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Abstract

For many years mathematicians and computer
scientists have searched for a fast and reliable
primality test. This is especially relevant
nowadays, because the popular RSA public-key
cryptosystem requires very large primes in order
to generate secure keys. I will describe some
efficient randomised algorithms that are useful,
but have the defect of occasionally giving the
wrong answer, or taking a very long time to
give an answer.

In 2002, Agrawal, Kayal and Saxena (AKS)
found a deterministic polynomial-time
algorithm for primality testing. I will describe
the original AKS algorithm and some
improvements by Bernstein and Lenstra. As far
as theory is concerned, we now know that
“PRIMES is in P”, and this appears to be the
end of the story. However, I will explain why it
is preferable to use randomised algorithms in
practice.
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First, some notation

As usual, we say that

f(n) = O(nk)

if, for some c and n0, for all n ≥ n0,

|f(n)| ≤ cnk .

We say that
f(n) = Õ(nk)

if, for all ε > 0,

f(n) = O(nk+ε) .

The “Õ” notation is useful to avoid terms like
log n and log log n. For example, when referring
to the Schönhage-Strassen algorithm for n-bit
integer multiplication, it is easier to write

Õ(n)

than the (more precise)

O(n log n log log n) .
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Complexity Classes (informal)

P is the class of decision (“yes”/“no”) problems
that have a deterministic polynomial time

algorithm, i.e. an algorithm running in time
O(λk) on inputs of length λ, for some fixed k.

RP is the class of decision problems that have a
randomised algorithm running in time O(λk),
with (one-sided) error probability at most 1/2
(if the correct answer is “yes”).
co-RP is similar, but permitting an error on the
other side (if the correct answer is “no”).

BPP is similar but allows errors (with
probability at most 1/4) on both sides.

ZPP is the class of decision problems that have
an error-free randomised (“Las Vegas”)
algorithm running in expected time O(λk).

NP is the class of decision problems for which,
if the answer is “yes”, there is a “certificate”
that can be verified in time O(λk).
co-NP is similar (for the answer “no”).
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Containment Relationships

P ⊆ ZPP = RP ∩ co-RP ,

RP ∪ co-RP ⊆ BPP ,

P ⊆ RP ⊆ NP ,

P ⊆ co-RP ⊆ co-NP .

It is not known if any of the inclusions is strict,
or whether BPP ⊆ NP or NP ⊆ BPP .

Note that P 6= RP or RP 6= NP implies

P 6= NP .

This inequality is one of the seven $1,000,000
Millenium Prize Problems.
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Reducing Probability of Error

Given a problem in RP , co-RP , or BPP , we
can reduce the probability of error below any
given ε > 0 by iterating O(log(1/ε)) times with
independent random choices at each iteration.
In this context an iteration is usually called a
“trial”.

For example, if an algorithm in RP has
(one-sided) error probability at most 1/4, we
can perform 10 independent trials to get an
algorithm with error probability at most

1

410
<

1

1000000
.

The Rabin-Miller primality-testing algorithm is
an example of such an algorithm. We’ll show
later that it is actually an RP algorithm for
testing compositeness, so if PRIMES is the
problem of testing primality, we have:

PRIMES ∈ co-RP .
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Factoring

Every positive integer has a unique factorisation
into a product of prime powers. That is the
main reason why primes are important: they
are “building blocks” for the integers.

However, there does not seem to be any simple
connection between algorithms for factoring and
algorithms for testing primality. We’ll see that
there are algorithms that can answer the
question

Is n prime?

much faster than any known algorithm for
finding the prime factors of n (if it is
composite).

The popular RSA cryptosystem needs two large
primes p and q whose product n = pq is difficult
to factor. Primality testing algorithms are
useful for generating p and q, but they are not
useful for cracking RSA by factoring n (if p and
q are kept secret).
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Factoring Primes ?

Primality testing and factorisation are often
confused, even by such luminaries as Bill Gates.

The obvious mathematical
breakthrough would be
development of an easy way to
factor large prime numbers.

– Bill Gates et al, 19951

Presumably Gates did not have in mind
factorisations such as

13 = (2 + 3i)(2 − 3i) .

1Bill Gates, Nathan Myhrvold and Peter M. Rinearson,
The Road Ahead, Viking Press, 1995, p. 265.
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Fermat’s Little Theorem

If n is prime and a is any integer, then

an = a mod n.

Thus, if we find a such that an 6= a mod n, we
can be sure that n is composite. We say that

“a is a witness to the compositeness of n”.

Note: we can guarantee that n is composite
without knowing the factors of n.

The converse of Fermat’s little theorem is false:
if an = a mod n we can not be sure that n is
prime. There are infinitely many examples
(called Carmichael numbers) of composite n for
which an is always a mod n. The smallest
example is

n = 561 = 3 · 11 · 17 ,

φ(n) = LCM(2, 10, 16) = 80 | (n − 1) .

