
Elliptic Curve Arithmetic for

Cryptography

Srinivasa Rao Subramanya Rao

August 2017

A Thesis submitted for

the degree of Doctor of Philosophy

of The Australian National University

c© Copyright by Srinivasa Rao Subramanya Rao 2017

All Rights Reserved

Declaration

I confirm that this thesis is a result of my own work, except as cited in the

references. I also confirm that I have not previously submitted any part of

this work for the purposes of an award of any degree or diploma from any

University.

Srinivasa Rao Subramanya Rao

March 2017.

Previously Published Content

During the course of research contributing to this thesis, the following papers

were published by the author of this thesis. This PhD thesis contains material

from these papers:

1. Srinivasa Rao Subramanya Rao, A Note on Schoenmakers Algorithm

for Multi Exponentiation, 12th International Conference on Security and

Cryptography (Colmar, France), Proceedings of SECRYPT 2015, pages

384-391.

2. Srinivasa Rao Subramanya Rao, Interesting Results Arising from Karatsuba

Multiplication - Montgomery family of formulae, in Proceedings of Sixth

International Conference on Computer and Communication Technology 2015

(Allahabad, India), pages 317-322.

3. Srinivasa Rao Subramanya Rao, Three Dimensional Montgomery Ladder,

Differential Point Tripling on Montgomery Curves and Point Quintupling on

Weierstrass’ and Edwards Curves, 8th International Conference on Cryptology

in Africa, Proceedings of AFRICACRYPT 2016, (Fes, Morocco), LNCS 9646,

Springer, pages 84-106.

4. Srinivasa Rao Subramanya Rao, Differential Addition in Edwards Coordinates

Revisited and a Short Note on Doubling in Twisted Edwards Form, 13th

International Conference on Security and Cryptography (Lisbon, Portugal),

Proceedings of SECRYPT 2016, pages 336-343

and

5. Srinivasa Rao Subramanya Rao, An improved EllipticNet Algorithm for

Tate Pairing on Weierstrass’ Curves, Faster Point Arithmetic and Pairing on

Selmer Curves and a Note on Double Scalar Multiplication, 7th International

Conference on Applications and Technologies in Information Security(Cairns,

Australia), Proceedings of ATIS 2016 Communications in Computer and

Information Science, Volume 651, pages 93-105.

3

Acknowledgments

I would like to sincerely thank Prof Richard Brent for his guidance and

support in my research, without which, this thesis would not have been

possible.

I wish to thank all of my colleagues at the Mathematical Sciences Institute(MSI)

with whom I may have interacted and learnt from, at various points in time.

I also thank the ANU for providing me with resources, including financial

support at various points in time.

I also thank all of the excellent teachers that I was blessed with since my

school days. They inspired me to understand that asking questions is more

important than the answers to those questions.

I also thank my parents Sulochana Bai and Subramanya Rao for their

unconditional support through out my life and thanks should go to my brother

Krishna as well, for his sometimes conditional and sometimes unconditional

support. I would also thank my wife Gayathri Srinivas, who has been more

than a useful and helpful distraction, almost always.

Abstract

The advantages of using public key cryptography over secret key cryptography

include the convenience of better key management and increased security.

However, due to the complexity of the underlying number theoretic algorithms,

public key cryptography is slower than conventional secret key cryptography,

thus motivating the need to speed up public key cryptosystems.

A mathematical object called an elliptic curve can be used in the construction

of public key cryptosystems. This thesis focuses on speeding up elliptic

curve cryptography which is an attractive alternative to traditional public key

cryptosystems such as RSA. Speeding up elliptic curve cryptography can be

done by speeding up point arithmetic algorithms and by improving scalar

multiplication algorithms. This thesis provides a speed up of some point

arithmetic algorithms. The study of addition chains has been shown to be

useful in improving scalar multiplication algorithms, when the scalar is fixed.

A special form of an addition chain called a Lucas chain or a differential

addition chain is useful to compute scalar multiplication on some elliptic

curves, such as Montgomery curves for which differential addition formulae

are available. While single scalar multiplication may suffice in some systems,

there are others where a double or a triple scalar multiplication algorithm

may be desired. This thesis provides triple scalar multiplication algorithms

in the context of differential addition chains. Precomputations are useful in

speeding up scalar multiplication algorithms, when the elliptic curve point is

fixed. This thesis focuses on both speeding up point arithmetic and improving

scalar multiplication in the context of precomputations toward double scalar

multiplication. Further, this thesis revisits pairing computations which use

elliptic curve groups to compute pairings such as the Tate pairing. More

specifically, the thesis looks at Stange’s algorithm to compute pairings and

also pairings on Selmer curves. The thesis also looks at some aspects of the

underlying finite field arithmetic.

5

Contents

1 Cryptography and Elliptic Curves 11

1.1 Cryptography and the Discrete Logarithm Problem 11

1.2 Elliptic Curves . 15

1.2.1 What are Elliptic Curves? 15

1.2.2 Why the name Elliptic Curve? 16

1.3 Group Law on Elliptic Curves and the ECDLP 17

1.4 Roadmap . 20

2 Arithmetic on Elliptic Curves and some improvements 23

2.1 Weierstrass Curves . 23

2.1.1 Affine Coordinates . 24

2.1.2 Projective Coordinates 25

2.1.3 2P +Q/Double-Add Method 27

2.1.4 Enhanced 2P +Q Method 28

2.1.5 Jacobian Coordinates 30

2.2 Montgomery Curves . 32

2.3 Edwards Curves . 33

2.4 Huff’s Model . 34

2.5 Selmer Curves . 34

2.6 Scalar Multiplication . 35

2.6.1 Double Base Number System 37

2.6.2 Quintupling Formulae for Weierstrass Curves 38

2.6.3 Quintupling Formulae for Edwards Curves Revisited . 41

2.7 Side Channel Attacks . 43

7

3 Differential Arithmetic on Elliptic Curves 45

3.1 Introduction to Differential Arithmetic 45

3.2 Differential Tripling Formulae for

Montgomery Curves . 47

3.3 Differential Arithmetic Generalized 51

3.3.1 Differential Arithmetic on Generalized Edwards’ Curves

revisited . 52

3.3.2 Alternate Algorithms and Newer Operation Counts . . 55

4 Multi Exponentiation and Differential Chains 63

4.1 Addition Chains and Exponentiation 63

4.2 Montgomery’s PRAC . 64

4.3 Algorithms for Multiexponentiation 66

4.4 Schoenmakers’ Algorithm . 67

4.5 Schoenmakers’ Algorithm for Triple Scalar Multiplication . . 75

4.6 Three-Dimensional Scalar Multiplication on a Montgomery

Curve . 80

5 Precomputation of Elliptic Curve Points for

Jacobian Coordinates for Double Scalar Multiplication 87

5.1 Point Arithmetic Formulae for Jacobian Coordinates on Elliptic

Curves . 88

5.2 Conjugate Addition . 90

5.2.1 Conjugate Mixed Addition 91

5.3 Co-Z Addition . 91

5.3.1 Point Tripling with Co-Z Update 92

5.4 Precomputation of Elliptic Curve points to compute kP + lQ . 93

5.4.1 Jacobian Coordinates, a = −3 93

5.4.2 Jacobian Coordinates, a 6= −3 94

6 Pairing based cryptography 101

6.1 Introduction . 101

6.2 Stange’s Elliptic Net Algorithm to compute the Tate Pairing 102

6.2.1 Stange’s Algorithm for Tate Pairing 102

6.2.2 Improvement to Stange’s Algorithm 108

6.3 Selmer Curves . 110

6.3.1 Point Arithmetic on Selmer Curves 111

6.3.2 Cost of Tate Pairing on Selmer Curves 112

7 Some Results Arising from Karatsuba Multiplication 115

7.1 Review of Karatsuba’s Algorithm 116

7.2 3-way KA from 2-way KA . 117

7.3 New Family of Formulae to multiply two quadratics 121

7.4 Extension of 2-way KA and 3-way KA

to multiply three numbers . 123

7.5 Extended Karatsuba Algorithm: Uses and comparison with

the School Book Algorithm . 127

8 Conclusion 131

Appendix 133

Bibliography 143

Index 153

9

Chapter 1

Cryptography and Elliptic

Curves

This chapter provides an overview of the use of elliptic curves in cryptography.

We first provide a brief background to public key cryptography and the

Discrete Logarithm Problem, before introducing elliptic curves and the elliptic

curve analogue of the Discrete Logarithm Problem.

1.1 Cryptography and the Discrete Logarithm

Problem

While the history of cryptography is probably as old as the history of our

species and has used diverse techniques, contemporary cryptography is the

design, development and analysis of mathematical techniques for secure

communication in the presence of adversaries [51]. The book [92] provides a

very readable account of cryptography.

Typically Alice and Bob communicate with each other over an unsecured

communication channel in the presence of an adversary Eve who intends

to subvert any security services available to Alice and Bob. Cryptographic

systems can be broadly classified into secret key cryptosystems and public

key cryptosystems. If Alice and Bob intend to use a secret key cryptosystem,

11

they agree upon a secret key k which is known only to Alice and Bob and

is a secret to the rest of the world. Given a plaintext p, Alice would use a

function f(p, k) to produce the ciphertext c and this is transmitted to Bob.

Bob uses the function g(c, k) to recover the plaintext p. While efficiency is the

main advantage of secret key cryptosystems, the key used by Alice and Bob

should first be exchanged using a secure communication channel. This would

require a second secret key to ensure secrecy of the first and this would then

require a third secret key to ensure secrecy of the second and so on. Even if

this problem were to be resolved by using a physically secure channel such

as a trusted courier, if n entities need to communicate amongst themselves

and if each of these n communications is to be a secret, each communicating

entity should ensure that the n− 1 secret keys are appropriately exchanged

with the other n− 1 entities with whom it communicates. Moreover, a digital

signature scheme where a participant cannot deny previous commitments

cannot be easily constructed using secret key cryptography techniques. The

above problems are satisfactorily overcome by using public key cryptography,

initially introduced in [39].

In public key cryptography, Alice and Bob have two keys each, called a key

pair. Each key pair consists of a private and a public key and it is not easy

to derive the private key from the public key. The relationship between

the private and the public key must be such that it is computationally

difficult to derive the private key, given that the public key is known to the

whole world. The computational difficulty usually depends on the assumed

intractability of number theoretic problems such as integer factorization,

the discrete logarithm problem and its elliptic curve analog. These number

theoretic problems are assumed to be intractable (in the absence of quantum

computers), but intractability is an open problem. They are conjectured to

be neither in complexity class P nor in NP-Complete.

Now we set up the framework for the discrete logarithm problem. We begin

by defining a Group. A Group is a set G which comes with an operation, say

+, usually called the Group Law, which satisfies the following properties:

(i) Closure: If x and y ∈ G, then x+ y ∈ G.

(ii) Associativity: If x, y and z ∈ G, then (x+ y) + z = x+ (y + z).

(iii) Identity: There exists an element 0 ∈ G such that x+ 0 = x = 0 + x for

all x ∈ G.

(iv) Inverse: For every element x ∈ G, there exists −x ∈ G, such that

x+ (−x) = 0 = (−x) + x, the identity element of G.

Some of the conditions above may be redundant. If G is a group such that

a+ b = b+ a for all a, b ∈ G, then G is called a commutative or an Abelian

group. For instance, if p is a prime number, Fp = {0, 1, 2,p− 1} is the set

of integers modulo p and if + is the addition modulo p operation, then (Fp,+)

is a finite Abelian group where the identity element equals 0. Further, if ∗ is

the multiplication modulo p operation, then (F∗p, ∗) is a multiplicative group

where F∗p = Fp\{0} and the identity element equals 1. The triple (Fp,+, ∗)
is usually written as Fp in the literature and is a Finite Field, where for all

x, y, z ∈ Fp, (x+ y) ∗ z = (x ∗ z) + (y ∗ z). The order of a group is the number

of elements in the group (if finite) or ∞ (if number of elements is infinite).

Thus the order of (Fp,+) is p while the order of (F∗p, ∗) is p− 1.

Now, we formulate the Discrete Logarithm Problem. Assume that the group

operation is ∗. Given a fixed element a ∈ G and x a positive integer, it is

possible to compute b ∈ G, where b = ax using a polynomial time algorithm

(ax is defined as ax = a∗a(x−1) if x > 0 and a0 = 1). However, if it is the other

way around, that is, given a, b ∈ G, the problem of determining the least

possible (or any) value of x such that b = ax is called the Discrete Logarithm

Problem (DLP) and using current state of the art algorithms, cannot be

computed in polynomial time for groups such as (F∗p, ∗). While it is easy to

construct a polynomial time algorithm to compute the DLP in groups such as

the additive group Z/nZ, the best currently available algorithms for the DLP

in the multiplicative group of a finite field with medium or large characteristic

run in subexponential time (subexponential in the bit-length of the group

order). Recent research has shown that it is possible to construct better

13

than sub-exponential algorithms to compute the DLP in finite fields of small

characteristic [6]. The computational complexity of the DLP depends on the

properties of the underlying group such as the order of the group and the

prime factorisation of the order. The order of a is the order of the subgroup

〈a〉 generated by a ∈ G. Groups suitable for public key cryptosystems should

be such that the order of the fixed/base element a should be either a large

prime or the product of a large prime and a very small integer [63, Section 5].

It can be conjectured that the DLP in (F∗p, ∗) where p− 1 has large prime

factors is as hard as factoring integers of size about the same as that of p [83].

A very accessible introduction to computation of discrete logarithms is [87].

The success of public key cryptosystems such as the Diffie-Hellman key

exchange algorithm and the ElGamal encryption algorithm rely on the

assumed intractability of the DLP in a finite cyclic group, sometimes called

the generalized discrete logarithm problem in the literature [77], which can

be stated as follows: Given a finite cyclic group G with a generator a and

group order n and some b ∈ G, compute the integer x, 1 ≤ x ≤ (n − 1)

such that ax = b. (If b is the identity element in G, then x = 0). In the

Diffie-Hellman key exchange algorithm, Alice and Bob intend to exchange

a secret key between themselves. As part of the initial setup, they choose a

finite cyclic group G with order n and generator a. Then Alice chooses an

integer x at random (1 ≤ x ≤ (n− 1)) and without revealing the value of x

to anybody, computes ax and transmits it to Bob over a public channel. Bob

chooses an integer y at random (1 ≤ y ≤ (n− 1)) and without revealing the

value of y to anybody, computes ay and transmits it to Alice. Alice computes

(ay)x and Bob computes (ax)y, thus resulting in both Alice and Bob sharing

the secret key axy between themselves. An intruder Eve with access to both

ax and ay, may desire to compute axy. The problem that Eve is confronted

with is sometimes called the Generalized Diffie-Hellman problem (GDHP)

in the literature [77]. An efficient algorithm to solve the DLP will enable

Eve to solve the GDHP, as she can compute x and y and thus compute axy,

resulting in the compromise of the cryptosystem. An efficient algorithm to

solve the DLP will not only result in the compromise of the Diffie-Hellman key

exchange algorithm, but also compromise cryptosystems such as the ElGamal

encryption system. It is conjectured that solving the GDHP is equivalent in

difficulty to solving the DLP. However, this conjecture has not been proved

yet.

1.2 Elliptic Curves

An elliptic curve is a mathematical object that can be studied from a variety

of perspectives: Number Theory, Diophantine Problems, Algebra, Algebraic

Geometry and so on. In the foreword to his book on elliptic curves [65], Lang

writes

It is possible to write endlessly on elliptic curves (This is not a threat).

Recently, elliptic curves played a major role in graduating the celebrated

Fermat’s Last Theorem from the status of a conjecture to a theorem, leading

to a renewed interest in elliptic curves and their study. The use of elliptic

curves in cryptography has led to a commercial interest in elliptic curves.

Thus it is possible to write endlessly and beyond on elliptic curves. In this

thesis, however, we confine ourselves to computational aspects of elliptic curve

cryptography. We now proceed to provide a very short introduction to elliptic

curves and their utility in public key cryptography.

1.2.1 What are Elliptic Curves?

An introduction to elliptic curves can be found in Poonen’s article [88]. Curves

of the form {(x, y) : f(x, y) = 0} where f(x, y) is a polynomial in two variables

are called plane curves. The degree of the curve is the maximum of (i+ j)

when cxiyj is any monomial occurring in f with c 6= 0. While plane curves of

degree 1 are called lines, plane curves of degree 2 are called conic sections or

conics. Plane curves of degree 3 are called cubics. The general form of a cubic is

c1x
3 + c2x

2y + c3xy
2 + c4y

3 + c5x
2 + c6xy + c7y

2 + c8x+ c9y + c10 = 0 (1.1)

15

Nonsingular cubic curves with a distinguished rational point defined over the

base field are called Elliptic curves. Equation (1.1) can be transformed into

an equation with the following form [36]:

y2 + a1xy + a3y = f(x) (1.2)

where f(x) is a polynomial of degree 3 and f(x) has no multiple roots. In a

finite field F with identity element 1, the smallest value of n such that

1 + 1 + · · ·+ 1︸ ︷︷ ︸
(n-1) additions

= 0

is called the characteristic of the field. Over a finite fieldK whose characteristic

is not equal to 2 or 3, one can transform any elliptic curve into one of the

form

y2 = x3 + Ax+B (1.3)

where A and B ∈ K [51]. Any curve of the above form is an elliptic curve

(i.e., without multiple roots) if and only if (4A3 + 27B3) 6= 0.

1.2.2 Why the name Elliptic Curve?

A brief historical introduction to elliptic curves is provided in [102]. For

about one and a half millennia, from the time of Diophantus to Newton,

mathematical properties of certain cubic equations that are today known as

elliptic curves were seen to be generalizations of those of conics. However

the advent of calculus helped highlight marked differences between conics

and elliptic curves. While conic sections can be parameterized by rational

functions, elliptic curves cannot be parameterized by rational functions. The

simplest functions that can parameterize elliptic curves are elliptic functions

encountered in calculus as the inverses of so called elliptic integrals. Elliptic

integrals are called so, as a typical example is the integral for the arc length

of an ellipse. Thus the name elliptic curve.

Interesting introductory expositions to elliptic curves can be found in [21, 22,

66].

1.3 Group Law on Elliptic Curves and the

ECDLP

If we denote the elliptic curve in equation (1.3) as E, we can define the

addition of two points P and Q on E, denoted as P +Q, as follows: Draw

a line connecting P and Q and intersecting E at another point denoted by

P +Q, which in turn is reflected through the x-axis to obtain the point P +Q.

P +Q exists provided P and Q are distinct and not on a vertical line, and is

unique because the equation is a cubic. This is shown below when the field

under consideration is R.

y2 = x3 + Ax+B

x

y

P •

Q•

•P +Q

•P +Q

Figure 1.1: Elliptic Curve Point Addition

For point doubling, (P = Q), the line connecting P and Q becomes the

tangent at P as shown below.

17

y2 = x3 + Ax+B

x

y

P•

•2P

•2P

Figure 1.2: Elliptic Curve Point Doubling

Along with all other points (x, y) ∈ K2, where K is the field in which E is

defined, the inclusion of the point (∞,∞), denoted by O is necessary in order

to obtain a group.

We will take the lines through (∞,∞) to be vertical. Thus when P +O is

computed, the line through P = (x, y) and O should intersect E at (x,−y).

Similarly when (x,−y) +O is computed, the line through P = (x,−y) and O
should intersect E at (x, y). Thus P +O = P and P + (−P) = O. We can

also show that if P,Q and R are points on E, then (P +Q)+R = P +(Q+R).

Also, P + Q = Q + P . Thus the operation of point addition satisfies the

properties of Closure, Associativity, Identity, Inverse and Commutativity

thereby ensuring that the set of points on E with the addition operation ′+′

constitutes an Abelian group.

It was possible to draw the elliptic curves shown in Figures 1.1 and 1.2 above

using Janoski’s document [55].

The earliest use of elliptic curves in areas related to Cryptology was not in

traditional encryption and decryption but in constructing a sub-exponential

algorithm for integer factorization. This algorithm was introduced by Lenstra

in [70] and further enhanced by Brent and Montgomery. For instance, see

[15] [16], [80]. A good reference on elliptic curve factorization is the paper [43].

We can now set up the Elliptic curve analogue of the DLP. If P and Q are

two points on an elliptic curve and given that P = xQ for some integer x

(xQ is defined as xQ = (x− 1)Q+Q if x > 0 and xQ = O when x = 0), then

the problem of finding x given P and Q on E is the Elliptic Curve Discrete

Logarithm Problem(ECDLP). One of the advantages of using the ECDLP

as compared to integer factorization or just the DLP is that while there are

sub-exponential algorithms to solve the integer factorization problem and the

DLP, there are no known subexponential algorithms (subexponential in the

bit-length of the curve group order) to solve the ECDLP. (Some instances

of the ECDLP may not be hard. For instance, when the group order can

be written as a product of only small primes, it may be easy to solve the

ECDLP using the Pohlig-Hellman algorithm). This advantage translates

into smaller key sizes in an ECDLP based system as compared to key sizes

in integer factorization based systems such as RSA, for the same level of

security. Smaller key sizes make it suitable for elliptic curve cryptosystems

to be deployed in constrained environments such as mobile platforms. The

notions of exponential and subexponential algorithms can be formalized using

the big-O notation [86]. However, in this thesis, we focus on operation counts

to compare point arithmetic algorithms rather than comparing algorithms

from the perspective of classical computational complexity.

While it should be difficult for an adversary Eve to solve the ECDLP, it is

desirable for Alice and Bob to be able to encrypt, decrypt, digitally sign and

verify digital signatures as quickly as possible. In other words, computation

of quantities such as P = xQ or P = xQ + yR, (where P , Q and R are

points on an elliptic curve and x and y are integers) and the group operations

19

in the underlying group in which the ECDLP is setup should be made as

fast as possible. This thesis focuses on speeding up elliptic curve arithmetic

including scalar multiplication algorithms. Faster elliptic curve arithmetic not

only facilitates faster cryptography but may also enhance the performance of

cryptanalytic methods.

1.4 Roadmap

The rest of the thesis is structured as follows:

In Chapter 2, we provide an introduction to point arithmetic formulae for

various forms of elliptic curves such as Weierstrass, Montgomery, Edwards,

Huff and Selmer curves with point representations such as affine, projective

coordinates etc. We motivate the need for fast quintupling algorithms and

then (i) show that Giorgi’s quintupling algorithm for Weierstrass curves

can be derived from Mishra’s and Dimitov’s algorithm and (ii) provide new

quintupling formulae for Edwards curves.

In Chapter 3, we provide new differential point tripling formulae for Montgomery

curves and then provide faster differential arithmetic algorithms for Generalized

Edwards and a variant of Binary Edwards curves.

In Chapter 4, we provide new algorithms for triple scalar multiplication

in the context of differential addition chains and compare these algorithms

with the straight-forward method for triple scalar multiplication. In this

chapter, we also provide a context in which the differential tripling formulae

for Montgomery curves can be used.

Making use of results from Chapter 2, we review two algorithms for double

scalar multiplication in Chapter 5. One is based on conjugate addition and

the other on co-Z addition. Whilst reviewing the algorithm based on co-Z

addition, we show that some results published in the literature are incorrect

and in this process provide a new algorithm for double scalar multiplication.

In Chapter 6, we provide an improvement to Stange’s Elliptic Net algorithm

for the Tate pairing and then improve the Tate pairing computation on Selmer

curves.

In Chapter 7, we show that the 3-way Karatsuba algorithm can be derived

from the 2-way Karatsuba algorithm and then provides a new family of

formulae to multiply two quadratics.

21

Chapter 2

Arithmetic on Elliptic Curves

and some improvements

In the previous chapter, we looked at the formulation of the group law for the

set of points on an elliptic curve. In this chapter, we look at some formulae

that are used to compute the group operation, that is the formulae related

to elliptic curve point arithmetic. There are various forms of elliptic curves,

such as the Weierstrass curves, Montgomery curves etc and then there are

various forms of point representation on these elliptic curves, such as affine

coordinates, projective coordinates etc. In this chapter, we also review some

formulae for Weierstrass and Edwards curves. We start with Weierstrass

curves.

2.1 Weierstrass Curves

Assume that K is a finite field, char(K) 6= 2, 3. An elliptic curve of the form

E : y2 = x3 + a4x+ a6 where a4 and a6 ∈ K and (4a4 + 27a6) 6= 0

is called a Weierstrass curve. Various point representation systems can be

used to perform point arithmetic operations on elliptic curves. We will first

look at the point representation system in which a curve point is represented

23

in the most natural way, which is (x, y). This is the affine coordinate system

and in this system −(x, y) = (x,−y).

2.1.1 Affine Coordinates

If P = (x1, y1) and Q = (x2, y2) are any two distinct points on E, P 6= O, Q 6=
O and P 6= ±Q, then P +Q = (x3, y3) is given by

x3 = λ2 − x1 − x2
and y3 = λ(x1 − x3)− y1

}
where λ =

(y1 − y2)
(x1 − x2)

If P = Q = (x1, y1) and P 6= −P , then 2P = (x3, y3) is defined as

x3 = λ2 − 2x1

and y3 = λ(x1 − x3)− y1

}
where λ =

3x21 + a4
2y1

Taking I to be the cost of one inversion, M to be the cost of one multiplication

and S to be the cost of one squaring in the field K, then

Addition requires 1I + 2M + 1S operations

and Doubling requires 1I + 2M + 2S operations.

Unless otherwise stated, the cost of the field operations I,M and S are

considered, while the cost of a field addition/subtraction is ignored, since it

is small compared to M/S/I. Though a squaring is clearly a special case

of a multiplication, where the operands are equal, it is useful to distinguish

between these two operations, as it is possible to tune a squaring to provide

a tangible speedup over a multiplication. The best possible speedup factor

is 2 [17, Exercise 1.17]. A good rule of thumb is to take the cost of a

squaring to be about 2/3 that of a multiplication [17, Section 1.3.6, Figure

1.2]. Clearly, these comparisons depend on the underlying implementation of

these operations. and in some implementations, S = 0.8M . Computing an

inverse in K is an expensive operation and typically I > 30M . We denote the

cost of multiplication by a small constant c by Mc. It is useful to distinguish

between M and Mc as special purpose algorithms can be used for constant

multiplication [17, Section 1.3.7].

Next, we look at projective coordinates. The use of projective coordinates

(and its many variants) avoids the use of the inverse operation, whereas

when affine coordinates are used, it is not easy to do away with the inverse

operation.

2.1.2 Projective Coordinates

The homogeneous projective form of the Weierstrass equation can be written

as

E : Y 2Z = X3 + a4XZ
2 + a6Z

3

In this system, (x, y) is replaced with any triple (X, Y, Z) = (xζ, yζ, ζ) where

ζ ∈ K∗. From a triple (X, Y, Z), the affine coordinates can be written

as Affine(X, Y, Z) = (x = X/Z, y = Y/Z). The negative of −(X, Y, Z) is

(X,−Y, Z) while the identity element O corresponds to (0, 1, 0) (This is a

special case having Z = 0, otherwise Z 6= 0). If points P = (X1, Y1, Z1) and

Q = (X2, Y2, Z2) correspond to affine points (X1/Z1, Y1/Z1) and (X2/Z2, Y2/Z2)

respectively, P 6= ±Q, P 6= O and Q 6= O, then the point P+Q = (X3, Y3, Z3)

can be computed as follows:

Computing A = Y2Z1 − Y1Z2,

B = X2Z1 −X1Z2

and C = A2Z1Z2 −B3 − 2B2X1Z2,

we get X3 = BC,

Y3 = A(B2X1Z2 − C)−B3Y1Z2

and Z3 = B3Z1Z2

25

Similarly, if 2P = (X3 : Y3 : Z3),

Computing A = a4Z
2
1 + 3X2

1 ,

B = Y1Z1,

C = X1Y1B

and D = A2 − 8C

we get X3 = 2BD,

Y3 = A(4C −D)− 8Y 2
1 B

2

and Z3 = 8B3

Addition requires (12M + 2S) operations and doubling requires (7M + 5S)

operations

Since every addition or a doubling in affine coordinates requires one inversion

operation, the number of inversions increases with the number of point

additions or doublings required. Use of projective coordinates avoids this

problem, but at the cost of additional memory, as Z-coordinates for all of

the points being processed need to be stored as well. In this context, it may

be appropriate to quote the research problem 7.25 posed by Crandall and

Pomerance in [35] which states

“ . . . One looks longingly at expressions x3 = λ2 − x1 − x2, y3 = λ(x1 −
x3)−y1, in the realization that if only inversion were ‘free’, the affine approach

would be superior. However, known inversion methods are quite expensive.

One finds in practice that inversion times tend to be one or two orders of

magnitude greater than multiply-mod times . . . it is very hard to bring down

the cost of inversion(modulo a typical cryptographic prime p ≈ 2200) to 20

multiplies . . . ”.

Continuing with the above research question, the authors of [35] motivate

readers to think about primes of special forms, use look up tables and

specialized gcd algorithms for modular inversion with the aim of reducing

the impact of the high computational costs of inversion in affine coordinates.

Whilst one way of overcoming the costs of inversion is to reduce the cost

of computing the inversion, a complementary way to do this is to try to

reduce the number of inversions required. In recent years, there has been

some research in this direction.

To begin with, the authors in [45] introduced a new method to reduce the

number of operations required to be computed when affine coordinates are

used. This method may be called the 2P + Q method or “Double-Add”

method. We next look at this method.

2.1.3 2P +Q/Double-Add Method

If P = (x1, y1), Q = (x2, y2) are two points on E : y2 = x3 + a4x + a6, then

2P +Q = (x4, y4) can be computed as below:

We could first compute P +Q = (x3, y3) as

x3 = λ21 − x1 − x2
and y3 = (x1 − x3)λ1 − y1

}
where λ1 =

(y2 − y1)
(x2 − x1)

To obtain 2P +Q = (x4, y4), P +Q = (x3, y3) can be added to P = (x1, y1).

Thus

x4 = λ22 − x1 − x3
y4 = (x1 − x4)λ2 − y1

}
where λ2 =

(y3 − y1)
(x3 − x1)

Now λ2 can be written as

λ2 =
y3 − y1
x3 − x1

=
(x1 − x3)λ1 − y1

(x3 − x1)
= −λ1 −

2y1
(x3 − x1)

A straightforward computation of P+Q = (x3, y3) would require (1I+2M+1S)

and similarly computing (P +Q) + P would require another (1I + 2M + 1S),

thus requiring a total of (2I + 4M + 2S). However, in the above equation for

λ2, y3 need not be computed thus saving 1M . Thus (2P+Q) can be computed

27

using (2I + 3M + 2S) operations. This can be extended to computing 3P

and (3P +Q) as well.

