomial, it is a regular polynomial whose degree is equal to one plusthe number of integral points found on its orresponding edge. We an thus require that theLaurent remainder be a stritly regular polynomial of degree less than that of G0. As a result,and to ompute the quantity V (FkÆ � kÆ�1Xj=1 GjHkÆ�j) mod G0; (6.9)where a(z) = V (FkÆ � kÆ�1Xj=1 GjHkÆ�j)is a Laurent polynomial, it suÆes to rewrite a(z) = z�mreg(z), where �m is the lowest negativeexponent appearing in a(z), and to ompute the inverse of zm modulo G0, alled inv(z) (byonstrution, we also know that G0 has a nonzero oeÆient term, and hene is relatively primeto zm, whih makes zm invertible modulo G0, with inv(z) a regular polynomial). We then haveV (FkÆ � kÆ�1Xj=1 GjHkÆ�j) mod G0 � inv(z):reg(z) mod G0;where the right hand side redues to an ordinary modular operation over F involving only regularpolynomials, and whose remainder, if nonzero, has degree less than deg(G0).On the other hand, equation (6.8) requires that we ompute the quotient of a Laurentpolynomial over G0. Note that in this ase[(FkÆ � kÆ�1Xj=1 GjHkÆ�j)�GkÆH0℄ mod G0should be zero; else, we know that no extension exists for the partial fatorisation. The quotientq(z) an thus be found uniquely, by simply solving for q(z) in(FkÆ � kÆ�1Xj=1 GjHkÆ�j)�GkÆH0 = q(z)G0:88



6.8 The algorithmWe now gather everything together and state our algorithm:Algorithm 6.8.1 Input: A polynomial f 2 F [x; y℄ of total degree n, and a positive integer M .Output: A fatorisation of f or \failure" or \f is irreduible".Step 1: [Convex hull℄Compute a vertex-edge desription of Newt(f) using a polygon onvex hull algorithm. Let theedges be Æ0; : : : ; Æm�1, ylially joining verties v0; : : : ; vm�1. So Edge(f) = fÆig.Step 2: [Fator edge polynomials℄Compute a omplete fatorisation of all edge polynomials f Æ0 , Æ 2 Edge(f).Step 3: [Admissible edge deompositions℄For eah edge Æi 2 Edge(f) ompute the set fm(i)j j 0 � j � deg(f Æi0 )g, where m(i)j is the numberof moni fators of the edge polynomial f Æi0 of degree j.Step 4: [Dominating sets℄List all sets f�ig of square-free dominating faets of Newt(f) using algorithm 6.5.1. If there areno suh sets then fail.Step 5: [Count oprime dominating faets fatorisations℄For eah set �i, ount the number of oprime (�i;Q;R)-boundary fatorisations, where Q andR range over all integral deompositions of Newt(f).Step 6: [Selet a dominating set℄Selet the dominating set � for whih the number omputed in Step 5 is minimal. If this numberis greater than M then fail.Step 7: By repeatedly applying the method in the proof of Lemma 6.6.2, lift eah oprime domi-nating edges fatorisation of f as far as possible. If any of these lift to a full fatorisation outputthis fatorisation and halt. If none of them lifts to a full fatorisation then output \irreduible".Proposition 6.8.1 Algorithm 6.8.1 outputs orretly.Proof: The algorithm will always sueed when one �nds a dominating set � of Newt(f)suh that the polynomials f Æ0 , Æ 2 �, are all square-free (up to a monomial fator), provided wetake M \suÆiently large" (an upper bound on M is dm, where d is the maximum number ofintegral points falling along any edge and m is the number of edges of Newt(f)). One might allpolynomials for whih suh sets exist nie. Suppose that the polynomial is reduible, and we havea proper fatorisation f = gh with orresponding non-trivial deomposition Newt(f) = Q+ R.This is a full fatorisation extending a �-boundary fatorisation, whih is neessarily oprimeby the assumption on �. It will therefore be found during one of the liftings, by Theorem 6.6.1.Prior to disussing the time omplexity we shall disuss in details some of the steps above. Inthe forthoming disussion we shall treat F as a �nite �eld whose harateristi �ts in a mahineword. 89



Steps 1,2Steps 1 and 2 an be lassi�ed as a pre-omputation sine they are performed only one foreah input polynomial. If s denotes the number of nonzero terms in f , the onvex hull maybe omputed in time O(s log (s)) (see [60℄). Note that s � #(Newt(f)). Ignoring logarithmifators, Step 2 may be performed using a univariate fatorisation algorithm over �nite �eldsin O(dM(d)) �eld operations, where d is the maximum degree of any of the edge polynomials.Certainly d � #(Newt(f)).Step 3This is also another pre-omputation step whih is performed only one during the entire al-gorithm. We refer the reader to the reursive ounting Algorithm 7.3.4 of Chapter 7. Given aunivariate polynomial P (z) of degree d over F and its anonial fatorisation (not neessarilysquare-free) into irreduibles, the algorithm returns the number of fators of P (z) of degreek = 1; :::; d using O(d1+hh) bit operations, where h denotes the number of irreduible fators ofP (z). Obviously, h = O(d), although on average it is approximately log d [83, 84, 100℄.Step 4The maximum number of edges is ertainly s, and thus one may easily �nd all suitable � usingalgorithm 6.5.1, whih in this ase requires O(s2) arithmeti operations.Steps 5For Step 5, one may use a modi�ed version of the polygon summand ounting algorithm in [45℄.The modi�ation needed is that one only onsiders summands of the polygon whose edges havelengths mathing the degrees of the known univariate fators of the edge polynomials. Also, oneounts two di�erent fatorisations of the edge polynomials on the dominating set separately evenif the deomposition of the polytope is the same in eah ase. It is easily seen that the algorithmhas running time polynomial in #(Newt(f)). More preisely the subroutine is as follows:Algorithm 6.8.2 (Step 5) Input: The edge sequene fnieig0�i�m�1 of the Newton polytopeof a bivariate polynomial, starting at vertex v0 where ei 2 Z2 are primitive vetors (i.e. haveoprime integer oordinates) and ni are positive integers, a set � of dominating faets of Newt(f),and a set fm(i)j j 1 � j � nig of admissible edge deompositions lengths for eah edge niei.Output: The number of oprime �-boundary fatorisations of Newt(f) and an array A. Eahell in A ontains a pair (u; S) where u is a non-negative integer and S is a subset of f(k; i) :1 � k � ni; 0 � i � m� 1g.Step 5.1: Compute the set IP of all the integral points in Newt(f) (so v0 2 IP); say IP hast(= #(Newt(f))) points. Initialize a t-array A indexed by the points in IP. Set A�1[v℄ := (0; ;)for all v 2 IP exept the ell A�1[v0℄ whih is set to (1; ;).Step 5.2: For i from 0 up to m� 1, ompute the t-array Ai from Ai�1:5.2.1 First opy the ontents of all the ells of Ai�1 into Ai (this step is for k = 0).90



5.2.2 For eah v 2 IP with the �rst number of the ell Ai�1[v℄ nonzero, and for eah 0 < k � nifor whih m(i)k > 0, if v0 = v+ kei 2 IP then update the ell Ai[v0℄ as follows: if (u1; S1) isthe value of Ai�1[v℄ and (u2; S2) the urrent value of Ai[v0℄ then the new value of Ai[v0℄ is(u; S2 [ f(k; i)g). Here we take u = u2 + u1 in the ase niei =2 � and u = u2 +m(i)k u1 inthe ase niei 2 �.Step 5.3: Return the number u and the array A = Am, where (u; S) is the ontent of ellAm�1[v0℄.Proposition 6.8.2 The above algorithm works orretly, produing the total number of integralsummands in time polynomial in #(Newt(f)).Proof: Corretness of the algorithm follows by a suitable modi�ation of Theorem 18 in[45℄. By Lemma 13 of [45℄, the number of integral summands of Newt(f) orresponds to thetotal number of losed paths P0�i�m�1 kiei, suh that ki 6= 0 for all i and km�1 6= nm�1. Weshall show that this number is the integer stored in Am�1[v0℄. Sine the length of an edge isde�ned to be the number of integral points lying on it, whih in turn orresponds to one plusthe degree of the edge polynomial assoiated with it, the ondition m(i)k > 0 guarantees thatwe ount only those summands whose edges have lengths orresponding to degrees of \known"univariate fators of the original edge polynomial in Newt(f). Now, as seen in the original proof,we suppose that v = v0 + k0e0 + ::: + kiei, for any v 2 IP . We an then view the vetor sumas a path from v0 to v, so that the number of suh paths is equal to the sum of the number ofpaths from v0 to v�kei, for 0 � k � ni, using e0; :::; ei�1. However, if we further know that nieibelongs to �, then for eah k = 1; :::; ni, we should ount all possible fatorisations of the edgepolynomial orresponding to the same edge, as indiated by the number of fators of degree kof the edge niei polynomial. As a result, and for eah admissible k = 1; :::; ni, the value of u inAi[v℄ is inremented as follows: by the number of paths from v0 to v � kei, using e0; :::; ei�1, ifniei is not in �, or by m(i)k times this number, otherwise. The loops in the above proess an beeasily seen to be of the order O(#(Newt(f)):md), where d is the maximum number of integralpoints on any edge. The innermost loop omputations involve updating the integer u throughinteger addition and updating the set S through the set union operation. Sine u requires anupper bound of M < dm, its update has an upper bound of O(m log d) bit operations. If wefurther onsider set union to require a single bit operation, the omplexity of the above algorithmbeomes of the order O(#(Newt(f)):m2d), ignoring logarithmi fators.Step 6Having seleted a dominating set, one an reover all oprime dominating faets fatorisationin the array output by Algorithm 6.8.2. We desribe how one suh fatorisation an be found.Suppose the ell A[v0℄ ontains the pair (u; S). Choose any (k; i) 2 S. The line segment keiwill be the \�nal edge" in our summand of Newt(f). Sine by assumption m(i)k > 0, we analso hoose a fator gÆi0 of the edge polynomial of Æi whih has degree k. This is the \�nal edgepolynomial" in our dominating faets fatorisation. Let (u0; S0) be the ontents of ell A[v0�kei℄.Pik any (k0; i0) 2 S0 with i0 < i. The line segment k0ei0 will be the \penultimate edge" in oursummand of Newt(f), and we an further hoose a \penultimate edge polynomial" if niei 2 �.91



As our sequene of i's is dereasing we shall eventually return to the ell A[v0℄. At that pointwe will have reovered one summand in a deomposition of Newt(f).The omplexity of the above proess is M times the time required to �nd one dominatingfaets fatorisation, whih is linear in the number of edges m. Certainly m = O(Newt(f)).Step 7Now one lifts eah oprime dominating faets fatorisation using the method desribed in Lemma6.6.2. Using Theorem 6.6.1, lifting from eah oprime dominating edges fatorisation an bedone in time polynomial (in fat ubi) in d, whih itself is bounded by Newt(f). However,although one an �nd suh a dominating edges fatorisation eÆiently, the number of themmay be exponential in the degree. In pratie we reommend that a relative small number ofdominating edges fatorisations are tried before the polynomial is randomised and one resortsto other \dense polynomial" tehniques.Time omplexity and ommentsProposition 6.8.3 Assuming Step 3 above is performed as a preomputation, Algorithm 6.8.1halts in time polynomial in M and #(Newt(f)).Proof: Steps 1, 2, 4, 5, and 6 are performed in time polynomial in #(Newt(f)). In Step 7one performs at most M liftings. The result now follows using the estimates disussed above.This algorithm should be ompared with the standard method of fatoring \nie" polyno-mials using Hensel lifting [46℄. Preisely, in the literature a bivariate polynomial of total degreen whih is square-free upon redution modulo y is often alled \nie". The standard Hensellifting algorithm will fator \nie" bivariate polynomials, on average very quikly [46℄, althoughin exponential time in the worst ase. Notie that a \nie" polynomial would be one whose New-ton polytope has \lower boundary" a single edge of length n whih is square-free. The abovealgorithm fators not just these polynomials, but also any polynomials whih have a \square-freedominating set". In the ase of a generi dense \nie" polynomial, it redues to a modi�ed formof standard Hensel lifting. (The algorithm also inludes as a speial ase that given in Wan[128℄, where one \lifts downward" from the edge joining (n; 0) and (0; n))6.9 Examples and implementation6.9.1 ExampleSuppose we want to fator the following polynomial over F 2f = x12 + x19 + (x10 + x11 + x13)y + (x8 + x9 + x12 + x17)y2 + x7y3 + (x4 + x11)y4+(x2 + x5 + x10)y5 + y6 + x10y8 + (x8 + x11)y9 + x6y10 + x9y12 + x15y16with Newton polytope pitured in Figure 2 where a star indiates a nonzero term of f .Newt(f) is found to have three non-trivial deompositions, and eight irredundant dominatingsets. None of these sets have edge polynomials whih are all square-free; however, fortunately92
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Figure 2: Newton polytope of f
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Figure 3: Newton polytope Q of the generi polynomial g
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Figure 4: Newton polytope R of the generi polynomial hwe are still able to lift suessfully from one of the oprime partial boundary fatorisations.Spei�ally, onsider the deomposition Newt(f) = Q + R, where Q and R are the onvexhulls of the sets f(0; 2); (4; 0); (11; 0); (9; 8)g and f(0; 4); (8; 0); (6; 8)g respetively (see Figures3 and 4). The generi polynomials for this deomposition are as usual denoted g and h. Thedominating edges of Newt(f) whih allow a oprime edge fatorisation are given byÆ1 = onvf(0; 6); (12; 0)g; Æ2 = onvf(12; 0); (19; 0)gand the orresponding edge polynomials aref Æ10 = y6 + x2y5 + x4y4 + x8y2 + x10y1 + x12f Æ20 = x12 + x19:The oprime fators from whih the lift begins aregÆ10 = y2 + x2y + x4; hÆ10 = y4 + x8gÆ20 = x4 + x11; hÆ20 = 1:The lifting proess is then initiated; Figures 3 and 4 help illustrate the proess in that thelines drawn in the interior of the polygons indiate the �rst few layers of oeÆients whih arerevealed during the lifting, and the lines in the interior of Newt(f) the known oeÆients of fwhih are used to do this. We reall some notation de�ned earlier in the hapter. For i = 1 and2, the normalised aÆne funtional of Æi is denoted lÆi . In this ase lÆ1(r1; r2) = r1 + 2r2 � 12and lÆ2(r1; r2) = r2. The onstants Æi suh that lÆi � Æi de�nes a fae of Q are Æ1 = �8 andÆ2 = 0 respetively.We start then with a K-fatorisation where K = (kÆ1 ; kÆ2) and kÆ1 = kÆ2 = 1. At thisstage, we would like to extend this partial fatorisation to either a (2; 1)-fatorisation, or a(1; 2)-fatorisation. By Lemma 6.6.2 we are guaranteed that it will be possible in at least oneof these two ases. (We shall borrow notation from the proof of Lemma 6.6.1 for the next fewparagraphs.) The polygon �Q is that obtained from Q by moving the two lower faets \one stepin" as indiated in the diagram. Examining Q we see that the edge supported by lÆ2 � Æ2 ,94



namely the line joining (4; 0) and (11; 0), has 8 integral points. The edge of �Q supported bylÆ2 � (Æ2 + 1) (this is the line joining (3; 1) and (10; 1)) also has eight integral points. Thus weannot lift from Æ2. So Lemma 6.6.2 assures us we must be able to lift from Æ1. Indeed, the edgeof Q supported by lÆ1 � Æ1 has three points, and the orresponding edge of �Q only two points.We now desribe expliitly the �rst lifting step from Æ1. To simplify notation let Æ1 bereplaed simply by Æ. We shall now also use notation from the proof of Lemma 6.6.2. We havelÆ(r1; r2) = �1r1+�2r2+� where �1 = 1; �2 = 2; � = �12. Also �1�1+ �2�2 = 1 where �1 = 1 and�2 = 0. Thus the hange of variables is z := x2y�1 and w := x1y0. The monomials s and t arey2 and y4 respetively. Hene we have that gÆ0 = y2+x2y+x4 = y2(1++(x2y�1)+ (x2y�1)2) =sw0G0(z) where G0(z) = 1 + z + z2. Also, gÆ1 = g(1;2)xy2 + g(3;1)x3y + g(5;0)x5 where the g(i;j)are indeterminates. The indeterminate g(5;0) has already been speialised to the value 0 in ourpartial fatorisation. We thus have gÆ1 = sw1(g(1;2) + g(3;1)z), and so G1(z) = g(1;2) + g(3;1)z.Similarly, H(0)(z) = 1 + z4 and H(1)(z) = h(1;4) + h(3;3)z + h(5;2)z2 + h(7;1)z3; and F0(z) =1 + z + z2 + z4 + z5 + z6, F1(z) = z3 + z4 + z5.The equation we shall use in the lifting step isG0(z)H(1)(z) +G1(z)H(0)(z) = F1(z):The polynomials U(z) and V (z) suh thatU(z)G0(z) + V (z)H(0)(z) = 1are U(z) = 1 + z2 + z3 and V (z) = z. ThusG1(z) + (V (z)F1(z) mod G0(z)) = "(z)G0(z)for some polynomial "(z) = "0 with undetermined oeÆients. Now the seond term on the lefthand side is just 0 and hene the degree of the left hand side as a Laurent polynomial is 1. Thisis less than the degree of G0, and so the only solution is that with " = 0. Thus G1(z) = 0.F1 �H(0)G1G0 = z3;and we dedue that H(1)(z) = z3. Thus h(7;1) = 1 and h(1;4) = h(3;3) = h(5;2) = 0. Thisompletes the �rst lifting step.At this stage one may ontinue to lift from Æ1, or alternatively start to lifting from Æ2.The latter has the advantage that more oeÆients will be revealed at eah step; however, theomputations required involve higher degree polynomials and as suh it may be preferable tokeep lifting from the shorter edge. We do this and next obtain a (3; 1)-fatorisation of K, withg(2;2) = g(4;1) = h(2;4) = h(4;3) = h(6;2) = 0. Notie that this lifting step is somewhat easier sineF2 � G1H(1) = 0 whih again results in G2 = H(2) = 0. One may ontinue lifting from Æ1 toobtain a (4; 1)-fatorisation. In this we �nd g(5;1) = 1 and g(3;2) = h(3;4) = h(5;3) = h(7;2) = 0.At this stage lifting further from Æ1 beomes impossible. Thus one must now lift from Æ2 to geta (3; 2)-fatorisation. We explain briey how this step is performed as it illustrates somewhatthe role of the triangular systems.So let Æ := Æ2. The hange of variable is now z := x and w := y and we have the equationG1(z)� (V (z)F1(z) mod G0) = "(z)G0:95



Here G1(z) = 1z�2 + 0z�1 + 0 + 1z + g(6;1)z2 + g(7;1)z3 + g(8;1)z4 + g(9;1)z5 + g(10;1)z6and G0(z) = 1 + z7. Also V is the inverse of H(0)(z) = 1 modulo G0(z), whih is just 1. Thepolynomial F1(z) = z�2 + z�1 + z. We �rst ompute (V F1 mod G0) asz�2(1 + z + z3) mod (1 + z7) = z + z5 + z6:Hene the left hand side isz�2 + g(6;1)z2 + g(7;1)z3 + g(8;1)z4 + (1 + g(9;1))z5 + (1 + g(10;1))z6:This has degree 8 as a Laurent polynomial, and hene the degree of our unknown polynomial"(z) is 8 � 7 = 1. Let "(z) = ("�1z�1 + "�2z�2). Then equating the powers of z�2 and z�1 weget the triangular system 1"�2 + 0"�1 = 10"�2 + 1"�1 = 0whih has solution "�2 = 1 and "1 = 0. Hene we get thatG1(z) = z + z5 + z6 + z�2(1 + z7)= z�2 + z + z6:This ompletes the lifting step.Now one may one again hoose to lift from Æ1 another few steps to get a (7; 2)-fatorisation.Then one may lift for two steps from Æ2 to obtain a (7; 4)-fatorisation. One ontinues in thismanner until all the indeterminate oeÆients in one of the two generi fators g and h have beenspeialised. (Of ourse, if we are not lifting an atual full fatorisation, we may have to abandonthe lifting at some stage beause either our triangular systems have no ommon solution, or theomputed oeÆients in H do not math with the known oeÆients.)It is perhaps appropriate at this stage to make a few observations on how sparse polynomialsmay be fatored more quikly using Algorithm 6.8.1. Using standard Hensel lifting the polyno-mial f above would �rst be randomised to obtain a dense polynomial of total degree 31. It ouldhave as many as (32� 33)=2 = 528 nonzero terms, and heuristially around half this many sinef is over the binary �eld. The fator g we found above would then orrespond to a \dense"fator of our original polynomial of total degree 17. It would be found by Hensel lifting a degree17 fator of the redution modulo y of our randomised version of f , and (17�18)=2 = 153 terms(heuristially half of them nonzero) need to be determined. In our algorithm, one restrits at-tention to unknown terms in possible fators whose exponents lie within ertain polygons. Thusfor the fator g we found we only need to determine 57 oeÆients. Moreover, if the polynomialf is sparse, there is good hane that most of these terms, and those in h, will be zero and so onean exploit sparse data strutures (see Chapter 7). The main bene�t, though, of our approahappears to be for very sparse but omposite polynomials of very high degree. In this ase, oneexpets few oprime partial boundary deompositions, and as one an try and lift eah one toa full fatorisation, the algorithm will sueed (or fail) relatively quikly. If one randomises thepolynomial by substitution of linear forms, the speial sparse struture is ompletely lost. Tofator the randomised polynomial using Hensel lifting, for example, one expets to have to trya large number of lifts. Thus, as demonstrated in the next hapter, our algorithm an be usedto fator very sparse polynomials of degree beyond the reah of lassial Hensel lifting.96