The number of Carmichael numbers up to N is
at least of order N2/7 (Alford, Granville and
Pomerance, 1994) so we can’t ignore them!
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Certificates

In the definition of NP we mentioned
certificates. A certificate for a property is some
information that enables a proof of the property
to be completed in polynomial time.

For example, a “witness” a such that
an 6= a mod n provides a certificate of the
compositeness of n. A nontrivial factor of n
would also provide a certificate.

Pratt (1975) showed that every prime p has a
certificate of length O((log p)2). The idea is to
write

p − 1 = pα1

1 · · · pαν
ν

and give a primitive root a of p. This can be
verified by checking that

ap−1 = 1 mod p
and

a(p−1)/pβ 6= 1 mod p for β = 1, . . . , ν .

We (recursively) give certificates for p1, . . . , pν

unless they are sufficiently small (say < 100).
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Consequence of Pratt’s Theorem

From Pratt’s result,

PRIMES ∈ NP .

Note that we don’t claim that Pratt’s certificate
of primality of n is easy to find. Finding it is as
difficult as factoring, since it requires the
factorisation of n − 1. The mere existence of the
certificate is sufficient.
If n is composite, a nontrivial factor f of n
(satisfying 1 < f < n) provides a certificate of
compositeness. Again, we don’t claim that this
certificate is easy to find! Its existence is
enough to show that

PRIMES ∈ co-NP .

Thus, we know that

PRIMES ∈ NP ∩ co-NP .

NP ∩ co-NP is believed to be smaller than NP ,
but a proof of this would imply that P 6= NP ,
so is likely to be difficult.
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First Extension of Fermat

A slight extension of Fermat’s little Theorem is
useful for primality testing. The idea is simple.
Suppose we are testing the primality of n, and
we find x such that

x2 = 1 mod n .

If n is prime, then x = ±1 mod n.

However, if n is composite, then it is possible
(and quite likely) that x 6= ±1 mod n. For
example, consider n = 21 and x = 8.
More generally, if n = p1p2, take
x = −1 mod p1, x = +1 mod p2.

When applying the Fermat test to n, we
compute an−1 mod n for some choice of a.
The Fermat test is passed if an−1 = 1 mod n.
If n is odd, then the exponent n− 1 is even, and
we can take x to be a suitable power of a. This
gives the following primality test.
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First Extension of Fermat cont.

If n = 2kq + 1 is an odd prime, and 0 < a < n,
then either aq = 1 mod n, or the sequence

S = (aq, a2q, a4q, . . . , a2kq) mod n

ends with 1, and the value just preceding the
first appearance of 1 must be −1 mod n .

That is, the sequence S looks like

(1, 1, . . . 1) if aq = 1 mod n,
(?, . . . , ?,−1, 1, . . . , 1) otherwise.

Proof: If x2 = 1 mod n then n|(x − 1)(x + 1).
Since n is prime, n|(x − 1) or n|(x + 1).
Thus x = ±1 mod n. ⊓⊔

This fact has been known for a long time.
Relevant names are Dubois, Selfridge, Artjuhov,
and Miller. Rabin was the first to prove its
usefulness in a randomised algorithm, usually
called the Rabin-Miller algorithm.
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The Rabin-Miller Algorithm

The extension of Fermat’s little Theorem gives
a necessary (but not sufficient) condition for
primality of n. The Rabin-Miller algorithm
checks if this condition is satisfied for a random
choice of a, and returns “yes” if it is, “no”
otherwise.

If n is prime, the answer is always “yes”
(correct).

If n is composite, the answer could be “yes”
(wrong) or “no” (correct), but it is “no” with
probability greater than 3/4, i.e. the probability
of error is < 1/4 (this is a theorem of Rabin).

Thus we have an RP-algorithm for testing
compositeness. We can say that compositeness
is in RP, or (equivalently)

PRIMES ∈ co-RP .

The Rabin-Miller algorithm gives a certificate
for compositeness, but not a certificate for
primality.
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Popular Primality-Testing Algorithms

Popular algorithms include:

• The Rabin-Miller algorithm (1976).

• The Jacobi Sums algorithm of Adleman,
Pomerance and Rumely (1983).

• The Elliptic Curve Primality Proving

algorithm ECPP of Atkin and Morain
(1993), based on a proposal by
Goldwasser and Kilian.

These algorithms all have their good (and bad)
points. We’ll look at each more closely before
discussing

• The AKS algorithm of Agrawal, Kayal
and Saxena (2002).

It will be convenient to define

λ = log n ,

where n is the number being tested for
primality.
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Jacobi Sums

The Jacobi Sums algorithm runs in time

λO(log log λ) .

This is almost polynomial time2.

