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ABSTRACT

This thesis addresses the design of efficient systolic architectures for real-time

digital filters.

Many VLSI architectures for digital filters have been introduced in the liter-
ature. Most of these architectures are one-dimensional because the problems to
be solved are 1-D. Although 1-D architectures have the advantage of low I/0O
bandwidth requirement, the throughput is limited by their word-serial nature. In
many high-throughput applications, (two-level) pipelined and/or (2-D) parallel
architectures have to be considered seriously.

Digital filters can be classified as non-recursive filters and recursive filters. In
order to obtain efficient pipelined and/or parallel systolic architectures for these
two types of filters, some difficult problems have to be solved. Suppose that N; and
N, are the numbers of coefficients and inputs of a non-recursive filter. Since there
1s no recursion in the system and there is a high degree of inherent parallelism, it
is easy to obtain an N; x N, architecture for implementing that filter. However,
this N7 x N, architecture is impractical for implementation in VLSI because it has
too many input/output lines and requires too large an area for a large problem.
Therefore, the key problem is to construct 2-D systolic architectures which not
only can solve the problem efficiently, but have a reasonable size well suited for

VLSI implementation.

Recursion implies sequential rather than parallel execution, which typically
places an upper bound on the throughput with which a recursion can be imple-
mented. Therefore, to obtain parallel algorithms/architectures with guaranteed

i1




stability for recursive filters is a more difficult task than for non-recursive filters.
This thesis aims to solve these problems and then to obtain efficient pipelined

and/or parallel systolic architectures for non-recursive and recursive filters.

We introduce a 2-D systolic architecture for linear phase non-recursive filters
and two 2-D systolic ring structures for linear convolution problems. These archi-
tectures are based on nearest neighbour interconnections and have the property of
linear area versus period tradeoff for a given problem. Moreover, they are unidi-
rectional structures. The technique of two-level pipelining may easily be applied
to these structures. Thus the throughput can further be increased without a great

increase in area.

Although look-ahead computation is a good method for deriving parallel al-
gorithms for state-variable-form recursive filters, this conventional technique may
cause numerical instability in direct-form recursive filters due to the effect of fi-
nite wordlength. We introduce a new method of Z domain derivation. Using this
method, not only can parallel algorithms with guaranteed stability be derived,
but the additional complexity required for this purpose can be minimized through
a decomposition technique. A time domain derivation of parallel algorithms for
direct-form recursive filters is also introduced. The derived algorithms are of par-
ticular interest for time-varying recursive systems.

Using the stabilized parallel algorithms for direct-form recursive filters, very
efficient pipelined and/or parallel VLSI architectures can be constructed. We show
that those algorithms lead directly to an efficient two-level pipelined structure.
Two different parallel systolic structures are also derived based on those algo-
rithms. One has the advantage of regularity while the other can achieve a linear
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complexity in parallel size for cascaded second-order recursive filters. Using 2-D
parallel processing in combination with two-level pipelining, efficient pipelined and
parallel architectures can also be constructed. With the same degree of complex-
ity, this combination of techniques enables a substantial increase in throughput

compared to purely parallel architectures for a given problem.
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CHAPTER 1

INTRODUCTION

This thesis addresses the design of efficient architectures for high-speed digital
signal processing.

Many signal processing applications have two characteristics which make them
computationally intensive: (i) large amounts of processing (up to hundreds of el-
ementary operations at each point); (ii) real-time response (at rates up to several
MHz). Ever-increasing demands for sophistication and speed of processing clearly
point to the need for dramatic increases in computational capability. Rapid im-
provements in digital integrated circuit technology have provided about a ten times
increase in device speed every few years, but these improvements still cannot sup-

ply the required performance in areas of high-speed signal processing such as speech

recognition, beamforming, and image analysis. Therefore, real-time computation

needs accompanying architectural advances.

Many compute-intensive tasks are now handled by general-purpose supercom-
puters. These general-purpose machines have complicated system organizations,
are very expensive and provide facilities such as 64-bit word and arithmetic units
which are not fully utilized in signal processing operations. The advent of low-
cost and high-density VLSI technology makes it possible to use special-purpose
array processors for solving certain classes of compute-intensive problems faster
and more economically than would be possible with a general-purpose system.

In VLSI, communication is expensive whereas logic is relatively cheap [31]. To
minimize communication cost, one can build architectures which are regular ar-
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rays or lattices of small processing elements. The only communication is between
near neighbours and the array can be laid out simply and efficiently. Fortunately,
most algorithms in modern signal processing possess some useful common proper-
ties, such as regularity, local data communication, and a high degree of potential
parallelism. These properties may be utilized to exploit the power of VLSI and
to circumvent its constraints. Because of its local communication, synchronous
data flow, simple control and modular parallelism with throughput directly pro-
portional to the number of cells, the systolic array [18,20] has been considered as
a most promising VLSI architecture for real-time signal processing. In the last
few years, there has been a dramatic worldwide growth in research on mapping
various signal processing algorithms into systolic arrays.

Digital filtering is one of the most important techniques in modern signal
processing. It is widely used in areas such as speech and image processing, radar
signal processing and biomedical engineering. While this technique is compute-
intensive, it is well suited to VLSI implementation and many examples have been
reported in the literature.

This thesis concentrates on the design of efficient systolic architectures for
high-throughput digital filters. The next two sections of this chapter briefly review
systolic architectures and VLSI implementation of digital filters. The final section
then gives an outline of the following chapters, together with a summary of the

main results obtained.




1.1. Systolic Arrays

Systolic architectures are typically large, regular arrays with only a few dif-
ferent types of small processing elements, each capable of performing some simple
operation. Data and control flow in the system is simple and regular. All op-
erations involving a data item are applied to it as it passes through the array;
communication with the outside world occurs only at the “boundary cells”. This
method of computation eliminates the need to retrieve a data item from exter-
nal memory every time it is used. The regular pattern of local interconnections
between cells implies that the systolic design can be made modular and extensi-
ble, so that a systolic array can easily be expanded to achieve high computation
throughput without increased memory bandwidth. This property gives systolic
architectures a major advantage over traditional architectures, which are limited
by the “Von Neumann bottleneck”. Moreover, the simplicity of systolic designs is
particularly important for special-purpose applications, where design costs must
be kept low.

Because of their low memory bandwidth, simplicity, regularity, modularity
and local communication, systolic architectures are well suited to implementation
in VLSI. Various systolic systems have been developed to solve compute-intensive
problems in areas such as signal and image processing and matrix arithmetic, for
example see [1,4,5,12-14,17-22,24-26,37,44,45,50,52,56,57|. However, it should be
noted that clock skew (which may inhibit global synchronization for ultra-large-
scale 2-D arrays) is one possible disadvantage of the systolic array approach. A
simple solution to this problem is to adopt the principle of dataflow computing in

systolic array processors, which leads to wavefront array processors [24-26].
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In a wavefront array instructions cannot be executed until their operands
have become available. The arrival of data from neighbouring processors will be
interpreted as a change of state and will initiate some action. The wavefront arrays
are named because of the analogy with wavefront propagation, and comprise a
distributed and (globally) asynchronous array processing system. This approach
replaces the requirement for correct timing by one of correct sequencing, and
handles the data dependency locally. Thus, it eliminates the need for global control
and global synchronization [25]. Since systolic arrays can easily be converted
into wavefront array processors, in this thesis we regard the concept of systolic
architectures as encompassing wavefront array processors.

Systolic architectures can be either one-dimensional (1-D) or two-dimensional
(2-D) depending on the problems to be solved. Sometimes a given problem can
have both 1-D and 2-D systolic array solutions. 1-D systolic arrays have the
advantage of low I/O bandwidth requirement. However, throughput is limited
by their word-serial nature. To achieve higher throughput, two-level pipelined
and/or 2-D parallel structures have to be considered. The two-level pipelined
systolic approach, first introduced by H. T. Kung and his colleagues [19,21], is
a good method not only for achieving high throughput computation, but also
for reducing the area required in VLSI implementation in comparison with other
parallel approaches. Thus it is desirable that a given system is implemented by
first using two-level pipelining to the maximum possible extent, and then using 2-D
parallel processing in combination with pipelining if further increase in throughput

is required.




1.2. VLSI Implementation of Digital Filters

In this thesis we study VLSI architectures for linear filters. Digital filters can

be classified as non-recursive filters and recursive filters.

Non-recursive filters

One of the most important characteristics of non-recursive filters is that they
can be designed to have exactly linear phase [38]. There have been many sig-
nal flow graph (SFG) networks introduced to compute linear phase non-recursive
filters [38]. 1-D systolic arrays can easily be obtained by applying cut-set localiza-
tion rules [24-26] to these SFG computing networks. (One example is described
in [24].) Suppose that the number of coefficients for a given problem is N;, which
is assumed to be even. The derived 1-D systolic array will use N;/2 multipliers.
We shall derive a 2-D systolic array for solving the same problem by using N;
multipliers. However, this 2-D architecture can achieve twice the throughput of
the 1-D array. Thus our 2-D implementation is preferable in high-speed signal

processing.

We also discuss 2-D systolic architectures for computing 1-D linear convolu-
tion equations. This is not only because the problem of non-recursive filtering can
be represented by a linear convolution equation, but because other problems such
as DFT, circular convolution and 2-D linear convolution can also be transformed
into 1-D linear convolution [11,22,35]. Thus one structure can be used for several

different kinds of problems.

Although various types of systolic architectures for computing linear convo-
lution problems have been introduced in the literature [8,17,18,21,22,25,30,43,46],
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only a few of them are 2-D. Suppose that N; and N, are respectively the numbers
of coefficients and inputs of a given problem. Cappello and Steiglitz [8] derived
several N1 x N, 2-D systolic arrays. In theory, these systolic arrays are 4P2
asymptotically optimal (where A is defined as Area and P as Period, which is the
reciprocal of throughput), but they are impractical for implementation in VLSI
because they have too many input/output lines and require too large an area for a
large problem. Lu and others [30] derived an L x N; 2-D systolic array for the case
L < N,. They split the linear convolution equation into a number of subequations.
Each subequation contains L successive outputs. Because the subproblems have
the form of matrix-vector multiplications, they can be implemented successively
on a matrix-vector multiplier. In this design the throughput is increased by a
factor of L in comparison with 1-D systolic arrays. However, a large proportion of
the total area is consumed by the communication lines. Thus this implementation
is not area efficient in VLSI. We shall introduce two N; X L systolic ring architec-
tures. These N; X L architectures are based on nearest neighbour interconnections
and can achieve the same throughput as the L x N; array, but are more efficient

in their use of area.

Recursive filters

Recursion implies sequential execution, which typically places an upper bound
on the throughput with which a recursion can be implemented. Therefore, con-
ventional serial algorithms for recursive filters cannot effectively make use of large
numbers of processing elements. To overcome this problem, Gold and Jordan [16]
proposed block (or parallel) recursion methods for implementing recursive filters.