2P +Q requires (2I + 3M + 2S) operations

3P requires (2I + 3M + 3S) operations

3P +Q requires (3I + 4M + 3S) operations

Thus whilst the 2P+Q method reduces the number of multiplications required,

it does not reduce the number of inversions required. However, in a subsequent

paper [27], Ciet, Joye, Lauter and Montgomary reduce the number of

inversions required by using the trick of simultaneous inverse computation.

This can be called the Enhanced 2P+Q method, which we describe below:

2.1.4 Enhanced 2P +Q Method

As seen previously, whilst computing (2P + Q) as ((P + Q) + P), y3 need

not be computed. It turns out that x3 need not be computed as well.

2P +Q = (x4, y4) can be computed directly as follows:

x4 can be equated to (λ2 − λ1)(λ1 + λ2) + x2

Letting d = (x2−x1)2(2x1+x2)−(y2−y1)2, we see that d = (x2−x1)2(x1−x3)

Defining D = d(x2 − x1) and I = D−1 we have

1

x2 − x1
= dI and

1

(x1 − x3)
= (x2 − x1)3I

Counting the number of operations required to compute x4 and y4 results

in (1I + 9M + 2S) thus reducing the number of inversions required. This

method could be extended to compute 3P, (3P +Q), 4P and (4P +Q).

2P +Q requires (1I + 9M + 2S) operations

3P requires (1I + 7M + 4S) operations

3P +Q requires (2I + 9M + 4S) operations

4P requires (1I + 9M + 9S) operations

4P +Q requires (2I + 11M + 4S) operations

Whilst the ideas in [45, 27] were further extended and generalized in a

2007 paper [37] by Dahmen, Okeya and Schapers(DOS), where the authors

precompute all odd points 3P, 5P . . . (2k − 1)P, k ≥ 2 in affine coordinates

for elliptic curves over a prime field, whilst requiring (10k−11)M+(4k)S+1I

operations to compute these points and they use 2(k−1) registers, the authors

in [67] used the same ideas to provide a faster affine point Quadrupling

scheme for Weierstrass curves over a prime field costing (1I + 8M + 8S).

The DOS algorithm was then adapted by the authors in [42] to precompute

2P, 3P, 5P . . . (2k − 1)P, k ≥ 2 in affine coordinates for elliptic curves over a

field of char 2 and their algorithm required (11k−13)M+(2k)S+1I operations.

There are other ways using which the number of inversion computations

can be reduced. The story of reducing the number of inversions in affine

representation did not begin with [27]. One of the earliest attempts at doing

this can be seen in [29]. Using the well known Montgomery inversion trick,

the authors in [29] first compute 2P , and then subsequently compute

(3P, 4P), (5P, 7P, 8P) . . . , ((k.2−2 + 1)P, . . . , (k.2−1 − 1)P, (k.2−1P)),

((k.2−1 + 1)P, . . . , (k− 1)P) thus reducing the number of inverses required to

be computed from k to (dlog2 ke+ 1).

Further, Okeya, Takagi and Vuillaume in [85] introduced the idea of computing

P ± Q simultaneously, whilst saving one inversion in the process. Then,

at ECC 2008, Michael Scott motivated the further use of this idea in

precomputation schemes, not confined to affine coordinates. Taking this

useful idea further, Longa and Gebotys in [72] provide new precomputation

schemes for projective coordinates on Weierstrass, Jacobi Quartic and Edwards

29

curves. A precomputation algorithm structurally similar to that of in [72] was

constructed by Le and Tan in [68]. We revisit some of these precomputation

schemes further in Chapter 5 of this thesis.

The motivation in using the 2P + Q or the enhanced 2P + Q method or

the DOS algorithm to precompute 3P, 5P . . . (2k − 1)P is to trade field

inversions for multiplications when elliptic curve points, for efficiency reasons,

are represented in affine coordinates. The 2P +Q method can also be used

to efficiently compute 3P [27]. These methods can be used in cryptographic

protocols where the elliptic curve points such as P and Q are not fixed, and

thus the precomputations cannot be performed offline [37].

Next we look at Jacobian coordinates, a derivative of projective coordinate

point representation.

2.1.5 Jacobian Coordinates

The weighted projective form of the Weierstrass equation is written as

E : Y 2 = X3 + a4XZ
4 + a6Z

6

In this system, (x, y) is replaced with any triple (X, Y, Z) = (xλ2, yλ3, λ)

where λ ∈ K∗. From a triple (X, Y, Z), the affine coordinates can be written

as Affine(X, Y, Z) = (x = X/Z2, y = Y/Z3). The negative of −(X : Y : Z)

is (X : −Y : Z) while the identity element O corresponds to (1, 1, 0). If

points P = (X1, Y1, Z1) and Q = (X2, Y2, Z2) correspond to affine points

(X1/Z
2
1 , Y1/Z

3
1) and (X2/Z

2
2 , Y2/Z

3
2) respectively, P 6= ±Q, P 6= O, Q 6= O,

and P 6= ±Q, then the point P + Q = (X3, Y3, Z3) can be computed as

follows:
Setting A = X1Z

2
1 ,

B = X2Z
2
1 ,

C = Y1Z
3
2 ,

D = Y2Z
3
1 and

E = (B − A), F = (D − C)

we can write X3 = −E3 − 2AE2 + F 2,

Y3 = −CE3 + F (AE2 −X3) and

Z3 = Z1Z2E

Similarly, if 2P = (X3, : Y3, Z3), we can compute 2P as follows:

Setting A = 4X1Y
2
1 and

B = 3X2
1 + a4Z

4
1

we can write X3 = −2A+B2

Y3 = −8Y 4
1 +B(A−X3)

Z3 = 2Y1Z1

Addition requires (12M + 4S) operations and doubling requires (4M + 6S)

operations.

Other derivatives of projective coordinate systems are Chudnovsky Jacobian

coordinates and Modified Jacobian coordinates. In Chudnovsky Jacobian

coordinates, an affine point (X/Z2, Y/Z3) is represented as a quintuple

(X, Y, Z, Z2, Z3). Point Addition requires (11M + 3S) operations and point

doubling requires (5M + 6S) operations and this representation ensures

faster addition and doubling when compared to Projective coordinate point

representation. In Modified Jacobian coordinates, an affine point (X/Z2, Y/Z3)

is represented as (X, Y, Z, a4Z
4) The operation counts for modified Jacobian

co-ordinates are (13M + 6S) for point addition and (4M + 4S) for point

doubling.

Until now, in this chapter, we looked at some formulae for point arithmetic

on the Weierstrass curve. We will return to other formulae for Weierstrass

31

curves in Section 2.6.2 of this chapter and then in Chapter 5. We now turn

to other forms of elliptic curves.

2.2 Montgomery Curves

In a landmark paper [80], an elliptic curve of the form

Em : By2 = x3 + Ax2 + x

was introduced by Peter Montgomery. Over a field K where char(K) 6= 2,

curve parameters A, (B 6= 0) for Em satisfy A, B ∈ K, and B(A2 − 4) 6= 0.

A Montgomery curve over K can be written in Weierstrass form, whilst it is

not always possible for a Weierstrass curve to be written in Montgomery form

as the order of a Montgomery curve is divisible by 4. The Weierstrass curve

y2 = x3 + a4x+ a6 over K can be written in Montgomery form if and only if

the polynomial x3 + a4x+ a6 has a root xp in K and (3x2p + a4) is a square

in K [28]. If P = (x1, y1) and Q = (x2, y2) are points on Em and x1 6= x2,

then the x-coordinate of P + Q = (x3, y3) can be computed (provided the

x-coordinate of P −Q = (x4, y4) is known) as follows:

x3 =
1

x4
.
(x2x1 − 1)2

(x1 − x2)2
, which requires (1I + 2M + 2S) operations.

The inverse operation can be avoided if projective coordinates are used.

We provide further details in Chapter 3 of this thesis. The formulae for

Montgomery curves are different to those of Weierstrass curves, in the sense

that, x coordinates suffice for point arithmetic (x-coordinate only arithmetic).

It is attractive due to its low operation count and lower memory requirement.

However, the difference of the two points being added should be known in

advance. The x-coordinate only formulae can be generalized to certain other

forms of elliptic curves[18]. We provide a list of such generalizations in Sec

3.3 of this thesis.

2.3 Edwards Curves

In 2007, Edwards [44] introduced a new form of an elliptic curve, now known as

Edwards curves. An Edwards curve, defined over a field K where char(K) 6= 2,

is given by the following equation [11]

EE : x2 + y2 = 1 + dx2y2, where d ∈ K \ {0, 1}

If P = (x1, y1) and Q = (x2, y2) are two point on EE, then P +Q = (x3, y3)

is given by

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
and y3 =

y1y2 − x1x2
1− dx1x2y1y2

The formulae for doubling and tripling are as follows:

If 2P = (x3, y3), then x3 =
2x1y1
x21 + y21

and y3 =
y21 − x21

2− (x21 + y21)

If 3P = (x4, y4), then x4 =
(x21 + y21)2 − (2y1)

2

4(x21 − 1)x21 − (x21 − y21)2

and y4 =
(x21 + y21)2 − (2x1)

2

−4(y21 − 1)y21 + (x21 − y21)2

The group operation on an Edwards’ curve(a plane quartic) is not defined

using the chord-tangent construction given earlier in section 1.3. A proof of

the group law on an Edwards curve is given in [12]. Not all elliptic curves

can be written in Edwards form over K, as an Edwards curve always has

points of order 4, see [12]. To avoid computing inverses, the equation for

EE could be homogenized and then transformed [12] to a curve of the form

(X2 +Y 2)Z2 = c2(Z4 +dX2Y 2) such that c, d ∈ K \{0, 1} and dc4 6= 1. Using

projective coordinates, on an Edwards curve,

Addition requires (10M + 1S) operations

Doubling requires (3M + 4S) operations

Tripling requires (9M + 4S) operations

33

Using an efficient (computationally) birational equivalence from the Edwards

form to the Montgomery form [23], the operation count for doubling on a

Montgomery form elliptic curve can be reduced from (2M + 2S + 1Mc) to

(1M + 3S + 3Mc) when the curve parameter d is a square in K. While not

all Montgomery curves can be written in Edwards form, every Montgomery

curve can be written in a generalized form of Edwards curves called twisted

Edwards curves (a curve of the form ax2 + y2 = 1 + dx2y2 over a field K

where non zero elements a, d ∈ K and char(K) 6= 2) [10].

2.4 Huff’s Model

Another model of the elliptic curve introduced by Huff in 1948 has been

adapted for use in cryptography [57]. An elliptic curve in Huff’s form (defined

over a field k) is given by

EH : aX(Y 2 −X2) = bY (X2 − Z2) where a2 6= b2

If P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2) are two points on EH and

P3 = (X3 : Y3 : Z3) = P1 + P2 then

X3 = (X1Z2 +X2Z1)(Y1Y2 + Z1Z2)
2(Z1Z2 −X1X2)

Y3 = (Y1Z2 + Y2Z1)(X1X2 + Z1Z2)
2(Z1Z2 − Y1Y2)

Z3 = (Z2
1Z

2
2 −X2

1X
2
2)(Z2

1Z
2
2 − Y 2

1 Y
2
2)

The above computation of addition on an Huff’s elliptic curve can be achieved

by an algorithm costing 12M . The same formulae can be used for doubling

as well and can be performed in (7M + 5S). When S > 0.75M , a dedicated

doubling algorithm costing (10M + 1S) was presented in [57].

2.5 Selmer Curves

In [110], the authors consider a new model of an elliptic curve called Selmer

Curves that was so named by Ian Connell [30]. The authors in [110] also

provide explicit point addition and doubling formulae for Selmer curves.

Following [30], we provide the following definition.

A Selmer curve over K is defined by an equation of the form

ax3 + by3 = c

where a, b, c ∈ K and abc 6= 0. Along with point arithmetic formulae, we will

further look at Selmer curves in the context of pairings in Chapter 6.

The costs for point addition and doubling for various coordinate systems/curve

forms reviewed in this chapter until now can be summarized as below:

Table 2.1: Point Addition and Doubling Summary

Coordinate system/

Elliptic curve form
Addition Doubling

Affine 1I + 2M + 1S 1I + 2M + 2S

Projective 12M + 2S 7M + 5S

Jacobian 12M + 4S 4M + 6S

Chudnovsky 11M + 3S 5M + 6S

Modified Jacobian 13M + 6S 4M + 4S

Edwards Curve 10M + 1S 3M + 4S

Huff’s Curve 12M 7M + 5S

2.6 Scalar Multiplication

One of the most important aspects of elliptic curve cryptography is that of

Scalar multiplication. This is the quantity nP , where n is an integer and P

is a point on an Elliptic curve defined over a finite field. The quantity nP is

given by

[n]p = P + P + · · ·+ P︸ ︷︷ ︸
(n-1) point additions

and consumes a significant amount of time in typical elliptic curve

cryptographic schemes and thus has received attention in terms of

35

implementing elliptic curve cryptosystems. Efficient implementation of

elliptic curve cryptography is dependent on the following:

(i) scalar multiplication technique

(ii) point arithmetic formulae and

(iii) field arithmetic.

This hierarchy can be visualized as below:

Underlying Finite Field Arithmetic

Point Arithmetic Formulae

Scalar multiplication

Cryptographic Protocols

The techniques used in different layers of the hierarchy depicted above are

not independent of each other. In this chapter, we have looked at point

arithmetic formulae. The scalar multiplication technique used in a particular

implementation can influence the choice of point arithmetic formuale used.

When the scalar n is fixed, the scalar multiplication technique focuses on

an addition chain (see Section 4.1) for n. When the point P is fixed,

Yao’s method [109] can be used, where precomputations are of primary

importance. In a more generic setting, the well known Double-and-Add

algorithm which is analogous to the square-and-multiply method can be

used to compute nP using l doublings and about m additions where l is the

bit length of n and m is the hamming weight of n. The Double-and-Add

algorithm produces an addition chain for n. The Double-and-Add

algorithm is also known as the binary method in the literature and can be

generalized to an m-ary method. The 2s-ary method breaks up the binary

representation of n into window lengths of s and a sliding window algorithm

that makes use of suitable precomputed values can be utilized to compute nP .

One of the techniques of computing a scalar multiplication when n is fixed is

to write n in the Double Base Number System format as depicted below.

2.6.1 Double Base Number System

The Double Base Number System (DBNS) introduced initially by Dimitrov

and Cooklev in [40] was utilized later in the context of elliptic curves in [41].

With this system, the scalar n is written as

n =
l∑

i=1

si2
ai3bi or n =

l∑
i=1

si2
ai5bi where si = ±1 .

The above idea can be generalized to a triple base number system where an

integer n is represented as

n =
l∑

i=1

si2
ai3bi5ci where si = ±1.

Double and Triple base number system representations, though very short,

are not immediately suitable for use in scalar multiplication algorithms.

However, if we could somehow ensure that the three exponents are all

simultaneously decreasing, i.e., a1 ≥ a2 ≥ . . . al and b1 ≥ b2 ≥ . . . bl
and c1 ≥ c2 ≥ . . . cl, then using Horner’s rule, a scalar multiplication

algorithm can be developed to compute nP . The simultaneously decreasing

exponents can be computed using greedy algorithms. An example of such

a greedy algorithm was provided by Mishra and Dimitrov in [79, Algorithm 1].

From the double, triple and quintuple base representations of a scalar k

with simultaneously decreasing exponents as depicted above, it is clear that

in addition to fast point addition and doubling, fast point tripling and

quintupling algorithms are highly desirable, as this would speed up the

37

computation of nP when the DBNS is employed. Thus, there has been a

keen interest in obtaining faster point tripling and quintupling algorithms

amongst researchers.

2.6.2 Quintupling Formulae for Weierstrass Curves

In [79] the authors provide a fast quintupling algorithm for Affine coordinates

on binary Weierstrass curves. In the same paper, the authors also propose

a fast quintupling algorithm in Affine and Projective Jacobian coordinates

for Weierstrass curves over Fp. In Jacobian coordinates, the cost of the

quintupling algorithm provided in [79] is (15M + 10S). Another algorithm

costing (7M + 16S) was provided by Giorgi et al in [49]. The authors in

[79] take into account the multiplication by the curve parameter a while

computing the cost of their algorithm, whereas the authors in [49] do not take

into account the multiplication by the curve parameter a while computing

the costs of their algorithm. Thus for comparison purposes we can take

the cost of the algorithm in [49] to be (8M + 16S). In [74], Longa and

Miri provide a quintupling algorithm (Jacobian coordinates, Weierstrass

curve over Fp) with costs equal to (10M + 14S). When the curve parameter

a = −3, Mishra’s algorithm in [79] costs (15M + 8S), Giorgi’s algorithm in

[49] costs (7M + 16S) and Longa’s algorithm in [74] costs (11M + 11S). Thus

while Longa’s algorithm in [74] performs better than Mishra’s algorithm in

[79], Giorgi’s algorithm in [49] is the best option.

Giorgi’s 8M + 16S point quintupling algorithm in [49] was derived using

an automaton implementing a directed acyclic graph structure looking for

common subexpressions in the formulae and executing several arithmetic

transformations. However using the simple transformation

2XY = (X + Y)2 −X2 − Y 2 (2.1)

we show that the complexity of Mishra’s algorithm can be reduced to that of

Giorgi’s algorithm, as shown below.

Mishra and Dimitrov’s Algorithm for Quintupling on Weierstrass

Curves

We recall the equation for Weierstrass curve over a prime field K given by

Hw(K) : y2 = x3 + ax+ b

where a, b ∈ K, 4a3 + 27b2 6= 0 and the point P = (X : Y : Z) corresponds to

the point (X/Z2, Y/Z3) in Jacobian coordinates. Given that P is a point on

Hw and if 5P = 5(X : Y : Z) = (X5, Y5, Z5), Mishra and Dimitrov, using

Division Polynomials, provide the following formulae in [79] to compute

X5, Y5 and Z5.

X5 = XV 2 − 2Y UW,

Y5 = Y (E3(12V L2 − V 2 − 16L4)− 64TL5) and

Z5 = ZV

where

T = 8Y 4; (Cost = 2S),

M = 3X2 + aZ4; (Cost = 3S + 1M),

E = 12XY 2 −M2; (Cost = 1S + 1M),

2L = 2ME − 2T ; (Cost = 1M),

U = 4Y L; (Cost = 1M),

V = 4TL− E3; (Cost = 1S + 2M),

N = V − 4L2; (Cost = 1S),

2W = 2EN ; (Cost = 1M),

X5 = 4(X.V 2 − 2Y.U.W); (Cost = 3M + 1S),

Y5 = 8Y.[E3.(12V.L2 − V 2

− 16(L2)2)− 64(TL.(L2)2)]; (Cost = 4M + 1S)

and Z5 = 2Z.V ; (Cost = 1M).

Thus the total cost of computing the Quintupling formulae is (15M + 10S).

Now using equation(2.1), 12XY 2, 4Y L, 12V.L2, ME and ZV can be

39

computed as

12X.Y 2 = 6[(X + Y 2)2 −X2 − Y 4]; (Cost = 1S traded for 1M),

4Y L = 2[(Y + L)2 − Y 2 − L2]; (Cost = 1S traded for 1M),

12V.L2 = 6[(V + L2)− V 2 − L4]; (Cost = 1S traded for 1M),

2ME = [(M + E)2 −M2 − E2]; (Cost = 1S traded for 1M) and

2ZV = [(Z + V)2 − Z2 − V 2]; (Cost = 1S traded for 1M) .

Thus the cost of the Mishra and Dimitrov Quintupling algorithm

can be reduced from 15M + 10S to 10M + 15S. It turns

out that one multiplication can further be eliminated from the

Mishra and Dimitrov Algorithm. Indeed, in the computation of

X5, Y UW is computed where U = 4Y L and thus Y UW = 4Y 2LW .

Thus we could alter U to be equal to 4Y 2L instead of 4Y L. Now, we could

write 4Y 2L as

U = 4Y 2L = 2[(Y 2 + L)2 − Y 4 − L2]; and thus

X5 = 4(XV 2 − 2UW); (New Cost = 2M + 1S) .

Thus the cost of the modified Mishra and Dimitrov Algorithm can be reduced

to 9M + 15S which is just slightly better than the 10M + 14S cost of the

Longa and Miri Quintupling Algorithm. Further we could compute N2 as

N2 = (V − 4L2)2 = V 2 + 16L4 − 8V L2 .

Now N2 could be computed without using any extra squarings or

multiplications, as V 2, L4 and V L2 are computed for other steps in the

algorithm, as shown above. Thus 2W = 2EN could be computed as

2W = [(E +N)2 − E2 −N2] .

Now, E2 is also computed in another step in the algorithm, thus effectively

replacing 1M with a 1S. Thus, we have reduced the cost of the modified

Mishra and Dimitrov algorithm to 8M + 16S using equation (2.1).

The costs for point quintupling on Jacobian coordinates can be summarized

as below:

Table 2.2: Jacobian Coordinates Quintupling

Algorithm
a need not be equal

to −3
a = −3

Mishra and Dimitrov [79] 15M + 10S 15M + 8S

Giorgi [49] 8M + 16S 7M + 16S

Longa and Miri [74] 10M + 14S 11M + 11S

Modified Mishra and Dimitrov [98] 8M + 16S

2.6.3 Quintupling Formulae for Edwards Curves

Revisited

In [11], Bernstein et al, amongst other things, provide two fast algorithms

for point quintupling on Edwards curves defined over Fp. As in Section 2.3,

an Edwards curve Ed defined over a field K is given by x2 + y2 = 1 + dx2y2

where d ∈ K\{0, 1}.

The two quintupling algorithms provided in [11], (we call them Algorithm

A and Algorithm B for convenience) cost (17M + 7S) and (14M + 11S)

respectively. The authors in [11] conclude that Algorithm A performs

better if the S/M ratio i.e., S/M > 0.75 while Algorithm B performs

better if S/M < 0.75. When S/M = 0.75, both algorithms share the same

complexity. Here we modify Algorithm B slightly to provide an alternate

algorithm (Algorithm C). If the affine point (X1/Z1, Y1/Z1) represents the

point (X1, Y1, Z1) on the homogenized equation of Ed, and if (X5, Y5, Z5) =

5(X1, Y1, Z1), the new quintupling algorithm (Algorithm C) is as below:

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ; D = A + B; E = 2C − D; F = A2;

G = B2; H = F + G; I = D2 − H; J = E2; K = G − F ; L = K2;

M = 2I.J ; N = L + M ; O = L −M ; P = N.O; Q = (E + K)2 − J − L;

R = 2(2JH − L); S = Q.R; T = 4Q.O.(D − C); U = R.N ; V = U + T ;

41

W = U −T ; X5 = 2X1.(P +B.S).W ; Y5 = 2Y1.(P −A.S).V ; Z5 = Z1.V.W

Algorithm A and Algorithm B were verified by the authors in [11]. The

only difference between Algorithm C above and Algorithm B in [11] is in the

computation of R. In [11], R was computed as

R = ((D + E)2 − J −H − I)2 − 2N

In Algorithm C we employ R = 2(2JH − L), as we can rewrite R as follows:

R = ((D + E)2 − J −H − I)2 − 2N

=

{[
(X2

1 + Y 2
1) + (2Z2

1 − (X2
1 + Y 2

1)
]2

−
[
2Z2

1 − (X2
1 + Y 2

1)
]2 − [X4

1 + Y 4
1

]
− 2X2

1Y
2
1

}2

− 2N

=
[
2(X2

1 + Y 2
1)(2Z2

1 − (X2
1 + Y 2

1))
]2

− 2
[
(Y 4

1 −X4
1)2 + 4(X2

1Y
2
1){2Z2

1 − (X2
1 + Y 2

1)}2
]

= 4
[
2Z2

1 − (X2
1 + Y 2

1)
]2{

X4
1 + Y 4

1

}
− 2
[
(Y 4

1 −X4
1)2
]

= 4JH − 2L

= 2(2JH − L)

Algorithm C above for quintupling costs (15M + 9S) and is better than both

the quintupling algorithms provided in [11] as long as M > S and M < 2S

and irrespective of whether S/M < 0.75 or S/M > 0.75.

Table 2.3: Edwards Curve Quintupling Formulae Summary

Algorithm Quintupling Costs

Algorithm A [11] 17M + 7S

Algorithm B [11] 14M + 11S

Algorithm C [98] 15M + 9S

2.7 Side Channel Attacks

Side channel attacks are a group of techniques using which an adversary can

obtain the key (or a part of the key) by using information related to power

consumption, time taken for a cryptographic operation, electromagnetic

radiation etc [18, 31, 48, 85]. For example, if kP were computed where k is

a scalar and also a secret with P being an Elliptic curve point, and if the

double-and-add algorithm were to be used for scalar multiplication, then it is

possible to deduce information about the key from a power/timing analysis

corresponding to the computation of kP as there is a difference between the

point doubling and point addition operations. A countermeasure to this type

of attack is the double-and-always-add algorithm of Coron [31]. Another

counter measure is the Montgomery Ladder which ensures that there is no

relation between the Hamming weight of the secret k and the execution time

of the algorithm. Implementing an Atomic Block is one way to overcome

side channel attacks. Atomic blocks consist of structuring various point

arithmetic operations using a homogeneous sequence of operations. An

introduction to atomic blocks can be found in [28, Chapter 29].

From the previous sections of this chapter, it may appear that we should

always look for algorithms with the least operation count cost. However

there are circumstances where the most cost-effective option is not always

the best option in every situation, especially so when it comes to overcoming

side channel attacks. For example, in [1], Abarzua and Theriault, while

designing side-channel resistant atomic blocks for Weierstrass elliptic curves

in Jacobian Coordinates over prime fields, use a (9M + 7S) point tripling

formulae due to Dimitirov, Imbert and Mishra [41], as the more economical

(7M + 7S) tripling algorithm due to Longa and Miri [73] could not fit nicely

into their atomic block pattern. Thus, there may be a trade-off between

efficiency and security, as the most efficient algorithm may not lend itself to

side-channel resistant methods.

43

Chapter 3

Differential Arithmetic on

Elliptic Curves

In Chapter 2 of this thesis, we introduced x − coordinate only formulae

for Montgomery curves with the points in affine representation. This x −
coordinate only arithmetic is usually known as differential arithmetic. In

some cases, y − coordinate only arithmetic or w − coordinate arithmetic are

used and such formulae are also known as differential arithmetic formuale.

We first provide Projective coordinate formulae for Montgomery curves and

then provide x− coordinate only tripling formulae for Montgomery curves.

We then speed up differential addition formulae for Generalised Edwards

coordinates and Binary Edwards curves.

3.1 Introduction to Differential Arithmetic

The projective form of the Montgomery curve defined over a finite field Fp
can be written as

Em : BY 2Z = X3 + AX2Z +XZ2 where A,B ∈ Fp and A 6= ±2, B 6= 0

Let P = (X1, Y1, Z1) and nP = (Xn, Yn, Zn). We know that the set of points

on Em form an Abelian group and the identity element (0,1,0) in this group

is denoted as O. The sum (n+m)P = nP +mP can be computed using the

45

formulae below:

Addition: (n 6= m):

Xm+n = Zm−n((Xm − Zm)(Xn + Zn) + (Xm + Zm)(Xn − Zn))2

Zm+n = Xm−n((Xm − Zm)(Xn + Zn)− (Xm + Zm)(Xn − Zn))2

Doubling: (n = m):

X2n = (Xn + Zn)2(Xn − Zn)2

4XnZn = (Xn + Zn)2 − (Xn − Zn)2

Z2n = 4XnZn((Xn − Zn)2 + ((A+ 2)/4)(4XnZn))

= 4XnZn((Xn + Zn)2 + ((A− 2)/4)(4XnZn))

Point addition requires 4M + 2S operations and a point doubling requires

3M + 2S operations. If Zm−n = 1, then point addition requires 3M + 2S

operations. The well known Montgomery ladder that can be used to compute

nP is as below:

Algorithm 3.1: Left-to-Right Montgomery ladder for scalar multiplication

INPUT: A point P on Em and a positive integer n = (nt . . . n0)2 with nt = 1

OUTPUT: The point nP

P1 ← P and P2 ← 2P

for i = t− 1 down to 0 do

if ni = 0 then

P2 ← P2 + P1 (P); P1 ← 2P1

else

P1 ← P2 + P1 (P); P2 ← 2P2

end if

end for

return P1

In all algorithms in this thesis, whenever the difference between two points is

required to compute the sum of those points, the difference is indicated in

brackets immediately after the addition formula. In Algorithm 3.1, we have

P1 ← P2 + P1 (P) (3.1)

The notation in equation (3.1) means that when P2 is added to P1 and the

result is stored in P1 the difference required between these two points is P

i.e., P2 − P1 = P . Clearly, the above algorithm is a Left-to-Right algorithm.

If (nt . . . n1n0)2 is the binary representation of n and (nt = 1), to compute

[n]P , we proceed as follows: we hold {miP, (mi + 1)P} for mi = (nt . . . ni)2.

If ni = 0,miP = 2mi+1P and (mi + 1)P = (mi+1 + 1)P + mi+1P else

miP = (mi+1 + 1)P + mi+1P and (mi + 1)P = 2(mi+1 + 1)P . Beginning

from {P, 2P}, Algorithm 3.1 computes {nP, (n+ 1)P}.

Until now, in this chapter, we have had a look at x-coordinate only point

addition and doubling formulae. We proceed to look at x-coordinate only

tripling formulae for Montgomery curves.

3.2 Differential Tripling Formulae for

Montgomery Curves

Let P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2) and P3 = (X3, Y3, Z3) be points on a

Montgomery curve Em with P2 = 2P1 and P3 = 3P1. Then the tripling can

be computed as

X3 = X1

((
X2

1 − Z2
1

)2 − (X2
1 + Z2

1 + AX1Z1

)
(2Z1)

2)2 and

Z3 = Z1

((
X2

1 − Z2
1

)2 − (X2
1 + Z2

1 + AX1Z1

)
(2X1)

2)2 .

The above tripling formulae require 6M + 5S operations. As the Tripling

formulae is x-coordinate only formulae, we use the term Differential Tripling

to distinguish the new formulae from usual tripling formulae where both x

and y coordinates are computed.