We can be more precise: Odlyzko and
Pomerance have shown that, for all large n, the
running time is in

[λA log log λ, λB log log λ] ,

where A, B are positive constants. The lower
bound shows that the Jacobi Sums algorithms
is definitely not polynomial-time (in theory
anyway).

The Jacobi sums algorithm is deterministic and
practical: it has been used for numbers of at
least 3395 decimal digits (Mihailescu: 6.5 days
on a 500 Mhz Dec Alpha).

2Recall that λ = log n so log log λ = log log log n.
While it has been proved that log log log n → +∞ with
n, it has never been observed doing so [Pomerance].
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ECPP

The Elliptic Curve Primality Proving algorithm
ECPP runs in expected polynomial time under
some plausible assumptions, but the time bound
has not been proved rigorously. With an
improvement suggested by Shallit, the
(conjectured) expected time is Õ(λ4).

ECPP is a Las Vegas algorithm: the running
time is random but the result is error-free.

ECPP is practical and has been used to prove
primality of a number of 20562 decimal digits
(Morain, 2006). It took the equivalent of 2219
days (about 6 years) on an AMS Opteron
(2.39GHz), but actually only 9 months since the
workload was distributed.

In practice ECPP is comparable to the Jacobi
Sums algorithm, but ECPP has the advantage
of producing an easily-checked certificate of
primality. In fact, ECPP produces a certificate
of size O(λ2) that can be checked in
deterministic polynomial time Õ(λ3).
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Rabin-Miller

Rabin-Miller is a Monte Carlo algorithm: there
is a nonzero probability of error. In practice the
probability of error is negligible (less than 10−6)
if we take at least ten independent trials.

The algorithm is fast: one trial takes time

Õ(λ2)

(or O(λ3) with classical O(λ2) multiplication).

Rabin-Miller is feasible for numbers of 106

decimal digits. It produces a certificate of
compositeness, but not a certificate of primality.
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Combination Algorithm

Recall that ECPP produces a certificate of
primality. Thus, using a combination of
Rabin-Miller and ECPP, we can get a
randomized algorithm that produces a
certificate to prove that its result (whether
“prime” or “composite”) is correct.

All we have to do is run the Rabin-Miller and
ECPP algorithms in “parallel” until one of
them produces a certificate3. The expected
running time is believed to be Õ(λ4), although
we can’t prove this.

3That is, run both algorithms simultaneously using
time-sharing.
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Extension of Fermat to Polynomials

If n is prime and a is fixed, then

(x + a)n = xn + a mod n (1)

holds, where each side of the equality is a
polynomial in x. Formally, we are working in
the ring (Z/nZ)[x] of polynomials whose
coefficients are in the ring Z/nZ of integers
mod n.

Agrawal and Biswas (1999) noticed that,
provided a 6= 0 mod n, condition (1) is both
necessary and sufficient for the primality of n.

In general, we can not compute
(x + a)n mod n in time polynomial in λ
because it is a polynomial with n + 1 terms.
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The AKS Algorithm

In August 2002, Agrawal, Kayal and Saxena
announced a deterministic polynomial-time
primality test based on (1). Thus,

PRIMES ∈ P .

The idea is to compute
(x + a)n mod (xr − 1, n) for 1 ≤ a ≤ s and
sufficiently large r, s. The not-so-obvious fact is
that it is sufficient to choose

r = O(λ6), s = O(λ4) .

Thus, we can do everything in time Õ(λk).

The precise value of the exponent k depends on
details of the implementation. A revision of the
AKS paper has k = 7.5.

The exponent k can be reduced to 6,
and maybe even further, at the expense of
more complicated algorithms or (worse)
unproved assumptions.
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Example

Take n = 1729 = 7 × 13 × 19. This is a
Carmichael number, so

an = a mod n

for all integers a. However,

(x + 1)n 6= xn + 1 mod n .

In fact, working mod n (i.e. in (Z/nZ)[x]),

(x + 1)n = x1729 + 247x1722 + · · · + 247x7 + 1 .

We can more easily verify that
(x + 1)n 6= xn + 1 mod n by working
mod (x5 − 1) as well as mod n: we find that

(x+1)n = 134x4 +1330x3 +532x2 +1330x+134

in (Z/nZ)[x]/(x5 − 1).

Here x5 − 1 acts rather like a hash function:
it lets us sum every fifth term in the binomial
expansion of (x + 1)n, thus reducing n + 1 terms
to five. The computation involves polynomials
of degree at most eight.
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The Key Theorem

Theorem (AKS-Bernstein-Morain, 2002)

Suppose that n, r, s > 0, where r is prime and q
is the largest prime factor of r− 1. Suppose that

(
q + s − 1

s

)
> n2⌊√r⌋ , (2)

that n has no prime factor ≤ s, and that
n(r−1)/q mod r /∈ {0, 1}. Finally, suppose that

(x − a)n = xn − a (3)

in (Z/nZ)[x]/(xr − 1) for 1 ≤ a ≤ s. Then n is
a prime power.