They demonstrated that rational transfer functions can be realized by finite con-
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volutions employing blocks of data. Subsequently, Voelcker and Hartquist [47]
showed that a rational transfer function can be realized with block feedback and
finite convolution. Burrus [6,7] developed a different approach based on a ma-
trix representation of convolution, which results in a state-variable description
with block feedback. The relationship between the Gold and Jordan idea and
the Burrus method was described by Gnanasekaran and Mitra [15], who also pro-
posed several new block structures using a matrix representation of convolution
[34]. Meyer and Burrus [32,33] discussed the use of block implementations for
multirate and periodically time-varying digital filters. Note that block imple-
mentations for state-variable-form recursive filters have recently received a lot of
attention [2,3,30,34,36,39-41,48,53|. These implementations are based on the tech-
nique of so-called look-ahead computation. (Although this terminology was first
for.ma.lly described in [39,41], the technique had been known previously for some
time.) In the look-ahead technique, the given recursion is iterated as many times as
desired to create the necessary concurrency; the concurrency created can then be
used to obtain pipelined and/or parallel implementations of recursive systems [41].

Although the look-ahead computation technique has been applied success-
fully to the parallel implementation of state-variable-form recursive filters, it may
cause numerical instability in direct-form recursive filters due to the effect of fi-
nite wordlength. We shall introduce new methods for deriving parallel algorithms
for direct-form recursive filters. In comparison with the original serial algorithm,
not only is the degree of parallelism increased, but the stability is also improved.
Moreover, these algorithms lead to very efficient systolic/wavefront architectures.

Therefore, they are most suitable for VLSI.



1.3. Thesis Outline and Main Results

In Chapter 2, the signal-flow graph (SFG) notations to be used throughout
this thesis are described. A very powerful architecture transformation technique
based on cut-set localization rules (or systolization rules) and introduced by S.
Y. Kung [24-26] is described. Then we introduce a commutative rule. Using cut-
set localization rules in combination with this commutative rule, one may obtain
more efficient systolic arrays from certain feedforward SFG computing networks.

Chapter 3 describes 2-D systolic architectures for non-recursive digital filters.
Suppose that N; and N, are respectively the numbers of coefficients and inputs of a
linear filtering problem. It is easy to obtain N7 X N, architectures for implementing
that problem because there is no recursion in the system. However, as mentioned in
the previous section these architectures are impractical for VLSI implementation.
Therefore, the key problem is to construct 2-D systolic architectu‘res which not
only can solve the problem efficiently, but also have a reasonable size well suited
for implementation in VLSI. We derive a 2-D systolic array for linear phase non-
recursive filters. By using twice the number of multipliers that 1-D systolic arrays
normally require, this 2-D systolic architecture can achieve twice the throughput
of 1-D arrays for a given problem. We introduce two N; x L 2-D systolic ring
structures, where L < N,. These 2-D structures are based on nearest neighbour
interconnections and can achieve L times the throughput of 1-D systolic arrays
for solving the same linear convolution problem. Moreover, the most efficient 1-D
systolic array for linear convolution is just a special case of a 2-D systolic ring
array with L = 1. The complexity measure AP? is also analyzed.

Chapter 4 derives stabilized parallel algorithms for direct-form recursive fil-
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ters. The conventional look-ahead computation may cause numerical instability
in the direct-form implementation. Thus we introduce a new method for deriving,
in the Z domain, a class of stabilized parallel algorithms for direct-form recur-
sive filters. In order to obtain this stabilized algorithm extra zeros and poles are
introduced, so the complexity is greatly increased. We then introduce a decom-
position technique to minimize this increase in complexity. We also introduce a
time-domain derivation of parallel algorithms, which have the same form as those
derived in the Z domain. This is of particular interest for time-varying recursive
systems. There are many different ways to achieve the same goal. The condition
for the unique solution of the stabilized parallel algorithm is discussed.

Chapter 5 introduces efficient pipelined and/or parallel architectures associ-
ated with the stabilized parallel algorithms derived in Chapter 4. We show that
the stabilized parallel algorithms lead directly to an efficient two-level pipelined
structure. Using these algorithms, we can also derive two different parallel struc-
tures. The first one has the advantage of regularity while the second one can
achieve a linear complexity in parallel size for cascaded second-order recursive
filters. Combining parallel processing with pipelining we finally describe two ef-
ficient pipelined and parallel architectures for direct-form recursive filters. This
combination of techniques enables a substantial increase in throughput compared

to previously known architectures.



CHAPTER 2

CUT-SET LOCALIZATION RULES

2.1. Introduction

A non-systolic system can be transformed into a systolic array by using ar-
chitecture transformation techniques. The original work was done by Leiserson
and Saxe [27,28]; they introduced various rules such as retiming and slowdown
and showed how these rules can be used to obtain an efficient systolic array from
a given synchronous system. H. T. Kung and Lam [19] derived a cut theorem to
show how to add delays to a given system without affecting its function. Because
the main purpose of this theorem is to construct a two-level pipelined systolic
array from a uni-directional structure, it is required that all the lines in the cut
must point in the same direction. Thus further applications to more complicated
systems are limited. Cut-set localization rules (or “systolization” rules) were in-
troduced by S. Y. Kung [24]. By using these simpler, but more powerful rules, one
can easily transform a signal flow graph (SFG) computing network into a systolic
array. It has also been proved in [24] that all computable SFG arrays can be
temporally localized by using these rules.

Although an SFG computing network (or synchronous system) can be con-
verted into a systolic array by using the methods metioned above, we cannot
guarantee that the derived system is the most efficient systolic array for solving
the given problem. The reason is that the chosen SFG computing network may
be inefficient. A method for converting a dependence graph into an efficient SFG

computing network was introduced in [25]. Since a dependence graph may as-
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sociate with many different SFGs, we may choose the most efficient one among
them [25].

In the following, we first describe the SFG notations and the systolization
rules. Then we introduce a commutative rule for obtaining efficient systolic arrays
from certain SFG computing networks without feedback. We give two examples
to show that by applying the commutative law of addition, the direction of some
lines in this kind of system may be changed without affecting the overall function.

More efficient systolic arrays can thus be obtained after the modification.

11




2.2. SFG Notations and Cut-Set Localization Rules

SFG notations

The SFG notations used herein are similar to those in [24]. They are described
as follows: A node is denoted by a square (or a circle) representing an arithmetic
or logic function performed with zero delay. On the other hand, a line denotes
a delay. When a line is labeled with a number ¢ (a non-negative integer), it
represents a time delay operator with a delay time t. We omit the number when
it is zero. Therefore, a line without a number represents a zero delay operator.
For convenience we sometimes use another notation for a time delay operator;
a time delay operator with a.‘ delay time ¢t (£ # 0) is denoted by a small square

(smaller than a node) with a number ¢ in it. The two equivalent representations

are depicted in Fig. 2.1.

Fig. 2.1. Equivalent notations for a time delay operator
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Cut-set localization rules

There are only two basic rules:

1. Time-scaling: All delays in a system may be scaled by a single positive
integer a. Correspondingly, the input and output rates also have to be scaled

by a factor a.

2.  Delay-transfer: Given any cut-set of the SFG, we can group the lines in
the cut-set into in-bound lines and out-bound lines, depending on the direc-
tions assigned to the lines. Rule 2 allows an advance of k£ time units on all
the out-bound lines and a delay of £ time units on the in-bound lines, and

vice versa, provided the resulting delays are non-negative.

The proof of cut-set localization rules and many examples of deriving systolic

array structures from SFG computing networks can be found in [24-26].
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2.3. Commutative Rule

From cut-set localization rules we see that the throughput rate of the derived
systolic array is inversely proportional to the scaling factor a. The optimal local-
ization algorithm [26] is then proposed to search non-rescaling (NR) cut-sets so
that a can be minimized. An NR cut-set is a “good” cut-set in which all the lines
(excluding input lines) in the opposite direction to the zero-delay target line to be
localized, have delays of at least two time units. (A “bad” cut-set is one in which
this condition does not hold.) Once an NR cut is determined, one can simply
apply the delay-transfer operation along the cut and localize the target line(s). If
there exist no NR cut-sets in the original SFG computing network, time-scaling
has to be applied, which will decrease the throughput of the system. In this section
we give two examples to show how to avoid application of time-scaling to SFGs

without feedback by using the commutative rule.

2.3.1. Linear convolution

A well known SFG computing network for linear convolution problems [18]
is depicted in Fig. 2.2. It is easy to see that there exist no NR cut-sets in the
structure. Time-scaling has to be applied and the throughput of the resulting
systolic array is then decreased.

To avoid use of time-scaling, we use the following transformation procedure.
First we apply delay transfer to the SFG, as shown in Fig. 2.4(a). We see that each
of the computation steps has now been divided into two stages; first all nodes or
cells perform multiplications, and then these multiplication terms are accumulated

from right to left as one of the outputs. Note that the order of additions is
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xout = Xip

Fig. 2.2. SFG array for linear convolution

0 X20 X4 0 X5 —pm -t ‘ -1y : >
yoOY1OYQO «houj—"h“ "1— 2,‘.1_ 3.‘_

Fig. 2.3. Systolic array for linear convolution in [27]

changeable according to the commutative law. Therefore, the multiplication terms
can also be accumulated from left to right. This means that we can change all

left-pointing lines into right-pointing lines without affecting the function of the

system. Thus we next change the direction of the left-pointing lines in Fig. 2.4(a).
Since all the lines are now pointing in one direction, we can introduce a set of new
cuts and add one delay to each of the lines in the cuts. The final result is the same

as that described in [18] and has been proved to be the most efficient among 1-D

systolic arrays for solving linear convolution problems [29].
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Fig. 2.4. Transformation steps for obtaining an efficient sys-

tolic array from Fig. 2.2

2.3.2. Multiplication of two band matrices

Consider the problem of multiplying two band matrices as follows:

/Cu C12 €13 Ci4 0\ _ /011 ai» 0\ /011 bia 013 0\
Ca1 C22 C23 Cay sy Q22 as3 bay  bas baz Doy
€31 €32 €33 €34 | a3 a3z as3 baa b3z bay
C41 Cy2 ay42

& 5 R S

Fig. 2.5 depicts an SFG network for computing the above matrix multipli-
cation. This structure was originally reported by Chern and Murata [9]. The
corresponding systolic array, as shown in Fig. 2.6, was derived from Fig. 2.5 by
using cut-set localization rules [24]. The derived systolic array is not very efficient
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Fig. 2.5. SFG array for multiplication of two band matrices

O 0 az¢0

0 O

Fig. 2.6. Systolic array for multiplication of two band matrices in [24]
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because time-scaling with a = 3 is applied, which results in a reduction of the
throughput by a factor of 3. Linear convolution and matrix multiplication are
similar problems. We can use the localization procedure described in the previous
sub-section to obtain a systolic array without decreasing the original throughput.