47

We derive the above differential point tripling formulae for Montgomery

curves. Let P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2) and P3 = (X3, Y3, Z3) be

points on a Montgomery curve Em with P2 = 2P1 andP3 = 3P1. We can

write P3 = 3P1 = 2P1 + P1 = P2 + P1. Then

X2 = (X1 + Z1)
2(X1 − Z1)

2 (3.2)

Z2 = 4X1Z1((X1 − Z1)
2 + ((A+ 2)/4)(4X1Z1)) (3.3)

X3 = Z1[(X1 − Z1)(X2 + Z2) + (X1 + Z1)(X2 − Z2)]
2 (3.4)

Z3 = X1[(X1 − Z1)(X2 + Z2)− (X1 + Z1)(X2 − Z2)]
2 (3.5)

From equations (3.2), (3.3), (3.4) and (3.5) we can write

X3 =Z1

[
(X1 − Z1){

(X1 + Z1)
2 (X1 − Z1)

2 + 4X1Z1 (X1 − Z1)
2 + ((A+ 2) /4) (4X1Z1)

2}
+ (X1 + Z1){
(X1 + Z1)

2 (X1 − Z1)
2 − 4X1Z1 (X1 − Z1)

2 − ((A+ 2) /4) (4X1Z1)
2}]2

= Z1

[(
(X1 + Z1) (X1 − Z1)

)2{
2X1

}
− 4X1Z1 (X1 − Z1)

2 {2Z1

}
−
(
(A+ 2)/4

)
(4X1Z1)

2
{

2Z1

}]2
= 4X2

1Z1

[(
(X1 + Z1) (X1 − Z1)

)2 − 4Z2
1 (X1 − Z1)

2

−
(
(A+ 2) /4

) (
16X1Z

3
1

)]2
= 4X2

1Z1

((
X2

1 − Z2
1

)2 − (X2
1 + Z2

1 + AX1Z1

)
(2Z1)

2)2

Similarly,

Z3 =X1

[
(X1 − Z1){

(X1 + Z1)
2 (X1 − Z1)

2 + 4X1Z1 (X1 − Z1)
2 + ((A+ 2) /4) (4X1Z1)

2}
− (X1 + Z1){
(X1 + Z1)

2 (X1 − Z1)
2 − 4X1Z1 (X1 − Z1)

2 − ((A+ 2) /4) (4X1Z1)
2}]2

= X1

[(
(X1 + Z1) (X1 − Z1)

)2{−2Z1

}
− 4X1Z1 (X1 − Z1)

2 {2X1

}
−
(
(A+ 2)/4

)
(4X1Z1)

2
{

2X1

}]2
= 4X1Z

2
1

[
−
(
(X1 + Z1) (X1 − Z1)

)2
+ 4X2

1 (X1 − Z1)
2

+
(
(A+ 2) /4

) (
16X3

1Z1

)]2
= 4X1Z

2
1

(
−
(
X2

1 − Z2
1

)2
+
(
X2

1 + Z2
1 + AX1Z1

)
(2X1)

2)2
= 4X1Z

2
1

((
X2

1 − Z2
1

)2 − (X2
1 + Z2

1 + AX1Z1

)
(2X1)

2)2

Dividing both X3 and Z3 by 4X1Z1 we get, when (X1, Y1) 6= (0, 0)

X3 = X1

((
X2

1 − Z2
1

)2 − (X2
1 + Z2

1 + AX1Z1

)
(2Z1)

2)2
Z3 = Z1

((
X2

1 − Z2
1

)2 − (X2
1 + Z2

1 + AX1Z1

)
(2X1)

2)2
The formulae for X3 and Y3 derived above can be computed using the

following 6M + 5S algorithm:

49

T1 ← X1; T2 ← Z1

T1 ← T 2
1 (= X2

1)

T2 ← T 2
2 (= Z2

1)

T3 ← (T1 − T2)2 (= (X2
1 − Z2

1)2)

T4 ← X1Z1 (= X1Z1)

T4 ← A.T4 (= AX1Z1)

T5 ← T2 + T2 + T2 + T2 (= 4Z2
1)

T6 ← T1 + T1 + T1 + T1 (= 4X2
1)

T4 ← T1 + T2 + T4 (= X2
1 + Z2

1 + AX1Z1)

T7 ← T4.T5 (= (X2
1 + Z2

1 + AX1Z1)(4Z
2
1))

T8 ← T4.T6 (= (X2
1 + Z2

1 + AX1Z1)(4X
2
1))

T1 ← (T3 − T7)2
(
=
((
X2

1 − Z2
1

)2 − (X2
1 + Z2

1 + AX1Z1

)
(2Z1)

2)2)
T2 ← (T3 − T8)2

(
=
((
X2

1 − Z2
1

)2 − (X2
1 + Z2

1 + AX1Z1

)
(2X1)

2)2)
X3 ← X1.T1

(
= X1

((
X2

1 − Z2
1

)2 − (X2
1 + Z2

1 + AX1Z1

)
(2Z1)

2)2)
Z3 ← Z1.T2

(
= Z1

((
X2

1 − Z2
1

)2 − (X2
1 + Z2

1 + AX1Z1

)
(2X1)

2)2)
If P3 is computed as 2P1 + P1 (i.e.,using a point doubling followed by a point

addition), we need (4M + 2S) + (3M + 2S) = 7M + 4S, while the number of

field additions/subtractions required are the same in both the cases (using

either the differential tripling formula or using P3 = 2P1 + P1). Thus the

above tripling formulae are efficient as (6M + 5S) < (7M + 4S). When

Z1 = 1 the above tripling formulae only needs (3M + 4S) operations whereas,

if 3P were to be computed as 2P + P , (that is, a doubling followed by an

addition with Z1 = 1), then (3M + 2S) + (3M + 2S) = (6M + 4S) operations

would be required thus resulting in a saving of 3M . The differential tripling

formulae cannot be readily used in the binary Montgomery Ladder. However

in the next chapter, we describe situations in which the tripling formuale can

be utilized.

3.3 Differential Arithmetic Generalized

The point addition and doubling formulae for Montgomery curves provided

in Section 3.1 were the first differential addition formulae published in the

literature. The idea of differential addition has since been extended to other

forms of elliptic curves such as

• Lopez and Dahab’s extension [75] to Weierstrass curves over F2m.

• Two independently developed extensions to Weierstrass curves over Fp
- one due to Fisher, Giraud, Knudsen and Seifert[48]

and

- the other due to Brier and Joye [18].

• Bernstein, Lange and Farashahi’s [13] extension to Binary Edwards

curves.

• Justus and Loebenberger’s extension [58] to Generalized Edwards curves

over Fq (char(Fq) 6= 2).

• Farashahi and Joye’s extension [47] to Generalized Binary Hessian

curves.

• Devigne and Joye’s extension [38] to Binary Huff curves.

• Hutter, Joye and Sierra’s [52] extension to Weierstrass curves over Fp
in homogeneous projective coordinates where the points to be added

share the same Z-coordinate.

• Wu, Tang and Feng’s [108] extension to a new model of Binary Edwards

curves.

The Montgomery ladder for scalar multiplication that was initially proposed

and utilized for Montgomery curves can be adapted to the examples listed

above. Differential addition formulae have been published for the examples

above. For instance, [28, Section 13.3.4] provides the differential addition

formulae for Binary Weistrass’ curves. However, the addition formula is

51

correct only when Zm−n = 1. The text does not mention this. If Zm−n 6= 1,

then the formulae in [28, Section 13.3.4] should read as follows:

Zm+n = Zm−n
[
XmZn +XnZm

]2
Xm+n = Xm−n

[
XmXn +XnZm

]2
+ Zm−n(XmZn)(XnZm)

Thus addition should take 6M + 1S operations; When Zm−n = 1, this would

reduce to 4M + 1S.

3.3.1 Differential Arithmetic on Generalized Edwards’

Curves revisited

In Section 3.3.2, we try to speed up some of the formulae proposed in [58]

and the affine w-Coordinate differential addition proposed in [108]. In

the remainder of this section, we review some of the differential addition

formulae for Generalized Edwards curves as provided in [58] and the affine

w-Coordinate differential addition formulae for a new model of Binary elliptic

curve as provided in [108].

Generalized Edwards curves over a finite field Fp are given by (curve

parameters c, d ∈ Fp)

Ec,d : x2 + y2 = c2(1 + dx2y2)

It turns out that the differential addition formulae for generalized Edwards

curves use y-only coordinates instead of x-only coordinates for Montgomery

curves. Let P = (x1, y1) be a point on Ec,d. In projective coordinates, P can

be written as P = (X1, Y1, Z1) we write nP = (Xn : Yn : Zn). If c, d 6= 0,

dc4 6= 1 and d is not a square in GF (p), the sum (n+m)P = nP +mP , as

provided in [58], is reproduced below:

A. Differential Addition for Generalised Edwards Coordinates:

(m > n)

(Operation count given by authors in [58] is 6M + 4S).

Ym+n = Zm−n(Y 2
m(Z2

n − c2dY 2
n) + Z2

m(Y 2
n − c2Z2

n))

Zm+n = Ym−n(dY 2
m(Y 2

n − c2Z2
n) + Z2

m(Z2
n − c2dY 2

n))

B. Differential Doubling for Generalised Edwards Coordinates:

(n = m)

(Operation count given by authors in [58] is 1M + 4S).

Y2n = −c2dY 4
n + 2Y 2

nZ
2
n − c2Z4

n

Z2n = dY 4
n − 2c2dY 2

nZ
2
n + Z4

n

In [58], point tripling formula are provided as well. We reproduce them below:

C. Tripling for Generalised Edwards Coordinates:

(Operation count given by authors in [58] is 4M + 7S).

Y3n = Yn(c2(3Z4
n − dY 4

n)2−
Z4
n(8c2Z4

n + (Y 2
n (c3d+ c−1)− 2cZ2

n)2−
c−2(c4d+ 1)2Y 4

n))

Z3n = Zn(c2(Z4
n − 3dY 4

n)2+

dY 4
n (4c2Z4

n − (Y 2
n (c3d+ c−1)− 2cZ2

n)2+

c−2((c4d+ 1)2 − 12c4d)2Y 4
n))

In [58], an alternate parameterization is provided by the authors, where

only the squares of the points (Ym : Zm), (Yn : Zn) and (Ym−n : Zm−n) are

utilized. We call this Squares Only or SQO parametrization. The authors

provide addition, doubling and tripling formulae for this parametrization.

Here we reproduce the doubling and the tripling formulae from [58] for SQO

parametrization.

53

D. SQO Doubling for Generalised Edwards Coordinates: n = m

(Operation count given in [58] is 5S).

Y 2
2n = ((1− c2d)Y 4

n + (1− c2)Z4
n − (Y 2

n − Z2
n)2)2

Z2
2n = (dc2(Y 2

n − Z2
n)2 − d(c2 − 1)Y 4

n + (c2d− 1)Z4
n)2

E. SQO Tripling for Generalised Edwards Coordinates: m = 2n

(Operation count in [58] is 4M + 7S).

Y 2
3n = Y 2

n (c2(3Z4
n − dY 4

n)2−
Z4
n(8c2Z4

n + (Y 2
n (c3d+ c−1)− 2cZ2

n)2−
c−2(c4d+ 1)2Y 4

n))2

Z2
3n = Z2

n(c2(Z4
n − 3dY 4

n)2+

dY 4
n (4c2Z4

n − (Y 2
n (c3d+ c−1)− 2cZ2

n)2+

c−2((c4d+ 1)2 − 12c4d)Y 4
n))2

In [108], the authors propose a new model of Binary Edwards curve given by

St : x2y + xy2 + txy + x+ y = 0

where (x, y) ∈ K2 and K is a field of char 2. Further, in section 6 of

their paper, the authors construct differential addition formula for St. We

reproduce the approach and the formulae here.

F. Affine w-coordinate Differential Addition and Doubling for a

new model of Binary Edwards Curves proposed in [108]:

(Operation count for addition and doubling as given in [108] is

1I + 2M + 2S + 1Mc and 1I + 1M + 2S + 1Mc respectively.)

Utilizing the idea of w-coordinate differential addition that was initially

proposed by the authors in [13] for Binary Edwards curves, the authors in

[108] propose w-coordinate differential addition and doubling for the elliptic

curve St, i.e., they present formulae to compute w(P +Q) and w(2P) from

w(P), w(Q) and w(Q−P). If P = (x, y) is a point on St, then the w-function

is defined as w(P) = xy. If P = (x2, y2), Q = (x3, y3), Q − P = (x1, y1),

2P = (x4, y4) and Q + P = (x5, y5), we write wi = xiyi for i = 1, 2, 3, 4, 5.

Then w2 = w(P), w4 = w(2P), w5 = w(P + Q), w1 = w(Q − P) and

w3 = w(Q). The affine differential addition formulae on St, as developed and

presented in [108] are as follows:

w4 =
1 + w4

2

t2w2
2

and w5 = w1 +
t2w2w3

w2
2 + w2

3

The efficiency of arithmetic in characteristic 2 fields is significantly different

compared to fields of odd characteristic. For instance, in binary fields, squaring

is much faster than multiplication and has a complexity similar to that of

modular addition [106].

3.3.2 Alternate Algorithms and Newer Operation

Counts

In this section, recalling results from [97], we show that the operation counts

in formulae (B-F) of Section 3.3.1 can be improved. For clarity in comparison,

the subsections that describe and compare our improvements to (B-F) of

Section 3.3.1 are labeled as (BB-FF) respectively.

BB. Differential Doubling for Generalised Edwards Coordinates:

The operation count of formula (B) in Section 3.3.1 is 1M +4S as the formula

55

can be computed using the following algorithm:

A← Y 2
n (= Y 2

n) S

B ← Z2
n (= Z2

n) S

D ← A ∗B (= Y 2
nZ

2
n) M

A← A2 (= Y 4
n) S

B ← B2 (= Z4
n) S

Y2n = −c2dA+ (= −c2dY 4
n+ 2Mc

2D − c2B 2Y 2
nZ

2
n − c2Z4

n)

Z2n = dA− 2c2dD +B (= dY 4
n− 2Mc

2c2dY 2
nZ

2
n + Z4

n)

Thus the total complexity, if one takes into consideration the cost Mc of

multiplication by a constant other than 1 or 2 or 3, is (1M + 4Mc + 4S). The

formulae (B) in Section 3.3.1 can be rewritten as

Y2n = −c2dY 4
n + 2Y 2

nZ
2
n − c2Z4

n = 2Y 2
nZ

2
n − c2(Z4

n + dY 4
n)

Z2n = dY 4
n − 2c2dY 2

nZ
2
n + Z4

n = −c2d(2Y 2
nZ

2
n) + (Z4

n + dY 4
n)

The rewritten formulae above can be computed using the algorithm below:

A← Y 2
n (= Y 2

n) S

B ← Z2
n (= Z2

n) S

E ← A2 (= Y 4
n) S

F ← B2 (= Z4
n) S

G← (A+B)2 (= 2Y 2
nZ

2
n) S

− E − F
Y2n = G− (= 2Y 2

nZ
2
n− 2Mc

c2(F + dE) c2(Z4
n + dY 4

n))

Z2n = (−c2d)G+ (= −c2d(2Y 2
nZ

2
n)+ 1Mc

(F + dE) (Z4
n + dY 4

n))

Thus the new complexity is 5S + 3Mc. As 1S < 1M , the new complexity

5S + 3Mc is less than the older complexity (1M + 4Mc + 4S)

CC. Tripling for Generalised Edwards Coordinates:

The operation count of formula (C) in Section 3.3.1 is 4M+7S. In addition to

this, by inspection, one can count 8Mc operations are required to compute the

requisite formula. Thus the total complexity of formula(C) is 4M + 7S+ 8Mc

From [58, Section 3.1], we have

y3 =
y(c2d2y8 − 6c2dy4 + 4(c4d+ 1)y2 − 3c2)

−3c2d2y8 + 4d(c4d+ 1)y6 − 6c2dy4 + c2
.

Writing y = Y/Z in projective coordinates, the above formula can be written

as

Y3n
Z3n

=
Yn
Zn
.

(c2d2Y 8
n − 6c2dY 4

nZ
4
n + 4(c4d+ 1)Y 2

nZ
6
n − 3c2Z8

n)

−3c2d2Y 8
n + 4d(c4d+ 1)Y 6

nZ
2
n − 6c2dY 4

nZ
4
n + c2Z8

n

.

Then

Y3n = Yn[c2d2Y 8
n − 6c2dY 4

nZ
4
n + 4(c4d+ 1)Y 2

nZ
6
n − 3c2Z8

n]

and

Z3n = Zn[−3c2d2Y 8
n + 4d(c4d+ 1)Y 6

nZ
2
n − 6c2dY 4

nZ
4
n + c2Z8

n]

The above rewritten formulae can now be computed using the algorithm

57

below:

A← Y 2
n (= Y 2

n) S

B ← Z2
n (= Z2

n) S

E ← A2 (= Y 4
n) S

F ← B2 (= Z4
n) S

G← (A+B)2 (=(Y 2
n + Z2

n)2 S

− E − F − Y 4
n − Z4

n = 2Y 2
nZ

2
n)

H ← G2 (= 4Y 4
nZ

4
n) S

J ← E2 (= Y 8
n) S

K ← F 2 (= Z8
n) S

M ← (G+ F)2 [= (2Y 2
nZ

2
n + Z4

n)2 − Z8
n S

−K −H − 4Y 4
nZ

4
n] = 4Y 2

nZ
6
n

N ← (G+ E)2 [= (2Y 2
nZ

2
n + Y 4

n)2 S

− J −H − Y 8
n − 4Y 4

nZ
4
n] = 4Y 6

nZ
2
n

Finally,

Y3n ← Yn[(c2d2)J − (3
2
c2d)H + (c2d+ 1)M − (3c2)K]

which costs 1M + 3Mc and

Z3n ← Zn[(−3c2d2)J − d(c4d+ 1)N − (3
2
c2d)H + (c2)K]

which costs 1M + 2Mc. In the above, once (c2)K is computed, the cost

of computing (3c2)K is ignored. The complexity of the new algorithm

is (10S + 2M + 5Mc). If 3S < 2M + 3Mc, then the new complexity of

(10S + 2M + 5Mc) is less than the older complexity of (7S + 4M + 8Mc). In

[8], 2M = 3S and thus 3S < 2M + 3Mc.

DD. SQO Doubling for Generalised Edwards Coordinates:

By inspecting formula(D) in Section 3.3.1 and taking into consideration that

we are provided with X2
2n and Y 2

2n, we can see that the total complexity of

the formula(D) is (5S+ 5Mc). We can improve upon this. Using the doubling

formula(BB) in this section, we can write

Y 2
2n =

[
2Y 2

nZ
2
n − c2(Z4

n + dY 4
n)
]2

Z2
2n =

[
− c2d(2Y 2

nZ
2
n) + (Z4

n + dY 4
n)
]2

Given that only squares of the coordinates are stored, the above formula can

be computed using the following algorithm:

A← (Y 2
n)2 (= Y 4

n) 1S

B ← (Z2
n)2 (= Z4

n) 1S

E ← (Y 2
n + Z2

n)2 − A−B (= 2Y 2
nZ

2
n) 1S

Y 2
2n ←

[
E− (=

[
2Y 2

nZ
2
n 1S + 2Mc

c2(B + dA)
]2 − c2(Z4

n + dY 4
n)
]2

Z2
2n ←

[
− c2dE+ (=

[
− c2d(2Y 2

nZ
2
n) 1S +Mc

(B + dA)2
]2

+ (Z4
n + dY 4

n)
]2

The complexity of the new algorithm is (5S + 3Mc) while the old complexity

was (5S + 5Mc)

EE. SQO Tripling for Generalised Edwards Coordinates:

By inspecting formula(E) in Section 3.3.1, we can see that the total complexity

of formula(E) is (4M + 7S + 8Mc). The algorithm used to compute Y3n and

Z3n in formula(CC) of this section can be adapted to compute the requisite

formulae. The first two steps can be omitted as squares are already available

and the last two steps can be replaced with

Y 2
3n ← Y 2

n

[
(c2d2)J − (

3

2
c2d)H + (c2d+ 1)M − (3c2)K

]2
Z2

3n ← Z2
n

[
(−3c2d2)J − d(c4d+ 1)N − (

3

2
c2d)H + (c2)K

]2
The complexity of this algorithm is the same as that of formula(CC) which is

(10S + 2M + 5Mc). We can take 2M = 3S [8]. Thus 3S < (2M + 3Mc) and

the new algorithm with complexity (10S + 2M + 5Mc) is better than the old

algorithm with complexity (7S + 4M + 8Mc).

59

The improvements for Generalized Edwards Coordinates can be summarized

in the table below:

Table 3.1: Differential Arithmetic on Generalized Edwards Coordinates

Point arithmetic on Generalized

Edwards coordinates
Previous [58] New [97]

Differential Doubling 1M + 4S + 4Mc 5S + 3Mc

Tripling 4M + 7S + 8Mc 2M + 10S + 5Mc

SQO Doubling 5S + 5Mc 5S + 3Mc

SQO Tripling 4M + 7S + 8Mc 2M + 10S + 5Mc

FF. Affine w-coordinate Differential Addition and Doubling for a

new model of Binary Edwards Curves proposed in [108]:

The operation count of computing w4 in formula (F) in Section 3.3.1 is

1I + 1M + 1Mc + 2S as the formula can be computed using the algorithm

below:

A = w2
2 (= w2

2) 1S

B = A2 (= w4
2) 1S

C = t2A (= t2w2
2) 1Mc

D = C−1
(

=
1

t2w2
2

)
1I

w4 = (1 +B)D

(
=

1 + w4
2

t2w2
2

)
1M

Now w4 can be rewritten as

w4 =

(
1

t2

)(
1

w2
2

+ w2
2

)
and

w4 can be computed using the following algorithm:

A = w2
2 (= w2

2) 1S

B =
1

A

(
=

1

w2
2

)
1I

w4 =

(
1

t2

)
(A+B)

(
=

(
1

t2

)(
1

w2
2

+ w2
2

))
Mc

Thus the complexity of the new doubling algorithm is 1I+ 1S+ 1Mc resulting

in a saving of 1M + 1S. The formulae(F) for differential addition(w5) in the

previous section costs 1I + 2M + 2S+ 1Mc. Considering that w2
2 is computed

both in the differential addition and doubling steps, w2
2 can be computed

just once. Thus the new total cost of a differential addition and doubling is

2I + 2M + 2S + 2Mc or 1I + 5M + 2S + 2Mc with Montgomery’s Inversion

trick, as compared to the previous total cost of 1I + 6M + 4S+ 2Mc resulting

in an overall saving of 1M + 2S.

The improvements for the Binary Edwards curve defined in [108] can be

summarized as below:

Table 3.2: Differential Arithmetic for Binary Edwards curve

Binary Edwards Previous [108] New [97]

Differential Doubling 1I+1M+1Mc+2S 1I + 1S + 1Mc

Differential Addition

and Doubling

1I+6M+4S+2Mc 1I+5M+2S+2Mc

61

Chapter 4

Multi Exponentiation and

Differential Chains

In this chapter, we motivate the need for computing Multi-exponentiation and

the construction of Schoenmakers’ algorithm for Double Scalar multiplication.

We further provide two Triple Scalar multiplication algorithms.

4.1 Addition Chains and Exponentiation

Multi-exponentiation (also known as simultaneous exponentiation) in an

Abelian group is a commonly used computation in cryptography, for example

in signature verification algorithms and identification schemes (Chapter 7 and

Chapter 9 in [103]). A straightforward method to compute the sum of products

n1x1 + n2x2 ∈ G (where (G,+) is an Abelian group and x1, x2 ∈ (G,+) and

the exponents n1, n2 ∈ Z) is to compute n1x1 and n2x2 separately and then

add them. The Strauss-Shamir method ([7], [46], Algorithm 9.23 in [28])

scans the corresponding bit representations of n1 and n2 simultaneously

from left to right and makes use of precomputed group elements to compute

n1x1 + n2x2, thus reducing the number of additions required to compute the

desired sum. The Joint Sparse Form [93] introduced by Solinas in 2001 makes

use of signed representations of the exponents to improve the Strauss-Shamir

method and are useful in groups where inverses of group elements can be

63

computed efficiently such as elliptic curve groups. The problem of minimizing

the number of multiplications whilst computing a product, such as n1x1 or

n2x2, can be reduced to minimizing the number of additions in an abstraction

known as an addition chain. A finite sequence of integers a0, a1, . . . ar is called

an addition chain (section 4.63 in [62]) for ar if for each element ai, there

exists aj and ak in the sequence such that

ai = aj + ak, for some k ≤ j < i (4.1)

for all i = 1, 2, . . . , r. Addition chains can be used to efficiently compute

either a single exponentiation or multi-exponentiation (by using Strauss’s

method). Addition chains are applicable both in the context of multiplicative

groups and additive groups such as Elliptic curve groups over a finite field.

We know that the arithmetic on a Montgomery curve relies on x-coordinate

only arithmetic and also requires the difference of two group elements (points)

to be known prior to the computation of addition of these two elements. Thus

ordinary addition chains and improvements of these chains cannot be directly

utilized for scalar multiplication on Montgomery curves. A special form of an

addition chain called Lucas chains is useful in this context. A Lucas chain

is a restricted variant of an addition chain where the indices in equation

(4.1) above are such that either j = k or the difference ak − aj is already

part of the chain. A special case of Lucas chains occur when either j = k or

ak − aj = a0 = 1 and this is called the binary chain. A Lucas chain is also

known as a Differential Addition Chain in the literature [9].

4.2 Montgomery’s PRAC

While the Montgomery ladders in the previous sections are instances of

binary chain algorithms to compute scalar multiplication, Montgomery’s

PRAC [81] algorithm, whilst computing scalar multiplication, is an example

of a Lucas chain that is not a binary chain. In [81], the author proposes a

Continued Fraction method for scalar multiplication and calls this algorithm

CFRC. He then proposes a better algorithm than CFRC and calls it a

Practical algorithm(PRAC). The PRAC algorithm permits the exponent

(the scalar) to be either prime or composite. Independent of the scalar being

prime or composite, Montgomery provides a list of transformations that can

be applied to the scalar in the course of performing the computation. This

list can be found in Table 4 of [81]. The PRAC algorithm, in the process

of constructing a Lucas chain for n, begins with (d, e) = (n, dn/φ + 1/2e)
where φ is the golden ratio. The algorithm iteratively uses a list of 9

transformations. At each iteration, the value of the pair (d, e) is reduced

as specified in the transformation and this continues until d = 1 [43]. We

reproduce the 7th and 8th transformations here for convenience:

Condition Action(s)

d ≡ −e (mod 3) d ← (d − 2e)/3 and T1 ← f(A,B,C) and

(A,B)← (X3(A)), f(T1, A,B))

d ≡ e (mod 3) d← (d− e)/3 and

(T1, T2)← (f(A,B,C), f(A,C,B)) and

(A,B,C)← (X3(A), T1, T2)

The above two transformations motivate the use of point tripling.

When PRAC is used with a composite exponent, the transformations

suggested by Montgomery were employed in [99, Algorithm 3.33]. We

reproduce the first two steps of Stam’s algorithm here:

ALGORITHM 3.33 (Montgomery’s PRAC Algorithm)

Given a base v and an exponent n, this algorithm computes vn

1. [Make d odd] Let f2 be the highest power of 2 dividing

n. Set d← (n/2f2) and A← δf2(v).

2. [d 6= 0 (mod 3)] Let f3 be the highest power of 3 dividing

n. Set d← (d/3f3) and A← τ f3(A).

...
...

...

65

Here δ is a doubling and τ is a tripling. As seen in step 2 of the algorithm

above, if the exponent is a multiple of three and if f3 is the highest power

of 3 dividing the exponent n, then the algorithm requires f3 triplings. For

instance, if n = 108 = 22 ∗ 33, doublings are carried out twice and triplings

thrice. The dedicated differential tripling formulae introduced in the previous

chapter can be used in this context. The tripling formula can also be used

in the Supersingular Isogeny Diffie-Hellman key exchange (SIDH) algorithm

[54, 34] which is a post-quantum cryptographic algorithm that enables Alice

and Bob to exchange a secret key.

4.3 Algorithms for Multiexponentiation

The Strauss-Shamir method for simultaneous scalar multiplication cannot

be immediately used in the context of Differential Addition Chains(DACs).

However, this technique can be adapted to DACs as shown by Schoenmakers,

who constructed the first algorithm to produce two dimensional (double

scalar) DACs in 2000. This algorithm was published in [99] by Stam

in 2003. Akishita’s algorithm to construct two dimensional DACs was

published in 2001 [2]. Both Shoenmakers’ and Akishita’s algorithms

produce two dimensional binary chains. Bernstein proposed new algorithms

to construct two dimensional DACs in 2006 along with a summary of

previously known algorithms [8]. These included binary chains as well as

Euclidean chain algorithms (algorithms using the Euclidean GCD scheme

to construct DACs). In [5], Azarderakhsh and Karabina propose another DAC.

A natural question to ask is, if one can construct triple scalar multiplication

analogues of the two dimensional DACs listed above. A practical motivation

to construct such multi scalar multiplication algorithms arises in the

implementation of some digital signature and identification schemes and

their elliptic curve analogues. [77, Chapter 11] covers some of these signature

schemes. The Okamoto Identification scheme [103, Section 9.3] requires

a triple scalar multiplication operation to be performed by the signature

verifier. Triple scalar multiplication can also be utilized in the accelerated

verification of ElGamal like signatures [3]. The need for higher order

analogues can be seen in the batch verification of multiple signatures

[25]. In [60], the authors propose three methods for randomized batch

verification of ECDSA signatures, one of which is based on Montgomery

ladders. Simultaneous scalar multiplication in the context of DAC could

be utilized to achieve improved running times in the Montgomery ladder

signature verification method. Interest in higher order DACs also arises

from the recent interest in standardizing Montgomery curves [8] such as

Curve25519. Further motivation to construct higher order DACs is found

in [8], where the author presents new double scalar DAC algorithms and writes

Perhaps 3-dimensional versions of the ideas in this paper will also save time

in the recent elliptic-curve-signature-verification algorithm I will leave

this exploration to future research.

This exploration can be extended to other double scalar multiplication

algorithms too, such as Akishita’s and Schoenmakers’. In 2006, Brown

extended Bernstein’s ideas to dimensions ≥ 2 [19], but this method is

patented [20].

Before we look at 3-dimensional extensions, we will introduce some

2-dimensional algorithms to produce binary chains.

