Prospects for Integer
Factorisation Algorithms*
Richard P. Brent
Computing Laboratory

University of Oxford
rpb@comlab.ox.ac.uk

5 April 2001

*Copyright ©2001, R. P. Brent. Utrecht

Outline

e Introduction and motivation

o The elliptic curve method (ECM)

The quadratic sieve (QS and MPQS)

The number field sieve (NFS)

— Special (SNFS)
— General (GNFS)

History and extrapolations

e Summary and conclusions

Introduction

Any positive integer N has a unique prime
power decomposition

N :ptlllpg2 .. _p;:k

(p1 < p2 < --- < pg primes, a; > 0). The
standard proof gives no hint of an efficient
algorithm for computing the prime power
decomposition. In order to compute it, we
need —

1. An algorithm to test if an integer NV is
prime.

2. An algorithm to find a nontrivial factor f
of a composite integer N.

Public Key Cryptography

Fortunately or unfortunately, depending on
one’s point of view, problem 2 is generally
believed to be hard. There is no known
polynomial-time algorithm for finding a factor
of a given composite integer N.

This empirical fact is of great interest because
the most popular algorithm for public-key
cryptography, the RSA algorithm, would be
insecure if a fast integer factorisation algorithm
could be implemented.

Today I will survey some of the most successful
integer factorisation algorithms, concentrating
on the computational aspects, and particularly
on parallel/distributed implementations. Due to
shortage of time, many topics will be omitted.
On my web site you can find a survey paper?
with many references to the literature.

"http://wuw.comlab.ox.ac.uk/oucl/work/
richard.brent/pub/pub196.html

Integer Factorisation Algorithms

There are many algorithms for finding a
nontrivial factor f of a composite integer N.
The most useful algorithms fall into one of two
classes —

A. The run time depends mainly on the size
of N, and is not strongly dependent on
the size of f. Examples are —

— Lehman’s algorithm, which has
worst-case run time O(N'/3).

— The Multiple Polynomial Quadratic
Sieve (MPQS) algorithm, which
under plausible assumptions has
expected run time

O(exp(Veln N1Inln N))

where ¢ &~ 1 is a constant.

— The Number Field Sieve (NFS)
algorithm, which under plausible
assumptions has expected run time

O(exp(c(In N)/3(Inln N)?/3)) |

where ¢ is a (different) constant.

B. The run time depends mainly on the size
of f, the factor found. (We can assume
that f < Nl/z.) Examples are —

— The trial division algorithm, which
has run time O(f - (In N)?).

— Pollard’s “rho” algorithm, which

under plausible assumptions has
expected run time

O(fY?- (InN)?).

— Lenstra’s Elliptic Curve (ECM)
algorithm, which under plausible
assumptions has expected run time

O(exp(v/cIn fInIn f) - (In N)?) ,

where ¢ & 2 is a constant.

In these examples, the time bounds are for a
sequential machine, and the term (In N)? is a
generous allowance for the cost of performing
arithmetic operations on numbers which are

O(N?).

Quantum factorisation algorithms

In 1994 Shor showed that it is possible to factor
in polynomial expected time on a quantum
computer. However, despite the best efforts of
several research groups, such a computer has
not yet been built, and it remains unclear
whether it will ever be feasible to build one.
Thus, we restrict our attention to algorithms
which run on classical (serial or parallel)
computers.

Elliptic Curves Over Finite Fields

A curve of the form
yv¥=23+tax+b (1)

over some field F' is known as an elliptic curve.
A more general cubic in z and y can be reduced
to the form (1), which is known as the
Weierstrass normal form, by rational
transformations, provided char(F) # 2 or 3.

There is a well-known way of defining an
Abelian group (G, +) on an elliptic curve over a
field. If Pl = (a:l,yl) and P2 = (wg,yg) are
points on the curve, then the point

Py = (:L'g,yg) = P + P, is defined by —

(z3,y3) = (A2 — 21 — @2, A(z1 — x3) — 1) ,

where

_ { (323 +a)/(2y1) it P =P
(y1 —y2)/(x1 — 22) otherwise.

2

The zero element in G is the
(00, 00). We write it as 0.