Fig. 2.7 depicts the transformation steps for obtaining a new systolic array. In
Fig. 2.7(a) we introduce a set of horizontal cuts and apply delay transfer. For the
reason described in the previous sub-section, we can change the direction of the
diagonal lines without affecting the function of the system. Finally we introduce
a set of vertical cuts and add one delay to each of the lines in the cuts. A systolic
array which maintains the original throughput is then obtained. (This array is
the same as that in [49].) The only difference between these two systolic arrays is
that all diagonal lines are reversed in direction, but the throughput of the array

in Fig. 2.7(c) is three times greater than that in Fig. 2.6.
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Fig. 2.7. Transformation steps for obtaining an efficient sys-

tolic array from Fig. 2.5
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2.4. Discussion

In this chapter we first introduced the SFG notation to be used throughout
this work. Then cut-set localization rules were described. Using these powerful
rules all computable SFG networks can easily be converted into systolic arrays.
The key problem in using these rules is to minimize the time-scaling factor. We
introduced a new rule—the commutative rule. By applying this rule, we can
avoid time-scaling and obtain better results from certain SFG networks without
feedback. In Chapter 3 we use cut-set localization rules plus this commutative
rule to transform one 2-D systolic ring structure into another for solving linear
convolution problems. For SFG networks with feedback, however, it is not so easy
to avoid time-scaling. In transforming an SFG structure (derived from a serial
algorithm) for an N** order recursive filter into a systolic array, it is impossible
to maintain the same throughput. In Chapters 4 and 5 we shall see that, if a high
throughput is essential, the original algorithm has to be modified. This will cause

an increase in complexity of the system.
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CHAPTER 3

2-D SYSTOLIC IMPLEMENTATIONS FOR

NON-RECURSIVE DIGITAL FILTERS

3.1. Introduction

A non-recursive filter, or a linear convolution problem, can be expressed as

N;-1
Un= Y hizni, 0<n<Ny+N;—2 (3.1)

1=0

where N; and N, are the numbers of coefficients and inputs respectively. Thisis a
very important computational problem in modern signal processing. To perform
this computation at high speed, various kinds of systolic architectures have been
introduced [8,17,18,21,22,24,43,46]. Since most of these architectures are 1-D, the
throughput is limited by the word-serial nature. To achieve higher throughput,
2-D word-parallel structures have to be considered.

One of the most important characteristics of non-recursive filters is that they
can be designed to have exactly linear phase [38]. The finite impulse response for

a causal non-recursive filter with linear phase has the property that

Therefore, equation (3.1) can be rewritten as

Ny/2-1
Yn = Z hi(Tn-j + Tn—(Ny—-1-7)) (3.3)

=0

where we assume that NV; is even.
A 1-D systolic array can easily be obtained by applying cut-set localization
rules to SFG structures corresponding to equation (3.3). (One example is described
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in [24].) The derived systolic structure uses N;/2 multipliers. In section 3.2 we
derive a 2-D systolic array for solving the same problem. By using N; multipliers,
our 2-D systolic array can achieve twice the throughput of the 1-D array. Thus
this 2-D implementation is preferable for high speed signal processing.

The concept of a systolic ring was first introduced by H. T. Kung and Lam [19].
Section 3.3 introduces two N; x L 2-D systolic ring structures for solving linear
convolution problems in (3.1), where L < N,. These N; x L 2-D systolic ring
structures are based on nearest neighbour interconnections and can achieve the
same throughput rate as the L x N; structure described in [30]. The complexity
measure AP? for this systolic ring is inversely proportional to L, but AP is inde-
pendent of L. By varying L we can then trade off area versus period for a given
problem. We shall see that the most efficient 1-D systolic array for solving linear
convolution problems is just the special case of a 2-D systolic ring structure with

L=1.
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3.2. Linear Phase Non-Recursive Filters

In this section we derive a 2-D systolic array with twice the throughput of
the 1-D systolic version for linear phase non-recursive filters. We only consider
the case when N; is even. The derivation for the filter with N; odd is similar.

The basic idea for constructing this 2-D systolic array is as follows. The
equation in (3.3) can be arranged into two groups, one containing the outputs
with even subscripts and the other those with odd subscripts—

4 N1/2—1
Yop = Z hi(mzp_i -+ xzp—(Nl-l—i))

1=0
< b (3.4)

Y2p+1 = Z hi(z2p+1-i + 22p+1—(N1—1-i))

\ 1=0

It is easy to see that the above two equations can be computed independently.
Therefore, we may use two sub-systems to solve these two problems in parallel.
If each sub-system can achieve the same throughput as that of the 1-D systolic
version, the throughput of the entire system for the complete problem is then
doubled.

Since the two equations in (3.4) are similar, we can visualize that the struc-
tures for solving these equations are also similar. Therefore, we just give a detailed

description for the structure for computing ys,.
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Xin —d ’ 3 Xt
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X2p h 3 h —1’1 H — yin — | —byout
4
Y2p+1 el 2 E 2] Mo |
Xout = Xin

Yout = Yin +hi* X,

Fig. 3.1. Linear systolic array for computing yggo) (N, = 6)

3.2.1. Sub-system for computing y-,

We divide the equation for y,, into two sub-equations as

/

M/2-1
(0)
Y2p = Z hag(T2p—29 + T2p—(Vy-1-29))
q=0
{ e (3.5)
1
Yip = 9 hags1(Z2p-(2041) + T2pm(Nym1-(2041))
L q=0

where M = N, /2.

The superscript 0 (or 1) in (3.5) indicates that the equation contains only

those coefficients with even (or odd, respectively) subscripts.

Again the two sub-equations in (3.5) have similar structures, so we only con-

sider y( )

ygp) in (3.5) consists of two parts

1 M/2-1
gt;o) Z hoqwop_oq .
g=0
< o (3.6)
(01
y.,p) Z hoqxop —(N,—-1-2q)
\ q=0

where the second component of the superscript being 0 (or 1) denotes that only
the inputs with even (or odd) subscripts are required for solving that problem.
It is easy to see that the equation for yé?,o) 1s a linear convolution problem

which can be implemented in a 1-D systolic array, as shown in Fig. 3.1.
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Based on the symmetric property of the linear phase non-recursive filter (i.e.,

hag = hN,—1-24), We have

M/2-1
01
ygp)z Z th—l—?.q:EZp-—(Nl—l—'.’q) (37)

¢=e

(

Thus the equation for y, 4

2 is also a linear convolution problem. Instead of using

the array depicted in Fig. 3.1, however, we use another well known 1-D systolic

array [18] to compute ygg,l), as shown in Fig. 3.2(a). Using the symmetric property

again, we obtain Fig. 3.2(b). The reasoning is as follows: If y.gg,l) is implemented

as in Fig. 3.1, the coefficients should be placed in the opposite order. These two
arrays cannot easily be combined into one array. We would then have to use N;/2

multipliers for computing the equations for ygio) and y.g(;,l). But the equation for

ygi) in (3.5) shows that only N; /4 multipliers are required for the problem.

X2p+1 . £ >
(o1) hi{ 1 fh3a{ 1| hs X 5
y P g — — in —P» = Aout

hi
(a) Yin _. '_‘» yOUt
1 I X = X
5. oy s i out in
Y&m) I hga |14 | ho |14 | ho e Yout = Yin +Ni * Xjq
p > —+—>

Fig. 3.2. Two equivalent systolic arrays for computing yé?,l) (IV; =6)

Although the coefficients in Fig. 3.1 and Fig. 3.2(b) are in the same order,
there are two problems to be solved before they can be combined into one array
with N7 /4 multipliers for computing y.(_,(;). One problem is that the outputs moving

from one cell to the next in the two arrays do not travel at the same speed. The
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other is that the inputs to these arrays do not accord with the demands of the

equation for yég,) in (3.5).

)

From Fig. 3.1 we see that yggo needs two time units for travelling from one

cell to the next, while yégl) in Fig. 3.2(b) requires only one time unit. Therefore,
to solve the first problem we apply a set of cuts in Fig. 3.2(b) and add one delay

to each line in the cuts.

To solve the second problem, we consider the difference between the two inputs
in (3.5). Let D be the difference. Then

D=2p—-2¢9—(2p—(N; —1-2q)
(3.8)

= N]_ -1- 4q
Since the outputs in the arrays travel at the same speed after the first modification,
we need only to consider D in the leftmost cells. Substituting ¢ = M/2 — 1 into

(3.8), we then obtain D = 3. This can be done by adding extra two delays to the

leftmost input line in Fig. 3.2(b).

Xops1 2 3 ¢ 38 A
X2p — hy 1 hy —I34 ho B XTig X1 out
Y(z%) | —» X2, —» h; P X2yt
y. — >y
(a) in out
(1) X10Ut = X1in

] Xl X2
X2p+1 EH? > h3 1:3 h1 out in
X2p 2

Yout = Yin +0i ™ ( X1in +X2in)

vy

Fig. 3.3. Systolic arrays (a) for computing yé?,) and (b) for yg;)

After the above two modifications, we can combine these two arrays into one

(0) (00) (01)

for computing Yap = Yap T Y3, with N1/4 multipliers. The combined array is
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depicted in Fig. 3.3(a).

Since the equation for ygi,) has a similar structure to the one for ygg), we can

use the same method described above to construct an array for computing y,(_,;).

(See Fig. 3.3(b).)

\ \
\1 3’ \L 3" ,_.»
S g e Tl My
sz —a A P > e -
W &
\
YZP 1 \ 1 /
1 \ 1 \
X >
2p+1 h \ h \
1 3 3 \ 3 1 \
N < >
\ \
\ \
(a)
\ \
\ \
2 \ < | % 3
1] hs ; 1| h3 N hy %
Xon A - B
v 1 \\ 1
\ 1 1
y2p+1 J 4 o
X2p+1 = h % - h ‘\ P h e
Il 4 s 2 ° : > 0 >

Fig. 3.4. 2-D systolic arrays (a) for computing y2, and (b) for

computing yap41

We now combine the two partial results into the result y,, = yg(;,) - yg). One
way of doing this is to place an additional adder at the right ends of the two
arrays in Fig. 3.3. Observing that the outputs in each array take two time units
for moving from one cell to the immediately next, we can also accumulate the
output y2, by letting it move diagonally between these two arrays. Therefore, not
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only one adder, but also about NV;/2 shift registers can be saved. The array is
depicted in Fig. 3.4(a). It is clear that this array requires only N;/2 multipliers

for computing ysp.

3.2.2. Compact form

By using the same method a similar systolic structure for y2,4+1 may be ob-
tained, as shown in Fig. 3.4(b). Though the two sub-systems in Fig. 3.4 can solve
the complete problem with twice the throughput of 1-D arrays, we give a more
compact form in this sub-section.

To obtain the compact form, we first apply a set of cuts to the two sub-
systems in Fig. 3.4. It can be seen that all the lines in the cuts are pointing in
one direction. Thus we can add one delay to each line in the cuts. The modified
version is depicted in Fig. 3.5. The blank square in the figure denotes a null cell. It
passes data through it, but has no other function. It is easy to see, from Fig. 3.5,
that the inputs z3, and z3,+1 move through both sub-systems in exactly the same
manner and the basic processing elements in Fig. 3.5(a) take the position of the
null cells in Fig. 3.5(b), and vice versa. If we put them together, the functions
of the two sub-systems will not be changed. Therefore, the final compact form is
obtained, as shown in Fig. 3.6.