4.4 Schoenmakers’ Algorithm

In this section, we motivate the construction of the Schoenmakers’ algorithm

[94, 99]. Towards this end, we define a set of four points

Gi =


miP + niQ,

miP + (ni + 1)Q

(mi + 1)P + niQ

(mi + 1)P + (ni + 1)Q



67

for mi = (kt . . . ki)2, ni = (lt . . . li)2. Below we show the construction of

elements of Gi from Gi+1 for all four combinations of (ki, li):

1. (ki, li) = (0, 0): here mi = 2mi+1 and ni = 2ni+1.

miP + niQ = 2(mi+1P + ni+1Q)

(mi + 1)P + niQ = ((mi+1 + 1)P + ni+1Q) + (mi+1P + ni+1Q)

miP + (ni + 1)Q = (mi+1P + (ni+1 + 1)Q) + (mi+1P + ni+1Q)

(mi + 1)P + (ni + 1)Q = ((mi+1 + 1)P + ni+1Q) + (mi+1P + (ni+1 + 1)Q)

2. (ki, li) = (1, 0): here mi = 2mi+1 + 1 and ni = 2ni+1.

miP + niQ = ((mi+1 + 1)P + ni+1Q) + (mi+1P + ni+1Q)

(mi + 1)P + niQ = 2((mi+1 + 1)P + ni+1Q)

miP + (ni + 1)Q = ((mi+1 + 1)P + ni+1Q) + (mi+1P + (ni+1 + 1)Q)

((mi + 1)P + (ni + 1)Q = ((mi+1 + 1)P + (ni+1 + 1)Q) + ((mi+1 + 1)P + ni+1Q)

3. (ki, li) = (0, 1): here mi = 2mi+1 and ni = 2ni+1 + 1.

miP + niQ = (mi+1P + (ni+1 + 1)Q) + (mi+1P + ni+1Q)

(mi + 1)P + niQ = ((mi+1 + 1)P + ni+1Q) + (mi+1P + (ni+1 + 1)Q)

miP + (ni + 1)Q = 2(mi+1P + (ni+1 + 1)Q)

((mi + 1)P + (ni + 1)Q = ((mi+1 + 1)P + (ni+1 + 1)Q) + (mi+1P + (ni+1 + 1)Q)

4. (ki, li) = (1, 1): here mi = 2mi+1 + 1 and ni = 2ni+1 + 1.

miP + niQ = ((mi+1 + 1)P + ni+1Q) + (mi+1P + (ni+1 + 1)Q)

(mi + 1)P + niQ = ((mi+1 + 1)P + (ni+1 + 1)Q) + ((mi+1 + 1)P + ni+1Q)

miP + (ni + 1)Q = ((mi+1 + 1)P + (ni+1 + 1)Q) + (mi+1P + (ni+1 + 1)Q)

((mi + 1)P + (ni + 1)Q = 2((mi+1 + 1)P + (ni+1 + 1)Q)

The four elements in Gi, 0 ≤ i ≤ t give rise to the easy double scalar

multiplication binary chain. The easy double scalar multiplication algorithm

is as follows:

Algorithm 4.2: L-R Easy Double scalar multiplication algorithm

INPUT: Points P and Q on Em; positive integers k = (kt . . . k0)2 and l =

(lt . . . l0)2;

Precompute (P −Q)

OUTPUT: The point [k]P + [l]Q

[Initialize]

P1 ← 0; P2 ← P ; P3 ← Q; P4 ← P +Q

[Loop through the scalar bits simultaneously]

for i = t down to 0 do

if (ki, li) = (0, 0) then

P2 ← P2 +P1 (P);

P3 ← P3 +P1 (Q);

P4 ← P4 +P1 (P+Q);

P1 ← 2 ∗ P1

else if (ki, li) = (1, 0) then

P1 ← P2 +P1 (P);

P3 ← P2 +P3 (P-Q);

P4 ← P4 +P2 (Q);

P2 ← 2 ∗ P2

else if (ki, li) = (0, 1) then

P1 ← P3 +P1 (Q);

P2 ← P2 +P3 (P-Q);

P4 ← P4 +P3 (P);

P3 ← 2 ∗ P3

else if (ki, li) = (1, 1) then

P1 ← P4 +P1 (P+Q);

P2 ← P4 +P2 (Q);

P3 ← P4 +P3 (P);

P4 ← 2 ∗ P4

end for

69

[m0P + n0Q is in P1]

return P1

However, to compute m0P + n0Q, it is not necessary to use all the four

elements of Gi. If we omit (mi + 1)P + (ni + 1)Q in Gi, it is still possible to

compute the rest of the elements in all of the Gi, 0 ≤ i ≤ t. Amongst the

above set of formulae, for the cases where (ki, li) = (0, 0) or (1, 0) or (0, 1), no

change is required, except omitting (mi + 1)P + (ni + 1)Q. However, when

(ki, li) = (1, 1), (mi+1)P+niQ and miP+(ni+1)Q may have to be computed

differently from the formula above, as they depend on (mi+1+1)P+(ni+1+1)Q

in Gi+1. Therefore when (ki, li) = (1, 1), we use

(mi + 1)P + niQ = ((mi+1 + 1)P + (ni+1 + 1)Q) + ((mi+1 + 1)P + ni+1Q)

= ((mi+1 + 1)P + ni+1Q) + (mi+1P + (ni+1 + 1)Q) + P

The difference between the first two terms in the above rewritten equation is

(P −Q). The difference between the first two terms taken together which is

((mi+1 + 1)P + ni+1Q+mi+1P + (ni+1 + 1)Q) and P

can also be expressed in terms of elements in Gi+1 i.e.,

((mi+1 + 1)P + ni+1Q)− (mi+1P + (ni+1 + 1)Q) = (P −Q)

((mi+1 + 1)P + ni+1Q+mi+1P + (ni+1 + 1)Q)− P
= 2mi+1P + (2ni+1 + 1)Q

= (mi+1P + (ni+1 + 1)Q) + (mi+1P + ni+1Q)

Similarly,

miP + (ni + 1)Q = (mi+1 + 1)P + (ni+1 + 1)Q) + (mi+1P + (ni+1 + 1)Q)

= ((mi+1 + 1)P + ni+1Q) + (mi+1P + (ni+1 + 1)Q) +Q

As before, the difference between the first two terms in the above rewritten

equation is (P −Q). The difference between the first two terms taken together

which is

((mi+1 + 1)P + ni+1Q+mi+1P + (ni+1 + 1)Q) and Q

can also be expressed in terms of elements in Gi+1 i.e.,

((mi+1 + 1)P + ni+1Q+mi+1P + (ni+1 + 1)Q)−Q
= (2mi+1 + 1)P + 2ni+1Q

= ((mi+1 + 1)P + ni+1Q) + (mi+1P + ni+1Q)

If we denote the reduced Gi i.e., Gi without (mi + 1)P + (ni + 1)Q as G′i and

the elements

(miP + niQ), ((mi + 1)P + niQ) and (miP + (ni + 1)Q) as P1[i], P2[i] and

P3[i] respectively, then for the case (ki, li) = (1, 1), the elements of G′i can be

computed as follows:

P1[i]← P2[i+ 1] + P3[i+ 1] (P −Q)

P2[i]← P1[i] + P (P3[i+ 1] + P1[i+ 1])

P3[i]← P1[i] +Q (P2[i+ 1] + P1[i+ 1])

Thus in order to compute P2[i] and P3[i], we need to first compute P3[i +

1] + P1[i+ 1] and P2[i+ 1] + P1[i+ 1]. The difference between P3[i+ 1] and

P1[i+ 1] is Q and the difference between P2[i+ 1] and P1[i+ 1] is P and thus

it is possible to compute both P3[i+ 1] + P1[i+ 1] and P2[i+ 1] + P1[i+ 1].

Rules for the other cases can be constructed from the formulae above. For

example when (ki, li) = (0, 0),

P1[i]← 2P1[i+ 1]

P2[i]← P2[i+ 1] + P1[i+ 1] (P)

P3[i]← P3[i+ 1] + P1[i+ 1] (Q)

As stated previously, Schoenmakers’ algorithm was designed in 2000 and

published in [99]. The derivation is not available in [99]. In [9, Section 4], the

author specifies which one of the four elements of Gi is eliminated. We fill this

gap by motivating the construction here and this helps us in constructing the

three-dimensional analogue of Schoenmakers’ algorithm in the next section.

Doing away with the array notation for P1, P2 and P3 above, we can present

Schoenmakers’ algorithm for double scalar multiplication as follows:

71

Algorithm 4.3: L-R Schoenmakers’ Double scalar multiplication algorithm

INPUT: Points P and Q on Em; positive integers k = (kt . . . k0)2 and

l = (lt . . . l0)2;

Precompute (P −Q)

OUTPUT: The point [k]P + [l]Q

[Initialize]

P1 ← 0; P2 ← P ; P3 ← Q

[Loop through the scalar bits simultaneously]

for i = t down to 0 do

P1Store ← P1; P2Store ← P2; P3Store ← P3;

if (ki, li) = (0, 0) then

P1 ← 2 ∗ P1Store ;

P2 ← P2Store +P1Store (P) ;

P3 ← P3Store +P1Store (Q)

else if (ki, li) = (1, 0) then

P1 ← P2Store +P1Store (P) ;

P2 ← 2 ∗ P2Store ;

P3 ← P2Store +P3Store (P-Q)

else if (ki, li) = (0, 1) then

P1 ← P3Store +P1Store (Q) ;

P2 ← P2Store +P3Store (P-Q) ;

P3 ← 2 ∗ P3Store

else if (ki, li) = (1, 1) then

P1 ← P2Store +P3Store (P-Q) ;

P2Partial ← P3Store +P1Store (Q)

P3Partial ← P2Store +P1Store (P) ;

P2 ← P1 + P (P2Partial) ;

P3 ← P1 +Q (P3Partial)

end if

end for

[m0P + n0Q is in P1]

return P1

We now compare Schoenmakers’ algorithm for double scalar multiplication

(Algorithm 4.3) with the straightforward method of achieving the same.

Since in the For loop in Algorithm 4.3, (ki, li) can take on any of the four

values of (0, 0), (1, 0), (1, 0) and (1, 1) with equal probability, the average

cost per bit of the two scalars taken simultaneously can be computed as follows:

when (ki, li) 6= (1, 1):

three point additions are required.

i.e, 3(3M + 2S) = (9M + 6S) operations.

when (ki, li) = (1, 1):

five point additions are required.

out of these five, three require (3M + 2S) operations.

the other two require 4M + 2S operations (as Z-coordinate of P2Partial,

P3Partial 6= 1).

resulting in a total of 3(3M +2S)+2(4M +2S) = (17M +10S) operations

Thus on the average

(3(9M + 6S) + 3(3M + 2S) + 2(4M + 2S))

4
= (11M + 7S)

operations would be required to run Algorithm 4.3 for every bit of the two

scalars taken together.

The straightforward method of computing [k]P + [l]Q constitutes computing

[k]P and [l]Q separately, recovering the Y-coordinates of [k]P and [l]Q and

adding up [k]P and [l]Q in projective coordinates ([2, Section 2.1]). If we

take the bit lengths of scalars k and l to be the same and equal to |k|, then

this method requires (12|k|+ 28)M + (8|k|S). If one ignores the complexity

of recovering the Y-coordinates and the complexity of adding up [k]P and

73

[l]Q, then the complexity of the straightforward method per bit of the scalar

multiple is ((12|k|)M + (8|k|)S)/|k| = 12M + 8S operations. This can also

be inferred from the fact that the total complexity to compute nP using

the binary ladder is (6M + 4S)(|n| − 1) for Montgomery curves where |n| is

the bit length of n [refer to Remarks 13.36, page 288 in [28]]. Thus, on the

average, Schoenmakers’ algorithm performs better than the straightforward

method for double scalar multiplication.

The best case per bit cost of running the Schoenmakers’ double scalar

multiplication algorithm is (9M + 6S), and this occurs when none of the

(ki, li) 6= (1, 1). Under these circumstances Schoenmakers’ algorithm will

perform better than the straightforward algorithm.

The worst case per bit cost to run Algorithm 4.3 is (17M + 10S), and this

occurs when all of the (ki, li) = (1, 1). Thus, under worst case conditions,

the straightforward algorithm is better than the Schoenmakers’ algorithm for

double scalar multiplication.

In comparing the costs here, we have not taken into consideration the costs of

the precomputation in the Schoenmakers’ algorithm and at the same time we

have not taken into consideration the cost of recovering the Y -Coordinates

and adding up [k]P and [l]Q in the straightforward method as these are small

constant time costs and do not impact the comparison above. The cost per

bit is summarized in the table below.

Table 4.1: 2-Dimensional Exponentiation

Algorithm Cost per bit

Straight forward algorithm 12M + 8S

Schoenmakers’ algorithm

(average case)

11M + 7S

Akishita’s algorithm 9M + 6S

4.5 Schoenmakers’ Algorithm for Triple

Scalar Multiplication

We now extend Schoenmakers’ ideas for triple scalar multiplication. We

do not explicitly derive the algorithm as the derivation is very similar to

that of the double scalar multiplication algorithm. However, we do note

that in every G′i, where the G′i is analogous to that used in the double

scalar multiplication case, G′i = {miP + niQ+ SiR, (mi + 1)P + niQ+ SiR,

miP + (ni + 1)Q+SiR, miP +niQ+ (Si + 1)R, (mi + 1)P + (ni + 1)Q+SiR}.
Taking (miP +niQ+SiR), ((mi+1)P +niQ+SiR), (miP +(ni+1)Q+SiR),

(miP + niQ+ (Si + 1)R) and ((mi + 1)P + (ni + 1)Q+ SiR) to be P1 P2, P3,

P4 and P5 respectively, the algorithm for triple scalar multiplication is as

follows:

Algorithm 4.4: L-R Schoenmakers’ triple scalar multiplication algorithm

INPUT: Points P , Q and R on Em;

Positive integers k = (kt . . . k0)2, l = (lt . . . l0)2, s = (st . . . s0)2
Precompute (P +Q), (P −Q), (P −R), (Q−R), (P +Q−R)

OUTPUT: The point [k]P + [l]Q+ [s]R

[Initialize]

P1 ← 0;P2 ← P ; P3 ← Q; P4 ← R; P5 ← P +Q

for i = t down to 0 do

P1Store ← P1;

P2Store ← P2;

P3Store ← P3;

P4Store ← P4;

P5Store ← P5;

if (ki, li, si) = (0, 0, 0) then

P1 ← 2 ∗ P1Store ;

P2 ← P2Store +P1Store (P) ;

P3 ← P3Store +P1Store (Q) ;

75

P4 ← P4Store +P1Store (R) ;

P5 ← P5Store +P1Store (P+Q)

else if (ki, li, si) = (0, 0, 1) then

P1 ← P4Store +P1Store (R) ;

P2 ← P2Store +P4Store (P-R) ;

P3 ← P3Store +P4Store (Q-R) ;

P4 ← 2 ∗ P4Store ;

P5 ← P5Store +P4Store (P+Q-R)

else if (ki, li, si) = (0, 1, 0) then

P1 ← P3Store +P1Store (Q) ;

P2 ← P2Store +P3Store (P-Q) ;

P3 ← 2 ∗ P3Store ;

P4 ← P3Store +P4Store (Q-R) ;

P5 ← P5Store +P3Store (P)

else if (ki, li, si) = (0, 1, 1) then

P1 ← P3Store +P4Store (Q-R) ;

P2 ← P5Store +P4Store (P+Q-R) ;

P3Partial ← P4Store +P1Store (R);

P4Partial ← P3Store +P1Store (Q) ;

P5Partial ← P2Store +P4Store (P-R) ;

P3 ← P1 +Q (P3Partial) ;

P4 ← P1 +R (P4Partial) ;

P5 ← P2 +Q (P5Partial)

else if (ki, li, si) = (1, 0, 0) then

P1 ← P2Store +P1Store (P) ;

P2 ← 2 ∗ P2Store ;

P3 ← P2Store +P3Store (P-Q) ;

P4 ← P2Store +P4Store (P-R) ;

P5 ← P5Store +P2Store (Q)

else if (ki, li, si) = (1, 0, 1) then

P1 ← P2Store +P4Store (P-R);

P3 ← P5Store +P4Store (P+Q-R) ;

P2Partial ← P4Store +P1Store (R);

P4Partial ← P2Store +P1Store (P) ;

P5Partial ← P3Store +P4Store (Q-R) ;

P2 ← P1 + P (P2Partial) ;

P4 ← P1 +R (P4Partial) ;

P5 ← P3 + P (P5Partial)

else if (ki, li, si) = (1, 1, 0) then

P1 ← P5Store +P1Store (P+Q) ;

P2 ← P5Store +P2Store (Q) ;

P3 ← P5Store +P3Store (P) ;

P4 ← P5Store +P4Store (P+Q-R);

P5 ← 2 ∗ P5Store

else if (ki, li, si) = (1, 1, 1) then

P1 ← P5Store +P4Store (P+Q-R) ;

P2Partial ← P3Store +P4Store (Q-R) ;

P3Partial ← P2Store +P4Store (P-R) ;

P4Partial ← P2Store +P3Store (P-Q) ;

P5Partial ← P4Store +P1Store (R) ;

P2 ← P1 + P (P2Partial);

P3 ← P1 +Q (P3Partial);

P4 ← P1 +R (P4Partial);

P5 ← P1 + (P +Q) (P5Partial)

end if

end for

return P1

We now compute the per bit average cost of the above algorithm.

When (ki, li, si) = (0, 0, 0) or (0, 0, 1) or (0, 1, 0) or (1, 0, 0) or (1, 1, 0):

five point additions are required.

i.e, 5(3M + 2S) = (15M + 10S) operations.

When (ki, li, si) = (0, 1, 1) or (1, 0, 1):

eight point additions are required.

Out of these eight, five require (3M + 2S) operations each

77

i.e., 5(3M + 2S) = 15M + 10S.

The other three require 4M + 2S operations each

i.e., 3(4M + 2S) = 12M + 6S.

resulting in a total of (27M + 16S) operations.

When (ki, li, si) = (1, 1, 1):

nine point additions are required.

Out of these nine, five require (3M + 2S) operations

each i.e., 5(3M + 2S) = 15M + 10S.

The other four require 4M + 2S operations each

i.e., 4(4M + 2S) = 16M + 8S.

resulting in a total of (31M + 18S) operations.

Thus, on average,

(5(15M + 10S) + 2(27M + 16S) + (31M + 18S))

8
= (20M + 12.5S)

operations are required to run Algorithm 4.4 for every bit of the exponent.

The cost per bit when the straightforward algorithm is used is

6(3M + 2S) = (18M + 12S) operations. Thus, on the average, the

straightforward algorithm performs better than Schoenmakers’ algorithm for

triple scalar multiplication.

In the best case, the per bit cost of running Algorithm 4.4 is

5(3M + 2S) = (15M + 10S) and this occurs when (ki, li, si) = (0, 0, 0)

or (0, 0, 1) or (0, 1, 0) or (1, 0, 0) or (1, 1, 0). Under these circumstances,

Schoenmakers’ algorithm performs better than the straightforward algorithm.

The worst case per bit cost of Schoenmakers’ algorithm is 31M + 18S, and

this occurs when all of (ki, li, si) = (1, 1, 1). Thus under worst case conditions,

the straightforward algorithm would perform better than the Schoenmakers’

algorithm for triple scalar multiplication.

The best case, average and worst case comparisons between the Schoenmakers’

algorithm and the straightforward method can be summarized as in the table

below. The table lists the better option between Schoenmakers’ algorithm

and the straightforward method under best case, average and worst case

conditions.

While the straightforward algorithm is uniform, where three differential

point additions and one point doubling are required for every possible bit

combination in the scalar, the Schoenmakers’ algorithm does not have a

uniform structure and is thus susceptible to side-channel attacks, when used

in protocols where the scalar is a secret.

Double scalar Schoenmaker Triple scalar Schoenmaker

vs vs

Straightforward Straightforward

Best Case Schoenmakers Schoenmakers

Average Schoenmakers Straightforward

Worst Straightforward Straightforward

Thus, there is a need to construct other triple scalar algorithms not dependent

on Schoenmakers’ Algorithm. Next, we extend the Akishita’s algorithm to

triple scalar multiplication. Our results in this chapter are independent of

Brown’s results in [19].

Closely following the approach in [2] and letting |n| denote the bit

length of n, computation of nP on a Montgomery curve Em requires

(6|n| − 3)M + (4|n| − 2)S operations. To compute the x-coordinate of

kP + lQ + uR on Em, using the straightforward method, we require the

following steps:

79

1. Compute kP using the Montgomery ladder.

2. Recover Y -coordinate of kP .

3. Compute lQ using the Montgomery ladder.

4. Recover Y -coordinate of lQ.

5. Compute uR using the Montgomery ladder.

6. Recover Y -coordinate of uR.

7. Compute kP + lQ+ uR in projective coordinates.

8. Compute x-coordinate(affine) of kP + lQ+ uR.

We will assume the bit length of all three scalars k, l and u to be the

same. The algorithm for recovery of the Y -coordinate is described in [84]

and this costs (12M + S) operations. Then, the computational cost of

step 1, 3 and 5 together is 3
[
(6|k| − 3)M + (4|k| − 2)S

]
. Steps 2, 4 and

6 together cost 3(12M + S). Consistent with [2], the cost of projective

addition is 10M + 2S, and thus the total cost of Step 7 is 2(10M + 2S)

while step 8 costs M + I where I denotes a field inversion. Thus, the cost of

computing the x-coordinate of kP+lQ+sR is (18|k|+48)M+(12|k|+3)S+I.

4.6 Three-Dimensional Scalar Multiplication

on a Montgomery Curve

Akishita’s algorithm[2] computes two dimensional differential scalar

multiplication by proceeding as in the case of Schoenmakers’ algorithm

(Section 4.4). There is a difference, however. In the case of Schoenmaker’s

algorithm, the total number of differential point additions and doublings is

3 when (ki, li) 6= (1, 1) and 5 when (ki, li) = (1, 1), whereas in Akishita’s

algorithm, by performing some lookahead, the total number of differential

point additions and doublings is reduced to 3 for all possible bit patterns in

the scalar.

In this section, we extend Akishita’s ideas [2] to compute kP + lQ+ uR. We

define a set of 8 points

Gi =



miP + niQ+ siR

miP + niQ+ (si + 1)R

miP + (ni + 1)Q+ siR

miP + (ni + 1)Q+ (si + 1)R

(mi + 1)P + niQ+ siR

(mi + 1)P + niQ+ (si + 1)R

(mi + 1)P + (ni + 1)Q+ siR

(mi + 1)P + (ni + 1)Q+ (si + 1)R


for mi = (kt . . . ki)2, ni = (lt . . . li)2 and si = (ut . . . ui)2 where (kt . . . k1k0)2,

(lt . . . l1l0)2 and (ut . . . u1u0)2 are binary representations of k, l and u

respectively; mi = 2mi+1 or mi = (2mi+1 + 1) depending on whether ki = 0

or ki = 1. Similar relationships hold for ni and si i.e., if li = 0, ni = 2ni+1

else ni = (2ni+1 + 1); if ui = 0, si = 2si+1 else si = (2si+1 + 1). Each of the 8

elements in Gi can be written in terms of the elements in Gi+1. For instance,

when (ki, li, ui) = (0, 1, 0) we can write mi = 2mi+1, ni = (2ni+1 + 1) and

si = 2si+1. In this case, as examples, we show a couple of elements of Gi

written in terms of elements in Gi+1 as follows:

miP + niQ+ siR = (mi+1P + ni+1Q+ si+1R) + (mi+1P + (ni+1 + 1)Q+ si+1R)

and

(mi + 1)P + (ni + 1)Q+ siR = (mi+1P + (ni+1 + 1)Q+ si+1R)+

((mi+1 + 1)P + (ni+1 + 1)Q+ si+1R) .

We can write the other six elements of Gi similarly, in terms of elements of

Gi+1. However, whilst computing the elements in Gi, we do not want to be

using all of the eight elements in Gi+1 towards computing (kP + lQ+ uR),

because this would be more expensive than the straightforward computation of

kP + lQ+ uR. Straightforward computation using the binary ladder requires

81

two such elements to be processed for each bit in the binary representation

of a scalar and thus a total of six elements need to be processed for every bit

in the three scalars taken at a time. Hence, to make our method more cost

effective than the straightforward method, the number of elements in each

Gi+1 should be less than 6. It turns out that it is enough to have five elements

in each of the Gi+1 to achieve our goal of computing (kP + lQ + uR). For

example, if (ki, li, ui) = (0, 0, 0), it suffices to have the following five elements

in Gi+1: 

mi+1P + ni+1Q+ si+1R

mi+1P + ni+1Q+ (si+1 + 1)R

mi+1P + (ni+1 + 1)Q+ si+1R

(mi+1 + 1)P + ni+1Q+ si+1R

(mi+1 + 1)P + (ni+1 + 1)Q+ si+1R


.

(4.2)

If (ki, li, ui) = (0, 1, 0), the following 5 elements in Gi+1 suffice:

mi+1P + ni+1Q+ si+1R

mi+1P + (ni+1 + 1)Q+ si+1R

mi+1P + (ni+1 + 1)Q+ (si+1 + 1)R

(mi+1 + 1)P + (ni+1 + 1)Q+ si+1R

(mi+1 + 1)P + (ni+1 + 1)Q+ (si+1 + 1)R


.

(4.3)

Next, we need to construct rules for computing elements of Gi from Gi+1. For

this, we take into consideration the values of ki−1, li−1 and ui−1 in addition to

ki, li and ui . We show this with an example. Let (ki, li, ui, ki−1, li−1, ui−1) =

(0, 0, 0, 0, 1, 0). Then mi = 2mi+1, ni = 2ni+1, si = 2si+1. The five elements

of Gi+1 are the same as those depicted in equation (4.2) above. The five

elements of Gi are

miP + niQ+ siR

miP + (ni + 1)Q+ siR

miP + (ni + 1)Q+ (si + 1)R

(mi + 1)P + (ni + 1)Q+ siR

(mi + 1)P + (ni + 1)Q+ (si + 1)R


.

(4.4)

These five elements of Gi can be computed from those of Gi+1 as follows:

miP + niQ+ siR = (mi+1P + ni+1Q+ si+1R) + (mi+1P + ni+1Q+ si+1R),

miP + (ni + 1)Q+ siR

= (mi+1P + ni+1Q+ si+1R) + (mi+1P + (ni+1 + 1)Q+ si+1R),

miP + (ni + 1)Q+ (si + 1)R

= (mi+1P + ni+1Q+ (si+1 + 1)R) + (mi+1P + (ni+1 + 1)Q+ si+1R),

(mi + 1)P + (ni + 1)Q+ siR

= (mi+1P + ni+1Q+ si+1R) + ((mi+1 + 1)P + (ni+1 + 1)Q+ si+1R) and

(mi + 1)P + (ni + 1)Q+ (si + 1)R

= (mi+1P + ni+1Q+ (si+1 + 1)R) + ((mi+1 + 1)P + (ni+1 + 1)Q+ si+1R).

If elements of Gi+1 are listed as T0Tmp, T1Tmp, T2Tmp, T3Tmp and T4Tmp

in the same order as in equation (4.2) above, and the elements of Gi are listed

as T0, T1, T2, T3 and T4 in the same order as in equation (4.4) above, then

the following rules enable us to compute elements of Gi from those of Gi+1:

T0 ← 2T0Tmp,

T1 ← T2Tmp+ T0Tmp (Q),

T2 ← T2Tmp+ T1Tmp (Q−R),

T3 ← T4Tmp+ T0Tmp (P +Q) and

T4 ← T4Tmp+ T1Tmp (P +Q−R) .

As in the case of the formulae in the Montgomery ladder, the values in

the brackets beside the formula above give the difference between points

being added as these differences would be required for differential addition

point arithmetic. While we derived the Montgomery ladder rules when

(ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 0, 0, 1, 0), similar rules can be derived for the

other 63 possible binary combinations of (ki, li, ui, ki−1, li−1, ui−1). Whilst we

do not explicitly derive these rules here, we list below the five element set

Gi+1 for all combinations of (ki, li, ui) that was used in the construction of

the 3 dimensional extension of Akishita’s algorithm.

83

Table 4.2: Five element set Gi+1

(ki, li, ui) = (0, 0, 0) : (ki, li, ui) = (0, 0, 1) :

mi+1P + ni+1Q+ si+1R mi+1P + ni+1Q+ si+1R

mi+1P + ni+1Q+ (si+1 + 1)R mi+1P + ni+1Q+ (si+1 + 1)R

mi+1P + (ni+1 + 1)Q+ si+1R mi+1P + (ni+1 + 1)Q+ (si+1 + 1)R

(mi+1 + 1)P + ni+1Q+ si+1R (mi+1 + 1)P + ni+1Q+ (si+1 + 1)R

(mi+1 + 1)P + (ni+1 + 1)Q+ si+1R (mi+1+1)P+(ni+1+1)Q+(si+1+1)R

(ki, li, ui) = (0, 1, 0) : (ki, li, ui) = (0, 1, 1) :

mi+1P + ni+1Q+ si+1R mi+1P + ni+1Q+ si+1R

mi+1P + (ni+1 + 1)Q+ si+1R mi+1P + ni+1Q+ (si+1 + 1)R

mi+1P + (ni+1 + 1)Q+ (si+1 + 1)R mi+1P + (ni+1 + 1)Q+ si+1R

(mi+1 + 1)P + (ni+1 + 1)Q+ si+1R mi+1P + (ni+1 + 1)Q+ (si+1 + 1)R

(mi+1+1)P+(ni+1+1)Q+(si+1+1)R (mi+1+1)P+(ni+1+1)Q+(si+1+1)R

(ki, li, ui) = (1, 0, 0) : (ki, li, ui) = (1, 0, 1) :

mi+1P + ni+1Q+ si+1R mi+1P + ni+1Q+ si+1R

(mi+1 + 1)P + ni+1Q+ si+1R mi+1P + ni+1Q+ (si+1 + 1)R

(mi+1 + 1)P + ni+1Q+ (si+1 + 1)R (mi+1 + 1)P + ni+1Q+ si+1R

(mi+1 + 1)P + (ni+1 + 1)Q+ si+1R (mi+1 + 1)P + ni+1Q+ (si+1 + 1)R

(mi+1+1)P+(ni+1+1)Q+(si+1+1)R (mi+1+1)P+(ni+1+1)Q+(si+1+1)R

(ki, li, ui) = (1, 1, 0) : (ki, li, ui) = (1, 1, 1) :

mi+1P + ni+1Q+ si+1R mi+1P + ni+1Q+ (si+1 + 1)R

mi+1P + (ni+1 + 1)Q+ si+1R mi+1P + (ni+1 + 1)Q+ (si+1 + 1)R

(mi+1 + 1)P + ni+1Q+ si+1R (mi+1 + 1)P + ni+1Q+ (si+1R + 1)

(mi+1 + 1)P + (ni+1 + 1)Q+ si+1R (mi+1 + 1)P + (ni+1 + 1)Q+ si+1R

(mi+1+1)P+(ni+1+1)Q+(si+1+1)R (mi+1+1)P+(ni+1+1)Q+(si+1+1)R

We present the 3-dimensional Montgomery ladder in the Appendix (Algorithm

A.1). We now analyze Algorithm A.1 when applied to Montgomery curves.