‘point at infinity”,

Geometric Interpretation

The geometric interpretation of “+” is
straightforward: the straight line P; P,
intersects the elliptic curve at a third point

P; = (z3,—y3), and P is the reflection of Pj in
the z-axis.

More elegantly, if a straight line intersects the
elliptic curve at three points Q1,Q2, @3 then

Q1 +Q2+Q3=0.

N

Figure 1: The Group Operation

Brief Description of ECM

The elliptic curve method (ECM) for integer
factorisation was discovered by H. W. Lenstra,
Jr. in 1985. Various practical refinements were
suggested by Montgomery, Suyama, and others.

ECM uses groups defined by pseudo-random
elliptic curves over GF(p), where p > 3 is the
prime factor we hope to find. (Fortunately, we
don’t need to know p in advance.) The group
order g for an elliptic curve over GF(p) satisfies

lg—p—1] <2p,

and all g satisfying this inequality are possible.
ECM is similar to an earlier method, Pollard’s
“p —1” method, but the p — 1 method has the
disadvantage that the group is fixed and the
method fails if p — 1 has a large prime factor.
We can think of ECM as a “randomised”
version of the p — 1 method. It works if we are
lucky enough to hit a group whose order g has
no large prime factors. (Jargon — g is
“smooth”.)

10

Lenstra’s Analysis of ECM

Consider applying ECM to a composite integer
N with smallest prime factor p. Making an
unproved but plausible assumption regarding
the distribution of prime factors of random
integers in “short” intervals, Lenstra showed
that ECM will find p in an expected number

W (p) = exp <\/(2 +o(1))Inpln 1np>

of multiplications (mod N), where the “o(1)”
term tends to zero as p — oc.

In Lenstra’s algorithm the field F is the finite
field GF(p) of p elements, where p is a prime
factor of N. Since p is not known in advance,
computation is performed in the ring Z/NZ of
integers modulo N rather than in GF(p). We
can regard this as using a redundant group
representation.

11

One Trial of ECM

A trial (or curve) is the computation involving
one random group G. The steps involved are —

1. Choose a parameter m.

2. Choose zg, yp and a randomly in [0, N).
This defines b = y¢ — (2} + azo) mod N.
Set P+ Py = (Jlo,yo).

3. For each prime < m take its maximal
power ¢ < m and set P < ¢P in the
group G defined by a and b.

If P =0 then the trial succeeds as a factor of N
will have been found during an attempt to
compute an inverse mod N. (We expect P =0
if no prime power factors of the group order are
larger than m.) Otherwise the trial fails.

The work involved in a trial is O(m) group
operations. There is a tradeoff involved in the
choice of m, as a trial with large m is expensive,
but a trial with small m is unlikely to succeed.

12

Optimal Choice of m

Making Lenstra’s plausible assumption, one
may show that the optimal choice of m is

e where
2Inp
@ Inlnp

It follows that the expected run time is

m=7p

T = p2/a+o(l/a) .

The exponent 2/« should be compared with 1
(for trial division) or 1/2 (for Pollard’s “rho”
method).

A Practical Problem

The optimal choice of m depends on the size of
the factor p. Since p is unknown, we have to
guess or use some sort of adaptive strategy.

Fortunately, the expected performance of ECM
is not very sensitive to the choice of parameters,
so the precise strategy does not matter much.

13

Expected Performance of ECM

In Table 1 we give a small table of log;q W for
factors of D decimal digits. The precise figures
depend on assumptions about the
implementation.

Table 1: Expected work for ECM

digits D | log;q W
20 7.35
30 9.57
40 11.49
50 13.22
60 14.80

Note that in the region D = 50 to D = 60 the
expected work W increases by a factor of about
26 and by Moore’s law we might predict that
hardware will improve by this factor in about 9
years, i.e. Moore’s law gives about one digit per
year.

14

ECM Example 1

After the factorisation of the ninth Fermat
number Fy = 22° + 1 in 1990 (we’ll say more
about this later), Fip = 22" 1 1 was the “most
wanted” number in various lists of composite
numbers.