Although the idea described above can be extended to achieve a higher
throughput, regular systolic structures cannot be constructed because long com-

munication lines in the system are required. This problem requires further study.
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Fig. 3.5. The modified version of Fig. 3.4
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Fig. 3.6. 2-D systolic array for a linear phase filter
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3.3. Linear Convolution Problems

In Subsection 3.3.1 we describe the L x N; systolic array which was derived
in [30]. The following subsections then derive two N; X L systolic ring structures.
We first derive an N7 X NN, systolic array for solving a linear convolution problem
with N; coefficients and N, inputs. This 2-D systolic array is impractical if N, is
large. We next modify it and introduce an N; X L systolic ring structure for solving
the same problem, where L is an arbitrary integer in the range 1 < L < N,. By
using cut-set localization rules plus the commutative rule described in Chapter 2,
an equivalent N; X L systolic ring structure can be obtained. Then we can see
that the most efficient 1-D systolic array for solving linear convolution problems
is just a special case of this 2-D array with L = 1. An upper bound on AP? for

these ring structures is also presented in the following discussion.

3.3.1. L x N; 2-D systolic array

In this subsection, we review the L X N; (L < N;) 2-D systolic array derived
by Lu and others [30].

Fig. 3.7 depicts an L x K systolic array. This array is called a matrix-vector
multiplier because it can perform a matrix-vector multiplication y = Hx, where
H is an L X K matrix and y and x are L x 1 and K X 1 vectors respectively.
The matrix H is prestored in the array. While the input data travel vertically
from top to bottom and remain unchanged, the outputs accumulate their terms
horizontally and obtain the final results at the right side of the array. If the same
H can be used for computing a number of problems, then the period for this array

becomes equal to one.
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Fig. 3.7. The matrix-vector multiplier

Use the notation xle) to denote a K x 1 vector, that is,

Ln
Tn-—1
x{F) = , : (3.9)
Tn—-K+1

The linear convolution problem in (3.1) can then be expressed as

yn = hTx(V) (3.10)

where h7 is the transpose of the coefficient vector and M) is a vector of N,

successive input data items.

To achieve a high throughput rate, we can compute L outputs simultaneously

by using the following equation

L N1+L-1
yip = Hxjg e (3.11)

where j =0,1,2,3--- and His an L x (N; + L — 1) banded Toeplitz matrix. For
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' 1
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Fig. 3.8. The L x N, systolic array for solving linear convolu-

tion problems

example, when L = 3 and N; = 3, the equation has the form

T;L
Y;L ho hi hy 0 O T;iL-1
yir-1 | =1 0 ho hy hy O TiL—2
YL -2 W URay hg ! Ry Lhe L3
TijL—4

(3.12)

The above equation describes a matrix-vector multiplication. It can then be
computed by using the matrix-vector multiplier depicted in Fig. 3.7. Because some
input data has to be reused for computing different blocks of output (which is easily

seen by taking two successive blocks of output into account), extra communication

lines have to be introduced. From Fig. 3.8 we can see that the area taken by the

communication lines is very large. Therefore, this implementation is not area

efficient in VLSI.
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3.3.2. Ny x N, 2-D systolic array

For convenience, we consider a simple example with N; = 3 and N, = 4, that
1S
i, .,  D<n<5 (3.13.q)

or
( Yo = hozo

y1 = hoz1+ hiz
Y2 = hoza+ hi1z1+4 hazo

< (3.13.5)
y3 = hoz3z+ hiz2+ hazy

Yq = hizz+ haz,

Mol hazs

By inspection of the equations (3.13) a 2-D systolic structure can easily be

obtained, as shown in Fig. 3.9.

4 X X5 X4 1
XO X1 X2 X in yln
h2 h2 h2 h2 h'
l1 1 l‘ 1 i‘ 1 l1 Yout Xout
hy h h hy Xout:= Xin
| l’ 1 L 1 l1 1 l1 Your'= Yin*+Ni" Xin
| ho ho ho ho lr . r-delay line

Fig. 3.9. An N; x N, systolic array for solving linear

convolution problems
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In this systolic array, the coefficients are pre-stored in the cells. Cells in the
same row contain the same coefficient. While the input data travel in parallel from

top to bottom, the partial results move diagonally downward to accumulate the

terms for each sum in (3.13).

From Fig. 3.9 it can be seen that the computation for a subsequent problem
can start immediately after the inputs of the previous problem have entered the
array and that the area is proportional to the product of N; and N,. Therefore,

AP? = O(N; N,), which is asymptotically optimal [8].

3.3.3. N; x L systolic ring structure

The 2-D systolic array derived above is impractical because it has too many
input/output lines and requires too large an area for a large problem. If we use
only one part of the array and do some modifications so that it can still solve the
same problem, then this modified systolic array is also much faster than any 1-D

systolic array for solving a given problem since more inputs can enter the system.

- N, .
< L5
A
M-1 | M-2 1 0 N
Y

Fig. 3.10. A block-diagram of the IV; x N, systolic array
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Fig. 3.10 gives a block-diagram of the IN; x N> systolic array. In this figure the
array is divided into M blocks with L columns of cells per block, that is N, = M L.
As mentioned a.b’ove, only one block of the array is to be used for solving the given
problem. The input has also to be organized as an M X L data matrix. Data

enters this one-block array row by row. An example is given in Fig. 3.11, in which

Na=mS N =5andl =3,so M =N,/L=3.

X5 X4 X3
X2 X4 X0
hs hs hs
ho ho ho
PavE!
h1 h1 h«‘
ho ho ho

Fig. 3.11. One block of the systolic array in Fig. 3.10

If N, is not a multiple of L, we can easily add some zeros to the left or right
sides of the input. (Correspondingly, we can put some extra columns of cells on
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the left or right boundaries of Fig. 3.10.) This does not affect the correctness of

the computation.

From Subsection 3.3.2 it is known that the period is one for this systolic
array. The corresponding partial results produced by different rows of the input
in Fig. 3.11 cannot be accumulated to form the final output. By observing the
block-diagram in Fig. 3.10, it can be seen that each block communicates only
with adjacent blocks on the left and right boundaries. We can visualize that in
Fig. 3.11 there must be some extra interconnections between the block’s left and
right boundaries in order to obtain the desired result for a given problem.

In the following discussion we show that an N; x L ring structure, as shown
in Fig. 3.12, can solve linear convolution problems. The only difference between
Figs. 3.11 and 3.12 is that there are extra two-delay lines connecting the left and
right boundaries in Fig. 3.12. A similar systolic ring structure was introduced
in [19] for the LU-decomposition of a band matrix. It uses nearest neighbour

interconnections, as shown in Fig. 3.13.

The systolic layout in Fig. 3.13 can be obtained by the following method. We
first number the columns from left to right as 1, 2, 3 and so on. For the first row,
we bring the left and right columns together and get a ring structure. We then
expand the space between columns by one cell length, so that if we flatten out this
ring the consecutive columns in the “front” and “back” parts will be interleaved.
For the remaining rows, we apply odd-even column interchanges.

Before proving that the N; x L systolic ring structure can solve linear con-
volution problems, we set up Cartesian coodinates to locate the input z; in the

data matrix and the coefficients h; in the array. The coordinate axes are given in
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ha ha ho
A 3 Y
h, h, h,
y X y' X 1
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Fig. 3.12. An N, X L ring structure for solving linear convolution

problems

Fig. 3.12.

The input z; can be represented by z;,,. The relation between k& and the two

indices, [ and m, is

k=1+mL (3.14)

where 0 < k<N, -1,0<I<L—-1and0<m<M-1.
A cell in the systolic array is defined by its coordinates (7,1). For example, the
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X line

y line

Fig. 3.13. Systolic layout of the 2-D systolic ring structure for

solving linear convolution problems

top-right cell in Fig. 3.12 is cell (0,0) and the bottom-left cell is cell (N; —1,L—1).
Since cells on the same row store the same coefficient, it is easy to locate the

coefficients in the array by using the 7 axis as

t=Ny—1—3 (3.15)
where 1 is the subscript of the coefficients.

Lemma 3.1 : The relation between the output y, and the coordinates 3, [ and
m must satisfy
n=N,—-1+mL+[0l—; (3.16)
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where n is the subscript of the output y,,.

Proof: It can be seen from (3.1) that
n—t==k (3.17)

where n, 1 and k are the subscripts of y, A and z, respectively.

Substituting (3.14) and (3.15) into (3.17), we obtain (3.16). [

h wavefront since it requires

We define the m®* row in the data matrix as the m?
m unit-time delays before it enters the systolic array.

Consider the m}"

wavefront and the m* or (mg + a)** wavefront, where a is
an arbitrary integer in the range 1 < a < M. If these two wavefronts produce the
corresponding partial results for a given n, the equation (3.16) must be satisfied.

For the m{* wavefront we then have
n=N; —1+moL + 1y — Jo (3.18)
and for the (mg + a)** wavefront,
n=Ny -1+ (mo+a)L + 1l — ja. (3.19)
Combining (3.18) and (3.19) yields
=P ROGT, TRy (3.20)

Since the difference between Figs. 3.11 and 3.12 is the interconnections be-
tween two boundaries, we only consider ly = L — 1 (left boundary) and I, = 0

(right boundary). The equation (3.20) becomes

Jjo+(a—1)L+1= ja. (3.21)
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The above equation shows that for a given n the partial result from the mih
wavefront accumulates the final term at cell (jo,L — 1), while the (mg + a)t*
wavefront produces its first term for that n at cell (o +(a—1)L +1,0). It can be
seen from Fig. 3.14 that the partial result at cell (jo, L — 1) can only arrive at cell
(Jo+(a—1)L +1,0). Therefore, we need to show that the partial result produced

by the m§" wavefront arrives at cell (jo + (¢ — 1)L + 1,0) at the same time as the

wavefront arrives.

(mo % a)th

1

1

S
&
% 1+ “(o+2K+1, 0)

Fig. 3.14. The route for one output in the ring structure

I
% 1
v

Lemma 3.2 : For a partial result to move downward L rows takes L + 1 units

of time.
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Proof: In Fig. 3.14, a partial result moving from cell (70,L — 1) to cell (jo +
L,L—1) first goes through a two-delay line to cell (79 +1,0) on the right boundary
and then moves diagonally downward L rows to cell (jo + L,L — 1), which takes

L — 1 units of time. Therefore the total time required is
t=2+L-1=L+1.

It is easy to see that this is true not only for the first column on the left boundary,

but also for other columns. O

Suppose that the computation starts at time ¢ = 0 and that the partial results
from the (mg + a)* wavefront and from the m{"* wavefront arrive at cell (j,,0) or
(jo + (a —1)L + 1,0) at times ¢, and ¢, respectively.

