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ABSTRACT 

This thesis addresses the design of efficient systolic architectures for real-time 

digital filters. 

Many VLSI architectures for digital filters have been introduced in the liter

ature. Most of these architectures are one-dimensional because the problems to 

be solved are 1-D. Although 1-D architectures have the advantage of low I/0 

bandwidth requirement, the throughput is limited by their word-serial nature. In 

many high-throughput applications, (two-level) pipelined and/or (2-D) parallel 

architectures have to be considered seriously. 

Digital filters can be classified as non-recursive filters and recursive filters. In 

order to obtain efficient pipelined and/or parallel systolic architectures for these 

two types of filters, some difficult problems have to be solved. Suppose that N 1 and 

N2 are the numbers of coefficients and inputs of a non-recursive filter. Since there 

is no recursion in the system and there is a high degree of inherent parallelism, it 

is easy to obtain an N 1 x N 2 architecture for implementing that filter. However, 

this N 1 x N 2 architecture is impractical for implementation in VLSI because it has 

too many input/output lines and requires too large an area for a large problem. 

Therefore, the key problem is to construct 2-D systolic architectures which not 

only can solve the problem efficiently, but have a reasonable size well suited for 

VLSI implementation. 

Recursion implies sequential rather than parallel execution, which typically 

places an upper bound on the throughput with which a recursion can be imple

mented. Therefore, to obtain parallel algorithms/architectures with guaranteed 
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stability for recursive filters is a more difficult task than for non-recursive filters. 

This thesis aims to solve these problems and then to obtain efficient pipelined 

and/ or parallel systolic architectures for non-recursive and recursive filters. 

We introduce a 2-D systolic architecture for linear phase non-recursive filters 

and two 2-D systolic ring structures for linear convolution problems. These archi

tectures are based on nearest neighbour interconnections and have the property of 

linear area versus period tradeoff for a given problem. Moreover, they are unidi

rectional structures. The technique of two-level pipelining may easily be applied 

to these structures. Thus the throughput can further be increased without a great 

. . 
increase 1n area. 

Although look-ahead computation is a good method for deriving parallel al-

gorithms for state-variable-form recursive filters, this conventional technique may 

cause numerical instability in direct-form recursive filters due to the effect of fi

nite wordlength. We introduce a new method of Z domain derivation. Using this 

method, not only can parallel algorithms with guaranteed stability be derived, 

but the additional complexity required for this purpose can be minimized through 

a decomposition technique. A time domain derivation of parallel algorithms for 

direct-form recursive filters is also introduced. The derived algorithms are of par

ticular interest for time-varying recursive systems. 

Using the stabilized parallel algorithms for direct-form recursive filters, very 

efficient pipelined and/ or parallel VLSI architectures can be constructed. We show 

that those algorithms lead directly to an efficient two-level pipelined structure. 

Two different parallel systolic structures are also derived based on those algo

rithms. One has the advantage of regularity while the other can achieve a linear 

. 
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complexity in parallel size for cascaded second-order recursive filters. Using 2-D 

parallel processing in combination with two-level pipelining, efficient pipelined and 

parallel architectures can also be constructed. With the same degree of complex

ity, this combination of techniques enables a substantial increase in throughput 

compared to purely parallel architectures for a given problem. 
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CHAPTER 1 

INTRODUCTION 

This thesis addresses the design of efficient architectures for high-speed digital 

signal processing. 

Many signal processing applications have two characteristics which make them 

computationally intensive: (i) large amounts of processing (up to hundreds of el

ementary operations at each point); (ii) real-time response ( at rates up to several 

MHz). Ever-increasing demands for sophistication and speed of processing clearly 

point to the need for dramatic increases in computational capability. Rapid im

provements in digital integrated circuit technology have provided about a ten times 

increase in device speed every few years, but these improvements still cannot sup

ply the required performance in areas of high-speed signal processing such as speech 

recognition, beamforming, and image analysis. Therefore, real-time computation 

needs accompanying architectural advances. 