F19 was proved composite in 1952 by Robinson,
using Pépin’s test on the SWAC. A small factor,
45592577, was found by Selfridge in 1953 (also
on the SWAC). Another small factor,
6487031809, was found by Brillhart in 1962 on
an IBM 704. Brillhart later found that the
cofactor was a 291-digit composite.

Using ECM 1 found a 40-digit factor psg =

4659775785220018543264560743076778192897

of Fip in October, 1995. The 252-digit cofactor
291/ pap passed a probabilistic primality test
and was soon proved to be prime using the
method of Atkin and Morain (based,
appropriately, on elliptic curves). Thus, the
complete factorisation of Fig is

Flo = 45592577 - 6487031809 - pgo - p252 -

15

ECM Example 2

ECM can routinely find factors p of size up to
30 decimal digits, and it often finds larger
factors. The largest factors known to have been
found by ECM have 54 decimal digits (two of
these were found by Lygeros and Mizony). I will
give a slightly smaller example here because the
number factored is perhaps more “interesting”.

The 53-digit factor

pss = 53625112691923843508117942\
311516428173021903300344567

of 2677 — 1 was found by Conrad Curry in
September 1998 using a program written by
George Woltman and running on 16 Pentiums.

The group order for the lucky trial was

g = 2*.39.3079 152077 - 172259 - 1067063 -
3682177 - 3815423 - 8867563 - 15880351

We expect only one in 2,400,000 curves to have
such a “smooth” group order.

16

ECM Factoring Records

547 D
52 1
50 1
48 1
46 1
441
421
40
38 . w w ' ‘ ‘
1990 1992 1994 1996 1998 2000 2002

Figure 1: Factors found by ECM versus year

Figure 1 shows the size D (in decimal digits) of
the largest factor found by ECM against the
year it was done, from 1991 (40D) to the
present (54D).

17

Curve Fitting

7.61 VD
7.41
7.21
7.01
6.8
6.6
6.4-
6.2-

6.0 \ T \ T T \
1990 1992 1994 1996 1998 2000 2002

Figure 2: v/D versus year Y for ECM

Let D be the number of decimal digits in the
largest factor found by ECM up to a given date.
From the theoretical time bound for ECM,
assuming Moore’s law, we expect VD to be
roughly a linear function of calendar year (in
fact v/ D1n D should be linear, but given the
other uncertainties we have assumed for
simplicity that v/In D is roughly a constant).

18

Extrapolation of ECM Records

The straight line shown in the Figure 2 is

Y —1932.3
D=-——°2°
vD 9.3

and extrapolation gives D = 60 in the year
Y =2004 and D = 70 in the year Y = 2010.

19

Quadratic Sieve Algorithms

Quadratic sieve algorithms belong to a large
class of algorithms which try to find two integers
z and y such that z # +y (mod N) but

22 =y? (mod N) . (2)

Once such z and y are found, then

GCD (z — y, N) is a nontrivial factor of N.

One way to find = and y satisfying (2) is to find
a set of relations of the form

u? = v?wi (mod N), (3)

where the w; have all their prime factors in a
moderately small set of primes (called the
factor base). Each relation (3) gives a row in a
matrix A whose columns correspond to the
primes in the factor base.

20

Linear Algebra mod 2

Once enough rows have been generated, we can
use sparse Gaussian elimination in GF(2) to
find a linear dependency (mod 2) between a set
of rows of A. Multiplying the corresponding
relations now gives an expression of the

form (2). With probability at least 1/2, we have
x # £y mod N so a nontrivial factor of N will
be found. If not, we need to obtain a different
linear dependency and try again.

Exact and Approximate Systems

In the MPQS and NFS factorisation algorithms
we have to solve very large, sparse linear
systems ezactly over the finite field GF(2).
(More precisely, we have to find dependencies
amongst the rows of a large matrix.) For
discrete log problems we also get large sparse
linear systems, although the field is different.
More familiar to most people is the approzimate
solution of large sparse linear systems over the
real or complex fields (using floating-point
arithmetic).