As in the previous section, we will take the bit lengths of all the three scalars

to be the same. Computing P + Q and P − Q in affine coordinates costs

4M + 2S + I. Similarly points ((P + R), (P − R)), ((Q + R), (Q − R))

and ((P + Q + R), (P + Q − R)) need to be precomputed as well in

affine coordinates. Thus the total cost of the precomputation steps in

Algorithm A.1 is 4 ∗ (4M + 2S + I) = 16M + 8S + 4I. The cost of a

point addition in the above ladder would be 3M + 2S, as the difference

of the points added is in affine form (i.e., Z = 1). In the For loop of the

above algorithm, either point addition formulae are required four times

and point doubling once or alternatively, the point addition formula is

required five times per bit of the scalar k. Thus, the cost for every bit

of k is 5 ∗ (3M + 2S) = 15M + 10S and the total cost of the for loop

in the above algorithm is 15(|k| − 1)M + 10(|k| − 1)S. The finalization

step after the for loop costs 3M + 2S. Computation of the x-coordinate

by x = X/Z costs M + I. Thus the total cost of the above algorithm is

(15|k|+ 5)M + 10|k|S + 5I. If |k| = 160, S/M = 0.8 and I/M = 30, the cost

of the above algorithm is 3835M .

For the same set of parameters, the cost of the straightforward algorithm as

calculated in Section-2 is (18|k|+ 48)M + (12|k|+ 3)S + I = 4496M . Thus

simultaneous triple scalar multiplication results in about 15% improvement

over the straightforward method. When |k| = 256, the improvement is

approximately 22% as the three dimensional Montgomery ladder costs

6043M and the straightforward method costs 7761M .

As in the case of the one dimensional Montgomery ladder (Algorithm 3.1),

the three dimensional Montgomery ladder (Algorithm A.1) can be adapted

to work with differential addition extensions to various other forms of elliptic

curves(examples listed previously in Section 3.3 of this thesis) and not limited

to Montgomery curves alone.

85

The usage of temporary variables can be improved in the above algorithm

(Algorithm A.1). Some operations towards the end of the computation can

be eliminated. In the last iteration of the for loop in the above algorithm

computation of T2 and T4 can be done away with, thus resulting in a further

saving of at least 6M and 4S operations. Further, the cost of some finite

field additions can be done away with by combining some point additions.

For example if one has to compute T3 ← T4Tmp + T0Tmp (P+Q) and T4 ←
T4Tmp+T1Tmp (P+Q-R) where T0Tmp=(X0, Y0, Z0), T1Tmp=(X1, Y1, Z1),

P + Q = (X2, Y2, Z2), (P + Q − R) = (X3, Y3, Z3), T4Tmp=(X4, Y4, Z4),

T3=(X5, Y5, Z5) and T4=(X6, Y6, Z6) then

X5 = Z2[(X0 − Z0)(X4 + Z4) + (X0 + Z0)(X4 − Z4)]
2 and

X6 = Z3[(X1 − Z1)(X4 + Z4) + (X1 + Z1)(X4 − Z4)]
2 while

Z5 = X2[(X0 − Z0)(X4 + Z4)− (X0 + Z0)(X4 − Z4)]
2 and

Z6 = X3[(X1 − Z1)(X4 + Z4)− (X1 + Z1)(X4 − Z4)]
2 .

Thus one could group the computations of T3 and T4 together, thereby

computing (X4 + Z4) and (X4 − Z4) just once, thus saving 2 field additions.

In general the addition of points T2 + T0, T1 + T0 can save 2 field additions

and can be extended to saving n field additions whilst computing Tn + T0,

Tn−1+T0, . . . ,T1+T0. Similar benefits can be obtained when one combines the

point addition and doubling operations together. These enhancements can be

utilized to improve the performance of the 3 dimensional Montgomery Ladder.

The 3-dimensional Montgomery ladder is not a uniform algorithm and thus,

as in the case of Schoenmakers’ algorithm, can be susceptible to side-channel

attacks.

Chapter 5

Precomputation of Elliptic

Curve Points for Jacobian

Coordinates for Double Scalar

Multiplication

In this chapter we review two precomputation schemes from the literature for

double scalar multiplication. As a prelude, we recall from the literature, the

formulae for point arithmetic for Jacobian coordinate point representation on

Weierstrass curves including a review of Conjugate addition and Co-Z addition.

Of the two precomputation schemes we review here, one is dependent on

Conjugate addition [72] and the other on Co-Z addition[71]. We find that

some of the results based on Co-Z addition in [71] are incorrect. We construct

new double scalar multiplication algorithms for precomputation based on

Conjugate addition and then show that precomputation algorithms for elliptic

curve double scalar multiplication based on Co-Z addition are not necessarily

faster than those based on Conjugate addition.

87

5.1 Point Arithmetic Formulae for Jacobian

Coordinates on Elliptic Curves

In Section 2.1.5, we looked at point addition and doubling formulae for

Jacobian coordinates. Longa and Miri in [73] improved the operation counts

for Jacobian coordinates. We recall some of their formulae and operation

counts.

If P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z1) then P3 = P1 + P2 = (X3, Y3, Z3)

is given by

X3 = α2 − (4β3 + 8Z2
2X1β

2),

Y3 = α(Z2
2X1β

2 −X3)− Z3
2Y1α

3,

Z3 = θβ, (5.1)

where

α = 2(Z3
1Y2 − Z3

2Y1),

β = Z2
1X2 − Z2

2X1,

θ = (Z1 + Z2)
2 − Z2

1 − Z2
2 .

The cost of computing point addition using the above formulae is 11M + 5S

which is an improvement on the 12M + 4S scheme depicted in Section (2.1).

If P1 = (X1, Y1, Z1) and P2 = (X2, Y2, 1) (called Mixed Addition), then

P3 = P1 + P2 = (X3, Y3, Z3) is given by

X3 = α2 − 4β3 − 8X1β
2,

Y3 = α(4X1β
2 −X3)− 8Y1β

3, and

Z3 = (Z1 + β)2 − Z2
1 − β2,

(5.2)

where α = 2(Z3
1Y2 − Y1) and β = Z2

1X2 −X1. Thus the cost of computing

addition of two points when one of the points is in affine form is 7M + 4S. If

both the points P1 and P2 are in affine form, then the cost is further reduced

to 4M + 2S.

We now recall the fast Point Tripling formulae as given in [73]. If P =

(X1, Y1, Z1) then 3P = (X3, Y3, Z3) can be computed as follows

X3 = 16Y 2
1 (2β − 2α) + 4X1ω

2,

Y3 = 8Y1
[
2α− 2β)(4β − 2α)− ω3

]
,

Z3 = (Z1 + ω)2 − Z2
1 − ω2,

where

2α = (θ + ω)2 − θ2 − ω2,

2β = 16Y 4
1 ,

θ = 3X2
1 + aZ4

1 ,

ω = 6(
[
(X1 + Y 2

1)2 −X2
1 − Y 4

1

]
)− θ2 .

The cost of computing the above tripling formulae is (6M + 10S). When

a = −3, the tripling formulae is the same as that above except for

θ = 3X2
1 + aZ4

1 which can be written as θ = 3(X1 + Z2
1)(X1 − Z2

1). The cost

of tripling in this case is (7M + 7S). When the point P is in affine form, i.e.,

Z1 = 1 and 3P is given in projective form, the cost of tripling (called Mixed

Tripling) is reduced to (5M + 7S).

In [74], the authors develop so called Doubling-Tripling formulae useful in

the computation of 6P + Q where P and Q are elliptic curve points. The

authors develop a fast algorithm to compute 6P by first doubling, that is

computing 2P and then tripling this to yield 6P . They provide a 9M + 15S

algorithm to compute 6P as some of the terms computed during doubling can

be reused whilst tripling. However, there is a minor error in their algorithm

and we provide a corrected version of the doubling-tripling algorithm. If

P = (X1, Y1, Z1), 2P = (X2, Y2, Z2) can be computed as below:

X2 = A2 − 2B, Y2 = A.(B −X2)− 8D,Z2 = (Y1 + Z1)
2 − C − E,

where

A = 3G+H,B = 2[(X1 + C)2 −G−D], C = Y 2
1 , D = C2,

E = Z2
1 , F = E2, G = X2

1 , H = a.F

89

Further 6P can be computed by tripling 2P as follows:

X3 = I.T +X, Y3 = 8Y2.(V −W), Z3 = 2Z2.P

where

I = Y 2
2 , J = I2, K = 16D.H,L = X2

2 ,M = 3L+K,N = M2,

P = [(X2 + I)2−L− J]−N,R = P 2, S = (M +P)2−N −R, T = 16J − S,
U = 16J + T, V = −T.U,W = P.R,X = 4X2.R

This algorithm is the same as in [74], except for the computation of N and

P . We next look at Conjugate Addition.

5.2 Conjugate Addition

We recall from Section 2.1.4 of this thesis, the idea of simultaneously

computing P ± Q with a reduced operation count. In [72], the authors

provided algorithms to add elliptic curve points with the form P ± Q

and called it Conjugate Addition. The previous section provided point

addition formulae for P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2). Given

that P1 + P2 = P3 = (X3, Y3, Z3) is computed using Equation (5.1),

P1 − P2 = P4 = (X4, Y4, Z4) can be computed as follows:

X4 = γ2 − (4β3 + 8Z2
2X1β

2),

Y4 = γ(Z2
2X1β

2 −X4)− Z3
2Y1β

3,

Z4 = Z3,

where

γ = −2(Z3
1Y2 + Z3

2Y1),

β = Z2
1X2 − Z2

2X1 .

All the terms in the above formulae for P4 are already computed whilst

computing P3 except for γ2 and the product of γ and (Z2
2X1β

2 −X4). Thus

the cost of computing P4 after that of P3 is reduced to 1M + 1S.

5.2.1 Conjugate Mixed Addition

When one of the points being added is in affine form, that is, when P1 =

(X1, Y1, Z1), P2 = (X2, Y2, 1) and P1 + P2 = P3 = (X3, Y3, Z3), and given that

P3 is computed using Equation (5.2), P1 − P2 = P4 = (X4, Y4, Z4) can be

computed as follows:

X4 = γ2 − (4β3 + 8X1β
2),

Y4 = γ(4X1β
2 −X4)− 8Y1β

3,

Z4 = Z3,

where

γ = −2(Z3
1Y2 + Z3

2Y1),

β = Z2
1X2 − Z2

2X1 .

All the terms in the above formulae for for P4 are already computed whilst

computing P3 except for γ2 and the product of γ and (4X1β
2 −X4). Thus,

the cost of computing P4 after that of P3 is 1M + 1S. Similarly when both

points P1 and P2 are in affine form, the cost of computing their difference

would cost 1M + 1S after their sum is computed.

5.3 Co-Z Addition

In [76], Meloni proposed a new approach to point addition that is well suited

to Euclidean addition chains. If the two points to be added P1 = (X1, Y1, Z1)

and P2 = (X2, Y2, Z2) have the same Z-coordinate, that is Z1 = Z2 = Z, then

the following formulae can be utilized to compute P3 = P1+P2 = (X3, Y3, Z3):

X3 = D −B − C,
Y3 = (Y2 − Y1)(B −X3)− Y1(C −B),

Z3 = Z(X2 −X1),

91

where

A = (X2 −X1)
2, (5.3)

B = X1A,

C = X2A, and

D = (Y2 − Y1)2 .
The operation count of the above algorithm is 5M + 2S. Now, it so happens

that P1 and P3 can have the same Z coordinate as

P1 = (X1, Y1, Z1) ∼ (X1(X2 −X1)
2, Y1(X2 −X1)

3, Z(X2 −X1))

and the expressions

X1A = X1(X2 −X1)
2, Y1(C −B) = Y1(X2 −X1)

3, Z3 = Z(X2 −X1)

have already been computed. Thus, P1 has been updated with the

Z-coordinate of P1 + P2 without using any extra computations.

5.3.1 Point Tripling with Co-Z Update

Using the idea of Co-Z Addition, the authors in [71] construct a

(i) point tripling with update algorithm, and

(ii)Co-Z addition with update algorithm,

before utilizing them in constructing a precomputation table that can

then be used to compute a double-scalar multiplication. We look at the

precomputation scheme in the next section, whilst in this section we

revisit the point tripling with update algorithm. If P1 = (X1, Y1, Z1) and

P3 = 3P1 = (X3, Y3, Z3), then P3 is computed by first computing 2P such

that P and 2P = (X2, Y2, Z2) has the same Z coordinate and then using

Meloni’s scheme above to compute 3P . 2P can be computed as follows:

X2 = −2A+B2,

Y2 = −8Y 4
1 +B(A−X3

2), and

Z2 = 2Y1Z1,

where

(5.4)

A = 4X1Y
2
1 ,

B = 3X2
1 + aZ4

1 .

P1 can be updated as follows:

X1 = A,

Y1 = 8Y 4
1 , and

Z1 = Z2 .

Now P2 and P1 have the same Z coordinate, and this requires 4M + 6S

operations to compute as per the above scheme. Further, 3P can be

computed using equation (5.3) which requires (5M + 2S) operations, thus

requiring a total of 9M + 8S operations for the point tripling with update

algorithm.

Now, rewriting Z2 = 2Y1Z1 = (Y1 + Z1)
2 − Y 2

1 − Z2
1 and A = 4X1Y

2
1 =

2((X1 + Y 2
1)2 −X2

1 − Y 4
1), in Equation (5.4) we can replace 2M with 2S and

thus the operation count of the above tripling with update algorithm can be

reduced to (7M + 10S).

5.4 Precomputation of Elliptic Curve points

to compute kP + lQ

5.4.1 Jacobian Coordinates, a = −3

After providing algorithms for Conjugate addition in [72], Longa and Gebotys

used it to generate precomputed tables of the form ciP + diQ where ci, di ∈
{1, 3 . . .m} which can then be used by various algorithms to compute double

scalar multiplication, i.e., kP + lQ where k and l are scalars. In Table 4 of

their paper, the cost of computing 3P, 3Q,P +Q,P −Q, 3P +Q, 3P −Q,P +

3Q,P − 3Q, 3P + 3Q and 3P − 3Q for standard Jacobian coordinates with

curve parameter a = −3, was given as 42M + 32S. This can be improved to

93

41M + 31S, resulting in a further saving of 1M + 1S, as shown below. [72,

Table 1] lists costs for point arithmetic using Jacobian representation.

Result Operation Cost (when a = −3)

3P, 3Q 2 Numbers of Mixed Tripling (5M+7S)+(5M+7S)

P ±Q Mixed Addition(both affine)

+ Conjugate Mixed Addition

(4M+2S)+(1M+1S)

3P ±Q Mixed Addition(one affine)

+ Conjugate Mixed Addition

(7M+4S)+(1M+1S)

P ± 3Q Mixed Addition(one affine)

+ Conjugate Mixed Addition

(7M+4S)+(1M+1S)

3P ±3Q Addition with stored values

+ Conjugate Mixed Addition

(9M+3S)+(1M+1S)

As in Section 5.1 addition of points in Projective coordinates (Weierstrass

curves) costs 11M + 5S. But with the square and cube of the Z-coordinate

of one of the points available, the point addition cost can be reduced to

(10M + 4S). If the square and cube of the Z-coordinate of both the points

are available, the point addition cost can be reduced to (9M + 3S). In the

above scheme, when 3P +Q is computed, both Z2
3P and Z3

3P are computed

and do not have to be recomputed when 3P + 3Q is computed. Further,

when P + 3Q is computed, Z2
3Q and Z3

3Q is computed and thus does not have

to be recomputed when 3P + 3Q is computed. Thus, the new total cost of

computing 3P, 3Q,P +Q,P −Q, 3P +Q, 3P −Q,P + 3Q,P − 3Q, 3P + 3Q

and 3P −3Q for standard Jacobian coordinates can be reduced to 41M+31S.

5.4.2 Jacobian Coordinates, a 6= −3

In [71], Lin and Zhang propose to improve upon the cost of Longa and

Gebotys’ algorithm for precomputation and thus propose new algorithms to

compute ciP + diQ where ci, di ∈ {1, 3} and ci, di ∈ {1, 3, 5} and the curve

parameter a need not be equal to −3. Their algorithm for ci, di ∈ {1, 3}

utilizes Co-Z point arithmetic formulae proposed in [76] and costs 50M +36S.

Their scheme is as follows:

Lin and Zhang Scheme to compute ciP + diQ where ci, di ∈ {1, 3}

Operation Cost

P +Q and P −Q 11M + 5S

2P = (P +Q) + (P −Q),

2Q = (P +Q)− (P −Q)

and 2P, 2Q,P +Q,P −Q co− Z 7M + 3S

3P +Q = (P +Q) + 2P ,

3P −Q = (P −Q) + 2P ,

3Q+ P = (P +Q) + 2Q,

3Q− P = (Q− P) + 2Q 4(5M + 2S)

3(P +Q) and 3(P −Q) 2(6M + 10S)

Total 50M + 36S

The authors in [71] then provide a comparison of the costs of their algorithm

with that of Longa and Gebotys, as in the table below:

Algorithm to compute ciP+diQ Cost when ci, di ∈ {1, 3}
Longa and Gebotys [72] 56M + 40S

Lin and Zhang [71] 50M + 36S

From the cost comparison table, the algorithm of [71] should perform better

than the Longa and Gebotys algorithm. However, this is incorrect because

we can structure the Longa and Gebotys algorithm when a 6= −3 and

ci, di ∈ {1, 3} (the number of values each scalar can assume, i.e., the window

size=2) as follows:

95

Result Operation Cost (when a 6= −3)

3P, 3Q 2 Numbers of Mixed Tripling (6M+7S)+(6M+7S)

P ±Q Mixed Addition(both affine)+

Conjugate Mixed Addition

(4M+2S)+(1M+1S)

3P ±Q Mixed Addition(one affine)+

Conjugate Mixed Addition

(7M+4S)+(1M+1S)

P ± 3Q Mixed Addition(one affine)+

Conjugate Mixed Addition

(7M+4S)+(1M+1S)

3P ±3Q Addition with stored values+

Conjugate Mixed Addition

(9M+3S)+(1M+1S)

Thus the total cost of Longa and Gebotys algorithm when a 6= −3 is

43M + 31S and thus it is more efficient than the Lin and Zhang algorithm

which costs 50M + 36S. Moreover, Longa and Gebotys algorithm computes

3P and 3Q whereas the algorithm due to Lin and Zhang [71] does not.

However, it is not required to compute 3P and 3Q.

The authors in [71] further provide an algorithm to compute ciP +diQ, where

ci, di ∈ {1, 3, 5}, which we reproduce below

Lin and Zhang Scheme to compute ciP + diQ where ci, di ∈ {1, 3, 5}

Result Operation Cost

P ±Q P +Q and P −Q 11M + 5S

2P = (P +Q) + (P −Q),

2Q = (P +Q)− (P −Q)

and 2P, 2Q,P +Q,P −Q co− Z 7M+3S

3P ±Q 3P +Q = (P +Q) + 2P ,

3P −Q = (P −Q) + 2P ,

3Q± P 3Q+ P = (P +Q) + 2Q,

3Q− P = (Q− P) + 2Q, 4(5M+2S)

3(P +Q) 3P + 3Q = 2(P +Q) 4M + 6S

+(P +Q), 5M + 2S

λ 1M

5(P +Q) 5(P +Q) = 3(P +Q)

+2(P +Q) 5M + 2S

Adjusting 3(P +Q), 2P 1M + 1S

and 2Q to be co− Z 4M

5P + 3Q 5P + 3Q = 3(P +Q) + 2P

5Q+ 3P 5Q+ 3P = 3(P +Q) + 2Q 2(5M+2S)

97

Result Operation Cost

3P − 3Q 3P − 3Q = 2(P −Q) 4M + 6S

+(P −Q), 5M + 2S

λ 1M

5(P −Q) 5(P −Q) = 3(P −Q)

+2(P −Q) 5M + 2S

Adjusting 3(P −Q), 2P 1M + 1S

and 2Q to be co− Z 4M

5P − 3Q 5P − 3Q = 3(P +Q) + 2P

3P − 5Q = 3(P +Q) + (−2Q) 2(5M+2S)

5Q− 3P 5Q− 3P = −(3P − 5Q)

Total 98M + 46S

The comparison table for the operation counts as given in [71] is as below:

Algorithm to compute ciP+diQ Cost when ci, di ∈ {1, 3, 5}
Longa and Gebotys [72] 129M + 95S

Lin and Zhang [71] 98M + 46S

The authors in [71] also conclude that their scheme becomes more efficient

than that of Longa and Gebotys in [72], as the window size increases.

Longa and Gebotys’ scheme can be extended when a 6= −3 and ci, di ∈ {1, 3, 5}
as follows: As suggested in [72], we can start by performing P → 2P → 4P

and then obtaining 3P and 5P using 4P ± P . Similarly, we can compute

Q→ 2Q→ 4Q and then obtain 3Q and 5Q using 4Q±Q. We structure the

complete algorithm as follows:

Result Operation Cost (when a 6= −3)

2P Doubling (1M + 5S)

4P Doubling (2M + 8S)

4P ± P Mixed Addition(one affine)

+ Conjugate Mixed Addition

(7M + 4S) + (1M +

1S)

2Q Doubling (1M + 5S)

4Q Doubling (2M + 8S)

4Q±Q Mixed Addition(one affine)

+ Conjugate Mixed Addition

(7M + 4S) + (1M +

1S)

P ±Q Mixed Addition(both affine)

+ Conjugate Mixed Addition

(4M + 2S) + (1M +

1S)

3P ±Q Mixed Addition(one affine)

+ Conjugate Mixed Addition

(7M + 4S) + (1M +

1S)

P ± 3Q Mixed Addition(one affine)

+ Conjugate Mixed Addition

(7M + 4S) + (1M +

1S)

5P ±Q Mixed Addition(one affine)

+ Conjugate Mixed Addition

(7M + 4S) + (1M +

1S)

P ± 5Q Mixed Addition(one affine)

+ Conjugate Mixed Addition

(7M + 4S) + (1M +

1S)

3P±3Q Addition with stored values

+ Conjugate Mixed Addition

(9M + 3S) + (1M +

1S)

3P±5Q Addition with stored values

+ Conjugate Mixed Addition

(9M + 3S) + (1M +

1S)

5P±3Q Addition with stored values

+ Conjugate Mixed Addition

(9M + 3S) + (1M +

1S)

5P±5Q Addition with stored values

+ Conjugate Mixed Addition

(9M + 3S) + (1M +

1S)

Thus the total cost of Longa and Gebotys’ algorithm to compute ciP + diQ

when a 6= −3 and ci, di ∈ {1, 3, 5} is 99M + 75S. In [71], Lin and Zhang

provide an algorithm to do the same and the cost of their algorithm is

98M + 46S. However, Lin and Zhang’s algorithm does not compute 5P ±Q
and P ± 5Q and thus is incomplete. Therefore, it may not be appropriate

99

to compare the costs between the two algorithms. If we add the cost of

computing 5P ±Q and P ± 5Q to the cost of the incomplete algorithm of Lin

and Zhang, the cost exceeds that of our adaptation of Longa and Gebotys’s

algorithm shown above. Thus, the Co-Z point arithmetic based algorithms do

not always provide better performance when compared with those constructed

using only Conjugate addition arithmetic, at least not in the two cases studied

by the authors in [71].

Chapter 6

Pairing based cryptography

6.1 Introduction

Pairing based cryptography was first introduced by Joux in his one round

Tripartite Diffie-Hellman key exchange scheme [56]. The Weil and the Tate

pairings are two well-known examples of pairings which are usually computed

using Miller’s algorithm, that was first described in 1986 and subsequently

published in 2004 [78]. Stange [100] proposed an alternate algorithm to

compute the Tate pairing by using Elliptic Nets which are a generalization

of integer sequences satisfying certain properties that were first studied by

Ward [104].

While Miller’s algorithm and Stange’s Elliptic Net algorithm are both

O(log n) algorithms, the Elliptic Net algorithm is slower, owing to a difference

in the constants, though it is only somewhat slower than an optimized Miller’s

algorithm, especially at higher embedding degrees [100]. There are numerous

papers published on the optimization of Miller’s algorithm [32], however,

there has not been much research published in the literature to optimize

Stange’s algorithm. This motivates the need to consider optimizations of

Stange’s algorithm. In this chapter, we provide an improved version of

Stange’s algorithm to compute the Tate pairing. This improvement may not

make Stange’s method faster than that of Miller’s, but is an improvement

101

worth considering, as Stange’s algorithm is the only viable alternative

to Miller’s algorithm for Pairing computation. This improvement is also

applicable to

(a) an algorithm in [59] that computes elliptic curve scalar multiplication

using an adapted version of Stange’s algorithm and

(b) the improved version of Kanayama’s version in [24].

In [110], the authors propose efficient formulae and algorithms for point

arithmetic on a new model of elliptic curves called Selmer Curves. They

also provide an algorithm for Tate pairing on these curves. We provide

an improved algorithm for point arithmetic and Tate pairing on Selmer curves.

6.2 Stange’s Elliptic Net Algorithm to

compute the Tate Pairing

Elliptic divisibility sequences are integer sequences h0, h1, h2, ..., hn, satisfying

the following two properties:

1. For all positive integers m > n,

hm+nhm−n = hm+1hm−1h
2
n − hn+1hn−1h

2
m (6.1)

2. hn divides hm whenever n divides m.

6.2.1 Stange’s Algorithm for Tate Pairing

Before we outline Stange’s algorithm, we must define the Tate pairing. Let

E be an elliptic curve defined over a field L containing the m-th roots of

unity, where m ∈ Z. Let E(L)[m] = {P ∈ E(L)|mP = O} and mE(L) =

{mP |P ∈ E(L)}. Further let P ∈ E(L)[m] and Q ∈ E(L)/mE(L). Since

mP = O, there is a rational function f with divisor div(fP) = m(P)−m(O).

If we choose another divisor DQ defined over L such that DQ ∼ (Q)− (O)

and with support disjoint from div(fP), the Tate pairing is the mapping

Tm : E(L)[m]× E(L)/mE(L)→ L∗/(L∗)m defined by Tm(P,Q) = fP (DQ).

The Tate pairing as well as the Weil Pairing can be computed using the

Miller’s algorithm and is a O(logm) algorithm. As stated above, whilst

constructing an algorithm to compute the Tate pairing using Elliptic Nets,

Stange provided a theorem useful in constructing the Tate pairing, which we

repeat below for convenience:

Theorem A [100]: Fix a positive m ∈ Z. Let E be an elliptic curve defined

over a finite field L containing the m-th roots of unity. Let P,Q ∈ E(L), with

[m]P = O. Choose S ∈ E(L) such that S /∈ {O, Q}. Then there exists an

elliptic net W : Zη → L and p, q, s ∈ Zη such that the quantity

Tm(P,Q) =
W (s +mp + q)W (s)

W (s +mp)W (s + q)

is exactly the Tate pairing Tm =Tm : E(L)[m]× E(L)/mE(L)→ L∗/(L∗)m.

In the above, the elliptic net W , introduced by Stange as a generalization of

Elliptic divisibility sequences, is a map W : A→ R satisfying the following

recurrence relation for p, q, r, s ∈ A, where R is an integral domain and A is

a finitely generated free abelian group.

W (p+ q + s)W (p− q)W (r + s)W (r)

+W (q + r + s)W (q − r)W (p+ s)W (p)

+W (r + p+ s)W (r − p)W (q + s)W (q) = 0 .

(6.2)

Further Stange provides the following result

Theorem B [100]: Let E be an elliptic curve defined over a finite field L,

m a positive integer, P ∈ E(L)[m] and Q ∈ E(L). If Wp is the elliptic net

associated to E,P , then

Tm(P, P) =
WP (m+ 2)WP (1)

WP (m+ 1)WP (2)
.

103

Further if WP,Q is the elliptic net associated to E,P,Q, then

Tm(P,Q) =
WP,Q(m+ 1, 1)WP,Q(1, 0)

WP,Q(m+ 1, 0)WP,Q(1, 1)
. (6.3)

Using Shipsey’s algorithm [89] for computing terms of an elliptic divisibility

sequence and the above theorems, Stange provides a scheme that can be

used to compute the Tate pairing by calculating the terms W (m, 0) and

W (m, 1) of an elliptic net. Stange’s scheme is a O(logm) algorithm and can

be outlined as follows:

Let a block centered on k consist of the following two vectors:

(i) 8 consecutive terms of the sequence W (i, 0) centered on terms W (k, 0)

and W (k + 1, 0) called the first vector and

(ii) 3 consecutive terms W (i, 1) centered on the term W (k, 1) called the

second vector.

(k-1,1) (k, 1) (k+1,1)

(k-3,0) (k-2,0) (k-1,0) (k,0) (k+1,0) (k+2,0) (k+3,0) (k+4,0)

Figure 6.1: Block centred on k

For a block V centered on k, Stange proposes two algorithms, Double(V),

that constructs the block centered on 2k and DoubleAdd(V) that constructs

the block centered on 2k + 1. While the first vectors of Double(V) and

DoubleAdd(V) are calculated in terms of W (2, 0) and the terms of V , using

the following instances of (6.2), where i = k − 1, . . . , k + 3

W (2i− 1, 0) = W (i+ 1, 0)W (i− 1, 0)3 −W (i− 2, 0)W (i, 0)3 and (6.4)

W (2i, 0) = (W (i, 0)W (i+ 2, 0)W (i− 1, 0)2

−W (i, 0)W (i− 2, 0)W (i+ 1, 0)2)/W (2, 0) . (6.5)

The second vectors are computed, in terms of W (1, 1),W (1, 1),W (2, 1) and

the terms of V , using the following instances of (6.2) below:

W (2k − 1, 1) = (W (k + 1, 1)W (k − 1, 1)W (k − 1, 0)2

−W (k, 0)W (k − 2, 0)W (k, 1)2)/W (1, 1), (6.6)

W (2k, 1) = W (k − 1, 1)W (k + 1, 1)W (k, 0)2

−W (k − 1, 0)W (k + 1, 0)W (k, 1)2, (6.7)

W (2k + 1, 1) = (W (k − 1, 1)W (k + 1, 1)W (k + 1, 0)2

−W (k, 0)W (k + 2, 0)W (k, 1)2)/W (−1, 1), (6.8)

W (2k + 2, 1) = (W (k + 1, 0)W (k + 3, 0)W (k, 1)2

−W (k − 1, 1)W (k + 1, 1)W (k + 2, 0)2)/W (2,−1).