6.9.2 ImplementationWe have developed a preliminary implementation of the algorithm with the aim of demonstratinghow it would work for bivariate polynomials over F 2. The work was arried out at the OxfordUniversity Superomputing Centre (OSC) on the Oswell mahine. The implementation waswritten using a ombination of C and Magma programs, and was divided into three phases.In the �rst phase, the input polynomial is read and its Newton polytope omputed using theasymptotially fast Graham's algorithm for omputing onvex hulls [60℄. In that phase we alsoompute all irredundant dominating sets, and output the edge polynomials. In the seond phase,a Magma program invokes a univariate fatorisation algorithm to perform the partial boundaryfatorisations, and the results are direted into the third phase program. In this last phase,a searh for oprime dominating edges fatorisations is performed, and when appropriate, thelifting proess is started. The polynomial arithmeti was performed using lassial multipliationand division, and the triangular systems were solved using dense Gaussian elimination over F 2.We generated a number of random experiments as follows: The input polynomial f wasonstruted by multiplying two random polynomials g and h of degree d=2, eah with a givennumber of nonzero terms. Spei�ally, for eah polynomial the given number of exponent vetors(e1; e2) were hosen uniformly at random subjet to 0 � e1 + e2 � d=2. These vetors alwaysinluded ones of the form (e1; 0), (0; e2) and (e3; (d=2) � e3) to ensure the polynomial was ofthe orret degree and had no monomial fators. As the polynomials hosen were sparse theorresponding Newton polytopes had very few edges. In all these ases, the omponents ofedge vetors of Newt(f) had a very small gd, so that the edges had few integral points andonsequently the polygon itself had very few summands. The table below gives the running times(in seonds) of the total fatorisation proess to �nd at least one non-trivial fator involving allthree phases desribed above. Here s is the number of nonzero terms of the input polynomial f ;#Newt(f), #Newt(g), and #Newt(h) are the total number of lattie points in Newt(f), Newt(g)and Newt(h) respetively; and t is the total running time in seonds. The atual polynomialsf; g and h in eah of the �ve ases are also listed.Table 6.1: Run time data for random experiments.d s #Newt(f) #Newt(g) #Newt(h) t50 14 561 166 50 2:3100 16 2234 472 222 11:6500 15 52940 12758 11282 21:51000 30 206461 28582 56534 42:92000 28 848849 133797 132932 619:7d = 50:f = x9 + x18 + x22y8 + x14y16 + (x4 + x13)y20 + (x8 + x17)y21 + x18y24 + x17y28 + x21y29 +x1y32 + y36 + x4y37,g = x4 + x13 + x17y8 + y16,h = x5 + x1y16 + y20 + x4y21.d = 100:f = x26 + x29y3 + x31y5 + x34y8 + x20y13 + x25y18 + x6y19 + (x9 + x48)y22 + x53y27 + y32 +x28y41 + x11y45 + x14y48 + x5y58 + x33y67,g = x20 + x25y5 + y19 + x5y45, 97



h = x6 + x9y3 + x28y22 + y13.d = 500:f = x99+ x151y30 + x176y130+ x151y142+ x228y160 + x99y181+ x56y220 + x43y223+ x108y250 +x228y272 + x176y311 + x120y353 + x108y362 + x56y401 + y443,g = x56 + x108y30 + x108y142 + x56y181 + y223,h = x43 + x120y130 + y220.d = 1000:f = x727 + x678y3 + x935y13 + x886y16 + x679y67 + x600y79 + x887y80 + x551y82 + x469y86 +x420y89 + x448y93 + x399y96 + x279y136 + x636y143 + x552y146 + x487y149 + x421y153 + x844y156 +x400y160+x152y215+(x21+x509)y222+(1+x378)y229+x357y236+x611y251+x562y254+x563y318+x163y387 + x520y394,g = x448 + x399y3 + x400y67 + y136 + x357y143,h = x279 + x487y13 + x152y79 + x21y86 + y93 + x163y251.d = 2000:f = x875+x856y6+x1469y18+x1450y24+x776y66+x1370y84+x722y157+x703y163+x963y190+x944y196+ x623y223+x864y256+x487y291+x468y297+ x647y334+x628y340+x982y375+ x548y400+x235y514 + x476y547 + x769y619 + x1363y637 + x0y648 + x160y691 + x616y776 + x857y809 + x381y910 +x541y953,g = x487 + x468y6 + x388y66 + y357 + x381y619,h = x388 + x982y18 + x235y157 + x476y190 + x160y334 + y291.6.10 ConlusionIn this hapter we have investigated a new approah for bivariate polynomial fatorisation basedon the study of their Newton polytopes. The approah ombines results on polytopes withgeneralised Hensel lifting. In standard Hensel lifting, one lifts a fatorisation from a single edge,and uniqueness an be ensured by randomising the polynomial to enfore oprimality onditionsand make sure the edge being lifted from is suÆiently long. However, this randomisation isby substitution of linear forms whih destroys the sparsity of the input polynomial. We showhow uniqueness may be ensured in the bivariate ase without destroying the sparsity of thepolynomial, only under ertain oprimality onditions, and without restritions on the lengthsof the edges. For ertain lasses of sparse polynomials, namely those whose Newton polytopeshave few Minkowski deompositions, this gives a pratial new approah whih greatly improvesupon Hensel lifting. As with Hensel lifting, our method has an exponential worst-ase runningtime; however, we have demonstrated the pratiality of our algorithm on several randomlyhosen omposite and sparse binary polynomials of high degree.
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Chapter 7An eÆient sparse adaptation of thepolytope method over F p and areord-high binary bivariatefatorisation7.1 IntrodutionIn the previous hapter, we examined polynomial fatorisation through a generalisation of Hensellifting as applied to the Newton polytope of the input polynomial. Despite its worst-ase ex-ponential running time, the polytope method has been assoiated with a number of advantagespromising to make it very eÆient in pratie. First, when applied to the speial ategoryof sparse polynomials whose Newton polytopes have very few Minkowski deompositions, onewould expet to have a small number of edges to lift from. Although we do not yet have aheuristi estimate of the frequeny with whih this an happen, experiments reported in theearlier hapter learly reeted this observation, whereby most random input polynomials hadNewton polytopes with the above property, and the bulk of the work was spent in the liftingstage. However, the implementation used there was dense, where the total amount of work isof the order O(d4) for a bivariate polynomial of total degree d, and requiring an order of O(d2)bits of memory, whih prompts us to investigate further advantages resulting from the sparsityof the input polynomial. Sine the polytope method has been shown to preserve the sparsity ofthe polynomial by avoiding the randomisation and substitution of linear forms in the lassialHensel lifting method, one natural question to answer is how to desribe the sensitivity of thepolytope method with respet to the number of nonzero terms of the input polynomial. We areequally motivated to investigate how exploiting this aspet an possibly inrease the problemsizes whih the polytope method an handle for the speial lass of sparse polynomials. Theapproah we present produes a sparse fatorisation algorithm per se, where the operational andspatial omplexities beome dependent on both the degree of the input polynomial as well asthe number of nonzero terms of its possible fators whih the polytope method an detet. Theaspets we exploit are that the input polynomial and its fators have many zero oeÆients, andthat most of the lifted polynomials are zero, or at worst very sparse. As in the original algorithm,this method works only under ertain oprimality onditions governing the edge fatorisations99



along a speial subset of edges of the Newton polytope (see Chapter 6).The rest of this hapter is organised as follows: In Setion 7.2 we desribe the model of sparsepolynomials to whih this algorithm is best suited. In Setion 7.3 we desribe the implementationin C and the sub-routines omprising the pre-lifting stages. In Setion 7.4 we present our sparseadaptation whih a�ets the polytope method at the lifting stage. In Setions 7.5 and 7.6 weanalyse the omplexity of the sparse method, and in Setion 7.7 we report on the run times ofour experiments produing high reord degree fatorisations over F 2.7.2 Input modelWe hoose to investigate the performane of the sparse adaptation when the input polynomialbelongs to F p[x; y℄, for a �nite �eld F p with prime order. As previously reported in the denseimplementation of [2℄, the random experiments are generated by onstruting a degree d inputpolynomial f using two random polynomials g and h of degree d=2 eah, with a given numberof nonzero terms. Let tg and th denote the number of nonzero terms in g and h respetively,and let t = tgth. The number of nonzero terms in f is thus O(t). For reasons that will beomeapparent later on, we will assume the onditiont3 < d2:This will make up our de�nition of a sparse polynomial f , where d2 is an upper bound on thenumber of nonzero terms that an appear in a degree d polynomial in F p[x; y℄. Note that oneof tg or th has to be at most t1=2, and hene we an assume that g and h have t� terms eah,for some onstant 0 < � < 1. In the remainder of this hapter, we shall omit the referene to\nonzero terms" and refer to these as simply \terms". Also, when analysing the omplexity ofthe sparse method with respet to an integral deompositionNewt(f) = Q+R;we will restrit our attention to the ase when Q and R orrespond to the sparse fators g andh as de�ned above; i.e, when Q = Newt(g) and R = Newt(h). By this, we understand that anextension of a oprime dominating edges fatorisation using our sparse method should be abortedone the number of speialised oeÆients orresponding to Q or R exeeds max(tg; th) = O(t�),for 0 < � < 1.Generi shape of Newt(f)We now desribe few aspets haraterising the generi shape of Newt(f) for a non-trivial inputf . By non-trivial we refer to the ase when f is non-onstant and not known to be divisible byany monomial of the form f(e1;e2)xe1ye2 , for some integers e1; e2 � 0, and f(e1;e2) 2 F p.Lemma 7.2.1 Let f 2 F p[x; y℄ be of total degree d. Then f has at least one term with degreezero in y and one term with degree zero in x if and only if the orresponding exponent vetors ofthose two or more terms are verties or form edges of Newt(f) that lie on the x-axis and y-axisrespetively.Proof: Reall that for a bivariate regular polynomial f , Newt(f) lies entirely in the quadrantof positive oordinates. Suppose that Newt(f) has at least two verties lying on the x-axis and100



y-axis respetively. Sine Newt(f) is the onvex hull of all exponents of f whose orrespondingoeÆients are nonzero, f should have at least two terms whih have a zero exponent in yand x respetively. Now suppose that f has at least two suh terms denoted by f(i;0)xi andf(0;j)yj, for i; j = 1; :::; d. Then the points (i; 0) and (0; j) belong to Newt(f). We want to showthat p = (i; 0) annot but be a vertex or lying on an edge of Newt(f) (the ase for (0; j) isestablished similarly and so are the ases when there are more than one term in f of the formf(i;0)xi or f(0;j)yj). Suppose to the ontrary that p is a stritly interior point of the polytope. Byonvexity of Newt(f), p should lie stritly in the interior of every angular setor formed by anythree onseutive verties. But then the x-axis would interset at least one edge of the polytopein one point di�erent from the two endpoints of the edge, so that Newt(f) ontains points inthe half-plane f(x; y) 2 R 2jy < 0g;a ontradition, sine Newt(f) lies entirely in the quadrant of positive oordinates.Corollary 7.2.1 Let f 2 F p[x; y℄ be of total degree d. Then f has no trivial monomial fatorsof the form f(i;j)xiyj for some integers i; j � 0, f(i;j) 2 F p, if and only if Newt(f) has at leasttwo of its verties on the x-axis and y-axis respetively.Proof: Suppose that f has no trivial monomial fators of the form f(i;j)xiyj for some positiveintegers i and j. Then f must have at least one term that has zero degree in x and one termthat has zero degree in y. By the lemma above, Newt(f) would then have at least two vertieson the x and y axes. The onverse is immediate to establish.7.3 Pre-lifting stagesThe pre-lifting sub-routines all require a non-trivial implementation touhing upon issues aboutproper data struture and areful manipulation of geometri data. In the ourse of this desrip-tion we explore the primary data types representing the geometri strutures suh as edges,verties, straight lines, and dominating sets of edges. We also address how operations involvinggeometri strutures with integer oordinates an be performed orretly, under the restritionthat all suh omputations should involve input and output integer values only.7.3.1 Floating-point operations and integer overowAs will be seen shortly, many aspets of our C implementation are designed so as to avoid bothinstanes of oating-point operations (unless the result an be guaranteed to be exat) andinteger overow. Beause one an predit the possible ourrene of a oating-point operationbefore suh an operation is arried out, this type of problem is easier to handle than integeroverow. On most urrent mahines, signed integers use 32 bits whih represent numbers inthe range �2:109. This sets the �rst restrition on the size of the input data representing theexponent pairs (e1; e2) of terms of f . However, when operations suh as addition or multipliationof signed integers produe an output that exeeds this range, standard C gives no error uponinteger overow. In the absene of a multi-preision pakage for dealing with arbitrary sizes101



of signed integers (see for e.g. [53℄), one may opt to use doubles to represent integers, so thatinteger alulation an be performed aurately with oating-point numbers. This, ombinedwith tests to depit the safe range of any omputation prior to its exeution, makes up a goodstrategy for avoiding integer overow. In doing this, one has to onsider possible anellationsof even inorret alulations of the generi form ab+ d. There, for instane, it suÆes to testfor the sizes of ab and d prior to anellation (addition) and deide whether or not the upperbound on the size of the �nal sum exeeds the allowed bound.Assuming the order of the �nite �eld in question �ts in a mahine word, all �eld operationswill be referred to as bit operations, and the spatial omplexity will be measured in bits.7.3.2 Computing Newt(f)The �rst phase of the algorithm onsists in omputing Newt(f) using a onvex hull algorithm.We hoose to use Graham's fast algorithm of omplexity O(t log t) for an input of size t (see[60℄), despite the fat that slower algorithms of quadrati time in t would still be eÆient in thesparse ase. We also adopt the eÆient variant of Graham's algorithm found in [107℄. The inputpolynomial f is given as a olletion of points P representing the exponent vetors of terms off . Graham's algorithm above produes a stak of verties of Newt(f), whih uniquely desribesthe entire polytope, sine it is suÆient to store information about the verties of a onvex set toretrieve any further information about its edges or interior lattie points. The stak of vertiesis built in a ounter-lokwise order around a �xed pivot, hosen to be the lowest rightmost ofall input points. If m denotes the total number of verties of Newt(f), the stak is representedby a singly linked list of pointers to the verties V0; :::; Vm�1. In turn, eah vertex is a strutureontaining information about the index of the vertex in the stak, as well as the x oordinate(absissa) and the y oordinate (ordinate) of the vertex. For further uses in the algorithm, wealso store the edge desription of Newt(f) as follows. For i = 0; :::;m�1, let Ei denote the edgede�ned by Vi+1 � Vi. If ni denotes the gd of the two omponents of the edge vetor, then Eian be written as niei for a primitive vetor ei whose omponents (ai; bi) are relatively prime.We shall adopt this notation throughout the text.Representing terms of fSine terms of f (and thereafter speialised terms of g and h) will have to be aessed duringevery lifting step, one has to modify the representation of f , originally given as an arbitrarilyordered olletion of points, to allow quik aessibility. Ideally, this would be through the useof a dense representation, whereby the nonzero oeÆient of a term f(e1;e2)xe1ye2 of f is storedin the array loation (e1; e2). A possible solution would be to balane the time it takes to searhfor a partiular term and the total memory required for storing all of them, through the use of a\semi-sparse" representation, so long as this requires no more than the largest struture used inthe entire algorithm, whih will be shown later to be O(t�d) bits of memory, for some onstant�, 0 < � < 1.To illustrate, suppose that ymax and xmax denote the largest degree in y and x respetively,and ymin and xmin denote the smallest degree in y and x respetively, among all terms of f . ByCorollary 7.2.1, we know that ymin and xmin are both equal to zero when f is a \non-trivial"polynomial. We then have ymax � d and xmax � d. Without loss of generality we shall alwaysassume that ymax � xmax, and that all arrays have starting index equal to 0 (rather than 1).102



We an now de�ne a reursive struture as follows. Let fterms denote an integer array of sizeymax suh that eah entry fterms[k � 1℄ denotes the number of terms of f whose degree in yis k. Although this makes the array fterms a dense one, it an now be used to inorporate asparse data struture as follows: for k = 0; :::; ymax � 1 and j = 0; :::; fterms[k℄ � 1, de�ne alist of integers fabsk suh that the j'th element in the list ontains the degree in x of the j'thterm of f belonging to the list of terms of degree k in y. A similar list an be onstruted tostore the oeÆients of terms over F p. In the worst-ase analysis, all terms of f will have thesame degree in y, and we an allow the above sparse struture to oupy at most O(td) bits ofmemory. Assuming that the oordinates of the input polynomial are no larger than a mahineword size, and ombining the requirements for storing the output in Graham's algorithm above,where the number of verties of Newt(f) is of the order O(t) [35℄, the total spatial omplexityof this stage is dominated by O(td) bits. With this struture, we an deide for the existeneof a term f(e1;e2)xe1ye2 of f through a simple san of the list fabse2�1 whih ontains at mostO(t) elements, so that a naive searh is of the order O(t).7.3.3 Finding all irredundant sets of dominating edgesFor determining all irredundant sets of dominating edges we use the algorithm reported inChapter 6. Reall that the proedure depends on the notion of admissible slopes assoiated witha vertex Vi, and denoted by admiss(i), whih designates the range of slopes of all straight linesthat an be drawn through Vi suh that their intersetion with the polytope is only one point. Itwas shown that suh straight lines have to be lying in the angular setor de�ned by the two edgesvi�1vi and vivi+1, and that a neessary ondition for any set of edges onneting two distintverties vi, vj to form an irredundant set of dominating edges is that admiss(i)\ admiss(j) 6= ;.The input to this sub-routine are the verties of Newt(f) as omputed above. The proess anbe ahieved through several implementations of the following:Slopes of edgesWe �rst need a areful manipulation of slopes whih avoids any instanes of oating-pointoperations while performing simple tasks suh as determining and omparing slopes of linessupporting edges. In our implementation, slopes are always integral ratios a=b, whih is onegood property to start with. If k 2 Z and a; b 6= 0, any equality of the form a=b = k(a=b) is notguaranteed to hold for oating point division in C. As a result, we have to treat this quantityas a disrete one. Using a reursive struture we de�ne an array of pointers, Slope, indexed bythe edges Ei, for i = 0; :::;m � 1, suh that the entry Slope[i℄ points to a list of two elements:the numerator and denominator of the slope of Ei, in normalised form (having gd equal to 1).When omputing admiss(i) we are onerned with haraterising all straight lines that fall inthe angular setor whose vertex is Vi and whose rays are with endpoints Vi�1 and Vi+1. Let s1and s2 denote the slopes of lines (Vi�1Vi) and (ViVi+1) respetively. Obviously, any straight linefalling in the interior of the angular setor de�ned above has to have slope in the rangeI = (min(s1; s2);max(s1; s2))if s1 and s2 are of the same sign, or in the rangeI = (�1;min(s1; s2)) [ (max(s1; s2);+1)103



otherwise. The set admiss(i) is then simply the omplement of I, whih an be a single intervalor a union of two intervals. This an be represented by a struture of intervals of the form A[B,for two ontinuous intervals A and B, where only B an be empty. A ontinuous interval thenextends reursively into a two dimensional array Component of pointers suh that Component[0℄and Component[1℄ point to its lower and upper bounds respetively. In turn, suh lower andupper bounds represent slopes of edges, and are hene represented by a two dimensional integerarray bound, suh that bound[0℄ and bound[1℄ denote the numerator and denominator of thequantity denoting slope. Of ourse, by this we understand that bound[1℄ = 0 whenever theorresponding slope is in�nite.Complements and intersetions of setsAt this point we have at hand a representation of rational intervals that will allow us to performthe set operations of taking omplements and of interseting sets. If I denotes an interval or aunion of two intervals as enountered previously, then R nI an be trivially determined and musthave the same representation of I as de�ned above. Furthermore, we will need to determinewhether or not the intersetion of two intervals I = A [ B and I 0 = A0 [ B0, for ontinuousintervals A;B;A0 and B0, is empty. That redues easily to �nding whether A00\B00 6= ; for someA00 = (a; b) and B00 = (a0; b0), where a; a0; b; b0 2 Z[f�1g. To do this, it suÆes to ompare theorresponding lower and upper boundaries of the ontinuous intervals (a; b) and (a0; b0), whoseintersetion is non-empty if and only if any of the following holds:� both a and a0 are �1,� both b and b0 are +1,� only a is �1, b is �nite, and a0 < b,� only a0 is �1, b0 is �nite, and a < b0,� only b0 is +1, a0 is �nite, and a0 < b,� only b is +1, a is �nite, and a < b0.� a; b; a0 and b0 are �nite, and b < a0 or b0 < a.Aording to our representation above, a; b; a0 and b0 are stored as rational quantities, whereomparison of two suh frations n=d and n0=d0 redues to omparing the produt nd0 and n0d.Even though the numerators and denominators are bounded by the oordinates of exponentvetors of terms of f , performing the above integer produts may result in overow. For this,a possible test an be inserted at the beginning of eah suh multipliation to ensure that thesize of any of the intervals boundaries are bounded by at most square root of �2:109.When admiss(i)\admiss(j) 6= ; for i = 0; :::;m�1 and j = i+1; :::;m�1, we onlude thatthe edges onneting the two verties Vi and Vj form two dominating sets of edges omprisingthe ounter-lokwise and lokwise sequene of edges onneting them. A further onditionthat examines the di�erene of two intervals representing intersetions of admissible slopes ofvarious dominating sets is required to selet the irredundant ones (see Chapter 6. All suh setsare represented by a singly linked list Dominating�set ordered aording to inreasing valuesof i. The k'th element of the list points to the two integers i and j suh that Vi and Vj form104



the k'th irredundant dominating set, and to the diretion of the set onneting the two verties(whether lokwise or ounterlokwise). In Chapter 6, the entire proedure has been shown torequire an order of O(m2) operations of set intersetions and omplements. From the disussionabove, these require no more than integer multipliation and omparison. Assuming all suhintegers and intermediary produts �t in a mahine word, the total ost of this stage is of theorder O(m4) bit operations (see Chapter 6). We have also seen that the amount of storageneeded does not exeed eight integers per vertex (representing the total number of numeratorsand denominators of rational boundaries of intervals representing admiss(i) for some i), as wellas three integers per dominating set, whose number itself is dominated by m. As a result, thissub-routine requires at most O(m) = O(t) bits of storage.7.3.4 Determining univariate edge polynomialsAt this point, we shall make the distintion between a sparse and dense polynomial representa-tion as de�ned throughout the text. In partiular, we denote by a sparse polynomial strutureany suh struture where only information about the exponents of the terms is available, evenwhen the orresponding polynomial is not sparse enough. In the rest of the text it will be as-sumed that all entries in a sparse polynomial representation are ordered aording to inreasingvalues of exponents. For simpliity, we shall also always assume that the oeÆients of termsin a sparse representation are stored in a struture mathing the one used for exponents, andit will be impliit everywhere in our disussion that oeÆients of terms are retrieved whenevertheir exponents are so.On the other hand, we denote by a dense polynomial struture any suh struture whereinformation about the (zero and nonzero) oeÆients of the orresponding polynomial is avail-able, as indexed by the degrees of their terms. In the worst-ase analysis, both sparse and denserepresentations will require the same amount of storage for dense polynomials.When f is sparse, so are the orresponding univariate edge polynomials along Newt(f).Thus, we require that they be represented using a sparse data struture. The entire proess ofdetermining these polynomials depends on a number of sub-tasks, suh as identifying integralpoints belonging to the edge, hoosing only those points (e1; e2) orresponding to a term of f ,and determining the orresponding term in z as de�ned by the hange of basis in Step 4 ofAlgorithm 6.8.1.Identifying integral pointsLet Æ 2 Edge(f) where Æ = niei = Vi+1�Vi for some i = 0; :::;m�1, so that Æ has ni+1 integralpoints lying on it. To identify eah of these points, one an start from one of the endpoints, sayVi = (xi; yi), and use the gradients as de�ned by the slope of the line supporting the edge. Reallthat the normalised slope s = a=b of the line supporting Æ an be retrieved using the pointerstored in Slope[i℄, and hene, all integral points on the line supporting Æ an be desribed byx = xi + kb; y = yi + ka;for k 2 Z. In partiular, points (e1; e2) lying between Vi+1 and Vi are de�ned by k = 1; :::; k0�1,where k0 = (xi+1 � xi)=b. One an then test whether (e1; e2) is an exponent orresponding to aterm of f by sanning the list fabse2�1, this requiring no more than O(t) bit operations. ByCorollary 26 of Chapter 8, we know that, for a polynomial f 2 F p[x; y℄ of degree d, eah edge of105



Newt(f) will have at most O(d) integral points lying on it. Throughout the text, we shall referto this number as max�int�pts.Change of basisTo determine the hange of basis assoiated with Æ one �rst has to determine its assoiatedprimitive aÆne funtion as de�ned in Chapter 6. Given only the slope and two end points ofÆ, one an �rst derive the equation of its supporting line. If (xi; yi) and s = a=b are as de�nedabove, then the equation of this line is given byy � yix� xi = ab :To avoid any oating-point operations assoiated with the right hand side division, we view thisas �ax+ by � (byi � axi) = 0;where we are faed with a possible integer overow upon the alulation of byi � axi. This, ofourse, an be avoided through a pre-test on the sizes of byi and axi as mentioned previously.The primitive aÆne funtion lÆ = �1x+ �2y + � an now be derived from the equation of Æ in astraightforward way. Sine Newt(f) should lie in the non-negative halfplane fr 2 R 2jlÆ(r) � 0g,one an simply hoose any vertex of Newt(f) di�erent from the two endpoints of Æ, and substituteits oordinates in the equation of the line omputed above. If the result is positive, we set�1 = �a; �2 = b; and � = �(byi � axi):Else, we set �1 = a; �2 = �b; and � = (byi � axi):These oeÆients an now be stored in an integer array indexed by the position of Æ in the stakof edges. Finally, we all the Extended Eulidean algorithm to ompute the integers �1 and �2suh that �1:�1 + �2:�2 = 1;and we store �1 and �2 ontiguously next to �1; �2 and �. Assuming all input and intermediaryinteger values do not exeed the required bound, the above proess per edge is dominated by aonstant number of bit operations.The hange in basis as desribed in Step 4 of Algorithm 6.8.1 an be retrieved using theoeÆients �1; �2; �1, and �2. Let (e01; e02) denote the oordinates of the starting vertex of Æ. Foreah integral point of Æ orresponding to a term f(e1;e2)xe1ye2 in f , a univariate term in f(e1;e2)z�an be found using� = (e2 � e02)=(��1) if �1 6= 0; or � = (e1 � e01)=(�2) if �2 6= 0;and every suh exponent is stored in the sparse data struture representing the sparse edgepolynomial. Sine all oordinates of points in Newt(f) are assumed to �t in a mahine word, thisrequires no more than O(1) bit operations per term. Combining the osts of the previous tasks,the whole proess of onstruting the univariate edge polynomials is of the order O(md) = O(td)bit operations, and requires no more than O(mt) = O(t2) bits of memory.106