Many compute-intensive tasks are now handled by general-purpose supercom

puters. These general-purpose machines have complicated system organizations, 

are very expensive and provide facilities such as 64-bit word and arithmetic units 

which are not fully utilized in signal processing operations. The advent of low

cost and high-density VLSI technology makes it possible to use special-purpose 

array processors for solving certain classes of compute-intensive problems faster 

and more economically than would be possible with a general-purpose system. 

In VLSI, communication is expensive whereas logic is relatively cheap [31]. To 

minimize communication cost, one can build architectures which are regular ar-

1 



rays or lattices of small processing elements. The only communication is between 

near neighbours and the array can be laid out simply and efficiently. Fortunately, 

most algorithms in modern signal processing possess some useful common proper

ties, such as regularity, local data communication, and a high degree of potential 

parallelism. These properties may be utilized to exploit the power of VLSI and 

to circumvent its constraints. Because of its local communication, synchronous 

data fl.ow, simple control and modular parallelism with throughput directly pro

portional to the number of cells, the systolic array [18,20] has been considered as 

a most promising VLSI architecture for real-time signal processing. In the last 

few years, there has been a dramatic worldwide growth in research on mapping 

various signal processing algorithms into systolic arrays. 

Digital filtering is one of the most important techniques in modern signal 

processing. It is widely used in areas such as speech and image processing, radar 

signal processing and biomedical engineering. While this technique is compute

intensive, it is well suited to VLSI implementation and many examples have been 

reported in the literature. 

This thesis concentrates on the design of efficient systolic architectures for 

high-throughput digital filters. The next two sections of this chapter briefly review 

systolic architectures and VLSI implementation of digital filters. The final section 

then gives an outline of the following chapters, together with a summary of the 

main results obtained. 
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1.1. Systolic Arrays 

Systolic architectures are typically large, regular arrays with only a few dif

ferent types of small processing elements, each capable of performing some simple 

operation. Data and control flow in the system is simple and regular. All op

erations involving a data item are applied to it as it passes through the array; 

communication with the outside world occurs only at the "boundary cells". This 

method of computation eliminates the need to retrieve a data item from exter

nal memory every time it is used. The regular pattern of local interconnections 

between cells implies that the systolic design can be made modular and extensi

ble, so that a systolic array can easily be expanded to achieve high computation 

throughput without increased memory bandwidth. This property gives systolic 

architectures a major advantage over traditional architectures, which are limited 

by the "Von Neumann bottleneck". Moreover, the simplicity of systolic designs is 

particularly important for special-purpose applications, where design costs must 

be kept low. 

Because of their low memory bandwidth, simplicity, regularity, modularity 

and local communication, systolic architectures are well suited to implementation 

in VLSI. Various systolic systems have been developed to solve compute-intensive 

problems in areas such as signal and image processing and matrix arithmetic, for 

example see [1,4,5,12-14,17-22,24-26,37,44,45,50,52,56,57]. However, it should be 

noted that clock skew ( which may inhibit global synchronization for ultra-large

scale 2-D arrays) is one possible disadvantage of the systolic array approach. A 

simple solution to this problem is to adopt the principle of dataflow computing in 

systolic array processors, which leads to wavefront array processors [24-26]. 
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In a wavefront array instructions cannot be executed until their operands 

have become available. The arrival of data from neighbouring processors will be 

interpreted as a change of state and will initiate some action. The wavefront arrays 

are named because of the analogy with wavefront propagation, and comprise a 

distributed and (globally) asynchronous array processing system. This approach 

replaces the requirement for correct timing by one of correct sequencing, and 

handles the data dependency locally. Thus, it eliminates the need for global control 

and global synchronization [25]. Since systolic arrays can easily be converted 

into wavefront array processors, in this thesis we regard the concept of systolic 

architectures as encompassing wavefront array processors. 