The (mo + a)** wavefront requires mg + a units of time before entering the

system and then j, + 1 units of time to travel from the first row to the j* row.

The time ¢, is

te =mo+a+ja+ 1. (3.22)

Now j, = jo + (a — 1)L + 1, so the above equation becomes
te=mo+a+jo+(a—1)L+2. (3.23)

Similarly, the mt* wavefront arriving at the ji* row takes #o; units of time,

that is,
tor = mo + Jo + 1. (3.24)
The partial result produced by the m{* wavefront then moves zigzag down-
ward (a—1)L rows to cell (jo+(a—1)L,L—1), which requires (a—1)L+a—1 units
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of time according to Lemma 3.2. Finally this partial result has to pass through a
two-delay line before arriving at cell (jo + (e — 1)L + 1,0) on the right boundary.
Fig. 3.14 gives an example with a = 3. The time for the partial result to move

from cell (7o, L — 1) to cell (jo +(a— 1)L +1,0) is
to2=(@—1)L+a—1+2=(a—1)L+a+1. (3.25)

Therefore, combining (3.24) and (3.25), we obtain
to=to1 +toa=mo+a+jo+(a—1)L+2=1t,. (3.26)

Since we assumed that a is arbitrary in the above discussion, all the partial
results for the given output can properly be accumulated in the system. There-
fore, we conclude that the N; x L systolic ring structure can indeed solve linear

convolution problems.

3.3.4. An upper bound on AP?

In this subsection we derive an upper bound on AP? for the systolic ring
structure described in Section 3.3.3.

We first consider the area taken by the systolic array. From Fig. 3.13, it is
easy to see that the area is dominated by cells. Therefore, the area taken by an

N; x L systolic ring is proportional to the product of N; and L, that is,
A= 0O(LN,). (3.27)

Since linear convolution problems can be computed by using the N; x L
systolic ring, it is obvious that two product terms of h;z;, produced by 23;',, and
z;, are accumulated by one output y, in the N; x L systolic ring if and only if
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lig — 15| < N1 — 1. Therefore, in order to avoid two successive linear convolution
problems interfering with each other, the first problem must be followed by N; —1
zeros. However, since L inputs can enter the systolic array simultaneously at one

time, the period is

_N1+N2—1

¢4
L

(3.28)

Combining (3.27) and (3.28), we obtain the upper bound

Ny(N1 + Nz)z)
- :

AP? = O

From (3.27) and (3.28), it can also be seen that AP is independent of L.
Therefore, by varying L we can trade off area versus period for a given linear

convolution problem.

3.3.5. The second systolic ring structure

Using cut-set localization rules plus the commutative rule described in Chap-
ter 2, we can transform the systolic array in Fig. 3.12 into the array in Fig. 3.15.

First we apply a set of horizontal cuts and subtract one delay from each line
in these cuts; the delays on the input (z;) lines become zero. Since z; remains
unchanged during the computation, we can change the direction of the input lines.

We then apply a set of diagonal cuts and delay transfer for the lines in the cuts
so that the delays on all diagonal lines become zero. We can change the direction
of the diagonal lines without affecting the final result since this is a non-feedback
system so that the commutative law for addition can be applied.

Finally we apply another set of horizontal cuts and add one delay to each
line on these cuts. The array in Fig. 3.12 is then transformed into the array in

Fig. 3.15.
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X3 X4 Xs
Xg X1 Xo
y ¥ vy y
ho ho ho

Fig. 3.15. A systolic array equivalent to that of Fig. 3.12
The above three transform steps are given in Fig. 3.16.
For L =1, the 2-D systolic ring in Fig. 3.15 becomes a 1-D systolic array, as
shown in Fig. 3.17. This 1-D systolic array is the most efficient 1-D systolic array

for solving linear convolution problems among those reported in the literature [29].
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Fig. 3.17. A systolic ring structure with L = 1
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3.4. Discussion

In this chapter we derived several 2-D systolic architectures for non-recursive
digital filters.

We derived a 2-D systolic array for 1-D linear phase non-recursive filters.
In this design we first divided the problem into several sub-problems. All these
sub-problems are implemented in 1-D systolic arrays. Then we applied cut-set
localization rules to put those 1-D arrays together to form a regular 2-D system.
By using N; multipliers, this 2-D systolic array can achieve twice the throughput
of the 1-D systolic arrays which use N; /2 multipliers for a given problem. The
disadvantage of this design is that long communication lines are required to achieve
a higher throughput.

We also introduced two 2-D N; x L systolic ring structures for solving lin-
ear convolution problems. The method used in this design is different from the
one for parallel implementation of linear phase filters. We first constructed a 2-D
N; X N, system for linear convolution problems with N; coefficients and N, in-
puts, and then partitioned this system into an N; X L ring structure. A systolic
array for solving the same problem was obtained after applying odd-even column
interchanges to the ring structure. The derived N; x L systolic ring structures are
more efficient than the L x N; array described in [30] because to achieve the same
throughput our arrays require less area in VLSI implementation. It is interesting
to note that the property of the nearest neighbour interconnection in these systolic
ring structures is always guaranteed when the length of L is changed. With L =1
a 2-D ring structure becomes a 1-D array which has been proved to be the most

efficient 1-D systolic array for solving linear convolution problems. Because AP is
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independent of L, we can trade off area versus time for a given problem by varying
L.

When we were constructing the 2-D systolic arrays for non-recursive filters,
we also demonstrated the power and generality of cut-set localization rules. There
are already several well known applications of these rules, such as to localize a
computing network with global communications, to transform one structure into
other different ones with the same functions and to apply second-level pipelining to
a given system so that the throughput of that system is greatly increased without
a great increase in complexity. In this chapter we showed that cut-set localization
rules are also useful in combining several sub-systems to form an efficient system
with high throughput.

With some minor modifications, the systolic ring structures can also
solve DFT, circular convolution and 2-D linear convolution problems because
these problems can easily be transformed into 1-D linear convolution prob-
lems [11,22,43]. We shall see in Chapter 5 that the 2-D ring structures can be
applied as a linear part in an efficient parallel structure for direct-form recursive

filters.
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CHAPTER 4

STABILIZED PARALLEL ALGORITHMS FOR

DIRECT-FORM RECURSIVE FILTERS

4.1. Introduction

Recursive filtering is one of the most important techniques in digital signal
processing. A lot of effort has been made in the past few years to achieve high-
throughput implementation of this type of filtering (2,30,34,36,39-41,43,51,53-55].
However, these methods were mainly based on the conventional look-ahead com-
putation. Although this technique has been applied successfully to the parallel
implementation of state-variable-form recursive filters, it may cause numerical in-
stability when applied to direct-form recursive filters, due to the effect of finite
wordlength. Thus this chapter introduces new methods for deriving stabilized
parallel algorithms for direct-form recursive filters. These algorithms lead to very
efficient pipelined and/or parallel structures, Whi;:h will be described in Chapter 5.
The derived structures belong to the category of systolic/wavefront arrays and are
suitable for VLSI.

In Section 4.2, we describe the conventional look-ahead computation technique
and show that it may cause numerical instability in the direct-form implementation
of recursive filters. Section 4.3 introduces a new method for deriving, in the Z
domain, a stabilized parallel algorithm for direct-form recursive filters. The degree
of parallelism and the stability of tHis algorithm are also analyzed. In order to
obtain this stabilized algorithm, extra zeros and poles have been introduced. The
complexity is then greatly increased. In Section 4.4 we introduce a technique
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called decomposition to minimize this increase in complexity. Since the algorithm
is derived in the Z domain, it cannot be used for time-varying recursive systems.

In Section 4.5, we consider a time domain derivation of the parallel algorithms for

direct-form recursive filters.
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4.2. Conventional Look-Ahead Computation

In the look-ahead technique, the given recursion is iterated as many times
as desired to create the necessary concurrency and then the concurrency created
can be used to obtain pipelined and/or parallel implementation of recursive sys-
tems [41]. In the following we give an example to show that this conventional tech-
nique may cause numerical instability in the practical implementation of direct-
form recursive filters due to the effect of finite wordlength.

An N*? order direct-form recursive filter can be expressed as

N

N
=D i+ Y WiTen (4.1)

j=1 j=0

Because y, in (4.1) depends on the availability of the immediately previous output
Yn—1, it is not obvious that any two outputs can be computed in parallel. Con-
ventional look-ahead computation is applied to increase the degree of parallelism
as follows.

Using (4.1), we write y,—; explicitly as

N N
Yabie= Y Piliaii-j+ ) WiTn-1- (4.2)
=1 j=0
Let ;' =7+ 1. Then
N+1 N+1
Yn—1 = Z Tj'—1Yn—j' + Z Wi —1Tn—j! (4.3)
=2 =1

Substituting (4.3) into (4.1), we obtain

Yn = T1Yn-1 + Z'rjyn—j + ij:cn_j

=2 3=0
N41 N+1
(Z"J 1Yn— J+Zw1 1Zn—j) +Z7'Jyn J+Zw1‘cn =4 (4.4)
J=2 g=2
N+1 N+1

1 1
=2 1 U+ D W e
j=2 j=0
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where

and

W _ [ritmria 2S5 <N
- N TITN ]:N+1

Since vy, is independent of y,_; after the modification, two outputs can be com-

puted simultaneously. We can prove that, after L — 1 iterations, y, will become

N4L=1 L N+L-1 h
=51 -1
Yp = Z rg. )yn_j + Z wg- ):cn_j (4.5)
j=L j=0

In the above equation, the coefficients can be computed by the following iterative
algorithm.
for: <1< L do
begin
for0<;<N+I[l-1do
begin { to compute wg-l_l) }

if0 <j<!l—-1then

w;z—n 2 wgz—z)

elseifl-1<j< N+1[1-1then

- - -
wg 1) = 'wg % + 7‘5_12) * wj_(l_l)

else wg-l—l) i r;l_—lz) * WN (4.6)

end; { end of computing wg-l—l) }
for0<j<N+Il-1do
s (1-1)
begin { to compute r;" }
if 0 < j <[ then

rg-l_l) =20
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else ifl<j <N +1[(—1 then

-1 -2 -2
7';. ) L rg- ) +r§_1 ) * P11y

else rg-l_l) = r§‘_“12) * TN
end { end of computing rgl—l) }
end.
( The proofs of (4.5) and (4.6) are given in Appendix 4.1.)
To analyze the stability of the modified algorithm, we transform it into the Z

domain and then obtain the impulse response function as

- L=1) i

= == (4.7)
e Vi 'I‘E-L—l)z_j

H(z)

We prove, in Appendix 4.2, that H(z) in (4.7) can be rewritten as

D(z)

Huy=ﬁ@th

(4.8)

In the above equation, H (z) is the impulse response function before the modifica-

tion and D(z) is an (L — 1)** order polynomial in z~!, which is defined as

L-1
Diz)=1+ ri ™z (4.9)
=1
where rg-j_l) can be computed by the iterative algorithm in (4.6).