7.3.5 Interseting arbitrary lines with the polytopeIn many of the sub-routines to follow it beomes essential to investigate how a geometri in-tersetion between arbitrary straight lines and Newt(f) an be performed under the restritionthat all omputations have to reeive and produe only integer values. Determining the inter-setion between an arbitrary straight line `0 and the polytope redues to �nding the intersetionbetween `0 and all edges Æ 2 Edge(f). The main problem then lies in that the intersetion pointsbetween any two lines may not be lattie points. But then, they would simply not ontributeto any terms in the lifted polynomials and hene the algorithm as a whole, whih makes themdispensable for our appliation. A possible solution resides in onsidering other suitable pointswhih an still serve the same purpose, that of identifying all possible points of the polytopeorresponding to terms in partiular lifted polynomials. For this, we alternatively introdue thenotion of a near intersetion point, to be that lattie point (ommon to the line and the edgeof the polytope) that is losest (or at best idential) to the real intersetion point. The ruialidea behind our approah depends on that if `0 intersets an edge of Newt(f) in some point,this should lie in the smallest retangle R ontaining Newt(f) and whose edges fall on the linesof equations x = 0; x = xmax; y = 0 and y = ymax. That this an be found is a result of thefat that the onvex hull omputed above is the smallest onvex polygon ontaining all pointsorresponding to terms of f . The entire sub-routine is then as follows:Algorithm 7.3.1 Intersetion(Newt(f); u; v; w)Input: The vertex desription of Newt(f) and an arbitrary line `0 of generi equationux+ vy +w = 0.Output: The near intersetion points of `0 and Newt(f), or the empty set (where the latterimplies that the line does not ontribute to any terms in the lifted polynomials).Step 1: Set k0  0, and i0; i00  �1;repeat1.1: If (vk0 + w) mod u = 0 and �(vk0 + w)=u 2 f0; :::; xmaxg, set i0  �(vk0 + w)=u.1.2: If (i0; k0) 2 Newt(f) then exit the loop;1.3: Set k0  k0 + 1.while k0 � ymax;Step 2: If k0 < ymax, set k00  ymax and repeat:2.1: If (vk00 + w) mod u = 0 and �(vk00 +w)=u 2 f0; :::; xmaxg, set i00  �(vk0 + w)=u.2.2: If (i00; k00) 2 Newt(f) then exit the loop.2.3: Set k00  k00 � 1.while k00 > k0;Step 3: If i0 6= �1 output (i0; k0), and if i00 6= �1 output (i00; k00).Corretness of the algorithm an be shown as follows. If ux+vy+w = 0 denotes the generiequation of `0, we know that all lattie points (a; b) of `0 and lying in R have a y oordinatein the range f0; :::; ymaxg suh that (�vb � w)=u is an integer between 0 and xmax. A possibleapproah to �nding near intersetions onsists in identifying (and then exluding) lattie pointsthat belong to `0\R but not in Newt(f). By onvexity of Newt(f), the latter olletion of points107



are non-adjaent, and form lower and upper lattie points in `0 \R, whose ordinates belong tothe union of the two intervals [0; k0℄ [ [k00; ymax℄for some integers k0 and k00.Before establishing the ost of the above algorithm, we need to disuss how to deide whetheran arbitrary lattie point of the plane belongs to Newt(f). In a rather straightforward approahone would just ompute the set of all points belonging to the polytope, so that testing anarbitrary point for inlusion beomes almost an immediate task. However, this requires about#Newt(f) = O(d2) bits of storage, whih is highly restritive for high degree fatorisations.Furthermore, our upoming sub-algorithm for omputing all integral points of Newt(f) requiresthat we perform intersetions between arbitrary lines and the polytope, so that a more eÆienttest for inlusion in Newt(f) is needed. The test we propose works best when the numberof edges is signi�antly less than #Newt(f). Reall that, in Graham's algorithm above, weonstruted the verties and edges in a ounter-lokwise diretion around the pivot. A simpleonsequene of this and the fat that Newt(f) is onvex is that an arbitrary lattie point belongsto the polytope if and only if it belongs to one of its edges, or it lies to the left of the direted lineof eah edge Æ 2 Edge(f). For this, we adopt the test for \leftedness" suggested in [107℄: Giventhree arbitrary points A = (a1; a2); B = (b1; b2), and C = (1; 2), C is to the left of the diretedline AB if and only if the signed area of the ounterlokwise triangle ABC is positive. Theformula we use, derived from the ross produt of the two vetors B �A and C � A, produestwie the value of the above area, and is given by(b1 � a1)(2 � a2)� (1 � a1)(b2 � a2):Combining, we have the following:Algorithm 7.3.2 Input: An arbitrary point C = (1; 2), and the vertex desription of Newt(f).Output: PASS if C 2 Newt(f), FAIL otherwise.Step 1; For i = 0; :::;m � 1 do1.1: Retrieve Vi+1 = (b1; b2) and Vi = (a1; a2); omputeE = (b1 � a1)(2 � a2)� (1 � a1)(b2 � a2):1.2: If E < 0 return(FAIL).Step 2: Return(PASS);Proposition 7.3.1 Algorithm 7.3.2 works orretly and requires O(t) bit operations.Proof: Corretness of the above proedure relies on that of the signed area test as disussedin [107℄. It suÆes for an arbitrary point to fail the test for only one edge of Newt(f) for us toonlude that it does not belong to the polytope. The run time of the algorithm is dominatedby the ost of omputing the signed area for every edge of Newt(f). Assuming the integeromputations in E are all orret and �tting in a mahine word, this brings the total ost toO(m) = O(t) bit operations. 108



Corollary 7.3.1 Algorithm 7.3.1 for omputing the near intersetion points of an arbitrarystraight line with Newt(f) requires O(td) bit operations.Proof: The two major loops in Algorithm 7.3.1 iterate at most O(d) times, during whihone multipliation, one addition, and one division operation of integers are performed, alongwith a test for inlusion in Newt(f). The ost of the inner loop omputations is dominated bythat of testing for inlusion in Newt(f), whih is of the order O(t). The laim now follows.7.3.6 Computing the set of all integral points in Newt(f)Often throughout the rest of the algorithm, we will need to test for inlusion of arbitrary pointsin the polytope. Although the test in Algorithm 7.3.2 is ruial for the Intersetion sub-routine,it an be ostly to invoke this test very frequently. Hene, we introdue a more eÆient methodfor identifying all integral points in Newt(f), whih uses the above version of Intersetion onlyone, but whih an later be used as a less expensive test for inlusion.Let IP denote the set of all integral points in Newt(f). The solution we provide is enhanedby the fat that nowhere in our sparse adaptation will we need to have all elements of IPavailable at one and the same time. Aordingly, it is suÆient to store a signi�antly smallersubset of IP that still allows us to either retrieve all of its elements or hek whether an arbitrarypoint of the plane belongs to it. As disussed previously, one possible idea is to examine lattiepoints of the polytope that lie on every horizontal line y = k, for k = 0; :::; ymax. This an bedone by omputing the near points of intersetion between all suh horizontal lines and Newt(f).Sine these an be either atual integral points of intersetion or integral points that are losestto the intersetion, we are sure that all elements of IP falling on the line y = k should liebetween the two near points of intersetion. Repeating the proedure for all y = 0; :::; ymaxlabels in this way all elements of IP , and more. Given an arbitrary point of the plane (a; b), wean de�ne a boolean funtion whih returns whether (a; b) 2 IP or not, by simply retrieving thenear intersetion points between Newt(f) and y = b. Obviously, a is an integer lying betweenthe absissas of the two near intersetion points if and only if (a; b) 2 IP .The data struture we de�ne for this sub-routine will be a reursive one, where an ar-ray of ymax pointers Int�pts is suh that Int�pts[y℄ points to another array of two integers,Int�oordinatesy, representing the x oordinates of the two possible points of intersetion withordinate equal to y. Sine we know that the line y = k intersets the polytope for k = 0; :::; ymaxin at least one near point, the �rst entry of Int�oordinatesy ontains its oordinate. If thereexists another near point of intersetion, we use the remaining entry of Int�oordinatesy; else,we set this to be �1.Algorithm 7.3.3 Input: The vertex desription of Newt(f).Output: The set IP of all integral points in Newt(f).Step 1: For y = 0; :::; ymax do1.1: Call Intersetion(Newt(f); 0; 1;�y); store the x oordinate of the �rst near point ofintersetion in the orresponding loation of Int�oordinatesy;1.2: If there is another near point of intersetion store its oordinates in the orrespondingloation of Int�oordinatesy, and output all points lying between the two intersetion109



points.1.3: Else, output the only near point of intersetion.Proposition 7.3.2 Algorithm 7.3.3 works orretly as spei�ed and produes a desription ofIP in O(td2) bit operations and O(d) bits of memory.Proof: Corretness follows easily from the disussion above. The run time depends on thesize of the range y = 0; :::; ymax as well as the ost of one all to the funtion Intersetion, whihis of the order O(td). In total, this brings the ost of �nding all integral points to O(td2). Sineat most two integers less than or equal to d (and hene �tting in a mahine word) are stored fory = 0; :::; ymax, where ymax = O(d), the spatial omplexity follows.Assuming this subset of points in IP is produed only one at the beginning of the algorithm,testing for inlusion of an arbitrary point in the plane omes at no ost beyond that of refereningtwo array entries. In the remainder of this hapter, we shall denote by In(IP; a; b) the funtionall whih tests whether a point (a; b) belongs to IP . Moreover, we an now obtain a moreeÆient proedure for determining the intersetion of an arbitrary straight line with Newt(f).In partiular, we have:Corollary 7.3.2 Assuming that the above representation of IP is obtained as a preomputation,Algorithm 7.3.1 for �nding the intersetion of an arbitrary straight line with Newt(f) an bemodi�ed to require O(d) bit operations.Proof: The proof is immediate to establish, by noting that Intersetion an replae itssub-routine for testing inlusion by the test In(IP ).Here and hereafter, we shall refer to the modi�ed intersetion sub-routine as Intersetion0.7.3.7 Counting fators of univariate fatorisationsOne the edge polynomials have been stored in univariate form, we are ready to perform thefatorisations over the de�ning �eld. For simpliity of ode we hoose to make use of theomputer algebra pakage MAGMA �, whereby the output of all previous stages is diretedto a �le that an serve as a MAGMA ode �le within whih lies its input. The input in thisase omprises the following: all piees of data previously omputed and that will be needed inthe lifting stage, among whih are the verties of Newt(f), and the list of sets of dominatingedges. Also available are the univariate polynomials whih MAGMA has to fatorise using itsbuilt-in funtion (based on the Berlekamp algorithm [8℄) for univariate polynomial fatorisationover �nite �elds. The output of the MAGMA ode is now direted into a �le whih has, inaddition to the original information above, the full fatorisation of univariate edge polynomialsinto powers of irreduibles, and whih an be fed into the following sub-routines forming thethird phase of the implementation.In all what follows let F (Æ)0 denote the univariate edge polynomial assoiated with Æ and let dÆdenote its degree. Assuming that irreduible fators of F (Æ)0 are stored in sparse representation,we de�ne a list irredÆ of integer pointers suh that element s of irredÆ points to the address�See http://magma.maths.usyd.edu.au/magma/ 110



in memory of the s irreduible fator of f (Æ)0 produed by the MAGMA ode above. We alsode�ne an integer array head�irred of size at most O(d) suh that head�irredÆ[j℄ points to theloation in the list irredÆ of the �rst irreduible polynomial of degree j, for j = 0; :::; dÆ . Let hdenote the total number of irreduible fators of F (Æ)0 . We de�ne two integer arrays, mulÆ anddegÆ, of size h eah, suh that mulÆ[s℄ denotes the multipliity in F Æ0 , and degÆ[s℄ denotes thedegree, of the s irreduible in irredÆ. The ruial idea behind our approah is that any degreej fator Rj of F (Æ)0 has to satisfy the following:1. Rj = (irred(0)Æ )p0 � (irred(1)Æ )p1 � � � (irred(s)Æ )ps , where firred(k)Æ gk=0;:::;s represents the set ofall irreduible fators of F (Æ)0 of degree less than or equal to j,2. pk � mulÆ[k℄, for k = 0; :::; s,3. Pk=0;:::;s degÆ[k℄ � pk = j.Using this notation, ounting the number of all possible polynomials Rj redues to ounting allpossible ways one an onstrut an objet with s+ 1 spots, eah of whih an be oupied bysome integer ag pk, for pk = 0; :::;mulÆ[k℄, and then to exluding those hoies of Rj whihfail ondition 3 above. We restate this simple ounting problem through the following reursiveproedure:Algorithm 7.3.4 Input: A degree dÆ univariate polynomial F (Æ)0 fatorised ompletely into pow-ers of irreduibles.Output: the number m(Æ)j of degree j fators of F (Æ)0 , for j = 0; :::; dÆ .Part I:Count�divisors(dÆ)Step 1: for j = 0; :::; dÆ , do1.1: Let tail denote the address in memory of the last irreduible fator of F (Æk)0 of degreej, and setspot tail.1.2: V ary�ount(spot; j; tail).Part II:V ary�ount(spot; j; tail)Step 1: Set pspot  �1;repeat1.1: Set pspot  pspot + 1;1.2: If (spot = 0) doIf Pk=0;:::;tail degÆ[k℄ � pk = j, set m(Æ)j  m(Æ)j + 1.1.3: Else if (spot > 0), all V ary�ount(spot� 1; j; tail).while (pspot < mulÆ[spot℄).Proposition 7.3.3 Algorithm 7.3.4 works orretly as spei�ed. When used to determine thenumber of fators of all possible degrees, the algorithm requires at most O(d1+hh) bit operations111



and O(td) bits of memory, where h denotes the maximum number of irreduible fators of edgepolynomials F (Æ)0 over all Æ 2 Newt(f)y.Proof: For a �xed j = 0; :::; dÆ , Part I invokes the reursive funtion V ary�Count usingall irreduible fators of the edge polynomial of degree less than or equal to j. Those fatorshave indies 0; :::; tail in the list irredÆ, so that eah oupies a \spot". We shall establishorretness of the reursive funtion by indution on the number of spots. Let N denote thisnumber. If N = 1, the all to the reursive funtion determines the number of ways one anform fators of F (Æ)0 using only the �rst irreduible fator, irred0. All suh possible fators areof the form irredp00 , for p0 = 0; :::;mulÆ[0℄. Now, suppose that the algorithm is true for N � 1.The all to V ary�ount(N; j; tail) lists all possible powers that an oupy spot N , and heneall possible powers of the irreduible having index N in the list irredÆ. For eah suh hoie, aall to V ary�ount(N � 1; j) is assumed to have produed all possible ways to form produts ofpowers of irreduibles oupying loations 0; :::; N � 1 in the list irredÆ. Combining, this resultsin new ways to form produts of powers of irreduibles oupying loations 0; :::; N in the list.When eah suh produt has total degree j, a suitable fator would have been found, and m(Æ)jis inremented by 1.For a �xed j, 1 � j � d, sine h denotes the maximum number of irreduible fators of edgepolynomials F (Æ)0 over all Æ 2 Newt(f), there are O(h) irreduibles (or spots) for every edge,and eah spot k an have at most mulÆ[k℄ � O(d) hoies. When eah hoie is made a test isperformed involving at most O(h) multipliations and additions of integers bounded by d. Sinej � d, the total run time now follows.It an be easily seen that the list irredÆ has size at most O(h). The array head�irredÆ isof size O(d) sine eah of its entries points to loations in memory of the �rst irreduible fatorof F (Æ)0 of some degree less than or equal to d. Hene, its entries are also bounded by O(h) invalue and thus �t in a mahine word, as h � d. Sine multipliities and degrees of all irreduiblefators are bounded by d, the arrays mulÆ and degÆ are of size O(h) and have entries whih �tin a mahine word. In total, the algorithm will require O(d) bits per edge polynomial, and soO(td) bits in total.7.3.8 Summand ounting and reovering algorithmThe summand ounting algorithm used in Chapter 6 requires all elements of IP to be availablein about O(d2) bits of memory, whih makes it one of several bottleneks we would like toaddress before attempting very high degree fatorisations. Sine our appliation is designedso as to spei�ally target sparse polynomials, we allow again the use of a \naive" summandounting algorithm, whih, despite its being exponential in the number of edges m of Newt(f),requires negligible storage. Sine m = O(t), we expet this trade-o� between memory and runtime to be e�etive only for signi�antly sparse polynomials. The proess an be desribed invery similar terms as in the ounting proedure in Algorithm 7.3.4. By Lemma 13 of [45℄, anintegral polygon is a summand of Newt(f) if and only if it has an edge sequene of the form iei,for 0 � i � ni, for some i 6= 0 and m�1 6= nm�1, andP0�i<m iei is the zero vetor (the othersummand is understood to have the edge sequene f(ni� i)eig, for i = 0; :::;m� 1). Hene, weyNote that although h � d, it has been shown in [83, 84, 100℄ that h is approximately log d, so that in pratie,the ounting algorithm ahieves its output in a reasonable amount of time112



an view any possible summand of Newt(f) as an objet onsisting of m spots, eah of whihhas a vetor ei assoiated with it, and an be oupied by a omponent i = 0; :::; ni, suh thatXi=0;:::;m�1 iei = 0:This again entails a reursive proedure examining all possible hoies of a summand with medges, eah of whih has a possible length in the range i = 0; :::; ni. The extra restritions weplae over the i's are that they should math the degrees of the known univariate fators ofthe edge polynomials f Æ0 suh that Æ = niei. In partiular, we exlude any value for i suh thatm(Æ)i = 0. One a omplete hoie using some ombination of salar multiples of vetor edgeshas been formed, we hek if the resulting vetor sum is zero, in whih ase a summand wouldhave been found.Sine the above approah uses information about the edges rather then the verties ofNewt(f), any of its possible summands will be produed using an edge sequene desription.The data struture we use for edges is a irular doubly linked list of pointers: Eah elementof the list links to previous and following neighbours, and the last element links to the �rst.Eah pointer is assoiated with some edge Æ0 in the summand, and points to an array Edge ofintegers suh that EdgeÆ0 [0℄ and EdgeÆ0 [1℄ denote the respetive x and y omponents of Æ0. Thealgorithm an now be desribed as follows:Algorithm 7.3.5 Input: The edge desription fnieigi=0;:::;m�1 of Newt(f), the set fm(i)j j 0 �j � deg(F Æi0 )g, where m(i)j is the number of degree j fators of F Æi0 , and an upper bound M onthe total number of summands.Output: The edge desription of all possible pairs Q;R suh that Newt(f) = Q+R, or \failure"if the number of suh deompositions exeeds M .Part I: Count�summands()Step 1: Set spot m� 1, first�spot 0.Step 2: Call V ary�hoie0(spot; first�spot);Part II: V ary�hoie0(spot; first�spot)Step 1: Set spot  �1; repeat1.1: spot  spot + 1;1.2: If m(spot)spot > 0 do1.2.1: If spot = first�spot, hek if the hosen edge sequene forms the zero vetor andthat the sequene iei, for i = 0; :::;m � 1, is not trivial. If so, output this summand.1.2.2: Else, if spot > last�spot, all V ary�hoie0(spot� 1; f irst�spot).while (spot < nspot).Step 2: If total number of summands exeeds M , halt the polytope algorithm.Proposition 7.3.4 Algorithm 7.3.5 works orretly and requires O(tdt) bit operations and nomore than O(t) bits of memory to list all pairs of summands.113



Proof: Corretness follows similarly as in the proof of Proposition 7.3.3 above, and we leavethe details for the reader. To establish the running time, we �rst know that the maximum overall ni's, denoting the maximum number of integral points along any edge of Newt(f), is O(d).The naive method has to ount over O(dm) = O(dt) di�erent summands of Newt(f), whereevery ount is aompanied by O(m) additions and multipliations of vetor oordinates, eahof whih is an integer less than or equal to d, and hene an �t in a mahine word for values ofd used in our appliation. If the number of all possible pairs of summands is larger than somelarge parameter M , the entire ode is halted produing Failure as in Algorithm 6.8.1 above.Note that we do not need to keep information about more than one pair of summands at atime. For eah suh non-trivial pair, we an arry out further omputations inluding the liftingstage. If unsuessful, the proess an be repeated using a di�erent pair of summands whihoupies the spae of its predeessor. As suh, the amount of storage needed is O(m) = O(t)bits of memory, where we understand that the omponent vetors desribing the edges of anysummand are bounded in size by the omponent vetors of edges of Newt(f).Reovering a vertex desription of the summandsIn the above algorithm, we obtained only the edge sequene desribing a pair of summands Qand R of Newt(f), whih desribes a unique deomposition up to translation with an arbitraryvetor in R 2. However, it is essential that we identify whih of these translated summands willorrespond to possible fators of f . In partiular, the following onsequene of Corollary 7.2.1requires that we seek a vertex desription allowing the proper translation of Q and R aordingto the fat below:Corollary 7.3.3 Let f 2 F p[x; y℄ be of total degree d suh that f has no trivial monomial fatorsof the form f(i;j)xiyj for some positive integers i and j, f(i;j) 2 F p, and let Q be any summandof Newt(f) that orresponds to a possible fator g of f . Then Q must have at least two vertiesor edges on the x-axis and y-axis respetively.Proof: Suppose Q is a summand of Newt(f) orresponding to a possible non-trivial fatorg of f . For f as above, g must have no trivial monomial fators of the form f(i;j)xiyj. ByCorollary 7.2.1, Q must have at least two verties on the x and y axes.The data struture we use for the vertex desription of the summands is the stak of pointsas used in the representation of Newt(f). For onsisteny, we will always assume that eah ofthe summands has m verties and edges, though some of the edges may be trivial, in whih asewe also de�ne appropriate trivial verties with oordinate values (�1;�1), as we show in thefollowing proedure.Let fqi = ieigi=0;:::;m�1 denote the edge sequene of a summand of Newt(f). We �rst hoosean arbitrary point to be the pivot V0, suh as the origin of oordinates (0; 0) for instane, andthen de�ne an auxiliary vetor sum, sum, initialised to zero. We then build around the pivot byadding to sum the vetor edges given one at a time. Sine the edges are direted in a ounter-lokwise fashion around the pivot as in Newt(f), we expet to build the verties in a stakstruture. If some edge qi = Vi+1 � Vi is trivial, we insert a trivial vertex at the appropriateindex of the stak as follows. If qi is followed by a non-trivial edge qj, for some j = i+1; :::;m�1,then Vi+1 is a trivial vertex. Else, if qi is not followed by any non-trivial edge, then, sine the114



last non-trivial edge of the summand is qi�1, it must onnet Vi to V0, so that Vi oinides withthe pivot, at whih point the edge sequene forms a losed zero sum. Aordingly, we de�neall the remaining verties Vj, for j � i, to be trivial. When all non-trivial verties have beendetermined with (0; 0) as the pivot, we translate the polytope so that the following is satis�ed:1. Q lies ompletely in the positive quadrant f(x; y)jx; y � 0g,2. Q intersets the x-axis and y-axis in at least one point respetively.In simpler terms, the lowest absissa and ordinate among all oordinates of verties should bezero. As a result, it suÆes to determinea = min(xi)i=0;:::;m�1 and b = min(yi)i=0;:::;m�1for Vi = (xi; yi) and to translate eah of the verties of Q by the vetor (�a;�b). The proedurean now be summarised as follows:Algorithm 7.3.6 Input: The edge sequene qi = fieigi=0;:::;m�1 of a summand Q of Newt(f),where not all the i's are zero and where m�1 6= nm�1.Output: The verties V0; :::; Vm�1 of Q.Step 1: Set sum (0; 0), V0  (0; 0);For i = 0; :::;m � 1 do1.1: If qi is not trivial, set Vi+1  sum+ qi and sum sum+ qi;1.2: Else, if qi is followed by a non-trivial edge, set Vi+1  (�1;�1);1.3: Else, for j = i; :::;m � 1, set Vj  (�1;�1).Step 2: Let a and b denote the lowest absissas and ordinates among all oordinates of thenon-trivial verties; translate all non-trivial verties of Q by (�a;�b).The proof of orretness and that the algorithm requires O(t) bit operations is immediate,bearing in mind that m = O(t) and that a vetor sum in our appliation redues to the additionof two integers whih do not exeed d, and hene whih �t in a mahine word.Computing the integral points belonging to Q and ROne a vertex desription of the appropriate translated images of summands has been omputed,we an determine the sets of integral points IPg and IPh belonging to Q and R respetively, as wehave seen earlier in the ase of Newt(f), in O(td2) bit operations. We further keep trak of twoindies, denoted by remg and remh, and initialised to #IPg and #IPh respetively. The indiesare dereased by 1 every time a new oeÆient is speialised, so that a total speialisationof oeÆients of g or h is reahed when any of remg or remh is zero. For future use, wealso determine the number of integral points gnÆ0i falling on every edge Æ0i of Q, using the O(d)tehnique of Subsetion 7.3.4. We also note that the loation in memory used to store informationabout the summands an be reused upon eah new hoie.
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7.3.9 Choosing oprime dominating edges fatorisationsAs a result of the hanges we have introdued to the summand ounting algorithm reommendedin Chapter 6, the proedure with whih we hoose a oprime edges fatorisation has to be mod-i�ed as well. Given a �xed pair of summands of Newt(f) and a set of all irredundant sets � ofdominating edges, we want to identify all resulting oprime dominating edges fatorisations. Forevery pair of verties Vi and Vj suh that i < j and whose onneting edges form a dominatingset, we an hoose � to be the (forward) sequene of edges niei; :::; nj�1ej�1 or the (bakward)sequene njej ; :::; nm�1em�1; n0e0; :::; ni�1ei�1. Let � denote a �xed irredundant set of domi-nating edges of ardinality m0, and suppose that all edges in � have been relabelled to oupyan index in f0; :::;m0 � 1g. We an generate a sequene of oprime edges fatorisations by ex-amining all possible ways we an form a m0 sequene of polynomials G(Æi)0 , for i = 0; :::;m0 � 1,eah satisfying the following:1. G(Æi)0 = irredp00 � � � irredpss , where firredkgk=0;:::;s denotes the list of all irreduible fatorof F (Æi)0 of degree less than or equal to length of Æi.2. pk = 0 or pk = mulÆi [k℄, for k = 0; :::; s.3. Pk=0;:::;s ps � degÆi [k℄ = jjÆijj.Here, jjÆijj denotes the length of edge Æi. The seond ondition above guarantees a oprimeedges fatorisation, sineH(Æi)0 = F (Æi)0G(Æi)0 = irredmulÆi [0℄�p00 � � � irredmulÆi [s℄�pss ;so that G(Æi)0 and H(Æi)0 have a non-trivial fator in ommon if and only if there exists at leastone k suh that irredk has a non-trivial multipliity di�erent from 0 and mulÆi [k℄ in both G(Æi)0and H(Æi)0 . Sine we need only one edge polynomial deomposition F Æi0 = GÆi0 HÆi0 at a time tomake a sequene of fatorisations using all Æi 2 �, and only one sequene of edges fatorisationsat a time to initiate lifting, we an interleave the two proesses as follows:Algorithm 7.3.7 Input: A �xed integral deomposition Newt(f) = Q+R and all fatorisationsof the edge polynomials into powers of irreduibles.Output: All possible oprime dominating edges fatorisations assoiated with Q and R.Part I: Choose�oprime�fatorisationsStep 1: For all pairs of verties (Vi; Vj) of Newt(f), where i = 0; :::;m�1 and j = i+1; :::;m�1,and where the edges onneting Vi and Vj form an irredundant set of dominating edges:while no fatorisation has been ahieved and any of the irredundant sets has not been used, do:1.1: Consider the edge sequene omprising �:1.1.1: Set m0  #� and perform a hange of index so that the edgesin � are relabelled as fÆ0; :::; Æm0�1g.1.1.2: Let fÆ00; :::; Æ0m0�1g be the orresponding set of edges in Q suhthat Æ0k is a summand of Æk, for k = 0; :::;m0 � 1.116