Remarks

This formulation is given by Morain. In a
primality test, after selecting r and s
satisfying (2), it takes time Õ(rsλ2) to
check (3), so we want to minimise rs.

The original AKS algorithm has r = O(λ6),
q ≥ 2s, s = O(λ

√
r) = O(λ4), time Õ(λ12).

The proof is “elementary”, but too long to give
in this lecture.
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Reducing the Exponent

A Sophie-Germain prime is a prime q such that
r = 2q + 1 is also prime, e.g. q = 11, r = 23.

It is conjectured that there are infinitely many
Sophie-Germain primes, and that the number
up to N is asymptotic to 2C2N/(lnN)2, where
C2 ≈ 0.66016 is the Hardy-Littlewood
twin-prime constant. Proving this conjecture is
probably as difficult as proving the same
conjecture for twin primes (in other words,
difficult!).

If the Sophie-Germain conjecture is true, then
r = O(λ2), s = O(

√
rλ) = O(λ2), and the time

bound is reduced to Õ(rsλ2) = Õ(λ6).

In fact, it’s possible to get Õ(λ6) without using
the Sophie-Germain conjecture, but using a
more sophisticated algorithm based on
“Gaussian periods” (Lenstra and Pomerance).

25

Experimental Results

The following table gives some times for a
Magma implementation of the AKS algorithm
(with Lenstra & Bernstein’s improvements) on
a 1 Ghz Pentium.

Times marked “(est)” are estimated from the
time taken for one of the s iterations, or by
extrapolation, assuming the exponent k = 6.

n r s time

109 + 7 43 315 1.0 sec
1019 + 51 67 5427 750 sec
1049 + 9 491 28801 32 hours

10100 + 267 3541 58820 1 year (est)
2511 + 111 13 years (est)

21023 + 1155 840 years (est)

Table 1: The (improved) AKS algorithm
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Comparison with Other Algorithms

The following table gives times for Magma
implementations of the Rabin-Miller,
ECPP and AKS algorithms on a 1 Ghz
machine. In all cases the number tested was
10100 + 267.

Algorithm trials time

Rabin-Miller 1 0.003 sec
Rabin-Miller 10 0.03 sec
Rabin-Miller 100 0.3 sec

ECPP 2.0 sec
AKS 1 year (est)

Table 2: Various algorithms
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Testing 1024-bit Numbers

Numbers of about 1024 bits are of interest in
cryptography. Testing numbers of this size on a
1GHz computer:

• Rabin-Miller takes less than one second.

• ECPP takes about 23 seconds.

• AKS would take more than 800 years!
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Reliability of the Result

ECPP gives a certificate of primality, and the
certificate can be checked quickly. It should be
checked, to guard against hardware and/or
programming errors. It is conjectured that the
expected time to find a certificate is Õ(λ4). The
time to check a certificate is Õ(λ3).

Rabin-Miller takes time Õ(λ2) per trial. T trials
give probability of error less than 4−T if n is
composite; there is no error if n is prime.

Theoretically, AKS is error-free. However, in a
long computation there is a significant
probability of a hardware error. Such an error
would in most cases make a prime n “appear”
composite; a composite n would usually still
“appear” to be composite.

To be safe, one should make an independent
check of the certificate (if available), or use at
least two different algorithms.
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Summary – Primality Testing and

Complexity Classes

P

ZPP

RP

co-RP

�

Rabin-Miller, k = 2

I

Combination, k = 4?

K

AKS, k ≤ 10.5 (k = 6?)

6

Lenstra-Pomerance, k = 6

(Conjectured) running time is Õ(λk).
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Conclusions

• The AKS algorithm is theoretically
significant, since it shows that
PRIMES ∈ P .

• AKS is not a practical algorithm. ECPP
is much faster. Rabin-Miller is even faster,
at the price of a minute probability of
error. A combination of Rabin-Miller and
ECPP avoids this possible error, and
provides an easily-checked certificate.

• The assumption that problems with
polynomial-time algorithms are feasible,
and other problems are intractible, is too
simplistic.

In practice, “expected” or “conjectured”
or “almost” polynomial algorithms can be
better than deterministic polynomial-time
algorithms. The exponent k is important.
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Last Words

A crude application of theory says that the
AKS algorithm is best, but a realistic analysis
shows that Rabin-Miller and/or ECPP are
much to be preferred. In general, Monte Carlo
or Las Vegas algorithms may be better than
deterministic polynomial-time algorithms!

I would be more confident in the security of a
cryptosystem using large primes certified by
Rabin-Miller than (necessarily smaller) primes
certified by AKS.
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