From (4.8) we see that, to obtain a parallel algorithm, we have multiplied both
numerator and denominator of the original impulse response function by a factor
D(z). Because of the zero and pole cancellation, the impulse response function
after the modification is theoretically equivalent to the original one. However,
we cannot guarantee that all roots of D(z) are within the unit circle. Thus the
modification may cause numerical instability due to the effect of finite wordlength.

We give an example below.
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Consider a second-order recursive filter. The denominator of H(z) is given
as 1 — 1.5z71 4+ 0.56z72. Since the two roots of this denominator are 0.7 and
0.8, the system is stable. We now derive a parallel algorithm by using the above
conventional technique. After one iteration, the root of D(z) = 1 + rj27! is
—1.5, which is outside the unit circle. After two iterations, the roots of D(z) =
147270 +r§1)z"2 are —0.75£1.5:. They are also outside the unit circle. Therefore,

the modified system is definitely unstable.
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4.3. Stabilized Parallel Algorithm

In the previous section, we have shown that applying the conventional look-
ahead computation to the implementation of direct-form recursive filters may cause
numerical instability because the extra poles introduced cannot be guaranteed to
be inside the unit circle. In this section we derive a new parallel algorithm which

is guaranteed to be stable if the original (serial) algorithm is stable.

4.3.1. Algorithm

The impulse response of an N** order recursive filter can be expressed as

N _.
Y(2) _ _2j=owiz”’
X(z2) 1- EN rjz‘j

j=1

H(z) = (4.10)

where X (z) and Y (z) represent the Z transforms of input and output, respectively.
To obtain our parallel algorithm, we first introduce a well known N x N

matrix, which is called a companion matrix,

0 1 0 0
0 0 1 il 0
Bl T 6 ven 31 A spincd = (4.11)
0 0 0 o 4 1
—by —=by =by ... —=bn_1

In this matrix, the elements on the first superdiagonal are all equal to one and the
7" element on the last row is —bj;_1, but all other elements are equal to zero. It

1s known that

det(zI —B) =z + by_12V 1+ + bz + by

N
: 4.12
= ZN+ E bN_J'ZN—J ( )
j=1

where det(X) denotes the determinant of the matrix X and Iis an N x N identity
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matrix. Let —b; =rny_;. Then

0 1 0 0
0 0 1 Soni pil)
B = (4.13)
0 0 0 |
TN TN-1 TN-=-2 1
and
N
det(2I — B) = 2V erz (4.14)
=1

Multiplying both sides of (4.14) by z=%, we obtain

N
det(I-Bz ') =1- erz_j (4.15)

j=1

From the above equation, we see that by using the companion matrix B, the
denominator of the impulse response function in (4.10) can be expressed in matrix

form. Thus we can rewrite H(z) as

N o
E] g Wi~ .

= det(I— Bz~1)

(4.16)

We next multiply both numerator and denominator of (4.16) by a factor
det(EL 3 B7z77), where B = I and B’ is a product of j matrices B. (An
efficient method for computing B7 is given in Appendix 4.3.) The impulse response

function then becomes

- _det BIz7J
lﬂa=¢u>d£§LlBjﬂ;

B s (5 o) Bl

=0 (4.17)
det(I Bz=1)det(} -, Biz7)
_(zNuw-nauleBfﬂ)
det((I - Bz~1)(;, Biz™9))
Now
L-1
B Y By ) =1 Bt (4.18)
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Substituting (4.18) into (4.17), we finally obtain our modified impulse response

function as

(T wiz9)det (T35, Biz)
det(I — BLz—-L)

H(z) = (4.19)

which implies a parallel algorithm. The rest of this section will analyze the degree

of parallelism and the stability of this algorithm.

4.3.2. Degree of parallelism

We may divide (4.19) into two parts:

Y(2) U(2)
s

= Hg(Z)Hl(Z) (420)

In the above equation, U(z) is an intermediate variable, and H,(z) and H;(z) are

the recursive part and linear part, respectively, defined as follows

Yz} 1
U(z) det(I-BLz-L)

and

U(z) i . Lz_:l MU
Hi(z) = =1y wez™)det( ¥ B277) (4.22)
X(z) v prop
It is recursion that limits the parallel implementation of recursive filters. To ana-

lyze the degree of parallelism, therefore, we only consider the recursive part H,(z).

Lemma 4.1. Suppose that B is an N x N matrix. Then det(I — Bfz7%) can
be expressed as an N L** order polynomial in z=! with only N + 1 terms, that is,
N .
det(I-Bfz7P)=1-> bjpz77* (4.23)
j=1
where bjr is a combination of some elements in B L
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Proof: Let A\ = zL. Then

det(I — BLz7L) = det(I - BZA 1Y)

(4.24)

Since B is an N x N matrix, so is BE. Thus det(I — BXA7!) is an N** order

polynomial in z=! and can be expressed as
N .
det(I-BEA™1) =1-) b A~
j=1

where b;1, is a combination of some elements in BL,

Substituting zZ for X in (4.25), we then obtain (4.23).

Using Lemma 4.1, we can rewrite H3(z) as

Y(z) 1
U(Z) e EN___I bjLz—jL

Converting (4.26) into the time domain, we obtain

N
Yu = Z b;LYn—jL + Un
j=1

(4.25)

(4.26)

(4.27)

Because y, in (4.27) depends only on y,—jr for 7 = 1 to N, L outputs can be

computed simultaneously. That is why we call our modified algorithm a parallel

algorithm.

In the following, we give an example of N = 2.

(L-2)
From Appendix 4.3, we can obtain that BL = (T(LL_I)

TL+1
i1s computed by using (4.6). Then

L-2) _ L-2) _
[_BL,~L _ 1—7'2 ) ~L —ré_l ) 2=
—-r(LI;__ll)z—L 1-— réL_l)z"L
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r{f_ll) , where 7

J
L

) (4.28)



We have

det(I — BLz_L) =(1- rg’_z)z_[’)(l — r(L—l)z—L) - riL lo)rg_'*_ll)z—”‘

L
=1- (r(L 02 + 'rgL—l))z—L—

AL=2) (L—-1) _  (L-2) (L-1)y -2L
=1 Tria TL L )2

=1 — tr(B%)z~% — (—det(B%))z %L

2
=1- ijLZ_JL
j=1

where tr(B%) denotes the trace of B, by = tr(B%) and bsr = —det(BE).

. Y( 1
Since Hz(2) = U(ig o = T then
j=1

Yn = b1LYn—L + b2LYn—2L + Un

4.3.3. Stability

Since we have assumed that B is an N X N matrix,
det(I — BLz7L) = z7VIdet(IL — BY)

and
—1 . . L—l . .
det(z B = Z—N(L—l)det(z BJZL—I-J)

j=0
We can rewrite H(z) into another form as

(Z;\’:Owj ”)det(ZJ 0 ) BizL- I—J)
i det(IzL — BL)

Similarly, H(z) in (4.16) can be rewritten as

ZNowJ S

i) = det(Iz — B)
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Suppose that the original algorithm before the modification is stable. Then the
roots of det(Iz — B) are all in the unit circle. This means that the eigenvalues z;
of B are all in the unit circle. It is clear that the eigenvalues z* of B% are also
in the unit circle and closer to the origin than their corresponding z;’s. Thus, the

stability of our modified algorithm is obvious.
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4.4. Reduction of Complexity

In this section we consider the number of multipliers required for implementing
the modified algorithm in the 1-D case. (It will be seen, in the next chapter, that
the number of multipliers in the 2-D case is only increased by a factor of L.)
We shall see that the direct imélementation of the modified algorithm is not very
practical because the number of multipliers for that algorithm is very large. A

technique called decomposition is introduced to reduce the number of multipliers.

Lemma 4.2. Suppose B is an N x N matrix, then det(z:ff;()1 B/z77) is an

N(L - 1)** polynomial in z71.

Proof: From Lemma 4.1, det(I — B£z7 L) is an NL** order polynomial in z71.
We also know that det(I — Bz7!) is an N** order polynomial in z~!. However,
we have det(I — BL2z7L) = det(I — Bz_l)det(EL ~, Biz77). Thus the order of

det(37-, B/z=9) must be NL — N = N(L - 1). O

Since det(zfgol Biz77)is an N(L — 1)** order polynomial, N(L — 1) multi-
pliers are required for computing the associated convolution. Therefore, N(L — 1)
extra multipliers have been introduced in the modified algorithm, which dominates
the total number of multipliers. In the following, we apply the decomposition tech-

nique to reduce this number of multipliers.

Lemma 4.3. If L = [;l,, where l; and [, are positive integers, then ZL ~ Biz

can be expressed as

-1 l1-1

ZBJ e —(Z e il (B21Y) (4.35)

=0

where B? = 1.
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Proof: We arrange L terms of EJ = " B7z77 into [, groups with I; terms each

as follows
L-1
Y Bz =[I+Bz 4.+ (B2
g=0
+[(Bz) + (B 4 4 (B2 4
+[(Bz~1)(e=Dh | (Bo-1)(-Dh+1 | 4 (B,~1)hh—]]
Let
l1—1 :
Q=I+Bz'+.--+(Bz) 7 =) (Bz1)
j=0

For the i** group in (4.37) we have
(Bz—l)(i—1)11 il (Bz—l)(i—1)11+1 e Ak (Bz—l)i11—1 il (Bz—l)(i—l)hQ

We then obtain

L-1
Z Biz;77 = Q-+ (BZ—I)IIQ e e (Bz—l)(lz-l)hQ
—

=[I+(Bz Y1 4+... + (Bz)a=Dh)Q

-1
=(Q_(BzY")Q
= (D B (Y (B)

Lemma 4.4. If L = H;’f:l l;, where [j is a positive integer, then
K lpg—-1 k 4
S =[Sy Ty

k=1 =0

where B? = I and the [; are not necessarily distinct.

Proof: By induction on K from Lemma 4.3.
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We give an example with L = 12. Since 12 can be expressed as a product of

three prime numbers 3, 2 and 2, we have

> Bz =(I+Bz'+B%:7%) + (B2 + Bt + B%27%)+
+ (B6z—6 + B7z—7 + BSZ—S) + (BQZ—Q + BIOZ—-IO + Bllz—ll)
=(I+Bz!+B%:73)((I+B%*27%) +(B°2~°% + B*27?))

= (I+ Bz + Bzz_z)(I + Bsz's)(I + Bsz_ﬁ)
(4.40)

From the above example, it is easy to see that a large polynomial has been
decomposed into a product of three small polynomials. Then E;-l:o B7z77 can be
implemented in a three-stage cascaded structure with only 4 N multipliers, instead
of 11N multipliers, where we suppose B is an NV X N matrix. This reduction of

the number of multipliers can be formally expressed by the following two lemmas.