1.1.3: Let tail denote the address in memory of the last irreduible fator of F (Æk)0 ofdegree equal to jjÆ0kjj.1.1.4: Set k  m0�1, and spot tail, and all V ary�hoie�aross�edges(Æk ; Æ0k; spot; tail).Part II: V ary�hoie�aross�edges(Æk ; Æ0k; spot; tail)Step 1: Set power(spot)  �1;repeat1.1: If power(spot) = �1, set power(spot)  power(spot) + 1.1.2: Else, set power(spot)  mulÆk [spot℄.1.3: If spot = 0, hek if a oprime edges fatorisation orresponding to the lengths of thesummand edges has been found:1.3.1: If jjÆ0kjj = 0, set G(Æk)0 = 1 and H(Æk)0 = F (Æk)0and go to 1.3.3.1.3.2: Else, �nd the produt Poly of all polynomials polyr, for r = 0; :::; tail,suh that polyr = irredÆk [r℄power(r). If deg(Poly) = jjÆ0kjj, setG(Æk)0  Poly and H(Æk)0  F (Æk)0 =G(Æk)0and go to 1.3.3. This will onstitute the oprime fatorisation assoiated with edge Æ0k.1.3.3: If Æk is the �rst edge in �, all edges now have a oprime fatorisation assoiatedwith them, and we start lifting using all dominating boundary fatorisations.1.3.4: Else, repeat Step 1 in Part II above for the preeding edge Æk�1:Let tail denote the address in memory of the last irreduible fator of F (Æk�1)0 of degreeequal to jjÆ0k�1jj, set spot tail, and all V ary�hoie�aross�edges(Æk�1; Æ0k�1; spot; tail).Step 1.4: Else if spot > 0, we still need to hoose powers of irreduible fators of F (Æk)0of index spot� 1; spot� 2; :::; 0: Call V ary�hoie�aross�edges(Æk; Æ0k; spot� 1; tail).while (power(spot) < mulÆk [spot℄ and fatorisation still not ahieved).Proposition 7.3.5 Algorithm 7.3.7 works orretly and requires O(t2d1+hh) bit operations andO(td) bits of memory, where h denotes the maximum number of irreduible fators of edgepolynomials F (Æ)0 over all Æ 2 Newt(f).Proof: We establish orretness by indution on the number of edges in �. If m0 = 1, theproedure above redues to �nding all possible fators of F (Æ0)0 of degree jjÆ00jj. Corretness in thisase an be proven by indution as in the proof of Proposition 7.3.3 above. Now, suppose the al-gorithm is orret when the number of edges in � is less thanm0. For the �xed edge Æm0�1 2 �, themain loop in Part II examines all possible fators of F (Æm0�1)0 of degree jjÆ0m0�1jj, whih is orretas shown in Proposition 7.3.3. For eah suh fator whose degree mathes the length of Æ0m0�1,and by the indution hypothesis, the all to V ary�hoie�aross�edges(Æm0�2; Æ0m�2; spot; tail)determines all possible oprime edges fatorisations along edges Æk, for k = 0; :::;m0�2. But nowa full hoie using one fator of F (Æm0�1)0 and all possible fators of F (Æk)0 , for k = 0; :::;m0 � 2,117



has been made. At this stage, one an then initiate lifting using oprime fatorisations for alledges in �.The worst-ase run time of the algorithm an be derived from the fat that one would have totry all possible oprime fatorisations using �. By Proposition 7.3.3, �nding all possible hoiesof polynomials per edge is of the order O(d1+hh). Aross all edges of �, this beomes of the orderO(md1+hh). Assuming that there are at most O(m) pairs of verties (Vi; Vj) onneting two setsof dominating edges, the total worst-ase omplexity is of the order O(m2d1+hh) = O(t2d1+hh).Now, sine any of the summands Q and R will have at most #Newt(f) = O(d2) integralpoints, the maximum number of integral points found along any edge of Q or R is bounded bythat same number found along any edge of Newt(f), whih is O(d). The amount of storageneeded in the above algorithm is for one oprime edges fatorisation only, where the univariateedge polynomials orresponding to Q or R have degrees bounded by O(d), so that the memoryneeded is about O(td) bits.One a oprime dominating edges fatorisation has been hosen, we an perform furtherharaterisations of the orresponding edge polynomials in Q and R. First, and for all pairs ofoprime edge polynomials G0 and H0, we ompute the unique polynomials U and V suh thatUG0 + V H0 = 1and deg(U) < deg(H0);deg(V ) < deg(G0), using the Extended Eulidean algorithm for polyno-mials. Even though G0 and H0 are sparse, the polynomials U and V may be dense themselves,having about O(d) terms. However, we shall store these in a sparse data struture whereby onlyinformation about the terms is available. We also determine other edge harateristis, suh asthe primitive aÆne funtion assoiated with every edge of the summands. Given Æ 2 Edge(f)and Æ0 its summand in Q, we have thatlÆ0(x; y) = lÆ(x; y)� Æ = �1x+ �2y + � � Æfor some unique integer Æ [2℄. Sine �1; �2 and � have already been omputed, it suÆes todetermine and store only Æ , by �nding the equation of the straight line with slope ��1=�2 andpassing through one of the verties of Æ0, as shown in Setion 7.3 above. This immediatelydetermines the primitive aÆne funtion of the edge Æ00 = Æ � Æ0. Furthermore, we an now usethe oprime dominating edges fatorisation hosen above to speialise a subset of the oeÆientsof the possible fators g and h orresponding to the �xed pair of summands we have used above.In partiular, if we write G(Æ0k)0 = Xs=0;:::;jjÆ0kjj�1 gszs;and if (a; b) denotes the oordinates of the head of the edge Æ0k, then, by Lemma 9 of [2℄, eahterm gszs of G(Æ0k)0 will result in the speialisation of a oeÆient of a term gsxiyj in g, suh thati = �2:s+ a and j = ��1:s+ b;where (a; b) denote the oordinates of the starting vertex of Æ0. As in the sparse representationof terms of f , we store only these terms of g and h speialised so far. The data struture isidential to the one desribed in Setion 7.3 for representing terms of f , with gymax and hymax,gxmax and hxmax, gterms and hterms, and gabs and habs the analogous terms of ymax, ymin,yterms, and fabs respetively. This would require at most O(td) bits of memory.118



7.4 The sparse lifting algorithmWith the exeption of the summand ounting algorithm and the orresponding subroutine fordetermining dominating oprime edges fatorisations, all the previous tasks omprise the pre-omputation phase, whose omplexity bounds are dominated by O(d1+hh) bit operations andO(t2 + d) bits of storage. As noted in [2℄, the summands and boundary fatorisations need notbe all omputed at one. Lifting an be initiated for eah oprime edges fatorisation one at atime until a fator is found or the lifting proedure fails. Our empirial �ndings in Tables 7.1and 7.2 demonstrate that in pratie, and given very sparse polynomials suh as those de�nedin Setion 7.2, the total number of dominating oprime edges fatorisations is onsiderably lessthan the total degree of the input polynomial. For suh lass of polynomials, we will onsiderthat the sparse lifting proedure will be invoked a number of times that is bounded by somesmall onstant M . It is reommended that the polytope method be disarded one the numberof oprime edges fatorisations attempted exeeds this bound, and one revert to other \dense"methods [2℄.The main sub-routine of the polytope lifting stage is as follows:Algorithm 7.4.1 Input: A (�;K;Q;R) oprime dominating edges fatorisation, where K =(1)Æi2�, for i = 0; :::;m0 � 1.Output: A fatorisation of f , or \failure".While a fator of f has not been found and not all oeÆients in Q and R have been speialised,do: Step 1: For every Æi 2 � do1.1: Retrieve its summand Æ0i 2 Q and the orresponding primitive aÆne funtion lÆ0i .1.2: Count the number of unspeialised terms uÆ0i on the kÆi+1 translate of the supportingline of Æ0i into Q, and whose equation is de�ned by lÆ0i = (kÆi + 1).Step 2: Choose one edge Æi whose summand satis�es:. uÆ0i < gnÆ0i. uÆ0i = max(uÆ0s)s=0;:::;m0�1Step 3: Set kÆi  kÆi + 1 and perform a K lifting of the given partial fatorisation. If thisextension produes failure, exit the loop and hoose a new oprime edges fatorisation.End.The pseudo-ode above mostly reets the operations in Step 4 of Algorithm 6.8.1, whih hasbeen proven to terminate either with a failure or with a fator of f (see [2℄ for full details). Theonly slight modi�ation is in hoosing the suitable edge to lift from. Primarily, one has to hooseÆ0 suh that the number of unspeialised terms on its kÆ + 1 translate is less than the numberof integral points on Æ0. In the dense implementation of [2℄, preferene was given to \shorter"edges even though lifting from these edges revealed a smaller number of oeÆients of g and h,sine their orresponding lifted univariate polynomials had smaller degrees, and hene ould beproessed faster by polynomial arithmeti sub-routines. However, this argument does not hold inour sparse adaptation, where the omplexity of sparse polynomial arithmeti beomes dependenton the number of terms in a polynomial rather than its degree. Also, sine we expet many ofthe lifted univariate polynomials to be zero, non-trivial polynomial arithmeti is performed only119



very rarely. Preferene is thus shifted to longer edges whih reveal more oeÆients per liftingstep.To establish the run time and spatial omplexity of the above lifting module, we shall needto investigate eah of its inner sub-routines, for whih the rest of this setion is dediated.7.4.1 Deteting speialised oeÆientsA ruial aspet of our sparse adaptation onsists in that only nonzero terms of g or h getstored as they are revealed during the lifting stages. Consequently, it beomes essential to �ndeÆient ways of identifying whether or not an arbitrary point in Q (or R) orresponds to aspeialised term of g (or h), a task whih is otherwise immediate in a dense implementation,where information about all the lattie points is stored. For this, we propose the followingalgorithm:Algorithm 7.4.2 Input: An arbitrary point (i; j) of Q, and a partial (�;K)-fatorisation ex-tending a oprime dominating edges fatorisation.Output: PASS if (i; j) orresponds to a speialised oeÆient of g, and FAIL otherwise.Step 1: For every Æ 2 �, let Æ0 denote its summand in Q, let kÆ denote the entry in the K vetorindexed by Æ, and let lÆ0 denote the primitive aÆne funtion assoiated with Æ0.Step 1.1: If lÆ0(i; j) < kÆ return(PASS).Step 2: Return(FAIL).Proposition 7.4.1 Algorithm 7.4.2 works orretly and requires O(t) bit operations.Proof: The input to the algorithm presupposes a partial (�;K) fatorisation, where exatlythe oeÆients of g indexed by lattie points in Qj�;K have been speialised [2℄. But these arepreisely the points given by:Qj�;K := fe 2 Q j 0 � lÆ0(e) < kÆ where Æ0 is a summand of some Æ 2 �g;whih establishes orretness. Assuming that no integer overow ours as a result of omputinglÆ0(i; j), the main loop of the algorithm iterates at most O(m) = O(t) times, during whih onlymultipliation and addition of bits is performed.The algorithm above still does not produe whether (i; j) orresponds to a nonzero termof g, if at all speialised. However, this an be readily heked by a simple san of the list ofnonzero terms of g that have already been speialised, so that in general, the following shemewould work best:Algorithm 7.4.3 Speialised(i; j)Input: An arbitrary point (i; j) of Q, and a partial (�;K)-fatorisation extending a oprimedominating edges fatorisation.Output:� The oeÆient of g(i;j)xiyj in g, if (i; j) orresponds to a nonzero term of g,120



� 0 if (i; j) orresponds to a zero term of g,� and �1 otherwise.Step 1: San the list gabsj�1; if there exists an element with value i, return the value of itsoeÆient.Step 2: Invoke Algorithm 7.4.2 with input (i; j); if output is PASS, return (0), else return (-1).It is trivial to see why the above algorithm works orretly and requires an order of O(t) bitoperations, the ost for both sanning the list gabsj�1 and alling Algorithm 7.4.2.7.4.2 Counting unspeialised termsIn this setion we disuss another frequently used proedure for ounting unspeialised terms ontranslated edges of Q. The approah mirrors in many aspets that of identifying integral pointsinterior to Newt(f), and is desribed as follows:Algorithm 7.4.4 Input: Æ in �, Æ0 its summand in Q, and a partial (�;K)-fatorisation ex-tending a oprime dominating edges fatorisation.Output: The number of unspeialised oeÆients orresponding to integral points on the kÆ + 1translate of the supporting line of Æ0 into Q.Step 1: Retrieve the primitive aÆne funtion lÆ0 = �1x+ �2y+ �� Æ, and onsider the equationof the line `0 given by lÆ0 = kÆ + 1; set num 0.Step 2: Call Intersetion0(IPg; �1; �2; � � (Æ + kÆ + 1)).Step 3: For every integral point (i; j) between and inluding the two near points of intersetionprodued in Step 2 above, if Speialised(i; j) = �1, set num num+ 1.Step 4: Return num.Proposition 7.4.2 Algorithm 7.4.4 works orretly as spei�ed and requires at most O(td) bitoperations.Proof: Given a partial (�;K)-fatorisation, the algorithm aims to ount the number ofunspeialised terms of the polynomial G(Æ)kÆ+1, for all Æ 2 �. This is done by examining theorresponding number of integral points on the kÆ + 1 translate of Æ0 into Q, suh that Æ0 is asummand of Æ. By Lemma 8 of [2℄, if GÆkÆ+1 has a nonzero number of unspeialised terms thatis stritly less than the number of integral points on Æ0, then all of these have exponents whihare adjaent integral points on the kÆ+1 translate of the supporting line of Æ0 into the polytope,whose equation is de�ned by l0Æ� (kÆ+1) = 0, where l0Æ = lÆ� Æ = �1x+�2y+�� Æ. The abovealgorithm alls the intersetion funtion Intersetion0 to determine integral points on this linewhih are then tested for speialisation.Intersetion0 with the given input requires O(d) bit operations, while a all to Speialisedrequires O(t) bit operations. Sine there are about O(d) integral points lying on `0 and insideQ, the total amount of time required by the above algorithm is at most O(td) bit operations.121



7.5 Investigating one lifting stepThe following setion is dediated to analysing the omplexities of a number of major sub-routines used per one step of lifting from a �xed edge in �. It is in these tasks that other strongaspets exploiting sparsity will be highlighted.Sparse univariate polynomial arithmeti over F pThe most basi of these tasks is related to sparse arithmeti of univariate polynomials over F p.Assuming that terms of sparse polynomials are stored in inreasing order of their exponents,the following algorithm performs the summation of two sparse polynomials in time linear in theinput size; in partiular, we have:Algorithm 7.5.1 Sum(f0; f2)Input: Two polynomials f0, f1 2 F p[z℄ in sparse format suh that fj[i℄ represents the exponentof the i'th term in fj, j = 1; 2. Also given are t0 and t1, the total number of terms in f0 and f1respetively. We may also assume that f0 and f1 are nonzero.Output: f0 + f1 in sparse format.Step 1: index 0, index0  0, index1  0;Step 2: while (index0 < t0 and index1 < t1) do2.1: If f0[index0℄ > f1[index1℄ and index1 < t1 do2.1.1: Set sum[index℄ f1[index1℄.2.1.2: Set index1  index1 + 1.2.1.3: Set index index+ 1.2.2: Else, if f0[index0℄ < f1[index1℄ and index0 < t0 do2.2.1: Set sum[index℄ f0[index0℄.2.2.2: Set index0  index0 + 1.2.2.3: Set index index+ 1.2.3: Else, if f0[index0℄ = f1[index1℄ do2.3.1: Let 0 and 1 denote the oeÆients of terms whose exponents are f0[index0℄ andf1[index1℄ respetively.2.3.2: If 0 + 1 6= 0 mod p, set sum[index℄ f0[index0℄, and index index+ 1.2.3.3: If index0 < t0 set index0  index0 + 1.2.3.4: If index1 < t1 set index1  index1 + 1.Step 3: If index0 < t0 set the remaining terms of sum to be the remaining terms of f0; else, ifindex1 < t1, set the remaining terms of sum to be the remaining terms of f1.Proposition 7.5.1 The above algorithm works orretly as spei�ed, requiring O(t) bit opera-tions and O(t) bits of memory, for input polynomials in sparse format with at most O(t) terms.Proof: The algorithm is based on a omparison proedure whereby terms of f0 and f1 areolleted together in inreasing order of exponents, suh that any two terms from f0 and f1respetively and having the same exponent are added modulo p. When any one summand isexamined entirely, the remaining terms in the other polynomial will all belong to the sum. Thesub-routine above is linear in the number of omparisons it makes between exponents of terms,122



so that it requires no more than O(t) bit operations for input polynomials with at most O(t)terms, whose exponents do not exeed a mahine word. The sum produed has at most t0 + t1terms, and hene requires O(t) bits of memory.Note: The produt of two polynomials with O(t0) and O(t1) terms respetively an now beahieved using repeated alls, say O(t0) of them, to the funtion Sum, using input of at mostO(t1) terms. This osts O(t0t1) bit operations, and requires O(t0t1) bits of memory for storingthe �nal produt.7.5.1 A omplete desription of a sparse lifting stepThe most omputationally extensive part of a single lifting step onsists in solving for the knownpolynomial e(z) suh thatGkÆ � V [(FkÆ � kÆ�1Xj=1 GjHkÆ�j) mod G0℄ = e(z)G0; (7.1)where Gs (or Hs), for s = 1; :::; kÆ � 1, are fully speialised univariate polynomials. In theworst-ase analysis, one would expet to lift at most O(d) times from any edge of Newt(f) (anumber we will denote by max�lift), where this measure is derived from the dimensions of thed � d square embedding Newt(f). Consequently, we would require to prealloate a region ofmemory suÆient to hold about O(d) polynomials per edge, eah having degree bounded byO(max�int�pts) = O(d). But this amounts to O(d2) bits of memory, despite the fat thatmany of these polynomials may turn out to be zero. A ruial modi�ation to the above densesenario aters not only to the fat that these polynomials would at worst be as sparse as g orh, but that very few of them will be nonzero. Partiularly, we have the following:Lemma 7.5.1 Let f 2 F p[x; y℄ be a polynomial of total degree d and at most t nonzero terms.Let r be a vetor in R 2 and let � be an irredundant dominating set of Newt(f) in diretion r.Assume furthermore that f = gh for two non-trivial monomial fators g; h 2 F p[x; y℄ with tg andth terms respetively, suh that max(tg; th) = O(t�) for some onstant � satisfying 0 < � < 1.Then, given the deomposition Newt(f) = Newt(g) +Newt(h) suh that Newt(g) is not a singlepoint or a line segment parallel to rR�0, and for any oprime dominating edges fatorisation off relative to �;Newt(g) and Newt(h), there will be at most O(t�) non-onstant polynomials gkÆand hkÆ relative to any Æ 2 �, for kÆ � 0, and satisfying the Hensel lifting equations in (6.2).Proof: Consider all possible liftings from some edge Æ 2 �, and let Æ0 denote its summandin Newt(g). Sine g has O(t�) nonzero terms, Newt(g) will have O(t�) lattie points whihorrespond to speialised nonzero terms of g. In the worst-ase analysis, none of these pointswill fall on the same translate of the supporting line of Æ0 into Newt(g). In that ase, the liftedpolynomials whose terms orrespond to lattie points of Newt(g) on these translates will benonzero, and there will be at most O(t�) of them. An idential argument applies for the liftedpolynomials in Newt(h).The disussion we shall present below applies for the representation of both G and H poly-nomials. The data struture we hoose treats the distribution of the Gs's as a sparse one, fromwhih information an be derived only about the nonzero lifted polynomials. We de�ne a singly123



linked ordered list G, whose elements point only to nonzero polynomials Gs, ordered in inreas-ing order of their translate index s. Another integer array, Ghead, of size O(max�lift) = O(d),is used to provide quik aess to the list as follows. If Ghead[s℄ = �1, for some s < max�lift,then Gs is understood to be zero; else, if Ghead[s℄ � 0, then Gs is nonzero and oupies positionGhead[s℄ in G. Furthermore, eah polynomial in the list is represented by a sparse array, Gpoly,whose entries ontain the exponents of its nonzero terms only. As before, we make impliit theonstrution of a similar struture for obtaining the oeÆients of terms whose exponents arestored. The ost for updating G is onstant, due to the fat that it's ordered in the same orderin whih nonzero polynomials appear during the entire lifting stage, so that new elements areappended to the end of the list. The total memory required per edge for this entire sheme isO(max�lift) = O(d) bits of memory for Ghead, t bits of memory for G, and O(t�) bits for thearray Gpoly. For all edges, this amounts to O(m(d+ t)) = O(t(d+ t)) bits of memory. With thisstruture, the sub-routine for omputing PkÆ�1j=1 GjHkÆ�j is as follows:Algorithm 7.5.2 Form�sum(kÆ)Input: A partial (�;K)-fatorisation extending a oprime dominating edges fatorisation, a�xed edge Æ to lift from, and all univariate polynomials Gs and Hs, for s = 1; :::; kÆ � 1, as fullyspeialised polynomials.Output: PkÆ�1j=1 GjHkÆ�j in sparse format.Step 1: Set sum 0; for j = 1; :::; kÆ � 1 doIf Ghead[j℄ 6= �1 doIf Hhead[kÆ � j℄ 6= �1 do1.1: Retrieve the polynomials in G and H pointed to by Ghead[j℄ and Hhead[kÆ � j℄;1.2: Invoke a sparse multipliation sub-routine to form their produt prod;1.3: Invoke a sparse addition sub-routine to form the summation of sum and prod;1.4: Store the result in sum.Proposition 7.5.2 Algorithm 7.5.2 works orretly as spei�ed, and requires at most O(t) bitoperations per any lifting step and O(t) bits of temporary storage.Proof: Corretness of the use of the data struture is an immediate onsequene of thedisussion above. To establish the run time ost, we know that the main loop iterates at mostO(max�lift) = O(d) times. However, sine there are at most O(t�) nonzero polynomials Gjor Hj, for j = 1; :::; kÆ � 1, we know that in many ases the proedure will never perform theinner-most arithmeti polynomial omputations. Hene, we need to rede�ne what a worst-asesenario will be. By Lemma 7.5.1, there will be a olletion G0 of at most O(t) polynomialpairs (Gj;HkÆ�j) per any lifting step suh that both polynomials are nonzero. In the worst-aseanalysis, there will be one pair (Gj0;HkÆ�j0) in G0 with O(t�) terms per polynomial. The produtof one suh pair requires O(t) bit operations. The remaining pairs in G0� (Gj0 ;HkÆ�j0) will haveO(1) terms per polynomial, so that the produt of one suh pair requires O(1) bit operations,and the sum of produts of pairs in G0 � (Gj0 ;HkÆ�j0) requires O(t) bit operations. Adding thissum to Gj0HkÆ�j0 is dominated by O(t) bit operations, and produes a polynomial of at mostO(t) terms. 124