21

Use of Iterative Methods

To avoid problems with “fill in”, variants of
some familiar “iterative” methods can be used.
These methods (based on conjugate gradients or
Lanczos) only require matrix-vector
multiplications and inner products. Some
important points are:

e Nonzero vectors can be orthogonal to
themselves !

e Many more iterations are required to find
the exact solution (actually several exact
dependencies) than an approximate
solution.

e Preconditioning is useless (although other
forms of preprocessing may be useful).

e The matrix is never symmetric.

e Operations over GF(2) can be parallelised
using logical operations on words of
(typically) 32 or 64 bits.

22

Sieving

In quadratic sieve algorithms the numbers w;
are the values of one (or more) polynomials
with integer coefficients. This makes it easy to
find relations by sieving. The inner loop of the
sieving process has the form

while j < bound do

begin

sli] < slil + &

J<ita

end
Here bound depends on the size of the
(single-precision real) sieve array s, ¢ is a small
prime or prime power, and c is a
single-precision real constant depending on ¢
(¢ =A(q) = lnp if ¢ = p°, p prime).
It is possible to use scaling to avoid floating
point additions, which is desirable on a small
processor without floating-point hardware.

23

MPQS

MPQS is a quadratic sieve method which uses
several polynomials to improve the efficiency of
sieving (an idea of Montgomery). MPQS can,
under plausible assumptions, factor a number N

in time
O(expVelnNInlnN) ,

where ¢ ~ 1.

If p ~ V/N this is essentially the same bound as
for ECM. Thus, MPQS has no theoretical
advantage over ECM. (Theoretically, ECM is
almost always faster than MPQS).

However, in practice MPQS is usually faster
than ECM if N is the product of two primes
which both exceed N'/3. This is because the
inner loop of MPQS involves only
single-precision (sieving) operations, whereas
the corresponding loop of ECM involves
multiple-precision operations mod N.

24

MPQS Examples

MPQS has been used to obtain many impressive
factorisations. Arjen Lenstra and Mark
Manasse (with many assistants scattered around
the world) have factored several numbers larger
than 1019, For example, the 116-decimal digit
number (332 + 1)/(known small factors) was
split into a product of 50-digit and 67-digit
primes. The final factorisation is

332941 = 22.547-16921 - 256057 - 36913801 -
177140839 - 1534179947851 -
2467707882284001426665277\
9036768062918372697435241 - per

Such factorisations require many years of CPU
time, but a real time of only a month or so
because of the number of different processors
which are working in parallel.

25

The Magic Words are - --

At the time of writing, the largest number
factored by MPQS is the 129-digit “RSA
Challenge” number RSA129. It was factored in
1994 by Atkins et al. RS&A had predicted in
Scientific American that it would take millions
of years to factor RSA129.

The factors of RSA129 allow decryption of a
‘secret’ message from RS&A. Using the
decoding scheme 01 = A,02 =B, ...,26 = Z,
and 00 a space between words, the decoded
message reads

THE MAGIC WORDS ARE SQUEAMISH
OSSIFRAGE

It is certainly feasible to factor larger numbers
by MPQS, but for numbers of more than about
110 decimal digits GNFS is faster. For example,
to factor RSA129 by MPQS required 5000
Mips-years, but to factor the slightly larger
number RSA130 by GNFS required only 1000
Mips-years.

26

The Special Number Field Sieve
(SNFS)

Most of our numerical examples have involved
numbers of the form

a®+b, (4)
for small a and b, although the ECM and
MPQS factorisation algorithms do not take
advantage of this special form.

The special number field sieve (SNFS) is a
relatively new (c. 1990) algorithm which does
take advantage of the special form (4). In
concept it is similar to the quadratic sieve
algorithm, but it works over an algebraic
number field defined by a, e and b.

The details are rather technical and depend on
concepts from algebraic number theory, so we
simply give two examples to show the power of
the algorithm.

27

SNFS Example 1

Consider the 155-decimal digit number
Fp=N=2"+1

as a candidate for factoring by SNFS. Note that
8N = m® + 8, where m = 203, We may work in
the number field Q(«), where « satisfies

a®+8=0,
and in the ring of integers of @Q(«a). Because
m®+8=0 (mod N),

the mapping ¢ : @ — m mod N is a ring
homomorphism from Z[«a] to Z/NZ.