Lemma 4.5. Suppose that B is an N X N matrix and ¢ and p are constants,

then
(¢g-1)N

det(Z(Bz‘l Py =1+ Z djpz P (4.41)

where B® =T and d;, is a combination of some elements in B?,- - B(a-V)p,

Proof: Let z2 = ). Then

qg—1
det(Z & 1)2) Sudet (> B?PX) (4.42)
2=0

From Lemma 4.2, we know that det(zg;g B/P)X77) is an N(¢q — 1)** order poly-

nomial in A™!. It can then be expressed as

g—1 (¢—1)N
det(d B/PA7Y) Z dipA ™7 (4.43)
7=0 i=
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where d;, is a combination of some elements in B?, ... B{¢=1)p,
Since the coefficient of A° is unity both in det(I-BZA~%) and in det(I-BA~1),

the coefficient of A\° in (4.43) must also be unity. Then

(g—1)N

det(ZB’pA =1+ Z dipA ™7 (4.44)

Replacing A by 2? in (4.44), we then obtain
-1 (¢g—1)N

gl Bz )P =14 Y diz?

7=0

_

O

We see, from Lemma 4.5, that there are only N (g — 1) multipliers required to
compute the associated convolution although det(3 -, ~(Bz71)/P)is an Np(g—1)t*

order polynomial. By extending this result, we have Lemma 4.6.

. Lemma 4.6. If L = Hle Ik, there are N(Z{;l lx — K) multipliers required
for computing the convolution associated with det(ZL ' B7z77) by using the

decomposition technique, where B is an N x N matrix.

Proof: From Lemma 4.4, we may have

L1 X -1
det(Z:sz"J det(H Z(Bz"l)J i=1 ‘))
e Lty (4.45)
K l" .  TTk-1
H l)J H.'=1 li)
k=1 7=0

We see, from the above equation, that det(z:j:':_o1 B7z77) can be expressed as a
product of K small polynomials. It can then be implemented in a K-stage cascaded
structure. From Lemma 4.5, however, there are N(/; — 1) multipliers required in

the k** stage. For K stages, the total number of multipliers is then
Z N(x—1) = N(Z Iy - (4.46)
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Since Z{,{zl [, — K may be much smaller than H{_{zl [ — 1, the number of
multipliers may be greatly decreased after the decomposition. If L = 2% (or

K =log,L), for example, then the number in (4.46) becomes

K
Y N(lt) = NK = Nlog,L (4.47)

k=1
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4.5. Time Domain Derivation

In this section we consider a time domain derivation of the parallel algorithms
for direct-form recursive filters. This is of particular interest for time-varying
recursive systems.

From Section 4.3 we see that the stabilized parallel algorithm derived in the

Z domain has the form

N
Un = Z bijn—jL + Un (448)

i=1
Thus our goal is to derive, in the time domain, a parallel algorithm with the same
form. In Section 4.5.1, we use a second-order recursive filter as an example to
demonstrate two methods of achieving this form from the original (serial) algo-
rithm. There are many other ways to achieve this form and one could ask if all
these methods produce the same solution. Section 4.5.2 shows that uniqueness
holds under one condition. If this condition is satisfied, all the methods give a
unique solution and this solution is stable (if the original algorithm is stable), be-
cause it is the same as the one derived in Section 4.3, which has been proved to
be stable. If the condition for uniqueness is not satisfied, we need to analyze the

stability of the derived algorithm. This problem is discussed in Section 4.5.3.
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4.5.1. Methods of derivation

In this subsection, we use a second-order recursive filter as an example to
demonstrate two methods for obtaining parallel algorithms with the same form as
that in (4.48). We assume that the condition for the unique solution (which will
be discussed in the next subsection) holds, so all steps of the following derivations

are valid.

A second-order recursive filter is expressed as

Yn = T1Yn—1 + T2Yn—2 + Un (449)

where v, = woz, + W1Tpn—1 + W2Zn—2. To increase the degree of parallelism by a

factor of L = 6, a modification is made so that the following form is obtained

Yn = blLyn—L 4 b2Lyn—2L + Un
(4.50)

= bgYn—6 + b12Yn—12 + Un

To achieve this, we introduce two methods. The first one needs (L — 1)N steps to
complete the derivation. Thus it is called the derivation without decomposition.

The second one is called the derivation with decomposition because it takes only

(Zi{zl lx — K)N steps, where L = H£{=1 li.
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1 @x2 . 3) 0 1
2 (2%3 .. 4) 0 2
3 (34  5) [0 3
4 (45  6)t 0 4
5 B%8 .. T 0 5
6 (8% T 2, 8) 0 6
7 (B..8% ~9) 0 6
8 (6 9% 10 [0 6
9 (6 10% 11)* [0 6

10 (8 11> 1P [0 6

11 0 6

Fig. 4.1. The derivation without decomposition (N = 2 and L = 6)

4.5.1.1. Derivation without decomposition

10]
11]

12]

We are concerned with the derived form, but not with the exact values of

coeflicients. For simplicity, therefore, we use index notation to describe the pro-

cedure of our derivation, as shown in Fig. 4.1. The number in the first column

denotes the step of the derivation. The numbers in the other columns represent

an output. For example, 2 stands for y,—» and 3 for y,—3. The numbers between

the square brackets at the ¢** row represent an equation, which is the result from

the immediately previous step and is called the equation at step :. For example,

[0 6 7] on the sixth row denotes

Yn = ng)yn—G = b'(75)yn—7 = ’US)

(4.51)

where b;s) is the j** coefficient of the equation, which is derived from step 5. A
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group of numbers between parentheses with a superscript : denotes that an output,
the corresponding number of which has a superscript “x”, is written explicitly by

using the equation at step :. Since the equation at step 1 is expressed as

Yn = b3 Y1 + b5 Yn—z + vV (4.52)

)

where b( ) = = Py, b( ) = ry and v = = vp, then (6 7 8)! can be written as

Yn—6 = bEO)yn—’( . b( Yn—8 T 'U( ) (453)

- Thus (6 7% 8)! on the sixth row is expressed as

1 b(o) 1 (0)
Yn—-T7 = @'y’n—ﬁ b(o) ~Yn—8 — b(O) Vn—-6 (4.54)

In the above we have assumed that bgo) = 0.

The operation at step : is described as follows: First an output is written ex-
plicitly according to the coefficients between the parentheses. Next the expression
of this output is substituted into the equation at step ¢, which is determined by
the coefficients between the square brackets and is derived from step : — 1. An
equation for the next step is'then obtained. An example follows. At step 6 in Fig.
4.1, we write y,—7 explicitly, using the equation at step 1. The result is given in

(4.54). Next we substitute it into (4.51), the equation at step 6. Then we obtain
() b(5)b(0) b(5)

), br (0) | ()
(b b(o) )yn 6 + ( b(o) )y'n. 8 +( b(g)) + Un (455)

o bgs)yn-s 1 bgs)yn—s + ol

It is easy to verify, from Fig. 4.1, that the final result after ten iterations can
be expressed as
Yn = bgYn—6 + b12Yn—12 + un (4.56)
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where

10
Up = Vp + E d;jVn—j
J=1

(4.57)

Because ten extra multipliers are introduced for computing u,, the complexity

after the modification is greatly increased. This number of multipliers is just

(L —1)N. That is why we call this method derivation without decomposition. In

the following, we describe a more efficient method with decomposition.

4.5.1.2. Derivation with decomposition

4 H1*gionae
7. Hox 31l 4
3 g )
4 (3 5% 6)?
5. {3%6 9

6 (6 9% 12)°

[0
[0
0
[0
0

[0

Fig. 4.2. Derivation with decomposition (VN = 2 and L = 6)

The index notation of this derivation is depicted in Fig. 4.2. Since we are

considering the decomposition, the detailed derivation at each step (as listed in

Appendix 4.4) must be studied carefully.

From Appendix 4.4 it is easily verified that u, can be computed in two stages,

that is,

4
iy = vn+ ) d; v

i=1
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and

2
unzﬁn+2d
7=l

(2) - _
3j Un—3j

(4.59)

Therefore, only six multipliers are required for computing u.,.

T L T

SAE O R

e et SR
S Es 4D

SRR 6% 8

Bd 1 A4 870 10X
Wiee: (B Rieiticl?
861 ui@non12%: 16
Oify ({80). 181:1420%

10

4)
5)
6)°
8)*
10)*
12)%
16)7
20)7

24)8

1 2 3

2

2

8

8

3

4

8

8

4]

10]

12]

12 16]

16 20

8 16 24]

Fig. 4.3. Derivation with decomposition (N = 3 and L = 8)

The idea described above can easily be extended to more complicated cases.

Fig. 4.3 depicts an example of N = 3 and L = 8. It is easy to prove that u, in

this example can be computed in three stages, using only nine multipliers (which

is Nlog,L).
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4.5.2. Condition for unique solution

In section 4.5.1, we described two methods for obtaining a time domain deriva-
tion. However, there are many other methods of achieving the same goal. Two
of them are depicted in Fig. 4.4. In this subsection we give the condition for the
unique solution of the stabilized parallel algorithm.

The problem is defined as follows: Suppose that

N - (L=1)N ) N _
e e R T e S T T (4.60)
i=1 =0 i=0
where b9 = 1 and 1 — Z;va=1 rjz'j is the determinant of the Z transform of a

stable recursive filter. The question is whether there exists a unique solution for
determining LN + 1 unknowns a; for 0 < 7 < (L —1)N and bz for 1 <7 < N.

We first modify (4.60). Multiplying both sides of (4.60) b

1
y N FE
1—2j=1rjz ?

then
(L-1)N N —
s Z] 00jLz -
Z ain = = _ (4.61)
e 1-— 2j=1 Py
By a power series expansion, we have
1 N
N —1+ng e IR
I Ej:l sz =1 j=1
o N
= Z Z (4.62)
k=0 ;=1
k=0
where s = 1 and s; is a combination of some r;. (The calculation of s; for

1 <k £ (L~—-1)N can be found in Appendix 4.5.) The above expansion is
convergent for z~! in the unit circle because the original system is stable.
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O B 0 1 3
2. 2* 3. 5P [
4 (3 5% &) 0 3 5
B (2% 6. .9 0 3 6

7 06 12
(a)

1 [t 2" 30 0 1 2]

2 (B 3% "4)" o= 2 3]

3 (2% 4, _.6)° [0 2. 4]

4 (46 8)° 0 4 6]

(b)

Fig. 4.4. Two other methods for the time domain
derivation (N = 2 and L = 6)

Using (4.61) and (4.62), we can rewrite (4.60) as

(L-1)N oo

D mer Z b;pz L) Z spz” (4.63)
From (4.63) it is easy to verify that, once b;z, for 0 < j < N is determined, there is
an unique solution for a; for 0 < 7 < (L —1)N. Therefore, our problem is reduced
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to finding the condition for the unique solution of NV unknowns b,z for1 < j < N.

Lemma 7. Consider an equation of the form (4.60) or (4.63). There exists a

unique solution for b;z for 1 < 7 < N if and only if the following inequality is

satisfied
$(L-1)N+1-L S(L-1)N+1-2L °°* SL-N+1
. S(L—l)fV+2—L 3(L—1)1?r+2—2L SL—.N+2 £ (4.64)
SLN-1-L SLN-1-2L 29 28T =1

where s = 0 for k& < 0.