Unlike the lifted polynomials Gs and Hs, the polynomial FkÆ is used only one in a parti-ular alulation and so need not be stored for any edge. Hene, we represent this polynomialtemporarily in a sparse data struture that an be reused by any edge from whih one is lifting.The proedure for determining FkÆ is as follows:Algorithm 7.5.3 Input: A partial (�;K)-fatorisation extending a oprime dominating edgesfatorisation, and a �xed edge Æ 2 � to lift from.Output: The univariate polynomial FkÆ stored in sparse format in array Fpoly.Step 1: Set index  0; retrieve the primitive aÆne funtion lÆ = �1x + �2y + � and onsiderthe equation of the line `0 : lÆ = kÆ.Step 2: Call Intersetion0(IP; �1; �2; � � kÆ).Step 3: For every integral point (i; j) lying between the two near points produed in Step 2 abovedo: 3.1: San the list fabsj�1; if there exists an element i in this list, do. Let (a; b) denote the oordinates of the starting vertex of edge Æ. Computeexponent = (j � (b+ (�2:kÆ)))= � �1; if �1 6= 0or exponent = (i� (a+ (�1:kÆ)))=�2; if �2 6= 0:. Set Fpoly[index℄ exponent and index index+ 1.Step 4: Rearrange the entries in Fpoly in inreasing order of exponents and return Fpoly.Proposition 7.5.3 Algorithm 7.5.3 works orretly and requires at most O(td) bit operations.Proof: The above algorithm determines all possible integral points found along the kÆtranslate of the supporting line of Æ into Newt(f), using O(d) bit operations. The maximumnumber of suh integral points is O(d), and for every integral point, we san the lists of termsof f in no more than O(t) bit operations to see if the point orresponds to some nonzero termof f . If suh a term f(i;j)xiyj is found, a orresponding z term is formed using integer addition,multipliation, and division, all of whose input does not exeed a mahine word size. Finally, theterms of the produed polynomial are rearranged in inreasing order of exponents, to onformto the representation required by sparse polynomial arithmeti sub-routines. In total, the ostof the above algorithm is at most O(td) bit operations.Now that we have omputed FkÆ , we an formFkÆ � kÆ�1Xj=1 GjHkÆ�j (7.2)using sparse addition over F p, and(FkÆ � kÆ�1Xj=1 GjHkÆ�j) mod G0 (7.3)125



using division with remainder for Laurent polynomials (see Chapter 6). Note that the num-ber of terms in G0 is bounded by the number of terms in g, and its degree is bounded byO(max�int�pts) = O(d). Also, the dividend in (7.3) has at most O(t) terms and has degreeat most O(d). Despite that both dividend and divisor are sparse, the intermediary remaindersmay not be neessarily so. The above will then require O(d2) operations over F p, produing aremainder with degree at most O(d) and that has up to O(d) terms. Finally, we an omputethe produt V [(FkÆ � kÆ�1Xj=1 GjHkÆ�j) mod G0℄ (7.4)using O(d2) bit operations, sine deg(V ) < deg(G0) = O(d). From the disussion on Laurentpolynomial division with remainder in Chapter 6, the result is a regular polynomial of degreeO(d) and is stored temporarily in sparse format using an integer array, say temp, of size O(d).7.5.2 Representing unknown polynomials and expressionsAll the omputations so far have involved fully speialised polynomials, whih led us to exploitommonly known data strutures in their representation. We now disuss the more omplexsymboli representation of polynomials with unknown oeÆients and systems of equationsinvolving several unknowns. The �rst suh example is in representing the polynomialGkÆ , whoseoeÆients are not all known at the time we start performing a partial (�;K)-fatorisation. Werepresent GkÆ temporarily using an array, tempg, of whih one opy an be used by any edgeduring any lifting stage. The array will have size bounded by max�int�pts = O(d), and theentries of the array will ontain the exponents in z of every possible term (whether zero, nonzero,or simply unknown) in GkÆ . In a standard sparse polynomial struture, one an initialise theentries of the orresponding array to some negative number, assuming that the polynomial isregular and hene annot have negative exponents. However, sine GkÆ is a Laurent polynomialwhose terms an have negative exponents, it beomes essential to keep trak of the maximumpossible number of terms in GkÆ , in order to avoid aessing unwanted entries in tempg thatmay ontain information from previous omputations. If lbG and ubG denote the respetivelowest and highest exponents among terms of GkÆ that are either nonzero or unspeialised,and assuming that entries in tempg are stored in inreasing order of exponents, we de�ne thepossible degree of the unknown polynomial GkÆ to be the di�erene ubG � lbG. GkÆ an then berepresented using at most O(td) bit operations as follows:Algorithm 7.5.4 Input: A partial (�;K)-fatorisation extending a oprime dominating edgesfatorisation, and a �xed edge Æ 2 � to lift from.Output: The polynomial GkÆ stored in sparse format in array tempg.Step 1: Set index  0; retrieve the primitive aÆne funtion lÆ0 = �1x + �2y + � � Æ, andonsider the equation of the line ` : lÆ0 = kÆ.Step 2: Call Intersetion0(IPg; �1; �2; � � (Æ + kÆ)).Step 3: For every integral point (i; j) lying between the two near points produed in Step 2 abovedo 126



3.1: Call Speialised(i; j); if this returns 1 or �1, do3.1.1: Let (a; b) denote the oordinates of the starting vertex of edge Æ0.Compute exponent = (j � (b+ (�2:kÆ)))= � �1; if �1 6= 0or exponent = (i� (a+ (�1:kÆ)))=�2; if �2 6= 0:Set tempg[index℄ exponent, and index index+ 1.Step 4: Rearrange the �rst index entries of tempg in inreasing order of exponents, and returnarray tempg.Data struture for expressions using unknown polynomialsAnother example of an unknown symboli entity is the expressionGkÆ � V [(FkÆ � kÆ�1Xj=1 GjHkÆ�j) mod G0℄ (7.5)where as we have seen above, GkÆ is a polynomial whose oeÆients are partially speialised, andwhere the seond summand is a fully known polynomial. Let this quantity be denoted by LHS,representing the left hand side of the main lifting equation (7.1). Beause we need a symbolistruture mathing the nature of LHS before the unknown oeÆients are speialised, this hasto deal with its two separate summands, the �rst of whih is treated as a dense polynomial.Suppose we hoose to use an array lhs: Two issues to resolve are the size and nature of lhs.We have seen that GkÆ and the polynomial in (7.4) both have degree at most O(d), so that intotal LHS will have at most O(d) terms. We store these in sparse format and only temporarily.Furthermore, the expression in (7.4) is a regular polynomial, but sine GkÆ an be a Laurentpolynomial, LHS inherits the same struture. Let lbG and ubG be as de�ned above, and lb andub denote the smallest and largest exponents of terms appearing in (7.4), so that ub� lb = O(d).Then lhs should have entries whose exponents range from min(lbG; lb) to max(ubG; ub), whihwe shall denote by lowlhs and highlhs respetively. As suh, highlhs � lowlhs represents thehighest possible degree that LHS an attain after being fully speialised.Beause we have to use LHS in a proess whih involves omparing oeÆients of terms onboth sides of equation (7.1), it will be more onvenient to store LHS in dense format, wherebyinformation about the oeÆients of terms rather than their exponents is revealed. Aordingly,the entries of lhs should point to the oeÆients of the polynomial expression in (7.5). Sine lhsrepresents a Laurent polynomial whose terms an have negative exponents, we have to disussnot only the dense struture of oeÆients but also their address in the memory loations, whihare always labelled by indies starting from zero. In partiular, sine the lowest term of LHShas exponent lowlhs, and as its oeÆient has to be stored in the zero loation of the array lhs,all remaining oeÆients i of the left hand side, for i = lowlhs+1; :::; highlhs, have to be storedin loations i� lowlhs. Now, sine the oeÆients an inherit two piees of input, one from GkÆ ,representing an unknown, and one from (7.4), whih is fully speialised, we allow eah oeÆientto reet this struture, by assoiating with the i � lowlhs entry of lhs two integers: the �rst127



ontaining the oeÆient of zi in GkÆ , and the seond ontaining the oeÆient of zi in (7.4).In total, this requires that we treat lhs as a double array of size 2 � O(d). We now have thefollowing:Algorithm 7.5.5 Input: A partial (�;K)-fatorisation extending a oprime dominating edgesfatorisation, and a �xed edge Æ 2 � to lift from. Also given is the representation of GkÆ inarray tempg with indg entries, the representation of (7.4) in temp with ind entries, and lowlhsand highlhs designating the lowest and highest exponents in the unknown expression:GkÆ � V [(FkÆ � kÆ�1Xj=1 GjHkÆ�j) mod G0℄:Output: The dense representation of the expression LHS in the array lhs.Step 1: Initialise array lhs to zero.Step 2: For i = 0; :::; indg � 1 do2.1: Set e tempg[i℄, and use the hange of basis in Step 4 of Algorithm 6.8.1 to determinethe integers a and b suh that g(a;b)xayb is the bivariate term in gkÆ orresponding to zein GkÆ .2.2: Set lhse�lowlhs[0℄ Speialised(a; b).Step 3: For i = 0; :::; ind � 1, set e  temp[i℄ and lhse�lowlhs [1℄ to be the oeÆient of ze in(7.4).The above proedure is obviously orret, as it reads from loations of the sparse arraystemp and tempg and writes to proper data loations of the dense array lhs. Data found intempg represents powers of univariate terms of GkÆ that are then transformed into equivalentpowers (a; b) of bivariate terms, whose oeÆients are determined by a all to Speialised(a; b).Data in the array temp however is simply translated into lhs at the proper loations, as itrepresents exponents of terms that are known to be nonzero. Sine the number of terms in lhsis bounded by O(d), and sine eah all to Speialised requires O(t) bit operations, the entireproess requires O(td) bit operations and O(d) bits of temporary storage.We now need to disuss how to make use of all the above representations to solve for theunknown polynomial e(z) in (7.1). The trivial ase when deg(G0) is greater than the highestpossible degree of the left hand-side results in e(z) being the zero polynomial, so that LHS itselfis zero. The unknown oeÆients of zi in GkÆ an then be speialised as follows:Algorithm 7.5.6 Input: A partial (�;K)-fatorisation extending a oprime dominating edgesfatorisation, and a �xed edge Æ 2 � to lift from. Also given is LHS as a fully speialised poly-nomial in the form Pj=lowlhs;:::;highlhs jzj, for some known values j 2 F p.Output: GkÆ as a fully speialised polynomial, and the speialisation of the orresponding oeÆ-ients of the polynomial g.Step 1: For i = lbG; :::; ubG, if lhsi�lowlhs [0℄ = �1 do1.1: Set lhsi�lowlhs [0℄ (lhsi�lowlhs [1℄ + i) mod p and tempg[i� lbG℄ lhsi�lowlhs [0℄.1.2: Use the hange of basis in Step 4 of Algorithm 6.8.1 to determine the integers a and b128



suh that g(a;b)xayb is the bivariate term in gkÆ orresponding to zi in GkÆ .1.3: If Speialised(a; b) = �11.3.1: If lhsi�lowlhs [0℄ 6= 0, add g(a;b)xayb to the list of nonzero terms of g, and redueremg by 1.1.4: Else if Speialised(a; b) is not equal to the oeÆient of the term in g whose exponentis tempg[i� lbG℄, output \failure" for this hoie of oprime dominating edgesfatorisation.Step 2: For i = lbG; :::; ubG, form the polynomial in z whose nonzero terms have exponents storedin tempg; if this polynomial is nonzero, add it to the end of the list G, store it permanently insparse format in the array Gpoly, and let Ghead[kÆ ℄ point to its loation in the list.Proposition 7.5.4 Algorithm 7.5.6 works orretly as spei�ed and requires O(td) bit opera-tions.Proof: The above proedure identi�es those entries in LHS whose partial summands areterms in GkÆ . For all unspeialised terms gizi of GkÆ , the orresponding oeÆients are deter-mined suh that the oeÆient of zi in LHS is zero. This speialisation of terms in GkÆ leads toa speialisation of g oeÆients, among whih only the nonzero elements are added to the sparserepresentation of g. A hek is made so that g oeÆients math previously known values, ifthose exist. Finally, if the polynomial GkÆ is nonzero, the polynomial (in fat, its address inmemory) is appended to the end of Glist, with Ghead[kÆ ℄ pointing to its position in the list.Obviously, the above proess requires O(td) bit operations, sine only O(d) terms of GkÆ requirea all to Speialised.If deg(G0) is greater than highlhs � lowlhs, we know from the disussion in Lemma 9 of [2℄that eah triangular system arising from omparing oeÆients on both sides of LHS = e(z)G0an be solved uniquely. We now laim the following:Lemma 7.5.2 The triangular systems resulting from equating oeÆients of polynomials onboth sides of LHS = e(z)G0 are sparse linear systems with at most O(t�d) nonzero elementsover F p, for some onstant � suh that 0 < � < 1.Proof: Write G0(z) = Xj=0;:::;deg(G0) gjzj ;where at most tO(1) number of the gj 's are nonzero over F p, and writeLHS = Xj=lowlhs;:::;highlhs jzj ;where not all of the j 's are speialised. We know that e(z) is a Laurent polynomial satisfyingLHS = e(z)G0. Let lowe and highe denote the respetive lowest and highest exponents of termsof e(z). Then, sine G0 is a regular polynomial with a nonzero onstant term over F p, we havelowe = lowlhs and highe = highlhs � deg(G0):129



Write e(z) =Pi=lowe;:::;highe eizi. Using our data struture for LHS above, there exist two inte-gers, say low�range and high�range, suh that the known lower and higher terms of LHShave exponents lying in the two intervals [lowlhs; low�range℄ and [high�range; highlhs℄ re-spetively. Suppose, for instane, that we wish to solve for the unknown oeÆients of e(z)using the lower known terms of LHS. Let B be the matrix of oeÆients of terms izi inLHS, for i = lowlhs; :::; low�range, suh that eah i oupies row i � lowe in the olumnvetor B. Let A be the matrix of oeÆients in e(z)G0 orresponding to oeÆients i, fori = lowlhs; :::; low�range. We then havei = Xj=lowe;:::;highe ejgi�j ;so that row i � lowe of A ontains ejgi�j in olumn j � lowe, for j = lowe; :::; highe. Sine atmost O(t�) oeÆients of G0 are nonzero, for 0 < � < 1, it follows that eah row of A ontainsat most O(t�) nonzero entries over F p. Sine the number of speialised lower terms in LHS isbounded by O(d), the system Ax = Bontains at most O(d) olumns and so O(t�d) nonzero entries in total.Assuming the entries of any of the triangular systems belong to a �nite �eld with prime orderwhih �ts in a mahine word, one an now obtain a solution using O(t�t�d) = O(t2d) bit opera-tions with no more than O(t�d) bits of temporary storage memory using any of the well knownsparse diret methods (see for instane [33℄ on a broad survey of data strutures and algorithmsfor sparse Gaussian elimination). When one or two of the triangular systems have been solveduniquely, and assuming the results of the two triangular systems have been onsistent, one anthen immediately retrieve e(z). Note that Algorithm 7.5.6 above an be applied in the generalase when LHS is a fully speialised, not neessarily zero polynomial, and hene an be invokedto determine the polynomial GkÆ and the orresponding g oeÆients when e(z) is not zero.7.5.3 Reovering HkÆInvoking Algorithm 7.5.4 using the polynomial HkÆ and the summand Q, we an set up arepresentation of HkÆ using a temporary array temph and solve for the unknown oeÆients ofHkÆ using the equation HkÆ = (FkÆ �PkÆ�1j=1 GjHkÆ�j)�GkÆH0G0 : (7.6)Note that the only new omputations are for determining the produt GjHkÆ�j if GkÆ is nonzero,and �nding the quotient over G0, with both divisor and dividend having at most O(t) and t�terms respetively. The intermediary remainders have degree at most O(d), and hene at mostO(d) terms. When the numerator is non-trivial, this will require at most O(d2) bit operationsand O(d) bits of temporary storage. The unknown oeÆients of temph are mathed with theirorresponding oeÆients in the quotient, and the orresponding oeÆients of h are speialisedthrough a proess similar to Step 2 of Algorithm 7.5.6, using at most O(td) bit operations.130



7.6 Total run time and memoryWe are now ready to establish the total omplexity of the sparse adaptation, ombining theabove subosts aross all possible liftings per one oprime dominating edges fatorisation. Inpartiular, we shall distinguish between two ategories of sub-tasks, those that will be arriedout during every possible lifting step, and those whih will be performed a number of times thatis dependent on the sparsity fator t of f . We have the following onluding result:Theorem 7.6.1 Let f 2 F p[x; y℄ be a polynomial of total degree d and at most t nonzero termssuh that t < d. Let r be a vetor in R 2 and let � be an irredundant dominating set of Newt(f) indiretion r. Assume furthermore that f = gh for two non-trivial monomial fators g; h 2 F p[x; y℄with tg and th terms respetively, suh that max(tg; th) = O(t�) for some onstant � satisfying0 < � < 1. Then, there exists an integral deomposition Newt(f) = Newt(g)+Newt(h) suh thatNewt(g) is not a single point or a line segment parallel to rR�0. Furthermore, for any oprimedominating edges fatorisation of f relative to �;Newt(g) and Newt(h), there exists one fullfatorisation of f whih extends it in O(td2)+O(t3d) bit operations and O(t�d) bits of memory,assuming that d and p �t in a mahine word.Proof: That there exists an integral deomposition of Newt(f) into two Newton polytopesorresponding to g and h, and that the algorithm an reover the two fators using any oprimedominating edges fatorisation is a result of Ostrowski's theorem and Theorem 6.6.1 of Chapter6. We now establish the total running time and memory required by the sparse method. In thefollowing, Æ denotes an edge in � from whih lifting an take plae, and Æ0 denotes its summand inNewt(g). During a single lifting step, one �rst has to determine the fully speialised polynomialFkÆ and onstrut the unknown polynomials GkÆ and HkÆ , all using at most O(td) bit operationsand O(d) temporary bits of temporary storage. Hene, the total ost of representing the liftedpolynomials is max�lift �O(td) = O(td2) bit operations and a temporary O(d) bits of memory.We have also shown that omputing the quantity in (7.2) requires in the worst-ase analysisO(t) bit operations and O(t) bits of temporary storage, so that the total ost is max�lift �O(t)= O(td) bit operations and O(t) bits of memory. Computing the polynomial in (7.4) may in theworst-ase require O(d2) bit operations and O(d) bits of temporary storage per any lifting step.However, we laim that this need not be done during every lifting step. In partiular, and sinethe modular operation is non-trivial only when the polynomial (7.2) is nonzero, it suÆes todetermine the maximum number of times that the latter an happen in order to obtain the totalost of long division throughout the lifting stage. Note that the polynomial (7.2) is nonzero inat most one of these ases:� FkÆ is nonzero,� or Pj=1;:::;kÆ�1GjHkÆ�j is nonzero.However, there are at most O(t) nonzero polynomials FkÆ for all kÆ � max�lift, sine at most tlattie points in Newt(f) orrespond to nonzero terms of f . By Lemma 7.5.1, there exist at mostO(t�) nonzero polynomialsGj and Hi, for i; j = 1; :::; kÆ�1, where i+j = kÆ � max�lift, and sothere will be at most O(t) nonzero polynomial expressions of the form GjHi. In the worst-aseanalysis, no two suh produts GjHi and Gj0Hi0 will be suh that j + i = j0 + i0 = kÆ, so thatPj=1;:::;kÆ�1GjHkÆ�j is nonzero whenever one pair GjHkÆ�j 6= 0 for some �xed j. Hene, therewill be at most O(t) nonzero sums of the formPj=1;:::;kÆ�1GjHkÆ�j, for all kÆ � max�lift. This131



implies that the polynomial (7.3) is nonzero in at most O(t) of the total number of lifting steps,whih brings the total ost of omputing its remainder modulo G0 to O(td2) bit operations, andO(d) bits of temporary storage.The quantity in (7.4) has been shown to require at most O(d2) bit operations and O(d) bitsof temporary storage. But as seen above, this should only be performed when the polynomialin (7.3) is nonzero. In the worst-ase analysis, this in turn is nonzero whenever the polynomial(7.2) is nonzero, whih has been seen to happen in at most O(t) of the total number of liftingsteps. Hene, omputing the polynomial in (7.4) requires at most O(td2) bit operations andO(d) bits of memory in total.The sparse triangular system(s) for solving for the unknown oeÆients of e(z) in LHS =e(z)G0 have been shown to require at most O(t2d) bit operations and O(t�d) bits of temporarystorage. However, we now laim that one does not require to set up and solve a triangularsystem when� The polynomial in (7.4) is zero, and� GkÆ has no speialised terms.To see this, let uÆ and gnÆ denote respetively the number of unspeialised terms on the kÆ + 1translate of the supporting line of Æ0 into Newt(g), and the number of integral points on Æ0 ofNewt(g). We know that if GkÆ has no speialised terms, the possible degree of GkÆ is given byuÆ�1, whih is less than deg(G0) = gnÆ�1, beause of the inequality uÆ < gnÆ. This, ombinedwith the fat that (7.4) is zero, results in the degree of LHS being less than deg(G0), from whihone onludes that e(z) is zero. Consequently, one has to set up a triangular system in at mostone of the two following ases:� the polynomial in (7.4) is nonzero, or� GkÆ has at least one speialised term.Sine the �rst ondition an happen in at most O(t) of the ases, and the seond an happenin at most O(t�) of the ases, one has to set up and solve a triangular system at most O(t)times. The total ost for solving any of the triangular systems is hene O(t3d) bit operations,and O(t�d) bits of temporary storage, throughout the entire lifting stage.Determining HkÆ per one lifting step has been seen to require O(d2) bit operations and O(d)bits of temporary storage. Similarly as above, the long division to be performed in (7.6) isnon-trivial only when the numerator is nonzero. This, in turn, happens in at most one of thetwo ases:� The polynomial in (7.2) is nonzero, or� GkÆH0 is nonzero.This an be easily seen to happen in at most O(t) of the ases, whih brings the total ost ofdetermining an expression of HkÆ to O(td2) bit operations and O(d) bits of temporary storage.When fully speialised, only the nonzero polynomials among all GkÆ 's and HkÆ 's ought tobe stored in sparse form. Speialising the oeÆients of these polynomials during one liftingstep and using Algorithm 7.5.6 requires at most O(td) bit operations, so that in total this willbe at most max�lift � O(td) = O(td2) bit operations. Sine the total number of terms of all132



suh polynomials should not exeed O(t�), the total amount of memory for storing the liftedpolynomials is of the order O(t2) = O(td), for t < d.Combining all of the above, any oprime dominating edges fatorisation assoiated with thedeomposition Newt(f) = Newt(g) + Newt(h) an be extended using at most O(td2) + O(t3d)bit operations and O(t�d) bits of memory.The above result helps justify the earlier onditions we imposed on t as follows: Sine thelifted polynomials are bounded in degree by O(d), and sine Newt(f) = O(d2), the standardpolytope method requires O(max�lift � d3) = O(d4) bit operations in total and O(d2) bits ofmemory. When t3 < d2;we ertainly have that t < d, and heneO(t2d) +O(t3d) � O(d3):By Theorem 7.6.1, the sparse adaptation outperforms the dense one in both the operational andspatial omplexity.7.7 Computational resultsThe work was arried out at the Oxford University Superomputing Centre (OSC) on the Os-well mahine, using an UltraSPARC III proessor running at about 122 Mop/se and with 2GBytes of memory. All experiments were arried out over F 2. The input polynomials have beenonstruted as explained in Setion 7.2 above. For eah of the random polynomials g and h theexponent vetors (e1; e2) were hosen uniformly at random suh that 0 � e1 + e2 � d=2, and atleast three of them are of the form (e1; 0), (0; e2) and (e3; (d=2) � e3), so that f was of degreed and had no monomial fators. The table below gives the running times (in seonds) of thetotal fatorisation proess to �nd at least one non-trivial fator f . In the following, t denotesthe number of terms of the input polynomial f , T:Sum: denotes the total number of non-trivialintegral deompositions Newt(f) = Q + R, ss denotes the run time in seonds of the sparsemethod, orresponding only to the suessful liftings whih produe at least one fator of f , andsd is the orresponding run time in seonds of the dense method wherever appliable (as allowedby the mahine's memory resoures). Also, T:Bd:F: denotes the total number of oprime edgesfatorisations assoiated with all possible summands and irredundant set of dominating edges ofNewt(f), whereas A:Bd:F: denotes the number of oprime edges fatorisations attempted beforea suessful extension produes the two fators g and h. Finally, #Nf , #Ng, and #Nh denotethe number of lattie points in the Newton polytopes of f , g and h respetively.The run times in Table 7.1 indiate that the sparse algorithm is faster than the dense one forinput polynomials whih an be handled by both methods. Obviously, the run times also inreasefor inreasing input degrees. For larger degree polynomials where the dense algorithm no moreapplies, we monitor the variations in running times by �xing all parameters apart from thenumber of terms of the input. For this, we onstrut families of random polynomials having thesame Newton polytope as well as the same boundary fatorisations along a �xed dominating setof edges. Di�erent polynomials with varying number of terms an then be hosen by randomlyseleting the appropriate number of lattie points in the interior of the polytope. As predited133