The idea is to search for pairs of small coprime
integers u and v such that both the algebraic
integer u 4+ av and the (rational) integer u + mv
can be factored. The factor base now includes
prime ideals and units as well as rational
primes.

28

Example 1 continued

Because
¢(u+ av) = (u+mv) (mod N),

each such pair gives a relation analogous to (3).
The prime ideal factorisation of u + av can be
obtained from the factorisation of the norm

u® — 8v® of u+ av. Thus, we have to factor
simultaneously two integers u + mv and

|u® — 8v®|. Note that, for moderate v and v,
both these integers are much smaller than N, in
fact they are O(N/%), where d = 5 is the
degree of the algebraic number field.

Using these and related ideas, Lenstra et al
factored Fy in June 1990, obtaining

Fy = 2424833.
745560282564788420833739\
5736200454918783366342657 - pog

where pgg is an 99-digit prime, and the 7-digit

factor was already known (although SNFS was
unable to take advantage of this).

29

Details

The collection of relations took less than two
months on a network of several hundred
workstations. A sparse system of about 200,000
relations was reduced to a dense matrix with
about 72,000 rows. Using Gaussian elimination,
dependencies (mod 2) between the rows were
found in three hours on a Connection Machine.
These dependencies implied equations of the
form z2 = % mod Fy. The second such
equation was nontrivial and gave the desired
factorisation of Fy.

30

SNFS Example 2

The current SNFS record is the 233-digit
number 2773 + 1, factored in November 2000 by
a collaboration called “The Cabal”.

In fact, 2773 4+ 1 = 3 - 533371 - pss5 - P71 - P02,
where the 6-digit factor was already known,
leaving a 227-digit composite number. The
large factors are:
pss = 17376397426392540604378615\
21344464381695829802369522859 ,
pr1 = 23206316220078396404383\
777135534261928387046186\
611079662143434527093563 ,

and p1g2 may be found by division (exercise).

It is curious that pss might have been found by
ECM, but this would not have helped as the
172-digit quotient would have been just as hard
to factor as the original number!

For details see the announcement at
ftp://ftp.cwi.nl/pub/herman/NFSrecords/
SNFS-233 .

31

A Few Details

The factorisation of N = 2773 4+ 1 used two
polynomials

fw) =z -2

and
glz)=2%+2

with common root m = 2129 mod N.

After sieving and reduction a sparse matrix over
GF(2) was obtained with about 6.75 x 10% rows
and weight (number of nonzero entries) about
4.4 x 108, an average of about 65 nonzeros per
row. Montgomery’s block Lanczos program
took 250 CPU hours on a Cray C90 to find 64
dependencies.

Finally, the square root program needed 19
hours on one CPU of an SGI Origin 2000, and
three dependencies to find the three large prime
factors.

32

The General Number Field Sieve
(GNFS)

The general number field sieve (GNFS or just
NFS) is a logical extension of the special
number field sieve (SNFS).

When using SNF'S to factor an integer N, we
require two polynomials f(z) and g(z) with a
common root m mod N but no common root
over the field of complex numbers.

If N has the special form a® £ b then it is
usually easy to write down suitable polynomials
with small coefficients, as illustrated by the two
examples given above.

If N has no special form, but is just some given
composite number, we can also find f(z) and
g(x), but they no longer have small coefficients.

33

The “Base m” Method

Suppose that g(z) has degree d > 1 and f(z) is
linear. d is chosen empirically, but it is known
from theoretical considerations that the
optimum value is

p (31nN>1/3
Inln N ’

We choose m = [NY/(@+1) | and write

d
N = Z ajmj
=0

where the a; are “base m digits”. Then,
defining

d
f(m)szmy g($)=Zan],
Jj=0

it is clear that f(z) and g(z) have a common
root m mod N. This method of polynomial
selection is called the “base m” method.

34

Other Ingredients of GNFS

Having found two appropriate polynomials, we
can proceed as in SNFS, but many difficulties
arise because of the large coefficients of g(z).
The details are the subject of several theses.
Suffice it to say that the difficulties can be
overcome and the method works!

Due to the constant factors involved, GNFS is
slower than MPQS for numbers of less than
about 110 decimal digits, but faster than MPQS
for sufficiently large numbers, as anticipated
from the theoretical run times.