Proof: We define a; =0 for j > (L —1)N. Then we can write

(L—-1)N 4l
Z g:27 = Z 4357 (4.65)
j=0 =0

Substituting (4.65) into (4.63), we have

o0

oo N
Zajz—j = (Z bjLz_jL)(Z spz™ %) (4.66)

k=0

Except for the first (L —1)N + 1 linear equations, which are used to determine a;
for 0 < 7 < (L —1)N, from (4.66) we can write an infinite set of linear equations

as
0 =135 _1)N+1 b +S(L—1)N+1-L AR L b(N-—l)L
Lo S(L-1)N+2 by +S(L—1)N+2-L B bt 8r s b(N—l)L

(4.67)

0=s.nb +8N-1 0L 8 by +350 by,

where s = 0 for k£ < 0.
Although there is a countably infinite number of linear equations in (4.67),
only at most N of them are independent. This is proved as follows: Substituting
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(4.65) into (4.60), then

oo N
(1 — Z’I‘jz_j)(z ajz—j) = Z bjLz—jL (468)
g=1 =1 7=0

Since Zﬁ'v:o bjrz=7% is an NL* order polynomial in z~!, the coefficient for any
term with an order higher than N L must be zero. Thus we can write

anp+1 trienp  traaenp_y + TN QL_yNyy =0

ANL+2 TT1ANL41 TT28Nnp T TN G _ynga =0

(4.69)
ANL+3 TT18NL42 TT2 8N T TN QL _)Nt3 = 0

From the above equations it is easy to see that once the first N coefficients a;
for (L —1)N +1 < j < NL are known, anr+; can be determined by the first
equation, then ayr42 is determined by the second and then ayr4+3 by the third,
and so on. Therefore, only at most NV linear equations among those equations in
(4.67) are independent.

To compute b;f, for 1 < 7 < N, we choose the first NV linear equations from
(4.67). Since by = s9 = 1, we then have

0=s N1 PS@-yn+1-2 00 T FS N1 Ono1)L

{ = S(L—1)N+2 TS(L-1)N+2-L by +0 +87_n4o b(N—l)L

(4.70)
0=spn +SiN-1 0L by Oy )z +onr
or in a matrix form,
/3(L—1)N+1—L *** SL-N+1 0\ br, /S(L—I)N+1\
8(L-1)N+42-L *** SL-N+42 O bar, S(L—1)N+2
= — : (4.71)
SEN-1-F o+ . 8sz.3 D bv-1)L SLN—1
\ SIN—L sy, 1) bnL \ SLN /
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where s = 0 for £ < 0. From (4.71), it is easy to see that the necessary and

sufficient condition for the unique solution of b;z for 1 < ;3 < N is

(S(L—1)N+1—L S(L—-1)N+1-2L *** SL—N+1 0\
8(L-1)N+2—-L S(L-1)N+2-2L " SL-N+2 0
det : : : | #0 (4.72)
SLN-1-L SLN-1-2L o f e omi i
\ SLN-L SLN—2L SL 1)
or
S(L-1)N+1-L S(L-1)N+41-2L *°** SL—-N+1
S(L-1)N+42-L S$(L-1)N+2-2L *°° SL-N+2
det ) ! ’ : #0
SLN—-1-L SLN—-1-2L A SL—-1
where s =0 for £k < 0. O

4.5.3. Stability

In the previous subsection we derived the condition for the unique solution
of the stabilized parallel algorithm. In certain problems, however, this condition
does not hold. Since the solutions in these cases are not the same, we need to
analyze the stability of the derived algorithm. The following is an example with
N=2and L =6

From (4.64) we can express the condition of the unique solution for N = 2
and L = 6 as

By using (4.A5.13) and (4.6), S5 can be written as

85 = r§4) =r1(r? 4 3r2)(r3 +72) (4.74)

Therefore, the solutions will not be unique if either r1, 73 + 373 or T3 + 75 is equal

to zero.
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To investigate stability, we consider one of the above three cases, that is,
r2 4+3r, =0 (4.75)

Since b; = 0 for 7 # ¢L in (4.A5.2), we can obtain a linear homogeneous system
of N(L — 1) equations. Using these equations plus the constraint (4.75), we can

calculate the coefficient a; and then obtain
10 .
Z a;z77 =(1+rz7 —rz73)(1 = r227%)(1 + a627°) (4.76)
j=0

Suppose that the original system is stable. The two poles z; and 2, of the
system are inside the unit circle. It is easy to verify that the roots of 1 +r;271 —
ro2~2 are —z; and —z, and the roots of 1 — r,z~2 are :}:(zlzz)l/z. They are also

inside the unit circle. To obtain a stabilized parallel algorithm, therefore, the

absolute value of a¢ in (4.76) must be smaller than unity, that is,
|a6| < 1 (477)

Consider one extreme case when ag = 0. Then

2 10

ijLz—jL =(1- rz” ! — 1‘22_2)(2 a.jz_j)

J=0 J=0
=(1-rz"' - 7’22—2)(1 e 7‘22_2)(1 - rzz"z) (4.78)
=1-r3z""°

It can be verified that this result may be obtained by just using the conventional
look-ahead technique described in Section 4.2.

Using the same method described above to the other two cases, we can see
that (4.77) is the condition for obtaining a stabilized algorithm with a degree of
parallelism L = 6 for a second-order recursive filter when the condition for the

unique solution (4.73) is not satisfied.
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4.6. Discussion

In this chapter we first showed that conventional look-ahead computation for
obtaining parallel algorithms for recursive systems can cause numerical instability
in the direct-form implementation of recursive filters. The reason is that the
introduced poles cannot be guaranteed to be inside the unit circle. Then we
introduced a new method for deriving, in the Z domain, an algorithm for direct-
form recursive filters. We showed that not only is the degree of parallelism of this
new algorithm increased, but the stability is also improved. If the original serial
computation is stable, that is, the eigenvalues z; of the companion matrix in the
original algorithm are all in the unit circle, the eigenvalues z% of the companion
matrix in the parallel system will also be in the unit circle and closer to the origin
than their corresponding z;’s. This enhanced stability may mean that less bits per
word are necessary in our parallel implementation.

The penalty for using the new method is a great increase in complexity. For
example, an extra N(L — 1) multipliers are required if we want to increase the
degree of parallelism by a factor of L for an N** order recursive filter. However,
to implement the original serial algorithm requires only 2N + 1 multipliers. To
alleviate this problem, we introduced a decomposition technique. After decompo-
sition, the extra multipliers introduced are decreased to N (Zi{=1 lx — K) where
L= Hf:l k.

We also considered the method for obtaining, in the time domain, parallel
algorithms with the same form as the one obtained in the Z domain. The derived
parallel algorithm can be applied to time-varying recursive systems which are an

important tool in modern digital signal processing. There are many different ways

78



to achieve the same goal. We then discussed the condition for uniqueness of the
stabilized parallel algorithm. We showed that if this condition is not satisfied,
the derived algorithms are stable only under certain conditions. Therefore, the
problem of stability has to be carefully considered when one is deriving parallel
algorithms for a time-varying recursive system.

The method described in this chapter can also be extended to obtain parallel
algorithms for recursive filters in state-variable form. However, the decomposition
technique is useful to reduce the increased complexity only if certain conditions

are satisfied. A detailed description of this issue can be found in Appendix 4.6.
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Appendix 4.1 :

In this appendix, we prove (4.5) and (4.6) by using induction.

From (4.2), (4.3) and (4.4), we see that (4.5) holds for L = 2. By induction,

assume that the algorithm holds after L — 2 iterations, that is,

N+L-2 N+L-2 k
L-2 —2
= 3 5 g+ > wi Ve, (4.41.1)
j=L-1 J=0
where
(L~2) __ T;-L—s) s r(L’“_‘;‘)r,--(L_z), L-1<j3j<N+L-2
4 et t) , (4.41.2)
and
= dsi<l—2
T 2L - ”
wg- 2 = wE-L o +r§JL_23)wj_(L_2), L-2<j3<N+L-2 (4.41.3)
rE Dy, j=N+L-2.
Using (4.1), we write y,_(r—1) explicitly as
N N
Yn—(L-1) = D Ti¥n—(b-1)=j + ) WiTn—(L-1)-; (4.41.4)
j=1 j=0
Let ' =74+ L —1. Then
N+L-1 N+L-1
Yn(L-1) = D, Ti—(L-¥n—7' T+ D Wj—(L-1)Tn—j (4.41.5)
'=L j’'=L-1
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Substituting (4.A1.5) into (4.A1.1), we have

£l N+L-1 N+L-1
Yo =755 ( D, Tim(E-D¥n—it+ Y Wis(z-1)Ta-j)+
g==1, j=L-1
N+L—-2 : N+L-2 (
L-2) L-2)
+ Z Tj L Z j Tn—j
J—L =0
N (L 2) (L 2) (L-2)
+rr  Pi—(L=1)Wn—i + T 1 Tal¥n—(N+L-1)+
; ) O ! . (4.A1.6)
S ), Y& e, )
L-2 -2 -
Z Tp—j T Z (wj Iy W 1))33n—]+
j=0 j=L-1
+r( )w z
L-1 WnZn—(N+L-1)
N+L-1 2 N+L-1 -
e -1
= 2 N st Y w0 ey
i=L j=0
In the above equation,
L- L—- .
(L- 1) ; 2)+ ( 12)1’J AL =1)» L§]<N+L—1;
T (L—2) ) (4.41.7)
Py PN j=N+L-1
and
w Y 0<j<L-1
L—- A
wg- Y = ;L i +7‘§-JL lz)wJ $l-1)y L—1=j<N+L-1; (4.A41.8)
"'(LL 12)wN, y=N+.L-1.
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Appendix 4.2

In the following, we prove

N+L-1

3w = (et
where
L—-1 : .
D(z)= 1% Z rgj_l)z—J
=1

The proof of the denominator of H(z) in (4.8) is similar.

First let L = 2. Since we have, from (4.6),

1 wo, ] == 0,
wg- Y = w; +rwi—1, 1573 <N+1;
T1WN, ] = N + 1
thus

N+1 ; N .

Yowiz T =wo+ Y (wj+rwjog)z Y + rwnz” VY
3=0 j=1

N N
= wp + ijz_J 4 7'1(2 wij—1z- 7 + wNz"(N‘*'l))

j=1 3=1
N+1

N
=E z’+r1§ Witz
=0 =1

Let 7' =7 — 1. Then
N+1

N

. .f

E w,-z’zzlg W
i=1 j'=0

Substituting (4.A2.4) into (4.A2.3), we obtain

N+1

Zw() —J —Zsz I 4 priz” ij
Z"UJ D(z)

where D(z) =1+ r;271
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By induction, assume that (4.A2.1) holds for L — 2, that is,

N+L-2

Z:wwz’ﬂ_42}%zia+§:(’)‘w (4.42.6)
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