earlier, the run times in Table 7.2 inrease upon inrementing either the degrees or the termsof the input polynomials. Note that in almost all ases Newt(f) has extremely few non-trivialintegral deompositions, as predited earlier in [2℄ for sparse polynomials. Although the numberof all possible oprime edges fatorisations is not small in all ases, it is still signi�antly smallerthan the input degree of the polynomial, and hene the size of Newt(f).Table 7.1: Smalll degree polynomialsd t ss sd T:Sum: T:Bd:F: A:Bd:F: #Nf #Ng #Nh50 14 4 3 1 8 2 561 166 50100 16 8 12 2 15 0 2234 472 222500 15 13 22 1 25 17 52940 12758 112822000 28 540 620 1 21 9 848849 133797 132932Table 7.2: Large degree polynomialsd t ss T:Sum: T:Bd:F: A:Bd:F: #Nf #Ng #Nh6000 36 2305000 3 36 16 8496181 502330 26156346000 100 2802800 ... ... ... ... ... ...6000 196 590510 ... ... ... ... ... ...10000 12 2205700 1 15 7 15521707 2417337 306317910000 60 3803600 ... ... ... ... ... ...20000 16 48hr 405300 1 42 18 39374376 5716256 99144297.8 ConlusionIt has been previously shown that, despite the fat that a randomly hosen bivariate polynomialover a �nite �eld is unlikely to be reduible, there is still a signi�ant number of bivariatepolynomials that are reduible [46℄, whih justi�es ontinuing e�orts in developing eÆientfatorisation algorithms. Of partiular interest in real life appliations are sparse polynomials,for whih no well de�ned `sparse' fatorisation algorithm has still been devised. In this hapterwe have attempted to address the open question of �nding suh an algorithm by investigatingpotentially strong areas of the polytope method in appliation to sparse bivariate polynomialsover F p. In addition, we have been able to address another signi�ant aspet in whih thealgorithm an be adapted so that the run time of the lifting stage is made dependent on thenumber of terms belonging to the input polynomial, rather than its degree only. Assumingan upper bound on the sparsity of the possible fators of the input polynomial, the gains forsparse polynomials that are a produt of sparse fators are demonstrated not only through theimproved run time of the algorithm during its lifting stage, but also in the redued memoryrequirements, so that the sparse adaptation requires O(td2) +O(t3d) bit operations and O(t�d)bits of memory, 0 < � < 1, ompared to the orresponding dense osts of O(d4) and O(d2).In addition to the above, this hapter has overed omplete details of the implementation wehave arried out, where problems related to omputing with geometri strutures and maintain-ing orret exat arithmeti have been highlighted. The ombination of our sparse adaptation134



has led to a very fast and high reord in sparse binary bivariate fatorisation of degree 20000,whih we believe has not been previously ahieved using any other di�erent algorithm. We ex-pet our adaptation of the polytope method to perform equally well for sparse and high degreebivariate polynomials over �elds of other prime orders. To the best of our knowledge, the high-est dense bivariate fatorisation to date ahieved using Hensel lifting tehniques is for a densepolynomial of degree 2000 over F 17 [13℄.
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Chapter 8Parallel absolute irreduibilitytesting via polytopes8.1 IntrodutionAbsolute irreduibility testing of polynomials is of importane in various �elds in algebra andgeometry (see for instane [6, 68, 92, 124, 125℄). Convex polytopes have been studied in on-netion with multivariate polynomials over arbitrary �elds. We have seen how reent work hasexamined the onnetion that onvex polytopes bear to fatorising bivariate polynomials [2℄,and to testing absolute irreduibility of multivariate polynomials [43, 45℄, over arbitrary �elds.In the latter ase, the problem of testing indeomposability of Newton polytopes formed part ofa pseudo-polynomial time algorithm (see [48℄) for bivariate absolute irreduibility testing, andof a heuristi and randomised algorithm in the multivariate ase. The fat that the nonzerooeÆients of the input polynomial do not matter in the testing proess makes it possible toshow absolute irreduibility of families of polynomials, rather than single polynomials [45℄. Theempirial sequential tests and timing results reported in [47℄ indiated a high suess rate for alarge lass of low degree and sparse multivariate polynomials, whose number of terms is boundedby O(nd), where n is the number of variables and d is the upper bound on the degree in eahvariable. In the instanes when the algorithm is highly suessful and the input polynomialshave a number of nonzero terms bounded by a onstant multiple of their total degree, the run-times have been shown to be at most ubi in the total degree of the input polynomial [47℄. Fora degree q polynomial with n variables and oeÆients from a �nite �eld, for instane, the inputsize of the irreduibility problem is N = O(qn), ignoring logarithmi fators. Expressing theomplexity of Gao and Lauder's algorithm [45℄ in terms of the input size, this requires O(N 3n ),whih for polynomials with more than 3 variables implies a run time that is almost linear in theinput size. As suh, the algorithm an be used as a fast pretest before any of the infallible yetslower irreduibility tests are invoked [34, 44, 51, 63, 75, 89, 90℄.Motivated by these original �ndings and the speial feature whih makes absolute irreduibil-ity testing dependent in large upon the shape and the size of Newton polytopes, we investigatea parallel sheme mainly set to widen the range of appliability of the algorithm, by makingit possible to takle signi�antly higher degree, sparse polynomials, and by allowing a moreeÆient performane for low degree yet denser polynomials. We show that the algorithm anbe eÆiently parallelised, thanks to some of its inherent features: First, we disuss a balaned136



load sheme whih an be onstruted using the pattern of omputations in the sequential asein [45℄. Seond, we disuss how a orresponding data distribution representing lattie pointsinside polytopes in R 2 an be onstruted, adhering to the balaned load sheme, and allowinga salable parallel algorithm aimed at high degree irreduibility testing. We adopt the BSPmodel for parallel omputation [15, 66, 67, 127℄, and we analyse the onditions neessary foran eÆient parallel performane in the bivariate ase. This then serves as a sub-problem forthe multivariate ase, where a model involving parallelism at two di�erent levels is desribed.The BSP algorithm makes it possible to test signi�antly higher degree polynomials than anbe allowed in the sequential ase in [45℄, and hene, to the best of our knowledge, using anyother known absolute irreduibility testing algorithm. We further study both parallel modelsfor issues relating to eÆieny, and establish some onditions under whih a good performaneis guaranteed. Our empirial results agree losely with the theoretial estimates, and we reporton our implementation in this respet.The reader may wish to reall some terminology and results relating to polynomials andpolytopes from Chapter 3. In Setion 8.2 we study a parallel sheme for bivariate polynomialirreduibility testing, and in Setion 8.3 we address the multivariate ase. Finally, empirialresults are presented and analysed in Setion 8.4.8.2 Parallel bivariate absolute irreduibility testingIn all the following we shall assume that nd �ts in a mahine word for an input polynomialwith n variables and upper bound d on eah variable. We will thus measure run-time in bitoperations and spae in bits.Sine the Newton polytope of a bivariate polynomial already lies in R 2, a strong feature ofAlgorithm 3.3.2 is that it will always deide indeomposability of polygons, and hene will alwaysestablish absolute irreduibility of the input bivariate polynomial f if Newt(f) is indeomposable.Initial empirial results in [47℄ indiate that the algorithm has a high suess rate when thenumber of terms is bounded by a onstant fator of the total degree, and that the probabilityof suess inreases with inreasing degrees of input polynomials. While these observationsstill stand as onjetures based on empirial results, it is important to extend the range ofappliability of the algorithm for higher degrees, and to support initial arguments related to therate of suess of the algorithm. However, as degrees of the input bivariate polynomials inrease,so do the sizes of their Newton polytopes, and hene one major diÆulty limiting attempts toimprove the performane of Algorithm 3.3.1 beomes the spae requirement. Yet, the fat thatone an shift the fous from a data struture and distribution representing bivariate polynomialsto one that represents shapes of Newton polytopes in R 2 suggests that a parallel re-onstrutionof the irreduibility testing algorithm whih exploits the shapes of the polygons an ahieveonsiderable improvements, both in the operational and spatial omplexities. In the remainderof this setion, we disuss our �rst BSP model for a bivariate absolute irreduibility testingbased on a parallel polygon indeomposability testing algorithm.Let f 2 F [x; y℄ be of total degree q with no non-onstant monomial fators and let IP denotethe set of integral points belonging to Newt(f). Sine all vetors in Supp(f) have positive integraloordinates that are at most equal to q, Newt(f) an be embedded within a square of dimensionO(q2). Moreover, Algorithm 3.3.1 requires a desription of IP in two di�erent ways. First, onehas to have, at the beginning of the algorithm, a struture by whih one an test an arbitrary137



point for inlusion in IP . Seond, the algorithm re-onstruts integral points in IP followingpaths of the form v0 +P0�i�j kiei, for 0 � ki � ni and j = 0; :::;m � 1. In the followingdisussion, we aim to show how the problems assoiated with eah of the two representationsan be irumvented by reduing the quadrati spatial fator.8.2.1 Computing the set of all integral points in a polygonOften in the innermost loops of Steps 2 and 3 of Algorithm 3.3.1, one will have to test for inlusionof arbitrary points in IP . Computing and then storing the set of all integral points belongingto the polytope requires about O(q2) bits of storage, whih an beome highly restritive evenfor moderately large input degrees. As has been already noted in Chapter 7, the alternativeapproah whih does not require that we store any lattie points but performs a test of inlusionbased on the \leftedness" of an arbitrary point with respet to all direted edges of the polytopehas a ost of O(m) integer operations. In our appliation, it an be ostly to invoke this testvery frequently, inurring a ost of O(m2) for eah loop iteration in Steps 2 and 3 of Algorithm3.3.1 above, and hene a ost of O(t0m3N) integer operations in total, where t0 is the totalnumber of lattie points in Newt(f) and N is the maximum number of integral points along anyedge of Newt(f). We hene adopt the strategy earlier introdued in Chapter 7 whih requiresthat we store only a \useful" subset of IP with no more than O(q) points. Let xmin, xmax,ymin and ymax denote respetively the lowest and highest x oordinates, and the lowest andhighest y oordinates, of all e 2 Supp(f). We then store only the intersetion points betweenall horizontal (or vertial) lines y = k, for k = ymin; :::; ymax, using only ymax � ymin+1 = O(q)bits of memory. However, unlike the ase in Chapter 7 where omputations are performed suhthat all output is integral, we need a weaker ondition a�eting the following. The intersetionof the polytope with a horizontal straight line is obtained by interseting the line with at mostall of the polytope's edges (until two points of intersetion are found, not neessarily distint).If ux + vy + w = 0 denotes the generi equation of a line `0 de�ning an edge of Newt(f), then�nding the intersetion of `0 with y = k requires that we solve for x inux+ vk + w = 0 or x = �w � vku ;when u 6= 0. Although this division operation involves only integral values, the quotient itselfmay not be an integer, in whih ase x has to be delared as a oat or a double, for otherwise, thedivision might produe a rounded-o� integral value bx, whih may not orrespond to a lattiepoint in IP . Note that omputing this subset of IP must be performed as a pre-omputation,requiring at most O(qm) oating point operations, where m is the number of edges in Newt(f).8.2.2 Construting sets of points along paths of edgesObviously, the above strategy of reduing the desription of IP by preserving only a smallersubset of it annot be extended when dealing with the main omputations of Algorithm 3.3.1.Spei�ally, one needs to have all points of IP that are reahable via a subset of edges e0; :::; ei,for 0 � i � m� 2, in order to �nd a larger subset reahable via e0; :::; ei+1. Eventually, the lastpath requires that one has available almost all of the points in IP , and hene, the best thatone an attempt is to distribute the points in IP among a �xed number of proessors. Sinethis task is never so immediate, we need to address several of the following issues: Whetherthere exists at all any potential parallelism in the main omputations of Algorithm 3.3.1 that138



an make suh an approah possible, whether there exists a balaned load sheme that ensuresall proessors are almost equally engaged in the independent omputations, and �nally, whetherthere exists a data distribution whih not only ensures that a given number of np proessors,say, store at most O(q2)=np lattie points in IP , but also adheres to the pattern of the proposedbalaned load sheme.8.2.3 Deteting independent omputationsReall that the main omputations in Algorithm 3.3.1 build up iteratively by onstruting subsetsof IP in eah step of the iteration. However, it is almost immediate to see that the inner-mostomputations of the iterative loop an themselves be independent, generating a \horizontal"inherent parallelism aross eah iteration of the main loop over edges of the input polygon. Inpartiular, we have:Lemma 8.2.1 Algorithm 3.3.1 for polygon indeomposability testing ontains two patterns ofomputations, one whih desribes a sequene of inter-dependent iterative steps for onstrutingnew subsets of IP using previous subsets, and another pattern desribing ompletely independenttasks for vetor operations aross a �xed iterative step.Proof: During a �xed stage i = 0; :::;m�2 of the main loop iteration (Step 2) of Algorithm3.3.1, one �nds all points u0 2 Ai satisfying the following:1. u0 = v0 + kei, for 0 < k � ni, in whih ase the omputations over all k require noinformation from the previous loop iteration of index i � 1, and eah omputation per�xed k requires no information apart from ei.2. u0 = u+kei, for 0 � k � ni and for all u 2 Ai�1, in whih ase the omputations over all urequire information from the previous loop iteration of index i� 1, eah omputation per�xed u and over all k = 0; :::; ni requires no information apart from ni and ei, and eahomputation per �xed u and �xed k requires no information apart from ei.For i = m � 1, one �nds all points u0 2 Ai satisfying u0 = u + kem�1, for 0 � k < nm�1 andu 2 Am�2, whih involves the dependenies desribed in 2 above.8.2.4 Construting a balaned load shemeWe will now attempt to examine the geometri pattern of the omputations above, on whih wean base a possible load balaning sheme. To this end, we will onsider a slight modi�ationof Algorithm 3.3.1 to produe sets of points Bi in R 2, for 0 � i � m� 1, onstruted as follows:1. Initialise Bi  ;, for i = �1; :::;m � 1.2. For i = 0; :::;m � 1, ompute the set of points of the plane that are reahable from v0 viathe vetors e0; :::; ei, and store them in Bi:3. For eah u 2 Bi�1 and k = 0; :::; ni, add u+ kei to Bi.139



The di�erenes between the sets Ai (de�ned in Algorithm 3.3.1 in Chapter 3) and Bi arethat v0 is in every single set Bi, that Bi ontains points reahable via e0; :::; ei whih are notneessarily in IP , and that the points v0+kem�1, for k = 0; :::; nm�1, do lie in Bm�1. As suh, itis lear that Ai � Bi for every i. Note that Newt(f) � Bm�1 by onstrution of Bm�1. Beausethe sets Bi have weaker onditions haraterising their points, it will be simpler to desribethe geometri pattern they follow. Sine Ai � Bi for every i, any suh pattern will apply toelements of Ai. Moreover, we will de�ne every region Bi to be an ative region in the sensethat all omputations and possible ommuniations aross a main loop iteration of index i inAlgorithm 3.3.1 are restrited to only those points belonging to Bi, but not to R 2 �Bi.Let P denote a onvex polygon and w a vetor in R 2, and let Trw(P ) denote the image ofP under translation by w. The following result gives an expliit geometri desription of Bi, for0 � i � m� 1.Lemma 8.2.2 Let P be a onvex polygon with verties v0; :::; vm�1 and edge sequene fnieig,for 0 � i � m� 1, where ei 2 Z2 are primitive vetors. For eah iterative step i = 0; :::;m� 1 ofthe polygon indeomposability test in Algorithm 3.3.1, the omputations are restrited to ativeregions Bi of the plane representing points reahable from v0 via e0; :::; ei. Furthermore, theregions an be de�ned indutively as follows:1. For i = 0, B0 = onv(v0; v1),2. For 1 � i � m� 1, Bi = onv([fTrkei(Bi�1)g0�k�ni).Proof: We prove the assertion by indution on i. For i = 0, B0 onsists only of the pointsv0 + ke0, for k = 0; :::; n0. But this spans all integral points along the �rst edge E0 = n0e0, sothat B0 = onv(v0; v1). We now assume the assertion is true for i � m� 2, i.e., that the set ofpoints in Bi of the form v0 +P0�i�m�2 kiei, for ki = 0; :::; ni, onstitutes a onvex polygon asde�ned in 2 above. Sine all the points u 2 Bi lead to points u0 in Bi+1 obtained asu0 = u+ jei+1 = (v0 + X0�i<m�1 kiei) + jei+1; (8.1)for ki = 0; :::; ni and j = 0; :::; ni+1, this redues to translating all points of Bi by jei+1, for allj. Sine Bi is onvex, its image is also a onvex set, whose verties are de�ned by the imagesunder the translation Trjei+1 of verties of Bi. Let C denote the onvex hull of all verties inthe union of the sets Trjei+1(Bi) over all j = 0; :::; ni+1. We shall show that C = Bi+1. Sine Contains all possible points in the sets Trjei+1(Bi), we have that C � Bi+1. On the other hand,and by Eq. (8.1) above, any point in Bi+1 belongs to some set Trjei+1(Bi), so that Bi+1 � C.This establishes our indutive proof.8.2.5 Construting a balaned data distributionThe above lemma provides the general guidelines under whih a balaned load sheme an behosen. In partiular, it is immediate that the bulk of the work during any iterative step ofAlgorithm 3.3.1 takes plae in well-de�ned ative zones of the plane. One should thus avoidany form of data distribution whereby the polygon is triangulated into zones and eah zoneis exlusively assigned to one single proessor. Spei�ally, this risks having some proessorsompletely idle when others are engaged in the ative zones. Instead, we propose the following:140



Lemma 8.2.3 Let Bi, for 0 � i � m � 1, denote an ative region of the plane as de�ned inLemma 8.2.2 above, and let bi denote the total number of lattie points belonging to the smallestsquare ontaining Bi. Let np denote the total number of proessors operating in parallel suhthat 1 � np < pbi. The data distribution of integral points in IP whih alloates every point(k; k0) 2 Bi to the proessor with identi�ation number id � (k+k0) mod np allows for a balanedload sheme as required by Lemma 8.2.2 above, and assigns to eah proessor O(bi)=np integralpoints, where bi represents an upper bound on the number of integral points in Bi.Proof: Consider eah of the onvex ative regions Bi of the plane, for i = 0; :::;m � 1,de�ned in Lemma 8.2.2 above. Let x1, y1, x2 and y2 denote respetively the lowest x and yoordinates and the highest x and y oordinates appearing in any point in Bi. Assume withoutloss of generality that Bi is translated so that x1 = y1 = 0. Then an upper bound on (k + k0)over all k = x1; :::; x2 and k0 = y1; :::; y2 is equal to pbi. Let t0id denote the total number oflattie points of Bi assigned to a proessor with identi�ation number id = 0; :::; np�1. For anyinteger z � 0 de�ne the lass assoiated with z:[z℄ = f(x; y)jx; y 2 Z; x; y � 0; and x+ y = zg;and let #[z℄ denote the number of elements in this lass. Then #[z℄ = z+1. Given an arbitrarypoint (k; k0) of Bi and 0 � id < np, the distribution whih maps (k; k0) to proessor id � (k+k0)mod np assigns to it all lasses of the form [id + hnp℄ suh thatid � id+ hnp �pbi:Sine np < pb0, we have that np < pbi, for i = 1; :::;m � 1, and we an require0 � h � j(pbi � id)=npk :Hene, the total number of points in Bi that are assigned to proessor id is at mostt0id = b(pbi�id)=npXh=0 (id+ hnp + 1):For 0 � id � np � 1, we havet0id � Pb(pbi�id)=nph=0 (np + hnp)� Pbpbi=nph=0 (np + hnp)= �pbinp �(�pbinp �+1)2 np + (jpbinp k+ 1)np� pbinp (pbinp +1)2 np + (pbinp + 1)np= pbi(pbi+np)+2np(pbi+1)2np< 2(pbi)2+2pbi(pbi+1)2np for np < pbi; i = 0; :::;m � 1< 2(pbi)2+4(pbi)22np sine pbi > np � 1= 3binp : 141



This establishes t0id = O(bi)np .In pratie, and even though the ondition np < pb0 may not easily hold (as B0 is simplythe �rst edge of Newt(f), in whih ase b0 denotes the number of integral points on that edge),we note that the sizes of the sets Bi, for i > 0, start growing fast immediately afterwards;spei�ally, sine the number of lattie points in B1 is at least four, we expet many moreproessors to be engaged in their assigned omputations as soon as the �rst edge of the inputpolygon is examined. Another similar result a�eting the data distribution is the following:Lemma 8.2.4 Let f 2 F [x; y℄ be a non-onstant polynomial with no non-onstant monomialfators and IP denote the set of integral points in Newt(f). Let xmin, ymin, xmax and ymaxdenote respetively the lowest x and y oordinates and the highest x and y oordinates appearingin any point belonging to Newt(f), and write  = max(ymax�ymin; xmax�xmin). Let np denotethe total number of proessors operating in parallel suh that 1 � np < 2. The data distributionof integral points in IP whih alloates every point (k; k0) 2 Newt(f) to the proessor withidenti�ation number id � (k + k0) mod np assigns to eah proessor O(2)=np integral points,where 2 is an upper bound on the number of lattie points in Newt(f).Proof: Assume without loss of generality that Newt(f) is translated so that xmin = ymin =0. Note that an upper bound on (k + k0) over all k = xmin; :::; xmax and k0 = ymin; :::; ymax isequal to 2. Let t0id denote the total number of lattie points of Newt(f) assigned to a proessorwith identi�ation number id = 0; :::; np� 1. For any integer z � 0 onsider the lass assoiatedwith z de�ned in the proof of Lemma 8.2.3 above. Given an arbitrary point (k; k0) of Newt(f)and 0 � id < np, the distribution whih maps (k; k0) to proessor id � (k + k0) mod np assignsto it all lasses of the form [id+ hnp℄ suh thatid � id+ hnp � 2:Sine np < 2, we an require 0 � h � b(2 � id)=np :Hene, the total number of points in Newt(f) that are assigned to proessor id is at mostt0id = b(2�id)=npXh=0 (id+ hnp + 1):We an now proeed similarly as in the proof of Lemma 8.2.3 above and we obtain t0id = O(2)np .8.2.6 Removing repetitions in omputationReall that in Algorithm 3.3.1 above, one has to test for repetitions in appending points u to eahset Ai. The reason that this needs to be done is that it may be possible to �nd two points u and u0in Ai�1, and two positive integers k; k0 � ni, suh that u+kei = u0+k0ei 2 IP . If left unheked,this may produe up to O(N) opies of the same point, so that in the worst-ase senario, eahmulti-set Ai will have O(t0N i) points, and the run-time of polygon indeomposability testing142



will beome exponential in the edges of the input polygon. Cheking for repetitions in thesequential ase an be made at a ost not exeeding that of an integer operation per point. Inpartiular, one an use a double array of integers, say F lag, of total size t0, and whose entriesare all initialised to PASS. F lag[k℄[k0℄ is then set to FAIL when a point (k; k0) is �rst added toAi, so that any future attempts to add another opy of the point are halted upon a simple hekof the value in F lag[k℄[k0℄.The above strategy, however, an beome extremely ineÆient in the parallel setting asfollows. Let Ai(id) denote the set of points in IP that are reahable via e0; :::; ei and that areassigned to proessor id. Assume that i < m � 1 and that some proessor pa omputes thevetor operation v = u+ kei, for some u 2 Ai(a), and some k = 0; :::; ni. Suppose further thatall proessors have their own opy of a F lag array, F lag(id), labelling points that have alreadybeen added to their sets Ai(id). If v 2 IP and v has to be assigned to some other proessor pb,then pa has to read the information in the entry of array F lag(b) orresponding to point v. Thisinvolves a ommuniation step for every suh point v. Moreover, reading from remote loationsrequires a synhronisation barrier for all proessors to update their ommuniated values. Thisalso requires a synhronisation step for every suh point v. Consequently, a proess like theabove will require extremely expensive ommuniation and synhronisation osts whih aneven overwhelm the omputational ost of the sequential algorithm. Alternatively, we introduethe following iterative strategy that will later be shown to ome at a very modest ost: For anyproessor id = 0; :::; np � 1, we know that A0(id) does not ontain any redundant points. Fori > 0, we proeed as follows:� Start with a set Ai�1(id) that ontains no repeated ourrenes of points in IP .� Add all relevant points to their orresponding loations in Ai(id0), for some proessor id0di�erent from or equal to id, without any hek on repetitions.� When the omputations aross the iterative step of index i are over, remove all repetitionsin Ai(id).More details illustrating where ommuniation and synhronisation steps should be invoked inthe above will be given next in our parallel algorithm for polygon indeomposability testing.8.2.7 A BSP algorithm for testing polygon indeomposabilityWe are now ready to present our parallel algorithm based on the BSP model for parallelisa-tion. The algorithm is designed as an SPMD model, where a single program with multipledata is enountered by all proessors, whih then exeute their own version of the program, asdistinguished by their own identi�ation number, id = 0; :::; p � 1.Algorithm 8.2.1 (Parallel Polygon Deomposability Test)Input: The edge sequene fnieig0�i�m�1 of an integral onvex polygon P starting at a vertex v0where ei 2 Z2 are primitive vetors, and a number np of proessors suh that np � 1. Let ymin,ymax, xmin and xmax denote the respetive smallest and largest y oordinates, and the smallestand largest x oordinates, of verties of P , and assume further thatnp < 2;where  = max(xmax � xmin; ymax � ymin). 143