35

Difficulties Overcome

Some of the difficulties which had to be
overcome to turn GNFS into a practical
algorithm are:

e Polynomial selection. The “base m”
method is not very good. Peter
Montgomery and Brian Murphy have
shown how a very considerable
improvement (by a factor of more than
ten) can be obtained.

e Linear algebra. After sieving a very large,
sparse linear system over GF(2) is
obtained, and we want to find
dependencies amongst the rows. It is not
practical to do this by Gaussian
elimination because the “fill in” is too
large. Montgomery showed that the
Lanczos method could be adapted for this
purpose. (This is nontrivial because a
nonzero vector z over GF(2) can be
orthogonal to itself, i.e. 27z = 0.) His
program works with blocks of size 64.

36

Difficulties continued

e Square roots. The final stage of GNFS
involves finding the square root of a (very
large) product of algebraic numbers. Once
again, Montgomery found a way to do
this.

e An idea of Adleman, using quadratic
characters, is essential to ensure that the
desired square root exists with high
probability.

37

Scalability of GNFS

At present, the main obstacle to a fully parallel
and scalable implementation of GNFS is the
linear algebra. Montgomery’s block Lanczos
program runs on a single processor and requires
enough memory to store the sparse matrix. It is
possible to distribute the block Lanczos solution
over several processors of a parallel machine,
but the communication to computation ratio is
high. There are some interesting tradeoffs here —

e By increasing the time spent on sieving
we can reduce the size and weight of the
resulting matrix.

e By performing some steps of Gaussian
elimination, we can reduce the
communication requirement for the
iterative solution, at the expense of
increasing the storage requirements.

38

RSA155

At the present time (March 2001), the largest
number factored by GNFS is the 155-digit RSA
Challenge number RSA155. It was split into the
product of two 78-digit primes on 22 August
1999 (only six months after the 140-digit
number RSA140), by a team coordinated from
CWI, Amsterdam.

Some Statistics

The total amount of CPU time spent on sieving
was 8000 Mips-years on assorted machines
(calendar time 3.7 months). The resulting
matrix had about 6.7 x 10% rows and weight
(number of nonzeros) about 4.2 x 10® (about 62
nonzeros per row). Using Montgomery’s block
Lanczos program, it took almost 224
CPU-hours and 2 GB of memory on a Cray
C916 to find 64 dependencies. Calendar time
for this was 9.5 days.

39

Polynomial Selection for RSA155

The two polynomials used to factor RSA155
were

f(z) = z—39123079721168000771313449081

g(z) = +1193771383202°
—801689372849975822:
—662698522341185744451°
+11816848430079521880356852>
+7459661580071786443919743056
—40679843542362159361913708405064 .

40

Polynomial Selection cont.

Using ideas due to Peter Montgomery and
Brian Murphy, the polynomial g(x) was chosen
to have a good combination of two properties:
being unusually small over the sieving region
and having unusually many roots modulo small
primes (and prime powers).

The second property alone makes g(z) as
effective at generating relations as a polynomial
chosen at random for an integer of 137 decimal
digits (so in effect we have removed at least 18
digits from RSA155 by judicious polynomial
selection).

The polynomial selection took approximately
100 Mips-years or about 1.25% of the total
factorisation time.

41

Summary — RSA140 and RSA155

In Table 2 we summarise the RSA140 and
RSA155 factorisations. Extrapolation is
tempting, but dangerous because there were
algorithmic improvements which helped the
RSA155 factorisation, and there was a
psychological incentive to factor a 512-bit
number.