Systolic architectures can be either one-dimensional (1-D) or two-dimensional 

(2-D) depending on the problems to be solved. Sometimes a given problem can 

have both 1-D and 2-D systolic array solutions. 1-D systolic arrays have the 

advantage of low I/ 0 bandwidth requirement. However, throughput is limited 

by their word-serial nature. To achieve higher throughput, two-level pipelined 

and/ or 2-D parallel structures have to be considered. The two-level pipelined 

systolic approach, first introduced by H. T. Kung and his colleagues [19,21], is 

a good method not only for achieving high throughput computation, but also 

for reducing the area required in VLSI implementation in comparison with other 

parallel approaches. Thus it is desirable that a given system is implemented by 

first using two-level pipelining to the maximum possible extent, and then using 2-D 

parallel processing in combination with pipelining if further increase in throughput 

is required. 
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1.2. VLSI Implementation of Digital Filters 

In this thesis we study VLSI architectures for linear filters. Digital filters can 

be classified as non-recursive filters and recursive filters. 

Non-recursive filters 

One of the most important characteristics of non-recursive filters is that they 

can be designed to have exactly linear phase [38]. There have been many sig

nal flow graph ( SFG) networks introduced to compute linear phase non-recursive 

filters [38]. 1-D systolic arrays can easily be obtained by applying cut-set localiza

tion rules [24-26] to these SFG computing networks. ( One example is described 

in [24].) Suppose that the number of coefficients for a given problem is N 1 , which 

is assumed to be even. The derived 1-D systolic array will use N 1 /2 multipliers. 

We shall derive a 2-D systolic array for solving the same problem by using N 1 

multipliers. However, this 2-D architecture can achieve twice the throughput of 

the 1-D array. Thus our 2-D implementation is preferable in high-speed signal 

. 
processing. 

We also discuss 2-D systolic architectures for computing 1-D linear convolu

tion equations. This is not only because the problem of non-recursive filtering can 

be represented by a linear convolution equation, but because other problems such 

as DFT, circular convolution and 2-D linear convolution can also be transformed 

into 1-D linear convolution [11,22,35]. Thus one structure can be used for several 

different kinds of problems. 

Although various types of systolic architectures for computing linear convo

lution problems have been introduced in the literature [8,17 ,18,21,22,25,30,43,46], 
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only a few of them are 2-D. Suppose that N 1 and N2 are respectively the numbers 

of coefficients and inputs of a given problem. Cappello and Steiglitz [8] derived 

several N 1 x N2 2-D systolic arrays. In theory, these systolic arrays are AP2 

asymptotically optimal ( where A is defined as Area and P as Period, which is the 

reciprocal of throughput), but they are impractical for implementation in VLSI 

because they have too many input/output lines and require too large an area for a 

large problem. Lu and others [30] derived an L x N 1 2-D systolic array for the case 

L < N 2 • They split the linear convolution equation into a number of subequations. 

Each subequation contains L successive outputs. Because the subproblems have 

the form of matrix-vector multiplications, they can be implemented successively 

on a matrix-vector multiplier. In this design the throughput is increased by a 

factor of L in comparison with 1-D systolic arrays. However, a large proportion of 

the total area is consumed by the communication lines. Thus this implementation 

is not area efficient in VLSI. We shall introduce two N 1 x L systolic ring architec

tures. These N 1 x L architectures are based on nearest neighbour interconnections 

and can achieve the same throughput as the L x N 1 array, but are more efficient 

in their use of area. 

Recursive filters 

Recursion implies sequential execution, which typically places an upper bound 

on the throughput with which a recursion can be implemented. Therefore, con

ventional serial algorithms for recursive filters cannot effectively make use of large 

numbers of processing elements. To overcome this problem, Gold and Jordan [16] 

proposed block ( or parallel) recursion methods for implementing recursive filters. 