(6.9)

Algorithm 6.1 below calculates W (m, 1) and W (m, 0) for any positive integer

m.

Algorithm 6.1: Elliptic Net Algorithm

INPUT: Initial terms a = W (2, 0), b = W (3, 0), c = W (4, 0), d = W (2, 1),

e = W (−1, 1), f = W (2,−1), g = W (1, 1) of an elliptic net satisfying

W (1, 0) = W (0, 1) = 1 and integer m = (dkdk−1 . . . d0)2 with dk = 1

OUTPUT: Elliptic net elements W (m, 0) and W (m, 1).

1: V ← [[−a,−1, 0, 1, a, b, c, a3c− b3]; [1, g, d]]

2: for i = k − 1 down to 1 do

3: if di = 0 then

4: V ← Double(V)

5: else

6: V ← DoubleAdd(V)

7: end if

8: end for

9: return V [0, 3], V [1, 1] //terms W (m, 0) and W (m, 1) respectively

105

The Tate pairing is now computed using Equation (6.3). We recall

that a Weierstrass form elliptic curve E over a finite field Fq of char not 2 or

3 is given by

y2 = x3 + Ax+B

and points P = (x1, y1) and Q = (x2, y2) on E(Fq) with Q 6= ±P , the values

of a, b, c, d, e, f , g must be calculated as required inputs for the Elliptic

Net Algorithm, which are the terms of the elliptic net associated to E, P ,

Q. The necessary formulae are given by the functions Ψm,0 called division

polynomials ([90, p. 105] and [91, p. 477]). We have

W (1, 0) = 1, (6.10)

W (2, 0) = 2y1, (6.11)

W (3, 0) = 3x41 + 6Ax21 + 12Bx1 − A2, (6.12)

W (4, 0) = 4y1(x
6
1 + 5Ax41 + 20Bx31 − 5A2x21 − 4ABx1 − 8B2 − A3), (6.13)

W (0, 1) = W (1, 1) = 1, (6.14)

W (2, 1) = 2x1 + x2 −
(
y2 − y1
x2 − x1

)2

(6.15)

W (−1, 1) = x1 − x2 and (6.16)

W (2,−1) = (y1 + y2)
2 − (2x1 + x2)(x1 − x2)2. (6.17)

If P has order m and if a, b, c, d, e, f , g are given by (6.11)− (6.17) above,

the output of Algorithm 6.1 can be used to compute the Tate pairing using

Equation (6.3) above. Factoring out some common subexpressions that may

occur frequently, Stange provides an optimised version of the Double and

DoubleAdd algorithm as follows:

Algorithm 6.2: Double and DoubleAdd

INPUT: Block V centred at k of an elliptic net satisfying

W (1, 0) = W (0, 1) = 1, values α = W (2, 0)−1, E = W (−1, 1)−1,

F = W (2,−1)−1, G = W (1, 1)−1 and boolean add

OUTPUT: Block centered at 2k if add = 0 and centred at 2k + 1 if add = 1.

1. S ← [0, 0, 0, 0, 0, 0]

2. P ← [0, 0, 0, 0, 0, 0]

3. S0 ← V [1, 1]2

4. P0 ← V [1, 0]V [1, 2]

5: for i = 0 to 5 do

6: S[i]← V [0, i+ 1]2

7: P [i]← V [0, i]V [0, i+ 2]

8: end for

9: if add == 0 then

10: for i = 1 to 4 do

11: V [0, 2i− 2]← S[i− 1]P [i]− S[i]P [i− 1]

12: V [0, 2i− 1]← (S[i− 1]P [i+ 1]− S[i+ 1]P [i− 1])α

13: end for

14. V [1, 0]← (S0P [3]− S[3]P0)G

15. V [1, 1]← S[3]P0 − S0P [3]

16. V [1, 2]← (S[4]P0 − S0P [4])E

17: else

18: for i = 1 to 4 do

19: V [0, 2i− 2]← (S[i− 1]P [i+ 1]− S[i+ 1]P [i− 1])α

20: V [0, 2i− 1]← S[i]P [i+ 1]− S[i+ 1]P [i]

21: end for

22. V [1, 0]← S[3]P0 − S0P [3]

23. V [1, 1]← (S[4]P0 − S0P [4])E

24. V [1, 2]← (S0P [5]− S[5]P0)F

25: end if

26: return V

107

6.2.2 Improvement to Stange’s Algorithm

Stange calculates the cost of the Double step in the above scheme to

be 6S + (6n + 26)M + Sn + 3
2Mn, while that of the DoubleAdd steps is

6S + (6n + 26)M + Sn + 2Mn where M and S are the costs of a multiplication

and squaring in Fq respectively while Mn and Sn are the costs of a multiplication

and squaring in Fqn respectively. Here for the integer m and finite field Fq, the

embedding degree n is the least integer such that m|(qn − 1). Usually for the Tate

pairing, a curve is defined over Fq of embedding degree n > 1, while P ∈ E(Fq)
and Q ∈ E(Fqn). Now Lines 10-13 of Algorithm 6.2 costs 4 ∗ 5M = 20M and can

be replaced with the following block of code

A← (P [1] + P [2])(S[1]− S[2]);

B ← (P [1]− P [2])(S[1] + S[2]);

C ← (P [1] + P [3])(S[1]− S[3]);

D ← (P [1]− P [3])(S[1] + S[3]);

E ← 2(P [2]− P [3])(S[2] + S[3]);

F ← (P [3] + P [4])(S[3]− S[4]);

G← (P [3]− P [4])(S[3] + S[4]);

H ← (P [3] + P [5])(S[3]− S[5]);

I ← (P [3]− P [5])(S[3] + S[5]);

J ← 2(P [4]− P [5])(S[4] + S[5]);

V [0, 0]← (A−B)/2;

V [0, 1]← (C −D)α/2;

V [0, 2]← ((C +D)− (A+B + E))/2;

V [0, 3]← (S[2]P [4]− S[4]P [2])α;

V [0, 4]← (F −G)/2;

V [0, 5]← (H − I)α/2;

V [0, 6]← ((H + I)− (F +G+ J))/2;

V [0, 7]← (S[4]P [6]− S[6]P [4])α;

The above block of code costs 18M , thus saving us 2M . Similarly, Lines 18-21 can

be replaced with the following block of code which again costs 18M :

A← (P [2] + P [3])(S[2]− S[3]);

B ← (P [2]− P [3])(S[2] + S[3]);

C ← (P [2] + P [4])(S[2]− S[4]);

D ← (P [2]− P [4])(S[2] + S[4]);

E ← 2(P [3]− P [4])(S[3] + S[4]);

F ← (P [4] + P [5])(S[4]− S[5]);

G← (P [4]− P [5])(S[4] + S[5]);

H ← (P [4] + P [6])(S[4]− S[6]);

I ← (P [4]− P [6])(S[4] + S[6]);

J ← 2(P [5]− P [6])(S[5] + S[6]);

V [0, 0]← (S[1]P [3]− S[3]P [1])α;

V [0, 1]← (A−B)/2;

V [0, 2]← (C −D)α/2;

V [0, 3]← ((C +D)− (A+B + E))/2;

V [0, 4]← (S[3]P [5]− S[5]P [3])α;

V [0, 5]← (F −G)/2;

V [0, 6]← (H − I)α/2;

V [0, 7]← ((H + I)− (F +G+ J))/2;

By inspection, we can see that the two blocks of code above costs 18M each. Thus

the cost of the double step in Stange’s algorithm can be reduced to 6S + (6n +

24)M + Sn + 3
2Mn, (typically n ≤ 12) while that of the DoubleAdd step can be

reduced to 6S + (6n+ 24)M + Sn + 2Mn, as summarized in the table below.

Algorithm for Tate

Pairing

Double DoubleAdd

Optimised Millers

[64]

4S + (n+ 7)M + Sn +Mn 7S+(2n+19)M+Sn+2Mn

Elliptic Net

Algorithm [100]

6S+(6n+26)M+Sn+ 3
2
Mn 6S+(6n+26)M+Sn+2Mn

Improved Elliptic

Net Algorithm [96]

6S+(6n+24)M+Sn+ 3
2
Mn 6S+(6n+24)M+Sn+2Mn

109

While this improvement does not make the elliptic net algorithm competitive with

the Miller’s algorithm, it is an improvement worth considering as the elliptic net

algorithm is the only viable alternative to the Miller’s algorithm. A comparison

of the elliptic net algorithm with Miller’s algorithm for a range of values for the

embedding degree n can be found in [101].

Stange’s algorithm was adapted by Kanayama et al to compute elliptic curve

scalar multiplication [59]. Their Double and DoubleAdd steps costs 26M + 6S

and this can be reduced to 24M + 6S as a result of adapting the optimization

to Stange’s algorithm presented in this chapter. Kanayama’s algorithm was then

further optimized by Chen at al in [24] using one of the optimizations outlined

by Stange, which was not utilised by the authors in [59]. Using this optimization

and then replacing four multiplications with four squarings in Stange’s algorithm,

the authors in [59] reduce the cost of the both the Double and DoubleAdd steps

in Kanayama’s algorithm to 18M + 10S. Using our optimization in this chapter,

the cost of the Double and DoubleAdd steps can be reduced to 16M + 10S each.

These costs are summarized in the table below:

Elliptic Net Algorithm for Scalar Multiplication Double DoubleAdd

Kanayama’s Algorithm [59] 26M + 6S 26M + 6S

Improvement due to Chen [100] 18M + 10S 18M + 10S

Further Improvement [96] 16M + 10S 16M + 10S

6.3 Selmer Curves

We recall the definition of Selmer curves from Section 2.5

If K be a field of char 6= 2 or 3, a Selmer curve over K is defined by a homogeneous

cubic equation of the form aX3 +bY 3 = cZ3, or in affine coordinates, ax3 +by3 = c,

where a, b, c ∈ K and abc 6= 0.

6.3.1 Point Arithmetic on Selmer Curves

Assume P1 = (X1 : Y1 : Z1), P2 = (X2 : Y2 : Z2) and let

P1 + P2 = P3 = (X3 : Y3 : Z3), then

X3 = X1Z1Y
2
2 −X2Z2Y

2
1

Y3 = Y1Z1X
2
2 − Y2Z2X

2
1

Z3 = X1Y1Z
2
2 −X2Y2Z

2
1

Below, we replicate the algorithm to compute the above formula as provided in

[110], which costs 12M .

A = X1Y2; B = X2Y1; C = Y1Z2; D = Y2Z1; E = Z1X2; F = Z2X1;

X3 = AD −BC; Y3 = BE −AF ; Z3 = CF −DE.

Now, we provide the formulae and algorithm for point doubling on Selmer curves

as given in [110]. Assume P1 = (X1 : Y1 : Z1), 2P1 = P3 = (X3 : Y3 : Z3), then

X3 = Y1(2X
3
1 + Y 3

1)

Y3 = X1(X
3
1 + 2Y 3

1)

Z3 = Z1(X
3
1 − Y 3

1).

The above doubling formula can be computed using the following algorithm, which

costs 5M + 2S:

A = X2
1 ; B = Y 2

1 ; C = AX1; D = BY1;

X3 = Y1(2C +D); Y3 = X1(C + 2D); Z3 = Z1(C −D).

Below we provide a new algorithm for point addition on Selmer Curves:

A = X1Y2; B = X2Y1; C = Y1Z2; D = Y2Z1; E = Z1X2; F = Z2X1;

G = (B +D)(A− C); H = (B −D)(A+ C); I = (B + F)(A− E);

J = (B − F)(A+ E); K = (D − F)(C + E);

2X3 = (G−H); 2Y3 = (J − I); 2Z3 = (I + J)− (G+H + 2K) .

This algorithm costs 11M , thus saving us 1M . It should be noted that we

have actually computed 2X3, 2Y3, 2Z3. If Z2 = 1, then the new algorithm costs 9M .

111

6.3.2 Cost of Tate Pairing on Selmer Curves

The authors in [110] use Miller’s algorithm to compute the Tate pairing on Selmer

curves. Using the same notation as in the previous section, the total cost of a Miller

addition step (ADD) as given in [110] is Mn + (n+ 12)M , where Mn and M denote

multiplication in Fpn and Fp respectively. If Z2 = 1 then the authors in [110] show

that the cost of mixed Miller addition (mADD) is reduced to Mn + (n + 10)M .

If we use the new algorithm for point addition presented above, then the new

total cost of a Miller addition step (ADD) is Mn + (n + 11)M . If Z2 = 1, then

the new cost of mixed Miller addition (mADD) is Mn + (n+ 9)M . The authors

in [110] show that Selmer curves are very competitive with the fastest formulae,

by comparing the cost of computing the Tate pairing on other forms of Elliptic

curves. They summarize the cost of Tate pairing computation as shown in the table

below, whilst not including the common cost 1Mn + nM in Miller addition step

and 1Mn + 1S + nM in Miller doubling step. T1 is the scenario when S = 0.8M

and T2 is the scenario when S = M . As per their analysis, computation of Tate

pairing would be the fastest on Selmer curves in the T2 scenario. With our new

algorithm in this chapter[96], computation of Tate pairing on Selmer curves would

be the fastest under both scenarios, T1 and T2.

T
ab

le
6.

1:
C

o
m

p
a
ri

so
n

o
f

co
st

s
o
f

v
a
ri

o
u
s

a
lg

o
ri

th
m

s
to

co
m

p
u

te
th

e
T

a
te

P
a
ir

in
g

D
B

L
T
1

T
2

m
A

D
D

T
1

T
2

J
,

[4
][

5
3]

1m
+

11
s

+
1
m
d

9
.8
m

12
m

6
m

+
6
s

10
.8
m

1
2m

J
,a

=
−

3
,

[4
]

6m
+

5
s

10
m

11
m

6
m

+
6
s

10
.8
m

1
2m

J
,a

=
0,

[4
]

3m
+

8
s

9
.4
m

11
m

6
m

+
6
s

10
.8
m

1
2m

P
,a

=
0,
b

=
c2
,[

3
3]

3m
+

5
s

7
m

8m
9
m

+
2
s

+
1
m
d

10
.6
m

1
1m

E,
[4

7]
6m

+
5
s

10
m

11
m

12
m

12
m

1
2m

H
,

[5
0
]

3m
+

6
s

+
3
m
d

7
.8
m

9m
10

m
10
m

1
0m

H
u
,

[5
7
]

11
m

+
6
s

15
.8
m

17
m

13
m

13
m

1
3m

J
a
,

[1
11

]
4m

+
8
s

+
1
m
d

10
.4
m

12
m

16
m

+
1
s

+
4
m
d

16
.8
m

1
7m

S,
[1

10
]

5m
+

3
s

7
.4
m

8m
10

m
10
m

1
0m

S,
[9

6
]

5m
+

3
s

7
.4
m

8m
9
m

9
m

9
m

J
:

W
ei

er
st

ra
ss

cu
rv

es
(J

ac
ob

ia
n

co
or

d
in

at
es

),
E:

E
d

w
ar

d
s

cu
rv

es
,

P
:

W
ei

er
st

ra
ss

cu
rv

es
(p

ro
je

ct
iv

e
co

or
d

in
at

es
),
H

:
H

es
si

a
n

cu
rv

es
,

H
u

:
H

u
ff

cu
rv

es
,
J
a
:

J
ac

ob
i

q
u

ar
ti

c
cu

rv
es

,
S:

S
el

m
er

cu
rv

es
.

T
1
:

th
e

to
ta

l
co

st
of

D
B

L
or

m
A

D
D

w
h

en
s

=
0.

8m

T
2
:

th
e

to
ta

l
co

st
of

D
B

L
or

m
A

D
D

w
h

en
s

=
m

113

Chapter 7

Some Results Arising from

Karatsuba Multiplication

We know that improving Finite Field Arithmetic is crucial to improving

implementations of elliptic curve cryptography. One of the frequently used

arithmetic operations in cryptography is multiplication and any optimization of

this operation facilitates the faster execution of cryptographic algorithms. The

literature is abundant with ideas to multiply two integers in a variety of ways - for

instance, Karatsuba’s algorithm, the Toom-Cook family and fast multiplication via

FFT. Though Toom-Cook or the FFT methods are more efficient asymptotically,

compared to Karatsuba’s algorithm, it is beneficial to extend and optimize the latter

as it outperforms the former on number sizes used in current day cryptosystems [28].

The similarity between multi-precision arithmetic and polynomial arithmetic

makes it easy to adapt Karatsuba’s algorithm to multiply polynomials. Indeed,

it is simpler in the context of polynomial multiplication because of the lack of

carries. Karatsuba’s algorithm has been generalized by Weimerskirch and Paar

[105] to multiply two polynomials of arbitrary degree. In [82], Montgomery gives

formulae to multiply polynomials of degree 2, degree 4, degree 5 and degree 6.

Montgomery’s formulae for degree 5 and degree 6 require fewer multiplications

and additions and are more efficient than the Karatsuba generalizations obtained

by Weimerskirch and Paar. Though the origin of the Montgomery family of

formulae for degree 2 polynomials appears cryptic at first, they can be derived from

Karatsuba’s algorithm as shown in this chapter. We also present new families of

115

formulae to multiply degree 2 polynomials, distinct from the Montgomery family.

7.1 Review of Karatsuba’s Algorithm

Karatsuba’s algorithm performs the multiplication of two numbers of size 2n

using three multiplications of two numbers of size n each. The algorithm is

applied recursively until n is sufficiently small. Thus the time complexity is O(nα)

where α = ln 3/ln 2 ' 1.57. An interesting history of this algorithm, along with

Kolmogorov’s conjecture appears in [61]. This algorithm devised by Karatsuba

in 1963 appears to be the first multiplication algorithm that has sub-quadratic

complexity.

If two numbers A and B of the same length are to be multiplied, then these two

numbers can be split as follows:

A = xA1 +A0 and B = xB1 +B0

where x is a power of the base in use (for binary numbers, the base is 2)

and x is about half the length of the two numbers. The conventional school

book multiplication algorithm requires 4 multiplications and 3 additions. If

A(x) = xA1 + A0 and B(x) = xB1 + B0 were polynomials over a ring R, then

computing A(x)B(x) would require 4 multiplications and 1 addition.

A(x)B(x) = x2A1B1 + x(A0B1 +A1B0) +A0B0

Karatsuba’s algorithm makes use of the fact that AB can be written as

A(x)B(x) = x2A1B1 + x[(A1 +A0)(B0 +B1)−A0B0 −A1B1] +A0B0 (7.1)

or

A(x)B(x) = x2A1B1 + x[(A1 −A0)(B0 −B1) +A0B0 +A1B1] +A0B0 (7.2)

The Karatsuba’s algorithm(referred to as 2-way KA hereafter) requires 3

multiplications and 4 additions.

The 3-way KA multiplies two degree-2 polynomials as follows

A(x) = x2A2 + xA1 +A0 and B(x) = x2B2 + xB1 +B0

By the conventional school book multiplication method, AB can be written as

A(x)B(x) = x4A2B2+x
3(A2B1 +A1B2)+

x2(A2B0 +A1B1 +A0B2) + x(A1B0 +A0B1) +A0B0

This method requires 9 multiplications and 4 additions.

A Karatsuba-like formula[82] can be written as follows

A(x)B(x) = x4A2B2 + x3[(A1 +A2)(B1 +B2)−A1B1 −A2B2]

+ x2[(A0 +A2)(B0 +B2)−A2B2 −A0B0 +A1B1]

+ x[(A0 +A1)(B0 +B1)−A1B1 −A0B0] +A0B0 (7.3)

or

A(x)B(x) = x4A2B2 + x3[(A2 −A1)(B1 −B2) +A1B1 +A2B2]

+ x2[(A2 −A0)(B0 −B2) +A2B2 +A0B0 +A1B1]

+ x[(A1 −A0)(B0 −B1) +A1B1 +A0B0] +A0B0 (7.4)

The above set of formulae ((7.3) and (7.4)) are the 3-way KA formula and require

6 multiplications and 13 additions.

7.2 3-way KA from 2-way KA

Chung and Hassan [26] depict the 3-way KA as a special case of Montgomery’s

family of 3-way multiplication algorithms. They further suggest that the 3-way

KA does not appear to be a special case of Toom-Cook even though, many fast

multiplication algorithms are related to the Toom-Cook multiplication algorithm.

The Toom-Cook algorithm relies on the fact that the product of two polynomials

A(x) = an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0 and B(x) = bn−1x
n−1 + bn−2x

n−2 +

· · · + b1x + b0 given by C(x) = A(x)B(x) is recovered by its values at (2n − 1)

distinct values of x. Here we show that the 3-way KA can in fact be derived by

repeated applications of the 2-way KA. We know that

A(x)B(x) = x4A2B2 + x3(A2B1 +A1B2)

+ x2(A2B0 +A1B1 +A0B2) + x(A1B0 +A0B1) +A0B0 (7.5)

117

The 2-way KA relies on the fact that A0B1 +A1B0, can be written as

(A1 −A0)(B0 −B1) +A0B0 +A1B1

In general, the 2-way KA is based on the following identity:

AiBj +AjBi = (Ai −Aj)(Bj −Bi) +AjBj +AiBi (7.6)

Using (7.6), Equation (7.5) can be written as (in this section, the term underlined

by the bracket is rewritten repeatedly using the above identity)

A(x)B(x) = x4A2B2 + x3 (A2B1 +A1B2)︸ ︷︷ ︸+x2(A2B0 +A1B1 +A0B2)

+ x(A1B0 +A0B1) +A0B0

= (x4 + x3)A2B2 + x3[(A2 −A1)(B1 −B2)] + (x2 + x3)A1B1

+ x2 (A2B0 +A0B2)︸ ︷︷ ︸+x(A1B0 +A0B1) +A0B0

= (x4 + x3)A2B2 + x3[(A2 −A1)(B1 −B2)] + (x2 + x3)A1B1

+ x2[(A2 −A0)(B0 −B2)]

+ x2A2B2 + x (A1B0 +A0B1)︸ ︷︷ ︸+A0B0 + x2A0B0

= (x4 + x3 + x2)A2B2 + x3[(A2 −A1)(B1 −B2)] + (x3 + x2)A1B1

+ x2[(A2 −A0)(B0 −B2)] + (x2 + 1)A0B0

+ x[(A1 −A0)(B0 −B1)] + xA1B1 + xA0B0

= (x4 + x3 + x2)A2B2 + x3[(A2 −A1)(B1 −B2)] + (x3 + x2 + x)A1B1

+ x2[(A2 −A0)(B0 −B2)] + (x2 + x+ 1)A0B0

+ x[(A1 −A0)(B0 −B1)]

= x4A2B2 + x3[(A2 −A1)(B1 −B2) +A2B2 +A1B1]

+ x2[(A2 −A0)(B0 −B2) +A2B2 +A0B0 +A1B1]

+ x[(A1 −A0)(B0 −B1) +A0B0 +A1B1] +A0B0

(7.7)

Thus the 3-way KA is the result of repeated applications of 2-way KA.

In fact, the entire Montgomery family of formulae to multiply two polynomials of

degree 2, can be obtained from the Karatsuba algorithm. For this, we first show

the extension of Karatsuba’s algorithm to multiply polynomials of degree 3.

If A(x) = (x3A3 + x2A2 + xA1 +A0) and B(x) = (x3B3 + x2B2 + xB1 +B0) then,

A(x)B(x) = (x3A3 + x2A2 + xA1 +A0)(x
3B3 + x2B2 + xB1 +B0)

= [x2(xA3 +A2) + (xA1 +A0)][x
2(xB3 +B2) + (xB1 +B0)]

= (x2M1 +M0)(x
2N1 +N0)

where M1 = xA3 +A2,M0 = xA1 +A0, N1 = xB3 +B2, N0 = xB1 +B0

= x4M1N1 + x2(M1N0 +M0N1︸ ︷︷ ︸) +M0N0

= x4M1N1 + x2[(M1 +M0)(N0 +N1)−M0N0 −M1N1] +M0N0

Now

M0N0 = (xA1 +A0)(xA1 +B0)

= x2A1B1 + x(A0B1 +B0A1︸ ︷︷ ︸) +A0B0

= x2A1B1 + x[(A0 +A1)(B1 +B0)−A0B0 −A1B1] +A0B0

Also

(M1 +M0)(N0 +N1) = (xA3 +A2 + xA1 +A0)(xB3 +B2 + xB1 +B0)

= [x(A1 +A3) + (A0 +A2)][x(B1 +B3) + (B0 +B2)]

= x2(A1 +A3)(B1 +B3)

+ x[(A1 +A3)(B0 +B2) + (B1 +B3)(A0 +A2)︸ ︷︷ ︸]
+ (A0 +A2)(B0 +B2)

(7.8)

= x2(A1 +A3)(B1 +B3) + x[(A1 +A3) + (A0 +A2)][(B0 +B2) + (B1 +B3)]

− x(A1 +A3)(B1 +B3)− x(A0 +A2)(B0 +B2) + (A0 +A2)(B0 +B2)

M1N1 remains to be evaluated:

M1N1 = (xA3 +A2)(xB3 +B2) = x2A3B3 + x(A3B2 +A2B3︸ ︷︷ ︸) +A2B2

= x2A3B3 + x[(A3 +A2)(B2 +B3)−A2B2 −A3B3] +A2B2

119

Defining

D0 = A0B0 D4 = (A0 +A1)(B1 +B0)

D1 = A1B1 D5 = (A0 +A2)(B2 +B0)

D2 = A2B2 D6 = (A1 +A3)(B3 +B1)

D3 = A3B3 D7 = (A3 +A2)(B2 +B3)

D8 = [(A1 +A3) + (A0 +A2)][(B1 +B3) + (B0 +B2)]

we can write

M0N0 = x2D1 + x(D4 −D0 −D1) +D0

M1N1 = x2D3 + x(D7 −D2 −D3) +D2

and (M1 +M0)(N0 +N1) = x2D6 + x(D8 −D6 −D5) +D5

The product AB can now be written as

A(x)B(x) =x4[x2D3 + x(D7 −D2 −D3) +D2]

+ x2{[x2D6 + x(D8 −D6 −D5) +D5]

− [x2D1 + x(D4 −D0 −D1) +D0]

− [x2D3 + x(D7 −D2 −D3) +D2]}
+ [x2D1 + x(D4 −D0 −D1) +D0]

A(x)B(x) = x6D3 + x5(D7 −D2 −D3) + x4(D6 −D1 −D3 +D2)

+ x3(D8 −D6 −D5 −D4 +D0 +D1 +D2 −D7 +D3)

+ x2(D5 −D0 −D2 +D1) + x(D4 −D0 −D1) +D0

(7.9)

The above method obtained from 2-way KA can be called 4-way KA and was

known to Winograd in 1980 [107]. The 4-way KA is effectively a formula to

multiply two polynomials of degree 3.

Another special case of Montgomery’s family of formulae for multiplying quadratics

can be obtained from the 4-way KA by assigning A3 = 0 and B3 = 0. Thus

equation (7.9) reduces to

A(x)B(x) = x4D2+x
3(D8 −D5 −D4 +D0)

+x2(D5 −D0 −D2 +D1) + x(D4 −D0 −D1) +D0

because

D3 = A3B3 = 0

D7 = (A3 +A2)(B2 +B3) = A2B2 = D2

D6 = (A1 +A3)(B3 +B1) = A1B1 = D1

i.e.,

A(x)B(x) = x4D2 + x3[(A0 +A1 +A2)(B0 +B1 +B2)

− (A0 +A2)(B0 +B2)− (A0 +A1)(B1 +B0) +A0B0

+ x2[(A0 +A2)(B2 +B0)−A0B0 −A2B2 +A1B1]

+ x[(A0 +A1)(B1 +B0)−A0B0 −A1B1] +A0B0]

which is a special case of Montgomery’s family of formula. Now we have the identity

A0B0 +A1B1 +A2B2 − (A0 +A1)(B0 +B1)− (A0 +A2)(B0 +B2)

− (A1 +A2)(B1 +B2) + (A0 +A1 +A2)(B0 +B1 +B2) = 0 (7.10)

Multiplying (7.10) by any polynomial C with integer coefficients, and adding it

to (7.3), we obtain the entire Montgomery family of formulae for multiplying 2

quadratics.

7.3 New Family of Formulae to multiply two

quadratics

A new family of formulae to multiply two quadratics is as follows [95]:

A(x)B(x) =A0B0(C + 1− x2 − x)

+A1B1(3C − x+ x2 − x3)
+A2B2(C + x4 − x3 − x2)
+ (A0 +A1)(B0 +B1)(−C + x)

+ (A0 +A2)(B0 +B2)(C + x2)

+ (A1 +A2)(B1 +B2)(−C + x3)

+ (A1 −A0 −A2)(B0 +B2 −B1)C

(7.11)

121

This follows from

A(x)B(x) = x4A2B2 + x3[(A1 −A0 −A2)(B0 +B2 −B1) + (A0 +A2)(B2 +B0)

− (A0 +A1)(B0 +B1) +A0B0 + 2A1B1]

+ x2[(A0 +A2)(B0 +B2)−A2B2 +A1B1 −A0B0]

+ x[(A0 +A1)(B0 +B1)−A1B1 −A0B0] +A0B0

(7.12)

and

[A0B0 + 3A1B1 +A2B2 − (A0 +A1)(B0 +B1) + (A0 +A2)(B0 +B2)

− (A1 +A2)(B1 +B2) + (A1 −A0 −A2)(B0 +B2 −B1)] = 0 (7.13)

Multiplying equation (7.13) by C and adding it to (7.4), we obtain the above family

of formulae.

Equation(7.12) is obtained by writing (A1 +A3)(B0 +B2) + (B4 +B3)(A0 +A2)

as [(A1 +A3)− (A0 +A2)][(B0 +B2)− (B1 +B2)] + (A1 +A3)(B1 +B2) + (A0 +

A2)(B0 +B2) in equation (7.8).

Yet another family of formulae to multiply two quadratics is

A(x)B(x) =A0B0(C + 1 + x+ x2)

+A1B1(−C + x+ x2 + x3)

+A2B2(−C + x2 + x3 + x4)

+ (A1 −A0)(B0 −B1)(−C + x)

+ (A0 −A2)(B2 −B0)(C + x2)

+ (A1 −A2)(B2 −B1)(−C + x3)

+ (A0 −A1 −A2)(B0 −B1 −B2)C ,

(7.14)

where C is any polynomial with integer coefficients.