Table 2: RSA140 and RSA155 factorisations

RSA140 RSA155
Date completed Feb. 1999 | Aug. 1999

Total mips-years 2000 8000
Improvement due to
polynomial selection 8 14
Matrix rows 4.7 x10% | 6.7 x 108
Total nonzeros 1.5x 10% | 4.2 x 108
Nonzeros per row 32 62

Matrix solution time
(on Cray C916) 100 hours | 224 hours

42

The “Cipher Challenge”

There has been much interest in Simon Singh’s
recent book The Code Book and the associated
“Cipher Challenge”. This Challenge is a
collection of ten encrypted messages, with a
prize of £10000 offered for the first complete
solution. It was solved on 7 October 2000 by a
Swedish team (Almgren, Andersson, Granlund,
Ivansson and Ulfberg). For details see
http://www.simonsingh.com/cipher.htm
and http://codebook.org/

The tenth and most difficult problem involved
RSA encryption with a 512-bit key (very
slightly smaller than RSA155). The Swedish
team factored this by GNFS, using the
programs developed at CWI for RSA155,
and about twice as much computer time.
The sieving was done on several hundred
workstations at NADA. The linear algebra
involved 8.4 x 10 equations with 5 x 108
nonzeros, and was done on a quad-processor
Compaq ES40 in 13 days.

43

A Backdoor

The RSA modulus N = py7 - prg is a product of
77 and 78-digit primes, and pys — 1 has the
factorisation

2224774533 - 451911151 - 1031140207-

1336679039 - 2303217611 - 6890518249 -
15318284953 - 12286770953753

This factorisation is extremely “non-random”.
There are no small factors (except for the
necessary factor 2); neither are there are any
very large factors. The two largest factors are
“Just right” for a good implementation of the
Pollard p — 1 method to succeed in a reasonable
time. The middle factors have 28, 29, 30, 31,
32, 33 and 34 bits. Paul Leyland has confirmed
that a “backdoor” was created intentionally.

It would have been possible to factor the RSA
modulus in about two days on a 500 Mhz alpha
using the Pollard p — 1 method, instead of the
67 CPU-years required by GNFS !

Unfortunately, the Swedish team did not try the
Pollard p — 1 method, and those competitors
who did must have given up too soon.

44

Historical Factoring Records

1607
140
1207
1007
807
607
407
207

0 ‘ ‘ : ‘
1960 1970 1980 1990 2000

Size of “general” number factored versus year

The graph shows the size (in decimal digits) of
the largest “general” number factored against
the year it was done, from 1964 (20D) to the
present (155D) (historical data from
WWW.Tsa.com).

45

Curve Fitting and Extrapolation

81 D3
7
6
5 -
4

3
2
1 1 Y
0
1

960 1970 1980 1990 2000

From the theoretical time bound for GNFS,
assuming Moore’s law, we expect D3 t0 be
roughly a linear function of time (we have
assumed that (In D)?/3 is roughly a constant).
The graph shows D/3 versus year Y.
The straight line is
Y —1928.6

13.24
and extrapolation, for what it is worth, gives
D =309 (i.e. 1024 bits) in the year Y = 2018.

D3 —

46

Predictions

Moore’s law predicts that circuit densities will
double every 18 months or so.

e As long as Moore’s law continues to apply
and results in correspondingly more
powerful parallel computers, we expect to
get 3—4 decimal digits per year
improvement in the capabilities of GNFS,
without any algorithmic improvements.

e The extrapolation from historical figures
is more optimistic: it predicts 6-7 decimal
digits per year in the near future.

e Similar arguments apply to ECM, for
which we expect between 1.0 and 1.5
decimal digits per year in the size of factor
found.

47

Implications for RSA

512-bit RSA keys are clearly insecure. 1024-bit
RSA keys should remain secure for at least
fifteen years, barring the unexpected (but
unpredictable) discovery of a completely new
algorithm which is better than GNFS, or the
development of a practical quantum computer.

Over the past twenty years, factorisation
algorithms have improved to the point where it
is time to seriously consider replacing the RSA
cryptosystem with another system which
depends on a “harder” problem, e.g. the El
Gamal algorithm using the discrete logarithm
problem for elliptic curves over large finite
fields.

48

Summary and Conclusions

I have sketched some algorithms for integer
factorisation. The most important are ECM,
MPQS and GNFS. The algorithms draw on
results in elementary number theory, algebraic
number theory and probability theory. As well
as their inherent interest and applicability to
other areas of mathematics, advances in public
key cryptography have lent them practical
importance.

Until a polynomial time algorithm is found or a
quantum computer capable of running Shor’s
algorithm is built, large factorisations will
remain an interesting challenge.

49