Output: Whether P is deomposable.Step 1: De�ne a double integer array Int of size 2(ymax� ymin+1). Let id denote the proessoridenti�ation number, and N denote the maximum over all ni's, for i = 0; :::;m � 1.Step 2: Set h ymin + id, and while h � ymax, do:2.1: Compute the points of intersetion of the line y = h with P .2.2: Broadast the x oordinates of the points of intersetion to allproessors at the entries Int[h℄[0℄ and Int[h℄[1℄ respetively.2.3: Set h h+ np.Step 3: bsp�syn().Step 4: Set Ai  ;, for i = �1; :::;m � 1, and Result Indeomposable. De�ne an auxiliaryarray of integer vetors, Aux, of size O(2N)=np, an index array of integers, Index, of size np,and a ag double array of integers, F lag, of size O(2)=np.Step 5: For i = 0; :::;m� 2, ompute the set Ai(id) of points (k; k0) in IP that are reahable viathe vetors e0; :::; ei and satisfying (k + k0) � id mod np:5.1: For h = 0; :::; np � 1, set Index[h℄ 0.5.2: Set l id+ 1, and while (l � ni) do:5.2.1: If v0 + lei = (k; k0) 2 IP , set id0  (k + k0) mod np, and send (k; k0) toproessor id0 in the array Aux at loation Index[id0℄.5.2.2: Set l  l + np and Index[id0℄ Index[id0℄ + 1.5.3: For eah u 2 Ai�1(id) and l = 0; :::; ni, if u+ lei = (k; k0) 2 IP , setid0  (k + k0) mod np, send (k; k0) to proessor id0 in the array Aux at loationIndex[id0℄, and set Index[id0℄ Index[id0℄ + 1.5.4: bsp�syn().5.5: Initialise all ags in array F lag to PASS. For eah u = (k; k0) 2 Aux do:5.5.1: Find the smallest integer j � ymin suh that k + j � id mod np.5.5.2: Set h (k0 � j)=np; if F lag[k � xmin℄[h℄ 6= FAIL, add u to Ai(id) andset F lag[k � xmin℄[h℄ to FAIL.Step 6: Compute the last set Am�1(id):6.1: For h = 0; :::; np � 1, set Index[h℄ 0.6.2: For eah u 2 Am�2(id) and l = 0; :::; nm�1 � 1: if u+ lem�1 = (k; k0) 2 IP ,set id0  (k + k0) mod np and send (k; k0) to id0 in the array Auxat loation Index[id0℄, and set Index[id0℄ Index[id0℄ + 1.Step 7: bsp�syn().Step 8: Remove the repetitions in Aux as desribed in 5.5 above and store the unique points inAm�1(id).Step 9: Let v0 = (k; k0). If id � (k + k0) mod np and if v0 2 Am�1(id), set Result  Deomposable and broadast Result to all proessors.Step 10: bsp�syn().Step 11: Return \Result". 144



Theorem 8.2.1 Let ymin, ymax, xmin and xmax denote the respetive smallest and largest yoordinates, and the smallest and largest x oordinates, of verties of P , and assume as abovethat np < 2, where  = max(xmax � xmin; ymax � ymin). Then the above algorithm worksorretly as spei�ed, has a BSP ost equal toO(2mN)np +�O(2mN)np +O( + np)� g(np) + (m+ 2) � `(np)ops, and requires O(2N)np bits of storage per proessor, assuming that the maximum of absolutevalues of all oordinates of verties of P �ts in a mahine word. Here, m denotes the numberof edges in P , N denotes the maximum number of integral points along any edge in P , and 2denotes an upper bound on the total number of integral points in P .Proof: The algorithm is exeuted by all proessors whih implement their own opy of theensuing instrutions. In the �rst step, all proessors de�ne a global array that will be usedto store the x oordinates of points of intersetion between horizontal lines y = ymin; :::; ymaxand P . We assume that there are always two points to be stored even if they were idential,in whih ase they designate a vertex. The amount of memory required to keep this globalinformation about IP is 2(ymax � ymin + 1) bits. Step 2 is done in parallel where proessorsperform almost an equal number of intersetions between horizontal lines and the polygon. Sineeah suh intersetion onsists of at most m(ymin� ymax+1) oating point operations followedby a ommuniation of two integers to np proessors, the omputation and ommuniation ostsfor this step are dm(ymin � ymax + 1)=npe+ 2np d(ymin � ymax + 1)=npe g(np)ops. Step 3 is a synhronisation point needed for all proessors to update the values of theabove points of intersetion and hene for eah to have a omplete desription of IP . Note thatymax � ymin + 1 �  + 1 and hene Steps 1-3 requireO(m)=np +O()g(np) + `(np)ops and O() bits of storage.In the remaining steps, eah proessor id omputes its own subset of Ai, for i = 0; :::;m� 1,denoted by Ai(id). Aording to our data distribution in Lemma 8.2.4, eah proessor willbe in harge of O(2)=np points, but makes use of a private opy of an auxiliary array, Aux,whih temporarily stores the points as they build up in one iterative step, even when they ourredundantly up to N times. The inner-most omputations in eah iteration in Steps 5 and 6require that eah proessor id performs a vetor sum (�nding a new point v = u + lei), twointeger omparisons (heking for inlusion of v in IP ), an integer division (determining therelevant proessor id0), and a ommuniation of two mahine words representing the oordinatesof the ommuniated point. Note that the ommuniation is done only to the relevant proessorid0 in the auxiliary array Aux, and that proessor id keeps an updated index on the addressin Aux(id0) where it an ommuniate v to its relevant proessor id0. By Lemma 8.2.1, all theomputations within a single iteration of the loops over the edges of the polygon are independent,and hene, a synhronisation barrier is needed only at the end of the sequene of omputationsand ommuniations deteting paths along e0; :::; ei for i = 0; :::;m � 1. This ensures that all145



proessors update the values of the newly added points in the array Aux. When this is done,eah proessor an then remove the repetitions in its storage as follows. For k = xmin; :::; xmax,proessor id stores all points (k; k0) suh that k + k0 � id mod np, and ymin � k0 � ymax. Inremoving repetitions, eah point (k; k0) has to have a ag assoiated with it, whih is initiallyset to PASS but then permanently set to FAIL signalling that it has been opied from Auxto Ai(id) exatly one. We have seen in Lemma 8.2.4 that this distribution alloates O(2)=npintegral points per proessor, hene the size of the array F lag. The ag of (k; k0) has to oupyan address in F lag that is dependent solely on both the order of the entries and their valuesin the pair (k; k0). Flags also have to oupy entries in the double array suessively startingfrom the loation (0; 0). This justi�es the index k � xmin, speifying the row in whih the agof (k; k0) will be found, where k � xmin = 0; :::; xmax � xmin � . For a �xed suh k, the hoieof the integer j suh that j is the �rst integer greater than or equal to ymin (and of ourse lessthan or equal to ymax sine np � ymax � ymin + 1 and ymin � j � ymin + np � 1) and satisfyingk + j � id mod np implies that any k0 suh that (k; k0) 2 Ai(id) has to satisfyk0 = j + hnp; for some integer h = 0; :::;�ymax � jnp �(note that j � k0 � ymax for (k; k0) to belong to IP ). For h = (k0 � j)=np, we have that huniquely identi�es k0 suh that k+ k0 � id mod np and that the ags of (k; k0) for a �xed k andinreasing values of k0 oupy olumns h = 0; :::; b(ymax � j)=np of array F lag. Sine j � ymin,this ensures that the number of olumns per row of the array F lag is at most O()=np, andhene the total size of the array does not exeed  �O()=np = O(2)=np.The BSP ost of Steps 5-8 an then be omputed as follows. The loop over all edges of thepolygon iterates m times. In eah iteration, every proessor performs at most O(2N)=np vetoroperations, ommuniates a set of possibly redundant O(2N)=np points, eah to one proessoronly, removes the repetitions in its auxiliary array using at most O(2N)=np integer operations,and synhronises with other proessors one. The BSP ost of Steps 5-8 is thenO(2mN)np + O(2mN)np g(np) +m � `(np)ops.By the end of all omputations, the proessors assume the result to be \Indeomposable".The proessor whih is assigned the pivot v0 heks whether v0 is in its opy of Am�1(id). Onlythen does it broadast to all other proessors the result \Deomposable" (say in the form of a bitword FAIl = 0 or PASS = 1). A synhronisation barrier is �nally met to update the ultimateresult. The total ost of this superstep is npg(np)+ `(np). Summing up the above sub-osts, the�nal estimate in the theorem is established. Sine np < 2, the spatial omplexity is dominatedby the spae required by the array Aux, whih is O(2N)=np bits, assuming that the maximumover absolute values of all oordinates of verties of P �ts in a mahine word.Corollary 8.2.1 Given a bivariate polynomial f over F of degree q with no non-onstant mono-mial fators and with  nonzero terms, absolute irreduibility testing an be performed in parallelusing O(q3)np +�O(q3)np +O(q + np)� g(np) +O()`(np)146



ops and O(q2)np bits of storage, assuming q �ts in a mahine word, and 1 � np = O(q).Proof: Let ymin, ymax, xmin, xmax and  be as de�ned above. Sine ymax � ymin � q andxmax � xmin � q, Newt(f) an be embedded in a q � q square whose lowest leftmost vertex isthe origin of oordinates. Let u denote some unit of length on the horizontal or vertial axes.Then, the longest edge of Newt(f) will have length that is bounded by p2qu representing thelength of the diagonal of the square, and hene will have O(q) integral points so that N = O(q).Moreover, sine  = max(ymax � ymin; xmax � xmin), we have  � q. We also know that thenumber of edges of Newt(f) is bounded by the number of terms  of f . Summarising, the inputto Algorithm 8.2.1 will then satisfy N = O(q), 2 = O(q2) and m = O(), and by Theorem 8.2.1above, the result follows immediately.Let Ts denote the sequential run time in ops of Algorithm 3.3.1 and Tnp denote the parallelrun time in ops using np proessors of the parallel version 8.2.1. We have seen that Ts =O(2mN) where 2 represents an upper bound on the number of integral points in P . Let Enpdenote the absolute eÆieny (see [86℄) de�ned by Enp = Ts=(npTnp), measuring the salabilityof the above parallel algorithm. The following result establishes the onditions under whih ourBSP algorithm an ahieve linear speed-up, where eÆieny approahes 1.Corollary 8.2.2 Then Algorithm 8.2.1 for testing indeomposability of a onvex polygon P inparallel ahieves eÆieny Ep � 1=2 under the onditions1. g(np) = O(1), (see note below)2. np < mN ,3. np <  �mNnp � 1�,4. np`(np) = O(2mN).Proof: Reall from Theorem 8.2.1 thatTnp = Ts=np + �O(2mN)=np +O( + np)� g(np) + (m+ 2)`(np):For g(np) = O(1) we have Tnp = Ts=np +O( + np) + (m+ 2)`(np):If np < mN , mNnp � 1 > 0 and hene we an require np <  �mNnp � 1� or +np < 2mN=np,so that Tnp = Ts=np + (m+ 2)`(np):If we also have np`(np) = O(2mN), then (m+ 2)`(np) = O(2mN)=np andTnp = Tsnp (1 +O(1))147



from whih one dedues that Ep = TsnpTnp � 1=2:Note 1:Although the �rst ondition in the orollary above poses a heavy requirement on the ommuni-ation parameter, we note that the experimental results obtained later on bene�t mainly fromthe low synhronisation ost, whih is dependent on the number of edges of the input poly-gon. In the ase of sparse polynomials, this number is usually very small, hene the speed-upwe report in our experiments. Furthermore, we view our ommuniation ost as an a�ordablerequirement in pratie, espeially that the parallel algorithm promises absolute irreduibilitytesting of polynomials with signi�antly higher degrees than an be tested using a sequentialversion of the polygon deomposability testing algorithm.8.3 Parallel multivariate absolute irreduibilitytestingAs disussed earlier, multivariate polynomial absolute irreduibility testing through polytopesan be performed only heuristially with varying rates of suess. For a multivariate polynomialof n variables and degree bound equal to d on eah variable, the empirial results in [47℄ reeta very high probability of suess for polynomials whose number of terms is O(nd). For poly-nomials whose number of terms exeeds this bound, the probability of suess an be inreasedby loosening the bound on the absolute values of the randomly hosen matries, or the boundon the number of projetions that one an try before the algorithm outputs suess. The �rststrategy obviously omes at the expense of a larger running time, sine it implies inreasingthe sizes of the shadow polygons and hene the run time of the polygon indeomposability test.The seond option also inreases the run time of the algorithm, simply beause it involves manymore shadow polygons (of roughly the same size) to be tested for indeomposability. Unlike thease for bivariate absolute irreduibility testing, improving the sequential algorithm not only in-volves extending the range of suess for higher degree polynomials, but also investigating howparallel tehniques an improve upon the performane when any of the two above strategies isinvoked, with the aim of inreasing the hanes of suess even for polynomials that are denserthan those for whih the randomised algorithm is generally suessful. A parallel approah tomultivariate absolute irreduibility testing will naturally depend on the parallel bivariate aseas a sub-problem; however, we shall emphasise the role that a parallel environment an have inthe interplay between the number of projetions and their \size", as one manipulates the twoparameters to improve the suess rate.8.3.1 A BSP algorithm for testing polytope indeomposabilityIn the following, let np denote the maximum number of proessors that an be made available,and let p denote the number of proessors that are atually invoked. We then have p � np.As sizes of shadow polygons may hange (aording to the matrix bound one hooses in Step2 of Algorithm 3.3.2), so an their numbers, and aordingly we identify the two parameters148



governing the behaviour of our parallel algorithm: First, the number pr of proessors that weassign for testing indeomposability of one ommon shadow polygon using the parallel bivari-ate version, and the total number j of shadow polygons to whih one applies Algorithm 8.2.1simultaneously in parallel. Sine pr � p, one will have j � 1 bloks of pr proessors, eah blokperforming a parallel polygon indeomposability test, resulting in a \doubly" parallel shemeaimed at improving the sequential performane at the two levels of size and number of proje-tions. Before presenting our algorithm, we shall need a few more notations. Let pmin denotethe minimum number of proessors required to test indeomposability of one shadow polygonusing the parallel algorithm in 8.2.1. For every shadow polygon Pi, let y(i)max, y(i)min, x(i)max, andy(i)min denote respetively the largest and smallest y oordinates, and the largest and smallestx oordinates, among all lattie points in Pi. Let i = max(y(i)max � y(i)min; x(i)max � x(i)min) andde�ne max = max(i), where the maximum is taken over all possible shadow polygons Pi. Thenumber pmin thus orresponds to the minimum number of proessors required to store a numberof integral points that is bounded by 2max using the data distribution in Lemma 8.2.4. Notethat, given a polynomial f with total degree at most nd, the projetions of the support vetorsof f into the plane using a matrix whose entries are bounded by b have oordinates that areequal to at least �2nbd and at most 2nbd, and we onsequently have max = O(nbd).Let np, p and pr be as de�ned above, and assume in the following that more than pminproessors an be allowed to test one shadow polygon. In partiular, let u 2 f0; :::; np�pming besuh that pr = pmin+u, and let j 2 f1; :::; j nppmin+ukg be suh that jpr = p. With this struturewe an have bloks of j shadow polygons, eah of whih is tested for indeomposability byAlgorithm 8.2.1 using j(pmin + u) = jpr = p � np proessors. Taking the maximum over allshadow polygons, let N denote the maximum number of integral points along any edge, E denotethe maximum number of edges, and max be as de�ned above, denoting the maximum numberof integral points belonging to any shadow polygon.Algorithm 8.3.1 (Parallel Polytope Indeomposability Test)Input: Let f 2 F [X1; :::;Xn℄, with n > 2, be a polynomial with  terms and no non-onstantmonomial fators, and let Sf denote the set of exponent vetors of nonzero terms of f .Output: Absolutely irreduible or Failure, where the latter ase means that indeomposability ofonv(Sf ) (and hene absolute irreduibility of f) is not deided.Step 1: Re-arrange the points in Sf as an n�  matrix S. Choose positive integers b and e. LetM(b) denote the set of all 2 � n matries with integer oeÆients bounded in absolute value byb.Step 2: Determine the minimum number of proessors pmin neessary to test indeomposabilityof a shadow polygon of size O((nbd)2).Step 3: Choose a parameter u 2 f0; :::; np � pming suh that any shadow polygon is takled bypmin + u proessors. Set pr = pmin + u.Step 4: Choose a parameter j 2 f1; :::; jnppr kg suh that jpr � np.Step 5: Invoke p = jpr proessors to operate in parallel. If e mod j 6= 0, set e e+j�(e mod j).Step 6: De�ne an auxiliary array of integer vetors, Aux, of size O(2maxN)=pr, an index arrayof integers, Index, of size pr, and a ag double array of integers, F lag, of size O(2max)=pr.149



Step 7: Proessors are divided into j bloks aording to indies as follows:blok0 = fidjid = 0; :::; pr � 1g;blok1 = fidjid = pr; :::; 2pr � 1g;::::blokj�1 = fidjid = (j � 1)pr + jpr � 1g:All proessors in blok w, for some w = 0; :::; j � 1, perform Steps 8-18 repeatedly up to e=jtimes:Step 8: Selet a ommon matrix Matw uniformly at random from M(b) and ompute the set ofpoints in R 2 de�ned by Matw(S) := fMatw:sjs 2 Sg.Step 9: Compute the onvex hull and the edge sequene fnieig0�i�m�1 of Matw(S). Chek thateah vertex of onv(Matw(S)) has only one pre-image in S under the projetion Matw. If thisondition is not met, all proessors in blok w return to Step 8.Step 10: bsp�syn();Step 11: Compute a desription of the set IP of all the integral points in Matw(S) as desribedin Steps 1 and 2 of Algorithm 8.2.1. Let A(w)i (id) denote the set of points in onv(Matw(S))that are reahable via e0; :::; ei and that are assigned to proessor id in blok w. Set A(w)i = ;, fori = �1; :::;m�1, and Result(w)  Indeomposable. Let id denote the proessor's identi�ationnumber.Step 12: For i = 0; :::; E � 2 do:12.1: If i � m� 2, ompute the set A(w)i (id) of points (k; k0) in IP that are reahable viathe vetors e0; :::; ei and satisfying (k + k0) � id mod pr:12.1.1: For h = w:pr; :::; (w + 1):pr � 1, set Index[h℄ 0.12.1.2: Set l id� (w:pr) + 1, and while (l � ni) do:. If v0 + lei = (k; k0) 2 IP , setid0  [(k + k0) mod pr℄ + w:pr, and send (k; k0)to proessor id0 in the array Aux at loation Index[id0℄.. Set l l + pr and Index[id0℄ Index[id0℄ + 1.12.1.3: For eah u 2 A(w)i�1(id) and l = 0; :::; ni, if u+ lei = (k; k0) 2 IP , setid0  [(k + k0) mod pr℄ + w:pr, send (k; k0) to proessor id0 in the arrayAux at loation Index[id0℄ and set Index[id0℄ Index[id0℄ + 1.12.2: bsp�syn();12.3: Initialise all ags in array F lag to PASS. For eah u = (k; k0) 2 Aux do:12.3.1: Find the smallest integer j � ymin suh that k + j � id mod pr.12.3.2: Set h (k0 � j)=pr; if F lag[k � xmin℄[h℄ 6= FAIL, add u to A(w)i (id) and setF lag[k � xmin℄[h℄ to FAIL.Step 13: Compute the last set A(w)m�1(id):13.1: For h = wpr; :::; (w + 1)pr � 1, set Index[h℄ 0.13.2: For eah u 2 A(w)m�2(id) and l = 0; :::; nm�1 � 1: if u+ lem�1 = (k; k0) 2 IP , set150



id0  [(k + k0) mod pr℄ + w:pr, send (k; k0) to id0 in the array Aux at loationIndex[id0℄, and set Index[id0℄ Index[id0℄ + 1.Step 14: bsp�syn().Step 15: Remove the repetitions in Aux as desribed in 12.3 above and store the unique pointsin A(w)m�1(id).Step 16: Let v0 = (k; k0). If id = [(k + k0) mod pr℄ + w:pr and if v0 2 A(w)m�1(id), set Result  Deomposable and broadast Result to all proessors.Step 17: bsp�syn().Step 18: If this polygon is integrally indeomposable, output \Absolutely irreduible" and halt.Else, all proessors return to Step 8.Step 19: All proessors output \Failure".Theorem 8.3.1 Let f 2 F [X1; :::;Xn℄, with n > 2, be a polynomial with  terms and no non-onstant monomial fators. Let d denote the upper bound on the degree in eah variable of f ,and let b denote the upper bound on the absolute values of integer oeÆients of 2� n matriesrepresenting random projetions. Let pmin denote the minimum number of proessors needed tostore O((nbd)2) integral points using the distribution in Lemma 8.2.4. Let k 2 f0; :::; np � pmingand j 2 f1; :::; j nppmin+kkg suh that p = j(pmin + k) proessors are operating in parallel andp � np, np = O(nbd). Then Algorithm 8.3.1 an deide absolute irreduibility of f orretly orelse produe \failure" using at mostTp = ej �O(2 + n) + O(2maxEN)pr �+ ej �O(2maxEN)pr +O(p+ max)� g(p) + ejO(E)`(p)ops, and requires O(2maxN)pr bits of storage per proessor, assuming that nbd �ts in a mahineword. Here, E denotes the maximum over all shadow polygons of total number of edges, Ndenotes the maximum over all shadow polygons of number of integral points along any edge, and2max denotes an upper bound on the total number of interior integral points belonging to anyshadow polygon.Proof: The �rst four steps of the algorithm are performed sequentially, whereby a matrixbound b is hosen, whih determines pmin aording to the data distribution in Lemma 8.2.4.The two parameters u and j are also hosen suh that pmin + u = pr � np proessors an beassigned for any shadow polygon, and j shadow polygons an be tested simultaneously. Thealgorithm then invokes p = jpr � np proessors to operate in parallel. The minor modi�ation tothe value of the number of projetions e ensures that j divides e, so that all proessors are madeto enter the loop starting at Step 8. The reason we enfore suh full partiipation of proessorsis that synhronisation barriers will be met throughout that partiular loop, whih auses arun-time error if any of these supersteps is not met by all proessors. In Step 6, all arrays thatwill be used for removing repetitions in the upoming omputations are delared. Note that theamount of memory per array is dependent on the number of proessors pr operating in one blokrather than the total number of proessors. This is beause only pr proessors will be allowedto share the work in the parallel polygon indeomposability testing. In Step 7, all p proessors151