The efficiency of the new family of formulae introduced in this section to multiply

two quadratics is similar to that of the Montgomery family of formulae to multiply

two quadratics [82].

7.4 Extension of 2-way KA and 3-way KA to

multiply three numbers

The 2-way KA can be extended to multiply 3 integers. If A, B and C are written

as A = xA1 +A0, B = xB1 +B0, C = xC1 + C0 then

ABC = (xA1 +A0)(xB1 +B0)(xC1 + C0)

= x3A1B1C1 + x2(A1B1C0 +A1B0C1 +A0B1C1)

+ x(A1B0C0 +A0B0C1 +A0B1C0) +A0B0C0 .

(7.15)

The above conventional school book algorithm requires 8 multiplications and 4

additions.

Using the 2-way KA, we can write the product ABC as

ABC = x3D0 + x2[D0 +D1 +D2 +D3] + x[D1 +D4 +D5 +D2] +D5 (7.16)

where

D0 = A1B1C1, D3 = (A1 −A0)(B0 −B1)C1,

D1 = A1B1C0, D4 = (A1 −A0)(B0 −B1)C0,

D2 = A0B0C1, D5 = A0B0C0,

and this requires 6 multiplications and 8 additions. The above equation

can also be written as

ABC = x3D0 + x2[D5 + 2D0 +D3 +D6] + x[D0 + 2D5 +D4 +D6] +D5 (7.17)

where D6 = (A0B0 −A1B1)(C1 − C0)

The product ABC can also be computed by first computing AB and then computing

ABC. The product ABC can be written as

ABC = (x2A1B1 + x(A0B1 +A1B0) +A0B0)︸ ︷︷ ︸
requires 3 multiplications and 4 additions using 2-way KA

(xC1 + C0)

= x2A1B1(xC1 + C0)︸ ︷︷ ︸
requires 2 multiplications

+
{
x(A0B1 +A1B0) +A0B0

}
(xC1 + C0)︸ ︷︷ ︸

requires 3 multiplications and 4 additions using 2-way KA

Thus ABC can be computed using 8 multiplications and 9 additions which is

more expensive than 6 multiplications and 8 additions that is incurred using the

123

three-term product computed using equation (7.16).

Using equation (7.17) to multiply two numbers, of size 2n each, one would require

3 multiplications of two numbers of size n each and 5 multiplications of two

numbers, where one number is of size 2n and the other of size n.

Multiplication of two numbers

each of size n

Multiplication of two numbers (one

of size 2n and other of size n)

G0 = A0B0 D5 = G0C0

G1 = A1B1 D0 = G1C1

G01 = (A1 −A0)(B0 −B1) D4 = G01C0

D3 = G01C1

D6 = (G0 −G1)(C1 − C0)

The 3-way KA also can be extended to multiply 3 integers. If A, B and C can be

written as

A = x2A2 + xA1 +A0

B = x2B2 + xB1 +B0

C = x2C2 + xC1 + C0

then

ABC = (x2A2 + xA1 +A0)(x
2B2 + xB1 +B0)(x

2C2 + xC1 + C0)

= x6A2B2C2 + x5(A2B2C1 +A2B1C2 +A1B2C2)

+ x4(A2B2C0 +A2B1C1 +A2B0C2

+A1B2C1 +A1B1C2 +A0B2C2)

+ x3(A2B1C0 +A2B0C1 +A1B2C0

+A1B1C1 +A1B0C2 +A0B2C1 +A0B1C2)

+ x2(A2B0C0 +A1B1C0 +A1B0C1 +A0B2C0 +A0B1C1 +A0B0C2)

+ x(A1B0C0 +A0B1C0 +A0B0C1) +A0B0C0 .

(7.18)

The above conventional school book multiplication algorithm needs 27

multiplications and 20 additions. If we define the auxiliary products

D0 = A0B0C0 D9 = (A2 −A0)(B0 −B2)C2

D1 = A0B0C1 D10 = (A2 −A0)(B0 −B2)C1

D2 = A0B0C2 D11 = (A2 −A0)(B0 −B2)C0

D3 = A1B1C0 D12 = (A2 −A1)(B1 −B2)C2

D4 = A1B1C1 D13 = (A2 −A1)(B1 −B2)C1

D5 = A1B1C2 D14 = (A2 −A1)(B1 −B2)C0

D6 = A2B2C0 D15 = (A1 −A0)(B0 −B1)C2

D7 = A2B2C1 D16 = (A1 −A0)(B0 −B1)C1

D8 = A2B2C2 D17 = (A1 −A0)(B0 −B1)C0

then

ABC =x6D8 + x5(D8 +D12 +D5 +D7)

+ x4(D9 +D8 +D2 +D5 +D13 +D4 +D6 +D7)

+ x3(D10 +D2 +D15 +D14 +D5 +D7 +D1 +D6 +D3 +D4)

+ x2(D11 +D2 +D1 +D6 +D16 +D4 +D0 +D3)

+ x(D17 +D3 +D0 +D1) +D0 .

(7.19)

This requires 18 multiplications and 29 additions. In the above formula, the

following pairs of auxiliary products can be combined: (D1, D3), (D2, D6) and

(D5, D7)

D1 +D3 = (A1B1 −A0B0)(C0 − C1) +A1B1C1 +A0B0C0

D2 +D6 = (A0B0 −A2B2)(C2 − C0) +A0B0C0 +A2B2C2

D5 +D7 = (A1B1 −A2B2)(C2 − C1) +A1B1C1 +A2B2C2

Assigning

E10 = (A1B1 −A0B0)(C0 − C1)

E02 = (A0B0 −A2B2)(C2 − C0)

E12 = (A1B1 −A2B2)(C2 − C1)

125

we have

D1 +D3 = E10 +D4 +D0

D2 +D6 = E02 +D0 +D8

D5 +D7 = E12 +D4 +D8

Thus

ABC = x6D8 + x5[2D8 +D12 +D4 + E12]

+ x4[D9 + 3D8 + E02 +D0 + E12 + 2D4 +D13]

+ x3[D10 + E02 + 2D0 + 2D8

+D15 +D14 + E12 + 3D4 + E10]

+ x2[D11 + E02 + 3D0 +D8 + E10 + 2D4 +D16]

+ x[D17 + E10 +D4 + 2D0] +D0

(7.20)

Using this formula to multiply 3 numbers of size 3n each, one would require 12

multiplications of 3 numbers of size n each, 3 multiplications of 2 numbers, where

one is of the size 2n and the other of size n and 3 multiplications of 2 numbers of

size n each.

The above formula can also be realized using 6 multiplications of 2 numbers, each

of size n and (9 + 6) multiplications of two numbers, one of size 2n and other of

size n, as shown in the table below

Multiplications of two

numbers each of size n

Multiplication of two numbers (one

of size 2n and other of size n)

G0 = A0B0 D0 = G0C0

G1 = A1B1 D4 = G1C1

G2 = A2B2 D8 = G2C2

G02 = (A2 −A0)(B0 −B2) D9 = G02C2

D10 = G02C1

D11 = G02C0

G01 = (A2 −A1)(B1 −B2) D12 = G01C2

D13 = G01C1

D14 = G01C0

G10 = (A1 −A0)(B0 −B1) D15 = G10C2

D16 = G10C1

D17 = G10C0

E10 = (G1 −G0)(C0 − C1)

E02 = (G0 −G2)(C2 − C0)

E12 = (G1 −G2)(C2 − C1)

7.5 Extended Karatsuba Algorithm: Uses

and comparison with the School Book

Algorithm

Fast multiplication of 3 integers can be used in the following circumstances:

MultiPrime RSA: MultiPrime RSA is a variant of conventional RSA, where the

modulus can be the product of more than two primes. i.e., N = p1, p2 . . . pr and

φ(N) = (p1 − 1)(p2 − 1)(p3 − 1) . . . (pr − 1)

Encryption and Decryption are the same as in conventional RSA. In [69, Section 4],

the author compares the security levels offered by symmetric cryptosystems such

as DES or AES with RSA. The author recommends that the number of factors of

the MultiPrime RSA Modulus can range from 2 to 6 [Table 1,2 and 3 in [69]] and

that they should more or less be of the same size. The extended versions of 2-way

KA or 3-way KA to multiply 3 integers could be utilized to multiply the RSA factors.

127

Modular Arithmetic: The Chinese Reminder Theorem is extensively used in

current day cryptography and may involve multiplication of 3 numbers or more.

For instance, the CRT is used in various variants of RSA such as Batch RSA,

MultiPower RSA, MultiPrime RSA etc [14]. The extended versions of KA to

multiply 3 integers could be utilized in this situation as well.

Below, we compare the Karatsuba algorithm with conventional School Book

Algorithm under different situations.

1. 2-way KA v/s School Book to multiply 2 degree-1 polynomials:

#MUL #ADD

School Book 4 1

2-way KA 3 4

If TMUL and TADD can be taken to denote the time for one multiplication

and one addition respectively, then the cost of the School Book Algorithm

is COSTSB = 4TMUL + 3TADD and that of the Karatsuba Algorithm is

COSTKA = 3TMUL + 4TADD. The Karatsuba Algorithm is cheaper if COSTSB is

greater than COSTKA and this would occur if TMUL/TADD is > 3.

2. 3-way KA v/s School Book to multiply 2 degree-2 polynomials:

#MUL #ADD

School Book 9 4

3-way KA 6 13

In this case COSTSB is greater than COSTKA when TMUL/TADD > 3.

3. 2-way KA v/s School Book to multiply 3 degree-1 polynomials:

#MUL #ADD

School Book 8 4

2-way KA 6 8

In this case COSTSB is greater than COSTKA when TMUL/TADD is greater than 2.

4. 3-way KA v/s School Book to multiply 3 degree-2 polynomials:

#MUL #ADD

School Book 27 20

3-way KA 18 29

In this case COSTSB is greater than COSTKA when TMUL/TADD is greater than 1.

129

Chapter 8

Conclusion

In this thesis, we looked at point arithmetic formulae and some scalar multiplication

algorithms. We also considered double scalar multiplication algorithms in the

context of differential addition chains and algorithms to compute pairings. Whilst

doing so, we have touched upon a very small fraction of the literature in this

area. Recalling Lang’s comment(see Sec 1.2), it appears that it is possible to write

endlessly on elliptic curve arithmetic and opportunities to improve this arithmetic.

In Chapter 2, we provided an introduction to elliptic curve arithmetic formulae

and provided improved formulae for point quintupling. A systematic analysis of

the minimum number of arithmetic operations to compute bilinear forms [107] may

yield further improvements in the algorithms to perform elliptic curve arithmetic.

In Chapter 3, we provided differential point tripling formulae for Montgomery

curves which can be used in Montgomery’s PRAC algorithm which is an Euclidean

chain algorithm. A topic for future research is to derive similar formulae for other

forms of Elliptic curves with differential addition formulae. We also provided

improved faster differential arithmetic algorithms for Edwards curves.

In Chapter 4, we provided 3-dimensional extensions of 2-dimensional binary

differential chains. While we focused on left-to-right algorithms, one can work

toward constructing 3-dimensional extensions of right-to-left algorithms. A topic

for future research is the construction of 3-dimensional extensions of 2-dimensional

Euclidean differential chains. We also observed that differential tripling can be

131

useful in Euclidean differential chains.

The precomputation schemes in Chapter 5 focus on double scalar multiplication

and we showed that the Co-Z precomputation scheme due to Lin and Zhang is

incorrect. We provided a new algorithm for precomputation. Further research can

focus on extending these precomputation schemes to triple and higher dimensional

precomputation schemes.

In Chapter 6, we provided an improvement of Stange’s elliptic net algorithm

to compute the Tate pairing. We also improved the computation of the Tate

pairing on Selmer curves. Stange’s elliptic net algorithm was based on Shipsey’s

double-and-add algorithm to compute terms of an elliptic divisibility sequence. It

would be interesting to research the benefits of using a Euclidean chain algorithm

to compute terms of an elliptic divisibility sequence.

Finally, we provide a new family of formulae to multiply two quadratics in Chapter

7. We provide an extension of 2-way KA and 3-way KA to multiply three numbers.

Appendix

Algorithm A.1: L-R 3-Dimensional

Montgomery Ladder

INPUT: Points P , Q, R on Em and positive integers k, l, u;

k = (kt · · · k1, k0)2, l = (lt · · · l1, l0)2, u = (ut · · ·u1, u0)2;
(at least one of kt or lt or ut = 1).

Precompute A← (P +Q), B ← (P −Q), C ← (P +R), D ← (P −R),

E ← (Q+R), F ← (Q−R), G← (P +Q+R), H ← (P +Q−R);

OUTPUT: x coordinate of W = kP + lQ+ uR.

[Initialize]

if (kt, lt, ut) = (0, 0, 1)

T0 ← O, T1 ← R, T2 ← E, T3 ← C, T4 ← G;

else if (kt, lt, ut) = (0, 1, 0)

T0 ← O, T1 ← Q, T2 ← E, T3 ← A, T4 ← G;

else if (kt, lt, ut) = (0, 1, 1)

T0 ← O, T1 ← R, T2 ← Q, T3 ← E, T4 ← G;

else if (kt, lt, ut) = (1, 0, 0)

T0 ← O, T1 ← P , T2 ← C, T3 ← A, T4 ← G;

else if (kt, lt, ut) = (1, 0, 1)

T0 ← O, T1 ← R, T2 ← P , T3 ← C, T4 ← G;

else if (kt, lt, ut) = (1, 1, 0)

T0 ← O, T1 ← Q, T2 ← P , T3 ← A, T4 ← G;

133

else if (kt, lt, ut) = (1, 1, 1)

T0 ← R, T1 ← E, T2 ← C, T3 ← A, T4 ← G;

[Process the three scalar bits simultaneously]

for i from t down to 1

T0Tmp ← T0, T1Tmp ← T1, T2Tmp ← T2, T3Tmp ← T3, T4Tmp ← T4 ;

if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 0, 0, 0, 0)

T0 ← 2T0Tmp, T1 ← T1Tmp+T0Tmp(R),

T2 ← T2Tmp+T0Tmp(Q), T3 ← T3Tmp+T0Tmp(P),

T4 ← T4Tmp+T0Tmp(A);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 0, 0, 0, 1)

T0 ← 2T0Tmp, T1 ← T1Tmp+T0Tmp(R),

T2 ← T2Tmp+T1Tmp(F), T3 ← T3Tmp+T1Tmp(D),

T4 ← T4Tmp+T1Tmp(H);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 0, 0, 1, 0)

T0 ← 2T0Tmp, T1 ← T2Tmp+T0Tmp(Q),

T2 ← T2Tmp+T1Tmp(F), T3 ← T4Tmp+T0Tmp(A),

T4 ← T4Tmp+T1Tmp(H);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 0, 0, 1, 1)

T0 ← 2T0Tmp, T1 ← T1Tmp+T0Tmp(R),

T2 ← T2Tmp+T0Tmp(Q), T3 ← T2Tmp+T1Tmp(F),

T4 ← T4Tmp+T1Tmp(H);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 0, 1, 0, 0)

T0 ← 2T0Tmp, T1 ← T3Tmp+T0Tmp(P),

T2 ← T3Tmp+T1Tmp(D), T3 ← T4Tmp+T0Tmp(A),

T4 ← T4Tmp+T1Tmp(H);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 0, 1, 0, 1)

T0 ← 2T0Tmp, T1 ← T1Tmp+T0Tmp(R),

T2 ← T3Tmp+T0Tmp(P), T3 ← T3Tmp+T1Tmp(D),

T4 ← T4Tmp+T1Tmp(H);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 0, 1, 1, 0)

T0 ← 2T0Tmp, T1 ← T2Tmp+T0Tmp(Q),

T2 ← T3Tmp+T0Tmp(P), T3 ← T4Tmp+T0Tmp(A),

T4 ← T4Tmp+T1Tmp(H);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 0, 1, 1, 1)

T0 ← T1Tmp+T0Tmp(R), T1 ← T2Tmp+T1Tmp(F),

T2 ← T3Tmp+T1Tmp(D), T3 ← T4Tmp+T0Tmp(A),

T4 ← T4Tmp+T1Tmp(H);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 1, 0, 0, 0)

T0 ← T1Tmp+T0Tmp(R), T1 ← 2T1Tmp ,

T2 ← T2Tmp+T0Tmp,(E), T3 ← T3Tmp+T0Tmp(C),

T4 ← T4Tmp+T0Tmp(G);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 1, 0, 0, 1)

T0 ← T1Tmp+T0Tmp(R), T1 ← 2T1Tmp,

T2 ← T2Tmp+T1Tmp(Q), T3 ← T3Tmp+T1Tmp(P),

T4 ← T3Tmp+T2Tmp(B);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 1, 0, 1, 0)

T0 ← T1Tmp+T0Tmp(R), T1 ← T2Tmp+T0Tmp(E),

T2 ← T2Tmp+T1Tmp(Q), T3 ← T4Tmp+T0Tmp(G),

T4 ← T3Tmp+T2Tmp(B);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 1, 0, 1, 1)

T0 ← T1Tmp+T0Tmp(R), T1 ← 2T1Tmp,

T2 ← T2Tmp+T0Tmp(E), T3 ← T2Tmp+T1Tmp(Q),

T4 ← T3Tmp+T2Tmp(B);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 1, 1, 0, 0)

T0 ← T1Tmp+T0Tmp(R), T1 ← T3Tmp+T0Tmp(C),

T2 ← T3Tmp+T1Tmp(P), T3 ← T4Tmp+T0Tmp(G),

T4 ← T3Tmp+T2Tmp(B);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 1, 1, 0, 1)

T0 ← T1Tmp+T0Tmp(R), T1 ← 2T1Tmp,

T2 ← T3Tmp+T0Tmp(C), T3 ← T3Tmp+T1Tmp(P),

T4 ← T3Tmp+T2Tmp(B);

135

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 1, 1, 1, 0)

T0 ← T1Tmp+T0Tmp(R), T1 ← T2Tmp+T0Tmp(E),

T2 ← T3Tmp+T0Tmp(C), T3 ← T4Tmp+T0Tmp(G),

T4 ← T3Tmp+T2Tmp(B);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 1, 1, 1, 1)

T0 ← 2T1Tmp, T1 ← T2Tmp+T1Tmp(Q),

T2 ← T3Tmp+T1Tmp(P), T3 ← T4Tmp+T0Tmp(G),

T4 ← T3Tmp+T2Tmp(B);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 0, 0, 0, 0)

T0 ← T1Tmp+T0Tmp(Q), T1 ← T2Tmp+T0Tmp(E),

T2 ← 2T1Tmp, T3 ← T3Tmp+T0Tmp(A),

T4 ← T3Tmp+T1Tmp(C);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 0, 0, 0, 1)

T0 ← T1Tmp+T0Tmp(Q), T1 ← T2Tmp+T0Tmp(E),

T2 ← T2Tmp+T1Tmp(R), T3 ← T4Tmp+T0Tmp(G),

T4 ← T4Tmp+T1Tmp(C);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 0, 0, 1, 0)

T0 ← T1Tmp+T0Tmp(Q), T1 ← 2T1Tmp,

T2 ← T2Tmp+T1Tmp(R), T3 ← T3Tmp+T1Tmp(P),

T4 ← T4Tmp+T1Tmp(C);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 0, 0, 1, 1)

T0 ← T1Tmp+T0Tmp(Q), T1 ← T2Tmp+T0Tmp(E),

T2 ← 2T1Tmp, T3 ← T2Tmp+T1Tmp(R),

T4 ← T4Tmp+T1Tmp(C);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 0, 1, 0, 0)

T0 ← T1Tmp+T0Tmp(Q), T1 ← T3Tmp+T0Tmp(A),

T2 ← T4Tmp+T0Tmp(G), T3 ← T3Tmp+T1Tmp(P),

T4 ← T4Tmp+T1Tmp(C);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 0, 1, 0, 1)

T0 ← T1Tmp+T0Tmp(Q), T1 ← T2Tmp+T0Tmp(E),

T2 ← T3Tmp+T0Tmp(A), T3 ← T4Tmp+T0Tmp(G),

T4 ← T4Tmp+T1Tmp(C);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 0, 1, 1, 0)

T0 ← T1Tmp+T0Tmp(Q), T1 ← 2T1Tmp,

T2 ← T3Tmp+T0Tmp(A), T3 ← T3Tmp+T1Tmp(P),

T4 ← T4Tmp+T1Tmp(C);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 0, 1, 1, 1)

T0 ← T2Tmp+T0Tmp(E), T1 ← T2Tmp+T1Tmp(R),

T2 ← T4Tmp+T0Tmp(G), T3 ← T3Tmp+T1Tmp(P),

T4 ← T4Tmp+T1Tmp(C);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 1, 0, 0, 0)

T0 ← T3Tmp+T0Tmp(E), T1 ← T3Tmp+T1Tmp(Q),

T2 ← T3Tmp+T2Tmp(R), T3 ← T4Tmp+T0Tmp(G),

T4 ← T4Tmp+T2Tmp(C);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 1, 0, 0, 1)

T0 ← T3Tmp+T0Tmp(E), T1 ← T3Tmp+T1Tmp(Q),

T2 ← 2T3Tmp, T3 ← T4Tmp+T1Tmp(A),

T4 ← T4Tmp+T3Tmp(P);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 1, 0, 1, 0)

T0 ← T3Tmp+T0Tmp(E), T1 ← T3Tmp+T2Tmp(R),

T2 ← 2T3Tmp, T3 ← T4Tmp+T2Tmp(C),

T4 ← T4Tmp+T3Tmp(P);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 1, 0, 1, 1)

T0 ← T3Tmp+T0Tmp(E), T1 ← T3Tmp+T1Tmp(Q),

T2 ← T3Tmp+T2Tmp(R), T3 ← 2T3Tmp,

T4 ← T4Tmp+T3Tmp(P);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 1, 1, 0, 0)

T0 ← T3Tmp+T0Tmp(E), T1 ← T4Tmp+T0Tmp(G),

T2 ← T4Tmp+T1Tmp(A), T3 ← T4Tmp+T2Tmp(C),

T4 ← T4Tmp+T3Tmp(P);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 1, 1, 0, 1)

T0 ← T3Tmp+T0Tmp(E), T1 ← T3Tmp+T1Tmp(Q),

T2 ← T4Tmp+T0Tmp(G), T3 ← T4Tmp+T1Tmp(A),

T4 ← T4Tmp+T3Tmp(P);

137

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 1, 1, 1, 0)

T0 ← T3Tmp+T0Tmp(E), T1 ← T3Tmp+T2Tmp(R),

T2 ← T4Tmp+T0Tmp(G), T3 ← T4Tmp+T2Tmp(C),

T4 ← T4Tmp+T3Tmp(P);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 1, 1, 1, 1)

T0 ← T3Tmp+T1Tmp(Q), T1 ← 2T3Tmp,

T2 ← T4Tmp+T1Tmp(A), T3 ← T4Tmp+T2Tmp(C),

T4 ← T4Tmp+T3Tmp(P);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 0, 0, 0, 0)

T0 ← T1Tmp+T0Tmp(P), T1 ← T2Tmp+T0Tmp(C),

T2 ← T3Tmp+T0Tmp(A), T3 ← 2T1Tmp,

T4 ← T3Tmp+T1Tmp(Q);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 0, 0, 0, 1)

T0 ← T1Tmp+T0Tmp(P), T1 ← T2Tmp+T0Tmp(C),

T2 ← T4Tmp+T0Tmp(G), T3 ← T2Tmp+T1Tmp(R),

T4 ← T4Tmp+T1Tmp(E);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 0, 0, 1, 0)

T0 ← T1Tmp+T0Tmp(P), T1 ← T3Tmp+T0Tmp(A),

T2 ← T4Tmp+T0Tmp(G), T3 ← T3Tmp+T1Tmp(Q),

T4 ← T4Tmp+T1Tmp(E);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 0, 0, 1, 1)

T0 ← T1Tmp+T0Tmp(P), T1 ← T2Tmp+T0Tmp(C),

T2 ← T3Tmp+T0Tmp(A), T3 ← T4Tmp+T0Tmp(G),

T4 ← T4Tmp+T1Tmp(E);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 0, 1, 0, 0)

T0 ← T1Tmp+T0Tmp(P), T1 ← 2T1Tmp,

T2 ← T2Tmp+T1Tmp(R), T3 ← T3Tmp+T1Tmp(Q),

T4 ← T4Tmp+T1Tmp(E);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 0, 1, 0, 1)

T0 ← T1Tmp+T0Tmp(P), T1 ← T2Tmp+T0Tmp(C),

T2 ← 2T1Tmp, T3 ← T2Tmp+T1Tmp(R),

T4 ← T4Tmp+T1Tmp(E);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 0, 1, 1, 0)

T0 ← T1Tmp+T0Tmp(P), T1 ← T3Tmp+T0Tmp(A),

T2 ← 2T1Tmp, T3 ← T3Tmp+T1Tmp(Q),

T4 ← T4Tmp+T1Tmp(E);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 0, 1, 1, 1)

T0 ← T2Tmp+T0Tmp(C), T1 ← T4Tmp+T0Tmp(G),

T2 ← T2Tmp+T1Tmp(R), T3 ← T3Tmp+T1Tmp(Q),

T4 ← T4Tmp+T1Tmp(E);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 1, 0, 0, 0)

T0 ← T3Tmp+T0Tmp(C), T1 ← T3Tmp+T1Tmp(P),

T2 ← T4Tmp+T0Tmp(G), T3 ← T3Tmp+T2Tmp(R),

T4 ← T4Tmp+T2Tmp(E);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 1, 0, 0, 1)

T0 ← T3Tmp+T0Tmp(C), T1 ← T3Tmp+T1Tmp(P),

T2 ← T4Tmp+T1Tmp(A), T3 ← 2T3Tmp,

T4 ← T4Tmp+T3Tmp(Q);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 1, 0, 1, 0)

T0 ← T3Tmp+T0Tmp(C), T1 ← T4Tmp+T0Tmp(G),

T2 ← T4Tmp+T1Tmp(A), T3 ← T4Tmp+T2Tmp(E),

T4 ← T4Tmp+T3Tmp(Q);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 1, 0, 1, 1)

T0 ← T3Tmp+T0Tmp(C), T1 ← T3Tmp+T1Tmp(P),

T2 ← T4Tmp+T0Tmp(G), T3 ← T4Tmp+T1Tmp(A),

T4 ← T4Tmp+T3Tmp(Q);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 1, 1, 0, 0)

T0 ← T3Tmp+T0Tmp(C), T1 ← T3Tmp+T2Tmp(R),

T2 ← 2T3Tmp, T3 ← T4Tmp+T2Tmp(E),

T4 ← T4Tmp+T3Tmp(Q);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 1, 1, 0, 1)

T0 ← T3Tmp+T0Tmp(C), T1 ← T3Tmp+T1Tmp(P),

T2 ← T3Tmp+T2Tmp(R), T3 ← 2T3Tmp,

T4 ← T4Tmp+T3Tmp(Q);

139

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 1, 1, 1, 0)

T0 ← T3Tmp+T0Tmp(C), T1 ← T4Tmp+T0Tmp(G),

T2 ← T3Tmp+T2Tmp(R), T3 ← T4Tmp+T2Tmp(E),

T4 ← T4Tmp+T3Tmp(Q);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 1, 1, 1, 1)

T0 ← T3Tmp+T1Tmp(P), T1 ← T4Tmp+T1Tmp(A),

T2 ← 2T3Tmp, T3 ← T4Tmp+T2Tmp(E),

T4 ← T4Tmp+T3Tmp(Q);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 0, 0, 0, 0)

T0 ← T3Tmp+T0Tmp(A), T1 ← T4Tmp+T0Tmp(G),

T2 ← T3Tmp+T1Tmp(P), T3 ← T3Tmp+T2Tmp(Q),

T4 ← 2T3Tmp;

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 0, 0, 0, 1)

T0 ← T3Tmp+T0Tmp(A), T1 ← T4Tmp+T0Tmp(G),

T2 ← T4Tmp+T1Tmp(C), T3 ← T4Tmp+T2Tmp(E),

T4 ← T4Tmp+T3Tmp(R);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 0, 0, 1, 0)

T0 ← T3Tmp+T0Tmp(A), T1 ← T3Tmp+T1Tmp(P),

T2 ← T4Tmp+T1Tmp(C), T3 ← 2T3Tmp,

T4 ← T4Tmp+T3Tmp(R);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 0, 0, 1, 1)

T0 ← T3Tmp+T0Tmp(A), T1 ← T4Tmp+T0Tmp(G),

T2 ← T3Tmp+T1Tmp(P), T3 ← T4Tmp+T1Tmp(C),

T4 ← T4Tmp+T3Tmp(R);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 0, 1, 0, 0)

T0 ← T3Tmp+T0Tmp(A), T1 ← T3Tmp+T2Tmp(Q),

T2 ← T4Tmp+T2Tmp(E), T3 ← 2T3Tmp,

T4 ← T4Tmp+T3Tmp(R);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 0, 1, 0, 1)

T0 ← T3Tmp+T0Tmp(A), T1 ← T4Tmp+T0Tmp(G),

T2 ← T3Tmp+T2Tmp(Q), T3 ← T4Tmp+T2Tmp(E),

T4 ← T4Tmp+T3Tmp(R);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 0, 1, 1, 0)

T0 ← T3Tmp+T0Tmp(A), T1 ← T3Tmp+T1Tmp(P),

T2 ← T3Tmp+T2Tmp(Q), T3 ← 2T3Tmp,

T4 ← T4Tmp+T3Tmp(R);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 0, 1, 1, 1)

T0 ← T4Tmp+T0Tmp(G), T1 ← T4Tmp+T1Tmp(C),

T2 ← T4Tmp+T2Tmp(E), T3 ← 2T3Tmp,

T4 ← T4Tmp+T3Tmp(R);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 1, 0, 0, 0)

T0 ← T3Tmp+T0Tmp(H), T1 ← T4Tmp+T0Tmp(A),

T2 ← T3Tmp+T1Tmp(D), T3 ← T3Tmp+T2Tmp(F),

T4 ← T4Tmp+T3Tmp(R)

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 1, 0, 0, 1)

T0 ← T3Tmp+T0Tmp(H), T1 ← T4Tmp+T0Tmp(A),

T2 ← T4Tmp+T1Tmp(P), T3 ← T4Tmp+T2Tmp(Q),

T4 ← 2T4Tmp;

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 1, 0, 1, 0)

T0 ← T3Tmp+T0Tmp(H), T1 ← T3Tmp+T1Tmp(D),

T2 ← T4Tmp+T1Tmp(P), T3 ← T4Tmp+T3Tmp(R),

T4 ← 2T4Tmp;

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 1, 0, 1, 1)

T0 ← T3Tmp+T0Tmp(H), T1 ← T4Tmp+T0Tmp(A),

T2 ← T3Tmp+T1Tmp(D), T3 ← T4Tmp+T1Tmp(P),

T4 ← 2T4Tmp;

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 1, 1, 0, 0)

T0 ← T3Tmp+T0Tmp(H), T1 ← T3Tmp+T2Tmp(F),

T2 ← T4Tmp+T2Tmp(Q), T3 ← T4Tmp+T3Tmp(R),

T4 ← 2T4Tmp;

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 1, 1, 0, 1)

T0 ← T3Tmp+T0Tmp(H), T1 ← T4Tmp+T0Tmp(A),

T2 ← T3Tmp+T2Tmp(F), T3 ← T4Tmp+T2Tmp(Q),

T4 ← 2T4Tmp;

141

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 1, 1, 1, 0)

T0 ← T3Tmp+T0Tmp(H), T1 ← T3Tmp+T1Tmp(D),

T2 ← T3Tmp+T2Tmp(F), T3 ← T4Tmp+T3Tmp(R),

T4 ← 2T4Tmp;

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 1, 1, 1, 1)

T0 ← T4Tmp+T0Tmp(A), T1 ← T4Tmp+T1Tmp(P),

T2 ← T4Tmp+T2Tmp(Q), T3 ← T4Tmp+T3Tmp(R),

T4 ← 2T4Tmp;

end for

[Finalize]

if (k0, l0, u0) = (0, 0, 0)

W ← 2T0

else if (k0, l0, u0) = (0, 0, 1)

W ← T1 + T0 (R)

else if (k0, l0, u0) = (0, 1, 0)

W ← T1 + T0 (Q)

else if (k0, l0, u0) = (0, 1, 1)

W ← T3 + T0 (E)

else if (k0, l0, u0) = (1, 0, 0)

W ← T1 + T0 (P)

else if (k0, l0, u0) = (1, 0, 1)

W ← T3 + T0 (C)

else if (k0, l0, u0) = (1, 1, 0)

W ← T3 + T0 (A)

else if (k0, l0, u0) = (1, 1, 1)

W ← T3 + T0 (H)

Return x−coordinate of W by computing x = X/Z

Bibliography

[1] R. Abarzua and N. Theriault, Complete Atomic Blocks for Elliptic Curves in

Jacobian Coordinates over Prime Fields, Proceedings of LATINCRYPT 2012,

LNCS volume 7533, pp. 37-55.

[2] T. Akishita, Fast Simultaneous Scalar Multiplication on Elliptic Curve with

Montgomery Form, Selected Areas in Cryptology(SAC) 2001, LNCS volume

2259, pp. 255-267.

[3] A. Antipa, D. Brown, R. Gallant, R. Lambert, R. Struik and S. Vanstone,

Accelerated Verification of ECDSA Signatures, http://cacr.uwaterloo.ca/

techreports/2005/cacr2005-28.pdf, Accessed: 2nd Feb 2016.

[4] C. Arène, T. Lange, M. Naehrig and C. Ritzenthaler, Faster Computation

of the Tate Pairing, https://eprint.iacr.org/2009/155.pdf, Accessed: 2nd

Feb 2016.

[5] R. Azarderakhsh and K. Karabina, A New Double Point Multiplication Method

and its Implementation on Binary Elliptic Curves with Endomorphisms, http:

//cacr.uwaterloo.ca/techreports/2012/cacr2012-24.pdf, Accessed: 2nd

Feb 2016.

[6] R. Barbulescu, P. Gaudry, A. Joux, E. Thome, A Heuristic Quasi-Polynomial

Algorithm for Discrete Logarithm in Finite Fields of Small Characteristic,

Advances in Cryptology - EUROCRYPT 2014, LNCS 8441, pp 1-16.

[7] R. Bellman and E.G. Straus, Addition Chains of Vectors (problem 5125), The

American Mathematical Monthly 1964, 71, pp. 806-808.

[8] D.J. Bernstein, Curve25519: New Diffie Hellman Speed Records 2006, https:

//cr.yp.to/ecdh/curve25519-20060209.pdf, Accessed: 2nd Feb 2016.

143

http://cacr.uwaterloo.ca/techreports/2005/cacr2005-28.pdf
http://cacr.uwaterloo.ca/techreports/2005/cacr2005-28.pdf
https://eprint.iacr.org/2009/155.pdf
http://cacr.uwaterloo.ca/techreports/2012/cacr2012-24.pdf
http://cacr.uwaterloo.ca/techreports/2012/cacr2012-24.pdf
https://cr.yp.to/ecdh/curve25519-20060209.pdf
https://cr.yp.to/ecdh/curve25519-20060209.pdf

[9] D.J. Bernstein, Differential Addition Chains 2006, https://cr.yp.to/ecdh/

diffchain-20060219.pdf, Accessed: 2nd Feb 2016.

[10] D.J. Bernstein, P. Birkner, M. Joye, T. Lange, C. Peters, Twisted Edwards

Curves, Progress in Cryptology, AFRICACRYPT 2008, LNCS 5023, pp. 389-405.

[11] D.J. Bernstein, P. Birkner, T. Lange and C. Peters, Optimizing Double-base

Elliptic Curve Single-Scalar Multiplication, INDOCRYPT 2007, LNCS volume

4859, pp 167-182.

[12] D.J. Bernstein and T. Lange Faster Addition and Doubling on Elliptic Curves,

ASIACRYPT 2007, LNCS volume 4833, pp 29-50.

[13] D.J. Bernstein, T. Lange and R.R. Farashahi, Binary Edwards Curves,

Cryptographic Hardware and Embedded Systems (CHES) 2008, LNCS volume

5154, pp. 244-265, 2008.

[14] D. Boneh and H. Shacham, Fast Variants of RSA, CryptoBytes 2002, RSA

Laboratories, 5, No 1 Winter/Spring 2002.

[15] R.P. Brent, Some integer factorization algorithms using elliptic curves,

Australian Computer Science Communications 8 (1986), http://maths-people.

anu.edu.au/~brent/pub/pub102.html

[16] R.P. Brent, Factorization of the Tenth Fermat number, Mathematics of

Computation 1999, volume 68, pp. 429-451.

[17] R.P. Brent and P. Zimmermann, Modern Computer Arithmetic, Cambridge

University Press 2011.

[18] E. Brier and M. Joye, Weistrass Elliptic Curves and Side Channel Attacks,

Public Key Cryptography 2002, LNCS volume 2274, pp. 335-345.

[19] D.R.L. Brown, Multi-dimensional Montgomery Ladders for Elliptic Curves

2006, http://eprint.iacr.org/2006/220, Accessed: 25th Jan 2015.

[20] D.R.L. Brown, Multi-dimensional Montgomery Ladders for Elliptic Curves

2006, Patent No.US8750500 B2, http://www.google.com/patents/US8750500,

Published 2014.

https://cr. yp. to/ecdh/diffchain-20060219.pdf
https://cr. yp. to/ecdh/diffchain-20060219.pdf
http://maths-people.anu.edu.au/~brent/pub/pub102.html
http://maths-people.anu.edu.au/~brent/pub/pub102.html
http://eprint.iacr.org/2006/220
http://www.google.com/patents/US8750500

[21] E. Brown, Three Fermat Trails to Elliptic Curves, The College Mathematics

Journal, Mathematical Association of America 2000, 3(31), pp. 162-172.

[22] E. Brown and B.T. Myers, Elliptic Curves from Mordell to Diophantus and

Back, American Mathematical Monthly 2002, 109, pp. 639-649.

[23] W. Castryek, S. Galbraith and R. Farashahi, Efficient Arithmetic on Elliptic

Curves using a mixed Edwards-Montgomery representation, 2008, https://

eprint.iacr.org/2008/218.pdf.

[24] B. Chen, C. Hu and C. Zhao, A Note on Scalar Multiplication Using Division

Polynomials, 2015, https://eprint.iacr.org/2015/284.pdf, Accessed: 29th

Jun 2016.

[25] J.H. Cheon and J.H. Yi, Fast Batch Verification of Multiple Signatures, Public

Key Cryptography(PKC) 2007, LNCS volume 4450, pp. 442-457.

[26] J. Chung and A. Hassan, Asymmetric Squaring Formulae, Technical Report,

University of Waterloo, CACR, 2006.

[27] M. Ciet, M. Joye, K. Lauter and P.L. Montgomery, Trading Inversions for

Multiplications in Elliptic Curve Cryptography, Designs Codes and Cryptography,

volume 39, 2006, pp. 189-206.

[28] H. Cohen and G. Frey, Handbook of Elliptic and Hyperelliptic Curve

Cryptography, 2006, CRC Press.

[29] H. Cohen, A. Miyaji and T. Ono, Efficient Elliptic Curve Exponentiation

Using Mixed Coordinates, ASIACRYPT 1998, LNCS volume 1514, pp. 51-65.

[30] I. Connell, Elliptic Curve Handbook, 1999, https://pendientedemigracion.

ucm.es/BUCM/mat/doc8354.pdf, Accessed: 4th Feb 2016.

[31] J. Coron, Resistance Against Differential Power Analysis For Elliptic Curve

Cryptosystems, Cryptographic Hardware and Embedded Systems (CHES) 1999,

LNCS volume 1717, pp. 292-302.

[32] C. Costello, Faster Formulas for Computing Cryptographic Pairings, 2012,

PhD thesis, Queensland University of Technology.

145

https://eprint.iacr.org/2008/218.pdf
https://eprint.iacr.org/2008/218.pdf
https://eprint.iacr.org/2015/284.pdf
https://pendientedemigracion.ucm.es/BUCM/mat/doc8354.pdf
https://pendientedemigracion.ucm.es/BUCM/mat/doc8354.pdf

[33] C. Costello, T. Lange and M. Naehrig, Faster pairing computations on curves

with high-degree twists, Public Key Cryptography(PKC) 2010, LNCS volume

6056, pp. 224-242.

[34] C. Costello, P. Longa and M. Naehrig, Efficient Algorithms for Supersingular

Isogeny Diffie-Hellman, Advances in Cryptology, CRYPTO 2016, LNCS 9814,

pp. 572-601.

[35] R. Crandall and C. Pomerance, Prime Numbers - A Computational Perspective,

2005, Springer.

[36] J. Cremona, Rational Points on Curves, Course Notes, 2003, pp. 29-31. https:

//cr.yp.to/bib/1992/montgomery-lucas.ps, Accessed: 24th Aug 2017.

[37] E. Dahman, K. Okeya and D. Schepers, Affine Precomputation with Sole

Inversion in Elliptic Curve Cryptography, ACISP 2007, Information Security

and Privacy, LNCS volume 4586, pp. 245-258 .

[38] J. Devigne and M. Joye, Binary Huff Curves, CT-RSA 2011, LNCS Volume

6558, pp. 340-355.

[39] W. Diffie and M. Hellman, New Directions in Cryptography, 1976, IEEE

Transactions on Information Theory, volume 22, pp. 644-654.

[40] V.S. Dimitrov and T. Cooklev, Hybrid Algorithm for the Computation of

the Matrix Polynomial I +A+ · · ·+An−1, IEEE Transactions on Circuits and

Systems I: Fundamental Theory and Applications, volume 42, 1995, pp. 377-380.

[41] V.S. Dimitrov, L. Imbert and P.K. Mishra, Efficient and Secure Elliptic Curve

Point Multiplication Using Double-Base Chains, 2005, https://www.iacr.org/

archive/asiacrypt2005/059/059.pdf, Accessed: 2nd Feb 2016.

[42] C. Doche and D. Sutantyo, Faster Repeated Doublings on Binary Elliptic

Curves, Selected Areas in Cryptography (SAC) 2013, LNCS volume 8282, pp.

456-470.

[43] B. Dodson and P.Zimmermann, 20 Years of ECM, ANTS-VII 2006, Berlin.

[44] H.M. Edwards, A normal form for Elliptic Curves, Bulletin of the American

Mathematical Society, volume 44, pp. 393-422, 2007.

https://cr.yp.to/bib/1992/montgomery-lucas.ps
https://cr.yp.to/bib/1992/montgomery-lucas.ps
https://www.iacr.org/archive/asiacrypt2005/059/059.pdf
https://www.iacr.org/archive/asiacrypt2005/059/059.pdf

[45] K. Eisentrager, K. Lauter and P.L. Montgomery, Fast Elliptic Curve arithmetic

and Improved Weil Pairing evaluation, CT-RSA 2003, LNCS volume 2612, pp.

343-354.

[46] T. ElGamal, A Public Key Cryptosystem and a Signature Scheme based on

Discrete Logarithms, CRYPTO 1984, LNCS volume 196, pp. 10-18.

[47] R.R. Farashahi and M. Joye, Efficient Arithmetic on Hessian Curves, Public

Key Cryptography(PKC) 2010, LNCS volume 6056, pp. 243-260.

[48] W. Fischer, C. Giraud, E.W. Knudsen and J.-P.Seifert, Parallel

Scalar Multiplication on general Elliptic Curves over Fp hedged against

Non-Differential Side-Channel Attacks, 2002, http://eprint.iacr.org/2002/

007.pdf, Accessed: 2nd Feb 2016.

[49] P. Giorgi, L. Imbert and T. Izard, Optimizing Elliptic Curve Scalar

Multiplications for Small Scalars, SPIE Proceedings, Mathematics for Signal and

Information Processing 2009, volume 7444.

[50] H. Gu, D. Gu and W.L. Xie, Efficient pairing computation on elliptic curves

in Hessian form, Information Security and Cryptology (ICISC) 2010, LNCS

volume 6829, pp. 169-176.

[51] D. Hankerson, A. Menezes and S. Vanstone, Guide to Elliptic Curve

Cryptography, Springer-Verlag 2004.

[52] M. Hutter, M. Joye and Y. Sierra, Memory-constrained implementations of

Elliptic Curve Cryptography in co-Z coordinate representation, AFRICACRYPT

2011, LNCS volume 6737, pp. 170-187.

[53] S. Ionica and A. Joux, Another approach to pairing computation in Edwards

Coordinates, INDOCRYPT 2008, LNCS volume 5365, pp. 400-413.

[54] D. Jao and L.D. Feo, Towards Quantum-Resistant Cryptosystems from

Supersingular Elliptic Curve Isogenies, International Workshop on Post-Quantum

Cryptography, PCCrypto 2011,LNCS Vol 7071, pp. 19-34.

[55] J.E. Janoski, Elliptic Curves, http://www.math.clemson.edu/~janoski/

reu/2012/REULec1KevinJ.tex, Accessed: 2nd Feb 2016.

147

http://eprint.iacr.org/2002/007.pdf
http://eprint.iacr.org/2002/007.pdf
http://www.math.clemson.edu/~janoski/reu/2012/REULec1KevinJ.tex
http://www.math.clemson.edu/~janoski/reu/2012/REULec1KevinJ.tex

[56] A. Joux, A One Round Protocol for Tripartite Diffie-Hellman, ANTS-IV 2000,

LNCS volume 1838, pp. 385-393.

[57] M. Joye, M. Tibouchi and D. Vergnaud, Huff’s Model for Elliptic Curves,

ANTS-IX 2010, LNCS volume 6197, pp. 234-250 .

[58] B. Justus and D. Loebenberger, Differential Addition in Generalized Edwards

Coordinates, 5th International Workshop on Security (IWSEC) 2010, LNCS

volume 6434, pp. 316-325.

[59] N. Kanayama, Y. Liu, E. Okamoto, K. Saito, T. Teruya and S. Uchiyama,

Implementation of an Elliptic Curve Scalar Multiplication Method using

Division Polynomials, IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences 2014, volume E97-A No.1, pp. 300-302.

[60] S. Karati, A. Das and D. Roychoudhury, Randomized Batch Verification

of Standard ECDSA Signatures, Security, Privacy, and Applied Cryptography

Engineering (SPACE) 2014, LNCS volume 8804, pp. 237-255.

[61] A. A. Karatsuba, The Complexity of Computations, Proceedings of the Steklov

Institute of Mathematics 1995, volume 211, pp. 169-183.

[62] D.E. Knuth, Seminumerical Algorithms, The Art of Computer Programming,

volume 2, Third Edition, Addison Wesley 1998.

[63] N. Koblitz and A.J. Menezes, A Survey of Public-Key Cryptosystems, 2004,

https://www.math.uwaterloo.ca/~ajmeneze/publications/publickey.

pdf, Accessed: 4th Feb 2016.

[64] N. Koblitz and A. Menezes, Pairing-based Cryptography at High Security

Levels, Cryptography and Coding, 10th IMA International Conference, 2005,

LNCS volume 3796, pp. 13-36.

[65] S. Lang, Elliptic Curves: Diophantine Analysis, Springer-Verlag, 1978.

[66] S. Lang, A lively activity: To do Mathematics - Diophantine Equations, The

Beauty of Doing Mathematics: Three Public Dialogues, Springer-Verlag, 1985.

[67] D. Le and B. Nguyen, Fast Point Quadrupling on Elliptic Curves, SoICT 2012

(Hanoi, Vietnam), Proceedings of the Third Symposium on Information and

Communication Technology, pp. 218-222.

https://www.math.uwaterloo.ca/~ajmeneze/publications/publickey.pdf
https://www.math.uwaterloo.ca/~ajmeneze/publications/publickey.pdf

[68] D. Le and C. Tan, Improved Precomputation Scheme for Scalar Multiplication

on Elliptic Curves, Proceedings of Cryptography and Coding 2011, LNCS volume

7089, pp. 327-343.

[69] A. Lenstra, Unbelievable Security - Matching AES Security using Public Key

Systems, ASIACRYPT 2001, (Gold Coast, Australia), LNCS Volume 2248, pp.

67-86 .

[70] H.W. Lenstra, Jr. Factoring Integers with Elliptic Curves, Annals of

Mathematics - Second Series, volume 126, No. 3 (Nov., 1987), pp. 649-673.

[71] Q. Lin and F. Zhang, Efficient Precomputation Schemes of kP + lQ,

Information Processing Letters 2012, volume 112, pp. 462-466, Elsevier

North-Holland.

[72] P. Longa and C. Gebotys, Novel Precomputation Schemes for Elliptic Curve

Cryptosystems, Applied Cryptography and Network Security (ACNS) 2009,

LNCS volume 5536, pp. 71-88.

[73] P. Longa and A. Miri, Fast and Flexible Elliptic Curves Point Arithmetic over

Prime Fields, IEEE Transactions on Information Theory 2008, volume 57, pp.

289-302.

[74] P.Longa and A. Miri, New Multibase Non-Adjacent Form Scalar Multiplication

and its applications to Elliptic Curve Cryptosystems, https://eprint.iacr.

org/2008/052.pdf, Accessed: 2nd Feb 2016.

[75] J. Lopez, and R. Dahab, Fast Multiplication on Elliptic Curves over GF (2m)

without Precomputation, Cryptographic Hardware and Embedded Systems

(CHES) 1999, LNCS volume 1717, pp. 316-327.

[76] N. Meloni, New Point Addition formulae for ECC Applications, Arithmetic of

Finite Fields, WAIFI 2007, LNCS volume 4547, pp. 189-201.

[77] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied

Cryptography, Taylor and Francis, CRC Press 1997.

[78] V.S. Miller, The Weil Pairing, and its Efficient Calculation, Journal of

Cryptology 2004, volume 17, Issue 4, pp. 235-261.

149

https://eprint.iacr.org/2008/052.pdf
https://eprint.iacr.org/2008/052.pdf

[79] P.K. Mishra and V.S. Dimitrov, Efficient Quintuple Formulas for

Elliptic Curves and Efficient Scalar Multiplication Using Multibase Number

Representation, ISC 2007, LNCS volume 4779, pp. 390-406.

[80] P.L. Montgomery, Speeding the Pollard and Elliptic Curve methods of

Factorization, Mathematics of Computation 1987, volume 48, pp. 243-264.

[81] P.L. Montgomery, Evaluating Recurrences of Form Xm+n = f(xm, Xn, Xm−n)

via Lucas Chains(1992), https://cr.yp.to/bib/1992/montgomery-lucas.ps,

Accessed: 2nd Feb 2016.

[82] P.L. Montgomery, Five, Six and Seven term Karatsuba-like formulae, IEEE

Transaction on Computers 2005, volume 54, pp. 362-369.

[83] A.M. Odlyzko, Discrete logarithms in finite fields and their cryptographic

significance, 1984, www.dtc.umn.edu/~odlyzko/doc/arch/discrete.logs.

pdf, Accessed: 4th Feb 2016.

[84] K. Okeya and K. Sakurail, Efficient Elliptic Curve Cryptosystems from a Scalar

Multiplication Algorithm with Recovery of the y-coordinate on a Montgomery

form Elliptic Curve, Cryptographic Hardware and Embedded Systems (CHES)

2001, LNCS volume 2162, pp. 129-144.

[85] K. Okeya, T. Takagi and C. Vuillaume, Efficient Representation on Koblitz

curves with Resistance to Side Channel Attacks, ACISP 2005, LNCS volume

3574, pp. 218-229.

[86] C. Pomerance, A Tale of Two Sieves, Notices of the AMS 43 (1996),

pp.1473-1485.

[87] C. Pomerance, Elementary Thoughts On Discrete Logarithms, 2002, https:

//math.dartmouth.edu/~carlp/PDF/dltalk4.pdf, Accessed: 4th Feb 2016.

[88] B. Poonen, Elliptic Curves, 2001, http://mathcircle.berkeley.edu/BMC4/

Handouts/elliptic.pdf, Accessed: 4th Feb 2016.

[89] R. Shipsey, Elliptic Divisibility Sequences, PhD thesis, Goldsmith’s College

(University of London), 2000.

[90] J.H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, 1992.

https://cr.yp.to/bib/1992/montgomery-lucas.ps
www.dtc.umn.edu/~odlyzko/doc/arch/discrete.logs.pdf
www.dtc.umn.edu/~odlyzko/doc/arch/discrete.logs.pdf
https://math.dartmouth.edu/~carlp/PDF/dltalk4.pdf
https://math.dartmouth.edu/~carlp/PDF/dltalk4.pdf
http://mathcircle.berkeley.edu/BMC4/Handouts/elliptic.pdf
http://mathcircle.berkeley.edu/BMC4/Handouts/elliptic.pdf

[91] J.H. Silverman, Advanced Topics in The Arithmetic of Elliptic Curves,

Springer-Verlag, 1994.

[92] S. Singh, The Code Book, Fourth Estate 2000.

[93] J.A. Solinas, Low-weight Binary representations for Pairs of Integers,

Combinatorics and Optimization Research Report CORR 2001-41, http:

cacr.uwaterloo.ca/techreports/2001/corr2001-41.ps.

[94] S.R. Srinivasa, A Note on Schoenmakers Algorithm for Multi Exponentiation,

12th International Conference on Security and Cryptography(Colmer, France),

Proceedings of SECRYPT 2015, pp. 284-391.

[95] S.R. Srinivasa, Interesting Results Arising from Karatsuba Multiplication -

Montgomery family of formulae, ICCCT 2015, Proceedings of Sixth International

Conference on Computer and Communication Technology 2015 (Allahabad,

India), pp. 317-322.

[96] S.R. Srinivasa, An improved EllipticNet Algorithm for Tate Pairing on

Weierstrass’ Curves, Faster Point Arithmetic and Pairing on Selmer Curves

and a Note on Double Scalar Multiplication, 7th International Conference on

Applications and Technologies in Information Security, 2016 (Cairns, Australia),

Proceedings of ATIS 2016, Communications in Computer and Information

Science, volume 651, pp. 93-105.

[97] S.R. Srinivasa, Differential Addition in Edwards Coordinates Revisited and a

Short Note on Doubling in Twisted Edwards Form, 13th International Conference

on Security and Cryptography (Lisbon, Portugal), Proceedings of SECRYPT

2016, pp. 336-343.

[98] S.R. Srinivasa, Three Dimensional Montgomery Ladder, Differential Point

Tripling on Montgomery Curves and Point Quintupling on Weierstrass’ and

Edwards Curves, Proceedings of AFRICACRYPT 2016, (Fes, Morocco), LNCS

volume 9646, pp. 84-106.

[99] M. Stam, Speeding up subgroup Cryptosystems, 2003, PhD thesis, Technische

Universiteit Eindhoven.

[100] K. Stange, The Tate Pairing via Elliptic Nets, Pairing-Based Cryptography -

PAIRING 2007, LNCS volume 4575, pp. pp 329-348.

151

http:cacr.uwaterloo.ca/techreports/2001/corr2001-41.ps
http:cacr.uwaterloo.ca/techreports/2001/corr2001-41.ps

[101] K. Stange, Elliptic Nets and Elliptic Curves, 2008, PhD thesis, Brown

University

[102] J. Stillwell, The Evolution of Elliptic Curves, American Mathematical

Monthly 1995, volume 102 Issue 9, pp. 831-837.

[103] D. Stinson, Cryptography: Theory and Practice, Third Edition, CRC Press

2005.

[104] M. Ward, Memoir on Elliptic Divisibility Sequences, American Journal of

Mathematics 1948, volume 70, pp. 31-74.

[105] A. Weimerskirch and C. Paar, Generalization of the Karatsuba Algorithm for

efficient Implementations, 2003, https://eprint.iacr.org/2006/224.pdf.

[106] E. Wenger and M. Hutter, Exploring the Design Space of Prime Field vs.

Binary Field ECC-Hardware Implementations, Information Security Technology

for Applications-NordSec 2011, LNCS volume 7161, pp 256-271.

[107] S. Winograd, Arithmetic Complexity of computations, CBMS-NSF Regional

Conference Series in Applied Mathematics, Society for Industrial and Applied

Mathematics 1980, volume 33.

[108] H. Wu, C. Tang and R. Feng, A new Model of Binary Elliptic Curves,

INDOCRYPT 2012, LNCS volume 7668, pp. 399-411.

[109] A.C. Yao, On the Evaluation of Powers, SIAM Journal on Computing 1976,

volume 5, Issue 1, pp. 100-103.

[110] L. Zhang, K. Wang, H. Wang and D. Ye, Another Elliptic Curve Model for

Faster Pairing Computation, ISPEC 2011, LNCS volume 6672, pp. 432-446.

[111] C.A. Zhao, F. Zhang and J. Huang, A note on the Ate Pairing, 2007,

https://eprint.iacr.org/2007/247.ps, Accessed: 2nd Feb 2016.

https://eprint.iacr.org/2006/224.pdf
https://eprint.iacr.org/2007/247.ps

Index

2P +Q/Double-Add Method, 27

2-way Karatsuba, 117

3-way Karatsuba, 117

Affine Coordinates, 24

Akishita’s algorithm, 66

Atomic Block, 43

Binary Edwards Curves, 55, 60

Co-Z Addition, 91

Conjugate Addition, 93

Differential Addition Chain, 64

Differential Arithmetic, 45, 51

Differential Tripling Formulae, 47

Discrete Logarithm Problem, 13

Double Base Number System, 37

Double Scalar Multiplication, 68, 72

Edwards Curves, 33

Elliptic Curve Discrete Logarithm

Problem, 19

Enhanced 2P +Q method, 28

Exponentiation, 63

Generalized Edwards’ Curves, 52

Huff’s Model, 34

Jacobian Coordinates, 30

Karatsuba Multiplication, 115

Lucas Chain, 64

Mixed Addition, 88

Mixed Tripling, 89

Montgomery Curves, 32

Montgomery family of formulae, 115

Montgomery’s PRAC, 64

New Family of Formulae to multiply

two quadratics, 121, 122

Pairing based cryptography, 101

Point Tripling, 89

Precomputation, 87

Projective Coordinates, 25

Public Key Cryptography, 12

Quintupling Formulae, 38

Scalar Multiplication, 35

Schoenmakers’ Algorithm, 67

Schoenmakers’ algorithm for Triple

Scalar Multiplication, 75

Selmer Curves, 34, 111

Side Channel Attacks, 43

153

Stange’s Elliptic Net algorithm, 101

Tate Pairing, 102

Three-Dimensional Montgomery

Ladder, 80

Triple Scalar Multiplication, 75

Weierstrass’ Curves, 23

	Cryptography and Elliptic Curves
	Cryptography and the Discrete Logarithm Problem
	Elliptic Curves
	What are Elliptic Curves?
	Why the name Elliptic Curve?

	Group Law on Elliptic Curves and the ECDLP
	Roadmap

	Arithmetic on Elliptic Curves and some improvements
	Weierstrass Curves
	Affine Coordinates
	Projective Coordinates
	2P+Q/Double-Add Method
	Enhanced 2P+Q Method
	Jacobian Coordinates

	Montgomery Curves
	Edwards Curves
	Huff's Model
	Selmer Curves
	Scalar Multiplication
	Double Base Number System
	Quintupling Formulae for Weierstrass Curves
	Quintupling Formulae for Edwards Curves Revisited

	Side Channel Attacks

	Differential Arithmetic on Elliptic Curves
	Introduction to Differential Arithmetic
	Differential Tripling Formulae for Montgomery Curves
	Differential Arithmetic Generalized
	Differential Arithmetic on Generalized Edwards' Curves revisited
	Alternate Algorithms and Newer Operation Counts

	Multi Exponentiation and Differential Chains
	Addition Chains and Exponentiation
	Montgomery's PRAC
	Algorithms for Multiexponentiation
	Schoenmakers' Algorithm
	Schoenmakers' Algorithm for Triple Scalar Multiplication
	Three-Dimensional Scalar Multiplication on a Montgomery Curve

	Precomputation of Elliptic Curve Points for Jacobian Coordinates for Double Scalar Multiplication
	Point Arithmetic Formulae for Jacobian Coordinates on Elliptic Curves
	Conjugate Addition
	Conjugate Mixed Addition

	Co-Z Addition
	Point Tripling with Co-Z Update

	Precomputation of Elliptic Curve points to compute kP+lQ
	Jacobian Coordinates, a = -3
	Jacobian Coordinates, a =-3

	Pairing based cryptography
	Introduction
	Stange's Elliptic Net Algorithm to compute the Tate Pairing
	Stange's Algorithm for Tate Pairing
	Improvement to Stange's Algorithm

	Selmer Curves
	Point Arithmetic on Selmer Curves
	Cost of Tate Pairing on Selmer Curves

	Some Results Arising from Karatsuba Multiplication
	Review of Karatsuba's Algorithm
	3-way KA from 2-way KA
	New Family of Formulae to multiply two quadratics
	Extension of 2-way KA and 3-way KA to multiply three numbers
	Extended Karatsuba Algorithm: Uses and comparison with the School Book Algorithm

	Conclusion
	Appendix
	Bibliography
	Index