re-luster into j bloks as determined by their identi�ation number. This re-grouping ensuresproessors within one blok w = 0; :::; j�1 ompute the same random projetion Matw(S), andperform the rest of the Steps 8-18 using this ommon input.The loop starting at Step 8 iterates at most e=j times. We analyse eah step in the itera-tion as follows. Step 8 is only a omputation whereby all proessors perform  matrix vetormultipliations using their assigned matrix Matw. Eah suh multipliation requires 2n mul-tipliations and 2(n � 1) additions of integers bound in absolute value by nbd, and so Step 8has a BSP ost of O(n) ops. In Step 9, all proessors in blok w ompute the edge sequeneof the shadow polygon onv(Matw(S)). This is only a omputation step with BSP ost O(2)ops. A synhronisation barrier is met at Step 10 to ensure that proessors in a partiularblok w whih have found a suessful projetion wait for others in di�erent bloks still searh-ing for a good andidate projetion. Without this barrier, one risks having some but not allproessors entering the loop of the parallel polygon indeomposability testing phase (whih inturn ontains a synhronisation barrier that should be met by all p proessors). In Steps 11-17,eah proessor joins the others in its blok to test indeomposability of their ommon shadowpolygon. In Step 12, we enfore an upper bound of E� 2 rather than m� 2, sine E is a globalmaximum of the number of edges belonging to any shadow polygon, whereas m is a private opyrepresenting the number of edges of onv(Matw(S)). This is again to ensure that all proessorsenter the loop within whih a synhronisation barrier is to be met in Step 12.2. However, therelevant omputations and ommuniations are performed only when the proessors in blok wan do so (as indiated by the ondition i � m � 2 in Step 12.1). The vetor omputationsand the repetition hekings in Steps 12.1, 12.3 and 13 are similar to those in the parallel poly-gon indeomposability testing algorithm. However, we note the following essential di�erenes.Note that any proessor in the above sheme has two labels attahed to it, one desribing itsidenti�ation number id = 0; :::; p � 1, and another desribing its index ind within its blok,for ind = 0; :::; pr � 1. Moreover, a proessor id operates within blok w = bid=pr, and hasindex ind � id mod pr in that blok. Conversely, a proessor with index ind in blok w has idequal to w:pr+ ind. The data alloation in the present algorithm should assign arbitrary points(k; k0) of the polygon onv(Matw(S)) only to pr proessors. Thus, one heks for the value of(k + k0) modulo pr rather than p, the total number of proessors in ation. But this gives theindex of the proessor to whih (k; k0) should be alloated. The atual id an then be retrievedas [(k+ k0) mod pr℄ +w:pr. As seen previously, the BSP ost required by Steps 11-15 is at mostO(2maxEN)pr ) +�O(2maxEN)pr +O(max)� g(p) + (E + 2)`(p)ops and O(2maxN)=pr bits of storage. Note that we make expliit the dependene of g and `on p, sine their ost depends on the total number of proessors invoked despite the fat thatthe omputations and ommuniations are shared between bloks of pr proessors only.In Step 16, all p proessors resume ontat to be able to know whih of the w shadowpolygons have been shown indeomposable. The proessor in blok w whih is in harge of thepivot v0 of Conv(Matw(S)) deides whether the polygon is indeomposable, and if so, signalsto all proessors in its blok and other bloks to halt the algorithm. Else, all proessors repeatSteps 8-18 hoosing a di�erent projetion Matw. This involves p ommuniations of a booleanrepresenting \Indeomposable", and brings the total ost of the entire algorithm toTp = ej �O(2 + n) + O(2maxEN)pr �+ ej �O(2maxEN)pr +O(p+ max)� g(p) + ejO(E)`(p)152



ops. The memory requirement is dominated by O(2maxN)=pr bits needed per proessor tostore its subset of integral points belonging to any shadow polygon.Corollary 8.3.1 Algorithm 8.3.1 for absolute irreduibility testing of multivariate polynomialsahieves eÆieny Ep � 1prunder the onditions1. g(p) = O(1),2. p < 2 + n+ (2maxEN=pr)� max,3. `(p) < 2+nE + 2maxNpr .Proof: Reall that the sequential time for testing absolute irreduibility of a random mul-tivariate polynomial is given by Ts = eO(2 + n+ 2maxEN)bit operations, assuming nbd �ts in a mahine word. Rewrite this asTs = T1 + T2where T1 = eO(2 + n) denotes the ost of that part of the algorithm in whih the projetedpoints and their onvex hull are omputed, and T2 = eO(2maxEN) denotes the ost of testingintegral indeomposability of the shadow polygons. We also haveTp = ej �O(2 + n) + O(2maxEN)pr �+ ej �O(2maxEN)pr +O(p+ max)� g(p) + ejO(E)`(p)ops. For g(p) = O(1),Tp = ej �O(2 + n) + O(2maxEN)pr �+ ejO(p+ max) + ejO(E)`(p):By the ondition p < 2 + n+ (2maxEN=pr)� max, p+ max = O(2 + n) +O(2maxEN)=prand so Tp = ej �O(2 + n) + O(2maxEN)pr �+ ejO(E)`(p);and if `(p) < 2+nE + 2maxNpr , Tp = ej �O(2 + n) + O(2maxEN)pr �153



or Tp = 1j �T1 + T2pr�for T1 and T2 as de�ned above. We then havepTp = pj �T1 + T2pr �= prT1 + T2� pr(T1 + T2)= prTsfrom whih one onludes that TspTp � 1pr :The above disussion investigates the parallel eÆieny for an inreasing number of proes-sors. However, the impliations play an important role in the hoie we have to make of theparameters u and j. In partiular, the lower bound on Ep an be improved for dereasing valuesof pr, whih indiates that the best realisti performane is ahieved by hoosing u = 0, sothat pr = pmin. Sine one annot invoke Algorithm 8.3.1 without less than pmin proessors pershadow polygon, we expet this to be the best ase senario desribing the parallel salabilityof the algorithm.8.4 Implementation and Run TimesAll programs were written in C and extended using the standard BSP library [66, 67℄. Thework was arried out at the Oxford University Superomputing Centre (OSC) using the Oswellmahine. In pratie, we had aess to 16 proessors only.In the following, n denotes the number of variables in the input polynomial f , D denotes itstotal degree, d denotes the upper bound on the degrees in eah of its variables, and  denotesthe number of its terms. Also, E and N denote the number of edges and the maximum numberof integral points along any edge of Newt(f) if f is bivariate. If f is multivariate, E and Ndenote the maximum over the number of edges and the maximum number of integral pointsalong any edge over all shadow polygons of Newt(f). S denotes the number of ases (out of100) in whih Newt(f) is integrally indeomposable. In the ase that n > 2, MB denotes thematrix upper bound on absolute values of random oeÆients of the projetions, PB denotesthe upper bound on the number of projetions per polytope, AP denotes the average number ofprojetions required to show that the input polynomial is absolutely irreduible, and pr denotesthe number of proessors alloated per shadow polygon in the parallel multivariate algorithm.T1 denotes the sequential running time in seonds, and Tp, for p > 1, denotes the parallel runningtime in seonds using p proessors, to show absolute irreduibility suessfully for one ase thatuses about the average number of projetions. An empty olumn loation appearing beforethe �rst reported running time Tp indiates that there is not enough memory using less than pproessors to takle the input polygon or shadow polygons of the input polytopes. An empty154



olumn loation appearing after the last reported running time Tp indiates that there are nomore proessors available in the system for our use. The absolute eÆienies Ep are shown inparentheses below their orresponding parallel times. Note that when the algorithm annot berun using one proessor for memory onstraints, we are ontended with alulating absoluteeÆieny using p proessors as p0Tp0=pTp, where Tp0 is the �rst reported parallel running time.The input to the two parallel algorithms is generated as follows. A hoie is �rst madeon the parameters n, D or d, , E and N . A hundred random polynomials satisfying theabove parameters are then hosen: In the bivariate ase, those polynomials should also satisfythe onditions governing their Newton polytopes (in terms of the number of edges E and themaximum number N of integral points appearing along any of their edges). In the multivariatease, the projetions hosen for these 100 polynomials should produe shadow polygons satisfyingthe parameters E and N . In the proess of generating the random polynomials, we exlude allases where the orresponding input polygons or shadow polygons of the orresponding inputpolytopes have parameters E and N that do not satisfy the imposed restritions.In Table 8.1 we examine relatively small degree bivariate polynomials with 300 terms andwhose Newton polytopes have no more than 6 edges, and we study the e�et of variations in theaverage number N of integral points along any edge of the polygon. The performane generallyhas good eÆieny up to 4 proessors, but it an be improved for more proessors by inreasingthe degree (and hene the total number of integral points in the polygon) or inreasing values ofN for a �xed degree. Spei�ally, and aording to Corollary 8.2.2 and the values in Table 5.2,we see that the �rst three onditions are easily satis�ed. For small degree polynomials whoseNewton polytopes have a small value for the parameter N , the fourth ondition might not holdas we inrease the number of proessors. In this ase eÆieny an be improved by inreasingthe maximum number of integral points along any edge of Newt(f). The rate of suess isgenerally high, sine as indiated previously in [47℄, one expets the algorithm to perform wellfor sparse polynomials whose number of terms is O(nd). However, we note that the rate ofsuess dereases with inreasing values of N .In Table 8.2 we examine larger degree bivariate polynomials with varying numbers of terms.Mostly, eÆieny improves signi�antly for larger degree polynomials. As noted above, and fora �xed degree polynomial whose Newton polytope has a �xed number of edges, the run-timeinreases and eÆieny improves when N inreases for a �xed D or when D inreases. Unlikethe examples in Table 8.1 though, varying the number of terms  indiates that the rate ofsuess dereases for inreasing ratios N= rather than simply for inreasing values of N . Fixingthe degree, the number of terms, and the parameter N , we also note an inrease in the run-timeand improvement in eÆieny when the number of edges inreases, whih is to be expeted fromCorollary 8.2.2.In Table 8.3 we study the performane of the parallel algorithm in the multivariate aseand for small degree polynomials. The number of edges belonging to the shadow polygons is�xed. For all unstarred rows, the number of proessors in eah blok is set to be the minimumrequired. EÆieny improves for a �xed degree as the number of terms inreases. This relates toonditions 2 and 3 of Corollary 8.3.1. For a �xed degree and a �xed number of terms, eÆienyimproves when the matrix bound inreases, sine this implies larger shadow polygons and henelarger values for max and N in onditions 2 and 3 of Corollary 8.3.1. In the starred rowswe ompare the performane of the algorithm when only pr is inreased beyond the minimumrequired, but all other parameters remain �xed. As predited at the end of Setion 8.3, and fora �xed total number of proessors p, eÆieny is better maintained when pr = pmin. As earlier155



noted in [47℄, the suess rate dereases with inreasing numbers of terms, and an be improvedby either inreasing the projetion bound or the matrix bound.In Table 8.4 we examine the performane for large degree trivariate polynomials. Here, thenumber of terms is �xed, and is signi�antly less than the total degree of the input. Also, E andN are �xed for all shadow polygons, and so are the matrix bound and projetion bound. Wenote a muh better parallel performane than in the ase of small degree trivariate polynomialsin Table 8.3. This also improves upon inreasing degrees (as indiated by onditions 2 and 3 ofCorollary 8.3.1). The algorithm has never failed for examples using only one projetion per aseand a very small matrix bound. This emphasises the expeted high suess rate of the algorithmfor sparse polynomials [47℄.Finally, in Table 8.5, we examine the performane for multivariate polynomials all with thesame small bound on the degree in eah of their variables. Also �xed are the number of terms,E and N of the shadow polygons, and the matrix bound and projetion bound. Here, pr isset to be the minimum number of proessors required to takle a shadow polygon. We inreasethe number of bloks to be tested in parallel by inreasing the number of proessors available.EÆieny is very good in all ases, even for polynomials whose total degree is less than others.This is to be expeted sine the sizes of shadow polygons are relatively large (onditions 2 and3 of Corollary 8.3.1). The suess rate is also high for these sparse polynomials, and so are thenumber of projetions needed to produe a suessful experiment.Reall that:� n = the number of variables in the input polynomial f� D = the total degree of f� d = the upper bound on the degrees in eah of the variables in f�  = the number of terms of f� E = the number of edges of Newt(f) if f is bivariate, or else the maximum over the numberof edges over all shadow polygons of Newt(f)� N = the maximum number of integral points along any edge of Newt(f) if f is bivariate,or else the maximum number of integral points along any edge over all shadow polygonsof Newt(f)� S = the number of ases (out of 100) in whih Newt(f) is integrally indeomposable� MB = the matrix upper bound on absolute values of random oeÆients of the projetions� PB = the upper bound on the number of projetions per polytope� AP = the average number of projetions required to show that f is absolutely irreduible� pr = the number of proessors alloated per shadow polygon in the parallel multivariatealgorithm� Tp = the parallel running time in seonds using p proessors, to show absolute irreduibilitysuessfully for one ase that uses about the average number of projetions156



Table 8.1: n = 2,  = 300, E = 6InputD N S T1 T2 T4 T8 T161500 10 100 11 7(0:7) 9(0:3) 14(0:1) 15(0:1)1500 50 100 68 42(0:8) 24(0:7) 16(0:5) 10(0:4)1500 100 97 83 46(0:9) 26(0:8) 17(0:6) 10(0:5)1500 900 89 828 427(1) 216(1) 115(0:9) 52(1)2500 10 100 35 20(0:9) 12(0:7) 7(0:6) 4(0:5)2500 50 100 185 94(1) 58(0:8) 37(0:8) 19(0:6)2500 100 100 240 122(0:9) 67(0:9) 37(0:8) 25(0:6)Table 8.2: n = 2InputD  E N S T1 T2 T4 T8 T12 T163000 1000 7 2000 72 108 56(1) 30(0:9) 17(0:8) 10(0:9) 7(1)3000 1000 7 3000 6 129 65(1) 36(0:9) 18(0:9) 12(0:9) 9(0:9)5000 500 6 10 100 72 37(1) 20(0:9) 13(0:7) 9(0:7) 8(0:6)5000 500 10 10 98 168 84(1) 47(0:9) 24(0:9) 18(0:8) 15(0:7)5000 2000 10 4000 81 ... 115 60(1) 37(0:8) 27(0:7) 25(0:6)5000 2000 8 5000 5 ... 230 117(1) 64(0:9) 48(0:8) 37(0:7)10000 500 6 100 100 ... ... 60 32(0:9) 22(0:9) 18(0:8)10000 500 10 100 100 ... ... 190 95(0:8) 79(0:8) 50(1)10000 1000 8 3000 96 ... ... 133 73(0:9) 55(0:8) 40(0:8)10000 3000 8 5000 86 ... ... 371 206(0:9) 155(0:8) 116(0:8)20000 2000 8 1000 100 ... ... ... ... 131 112(0:9)20000 5000 8 7000 90 ... ... ... ... 177 142(0:9)30000 3000 8 3000 100 ... ... ... ... 329 235(1)
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Table 8.3: E = 8, N = 50Inputn D  pr MB PB S AP T1 T2 T4 T8 T163 75 100 1 2 100 61 16 7 6(0:6) 4(0:4) 5(0:2) 3(0:1)3 75 100 1 2 200 82 80 49 33(0:7) 20(0:6) 13(0:5) 31(0:1)3 75 100 1 6 100 80 14 127 74(0:9) 33(1) 24(0:7) 17(0:5)3� 75 100 2 6 100 80 14 ... 74(0:9) 66(0:5) 29(0:5) 26(0:3)3 75 200 1 2 100 30 18 7 5(0:7) 5(0:4) 6(0:1) 4(0:1)3 75 200 1 2 200 45 127 232 129(0:9) 72(0:8) 41(0:7) 24(0:6)3 75 200 1 6 100 51 8 51 25(1) 18(0:7) 12(0:5) 7(0:5)3� 75 200 2 6 100 51 8 ... 26(1) 19(0:7) 22(0:3) 15(0:2)Table 8.4: n = 3,  = 500, E = 8, N = 100, MB = 1, PB = 100InputD S AP T1 T2 T4 T8 T161500 100 1 19 10(1) 6(0:8) 3(0:8) 2(0:6)3000 100 1 ... 65 28(1) 16(1) 8(1)15000 100 1 ... ... 138 74(0:9) 39(0:9)21000 100 1 ... ... 150 83(0:9) 47(0:8)30000 100 1 ... ... ... 237 118(1)Table 8.5: d = 10,  = 500, E = 8, N = 50, MB = 1, PB = 100Inputn S pr AP T1 T1�pr T2�pr T3�pr T4�pr T5�pr T6�pr T8�pr500 100 2 20 ... 2460 1250(1) 828(1) 617(1) 517(1) 410(1) 313(1)1000 100 3 24 ... 3004 1501(1) 885(1:1) 800(1) 680(1) ... ...2000 100 5 24 ... 854 427(1) 280(1) ... ... ... ...3000 100 6 26 ... 3224 1543(1) ... ... ... ... ...Note 2:The eÆienies noted in Table 8.5 seem over-optimisti, but this an perhaps be attributed tothe fat that Ep was not alulated using a sequential time but rather using the ratio p0Tp0=pTp,for p0; p > 1. In the ases when it is almost impossible to get a sequential time referene, this158



slightly impreise measurement of parallel performane is the best available in pratie.Note 3:Although both our parallel algorithms have omputation and ommuniation osts growing al-most together, the very eÆient parallel performane an perhaps be a result of a onstant fatorwithin the omputational omplexity that is larger than the one in the omputational estimate.In pratie, this an happen when the omputations within the inner-most loops produe manymore lattie points that do not belong to the given polygon (or shadow polygon) than lattiepoints whih do (and whih hene have to be ommuniated). In this ase, there is more om-putation that is performed and then disarded without being mathed with a orrespondingommuniation.8.5 ConlusionIn this hapter we have revisited a fast irreduibility testing algorithm for multivariate poly-nomials over arbitrary �elds. The algorithm works deterministially in the bivariate ase butheuristially and randomly for polynomials with more than two variables. Although �nding apolynomial time algorithm for multivariate polynomial irreduibility testing remains an openproblem, the work in [45℄ gives a pseudo-polynomial time algorithm, whih an be applied asa fast pre-test before any of the rigorous yet slower algorithms are invoked. Motivated by theoriginal empirial �ndings in [47℄ whih provide various ranges of appliability of the heuristialgorithm, we investigated potential parallelism with the aim of extending these ranges, bothfor large degree bivariate polynomials and for multivariate polynomials of all degrees. A ruialaspet of our work exploited the fat that absolute irreduibility testing an be redued to poly-tope indeomposability testing in Rn. For n = 2, we addressed the two important issues of loadbalaning and data distribution. Having set the parallel framework we provided an algorithmwhose ommuniation ost an be easily bounded by the omputation, and whose synhronisa-tion ost has a fator that is a onstant multiple of the number of edges in the polygon. Thisimmediately implies highly eÆient parallel performane for sparse bivariate polynomials whoseNewton polytopes have few edges. Empirial results in this ase ahieve overall eÆieny underreasonable parametri onditions that are implied by our theoretial analysis of the algorithm,and by signi�antly higher degree absolute irreduibility testing up to degree 30000.We inorporated the above for the parallel multivariate ase into a doubly parallel shemewhere several shadow polygons are tested in parallel by bloks of proessors. This was doneby identifying two parameters reeting the size as well as the number of the shadow polygons.Conditions under whih this algorithm ahieves good eÆieny were also studied, and reetedin the empirial results for the multivariate ase. Those exhibited a good eÆieny for both smalldegree polynomials and for high degree polynomials, where parallelism ould be exploited notonly for speeding up omputations but also for inreasing the rate of suess of the algorithm.The algorithm was used to test absolute irreduibility of trivariate polynomials with degree upto 30000 and of low degree multivariate polynomials with up to 3000 variables.
159



Chapter 9Conlusion9.1 Disussion and future workThe various algorithms for polynomial fatorisation over �nite �elds and many other relatedalgorithms in symboli omputation have ourished under the assumption that better algorithmsare those whih takle larger input sizes and ahieve better running times. Thus, ontinuity insuh a domain does not rely solely on progress in asymptoti analysis, and some other aspetsof symboli omputation have to be investigated.Over the past thirty years, the theory of polynomial fatorisation over �nite �elds has beenlargely exhausted from a mathematial point of view; nevertheless, this progress has yet to befully mathed with advanes onerning the mahinery originally designed to foster suh algo-rithms. A lot of hallenge lies not only in oming up with faster sequential algorithms, but alsoin trying to inrease the problem sizes for the already existing algorithms, and in omparing thevarious algorithms when one atually embarks on their implementation. A sequential algorithmmay outperform another one simply beause it requires a smaller number of operations; however,muh else has to be said, for instane, when the algorithms are approahed from a parallel pointof view.Among the many approahes in a omputer algebra system are the following. Primarily,introduing new mathematial algorithms gains most redit for the reativity that this entails,obtaining better omplexity bounds. However, there omes a time when these need to be testedin pratie, before they an be branded as eÆient as they are laimed to be. Heuristis anplay an important role in bringing about improvements, espeially in speial ases like sparseor binary polynomials. The disadvantage of this approah is that heuristis still need to beproven to work before they an be generally aepted by the mathematial ommunity. Datastrutures also have an important role in improving existing mathematial algorithms. Theseare the basi building tools whose areful manipulation an have a deisive fator in determiningthe eÆieny of a partiular algorithm. Parallelism is an ative area of researh and it beomesalmost immediate to try and inorporate this whenever possible. Apart from the inherentinterest in parallel design, this an help when either run time or memory is a problemati issuein a partiular sequential algorithm. The risk involved is that, unless problems are big enough,parallel performane an in fat be worse than the sequential one.Based on the above, we have disovered an interest in takling suh algebrai problems froma omputational point of view. In this thesis, we have foused on two reent algorithms in the160



�eld of polynomial fatorisation algorithms over �nite �elds. The fous of interest in the earlierhapters was on Niederreiter's algorithm and its appliability over the binary �eld. We developeda new sparse binary linear solver based on the Gustavson data struture, aimed at avoiding elbowroom and ompression. The method an be easily generalised to deal with arbitrary prime �elds.This was inorporated in the linear algebra part of Niederreiter's algorithm, and helped assertthat the algorithm performs favourably in the ase of sparse polynomials, spei�ally trinomials.We onjetured that the system remains onsiderably sparse over F 2.The results of the �rst hapter were used in the following work on a BSP model for theG::ottfert algorithm. An example where the BSP model an be used in omputer algebra, theparallel algorithm was used in that phase of Niederreiter's algorithm where the fators haveto be extrated using a basis of the linear system solution set. We demonstrated eÆient andsalable parallel performane, thanks to the algorithm's low ommuniation and synhronisationosts. The empirial results show that the algorithm an perform favourably in omparison withprevious parallel implementations of Niederreiter's algorithm.In later hapters we helped develop the polytope fatorisation method with S. Gao and A.Lauder as a novel method for bivariate fatorisation. Apart from the mathematial foundationsof this algorithm, the hallenges in that respet have been to develop those areas of the methodthat helped make it pratially omputable and aessible for use, and demonstrate throughpreliminary examples over the binary �eld that it an ompete with the standard Hensel lift-ing method for bivariate fatorisation. As a follow up, we developed a sparse variant whihon�rmed the original arguments in [2℄ that the method an work well for sparse polynomials.The omplexity of the new variant was determined using the number of terms of the inputpolynomial and its degree rather than the degree only, so that both the run time and memoryrequirements are made dependent on the sparsity fator of the input. Although it works underspei� onditions governing the sparsity of the expeted fators of the input, we believe thatthe fatorisation reord ahieved through this method ould not have been ahieved using anyother algorithm.We onluded with another instane of where parallelism an be used to ahieve ompetentresults in testing absolute irreduibility of multivariate polynomials. Investigating a new methodbased on the use of polytopes, we exploited the geometri features of the algorithm in a BSPparallel method based on a well de�ned load balaning sheme and data distribution. Theparallel algorithm exhibited a salable and eÆient performane, also resulting in very highabsolute irreduibility testing reords.We would always be interested in questioning some of the theoretial assertions labellingone algorithm as \better" than another, determining ross over points between the versatileapproahes, and many other tasks that would not be possible to ahieve without the omputingtools available at the hand of a omputer sientist. In relation to our previous work on univariatefatorisation, it would be interesting to seek theoretial arguments why the Niederreiter linearsystem remains onsiderably sparse throughout the redution phase, or else refute our onjeturethat it does. It would also be interesting to investigate the usage of the Blok Lanzos method insolving the linear systems assoiated with either Berlekamp's or Niederreiter's algorithm, and toompare this to previous versions whih make use of blak box methods like the Wiedemann'smethod. In relation to our work on bivariate fatorisation, we �rst need to perform ampleode optimisation of the polytope method (both dense and sparse), as the software available isstill in preliminary form. We are also aiming at generalising our ode for the sparse polytopemethod to deal with arbitrary �elds of prime order rather than the binary �eld exlusively.161



We will be interested in investigating whether an average ase analysis an be developed forthe polytope method, to help explain why this performs well in pratie despite its worst aseexponential running time. We will also be interested in investigating whether any of the previousimprovements to Hensel lifting, suh as quadrati Hensel lifting, an be used to improve on thepresent omplexity of the polytope method. An empirial study omparing Hensel lifting and thepolytope method and determining the ross-over points between the two methods is neessarybefore the latter an be widely made available. Last, it would be of great use to determinewhether a theoretial justi�ation an be found at all, explaining why the probability of suessof the absolute irreduibility testing via polytopes is best when the number of nonzero terms ofa multivariate polynomial is bounded by a onstant multiple of its total degree.
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