They demonstrated that rational transfer functions can be realized by finite con-
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volutions employing blocks of data. Subsequently, Voelcker and Hartquist [4 7] 

showed that a rational transfer function can be realized with block feedback and 

finite convolution. Burrus [6,7] developed a different approach based on a ma

trix representation of convolution, which results in a state-variable description 

with block feedback. The relationship between the Gold and Jordan idea and 

the Burrus method was described by Gnanasekaran and Mitra [15], who also pro

posed several new block structures using a matrix representation of convolution 

[34]. Meyer and Burrus [32,33] discussed the use of block implementations for 

multirate and periodically time-varying digital filters. Note that block imple

mentations for state-variable-form recursive filters have recently received a lot of 

attention [2,3,30,34,36,39-41,48,53]. These implementations are based on the tech

nique of so-called look-ahead computation. ( Although this terminology was first 

formally described in [39,41], the technique had been known previously for some 

time.) In the look-ahead technique, the given recursion is iterated as many times as 

desired to create the necessary concurrency; the concurrency created can then be 

used to obtain pipelined and/ or parallel implementations of recursive systems [41]. 

Although the look-ahead computation technique has been applied success

fully to the parallel implementation of state-variable-form recursive filters, it may 

cause numerical instability in direct-form recursive filters due to the effect of fi

nite wordlength. We shall introduce new methods for deriving parallel algorithms 

for direct-form recursive filters. In comparison with the original serial algorithm, 

not only is the degree of parallelism increased, but the stability is also improved. 

Moreover, these algorithms lead to very efficient systolic/wavefront architectures. 

Therefore, they are most suitable for VLSI. 
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1.3. Thesis Outline and Main Results 

In Chapter 2, the signal-flow graph (SFG) notations to be used throughout 

this thesis are described. A very powerful architecture transformation technique 

based on cut-set localization rules ( or systolization rules) and introduced by S. 

Y. Kung [24-26] is described. Then we introduce a commutative rule. Using cut

set localization rules in combination with this commutative rule, one may obtain 

more efficient systolic arrays from certain feedforward SFG computing networks. 

Chapter 3 describes 2-D systolic architectures for non-recursive digital filters. 

Suppose that N 1 and N2 are respectively the numbers of coefficients and inputs of a 

linear filtering problem. It is easy to obtain N 1 x N 2 architectures for implementing 

that problem because there is no recursion in the system. However, as mentioned in 

the previous section these architectures are impractical for VLSI implementation. 

Therefore, the key problem is to construct 2-D systolic architectures which not 

only can solve the problem efficiently, but also have a reasonable size well suited 

for implementation in VLSI. We derive a 2-D systolic array for linear phase non

recursive filters. By using twice the number of multipliers that 1-D systolic arrays 

normally require, this 2-D systolic architecture can achieve twice the throughput 

of l-D arrays for a given problem. We introduce two N 1 x L 2-D systolic ring 

structures, where L < N 2 • These 2-D structures are based on nearest neighbour 

interconnections and can achieve L times the throughput of 1-D systolic arrays 

for solving the same linear convolution problem. Moreover, the most efficient l-D 

systolic array for linear convolution is just a special case of a 2-D systolic ring 

array with L = l. The complexity measure AP2 is also analyzed. 

Chapter 4 derives stabilized parallel algorithms for direct-form recursive fil-
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ters. The conventional look-ahead computation may cause numerical instability 

in the direct-form implementation. Thus we introduce a new method for deriving, 

in the Z domain, a class of stabilized parallel algorithms for direct-form recur

sive filters. In order to obtain this stabilized algorithm extra zeros and poles are 

introduced, so the complexity is greatly increased. We then introduce a decom

position technique to minimize this increase in complexity. We also introduce a 

time-domain derivation of parallel algorithms, which have the same form as those 

derived in the Z domain. This is of particular interest for time-varying recursive 

systems. There are many different ways to achieve the same goal. The condition 

for the unique solution of the stabilized parallel algorithm is discussed. 

Chapter 5 introduces efficient pipelined and/or parallel architectures associ

ated with the stabilized parallel algorithms derived in Chapter 4. We show that 

the stabilized parallel algorithms lead directly to an efficient two-level pipelined 

structure. Using these algorithms, we can also derive two different parallel struc

tures. The first one has the advantage of regularity while the · second one can 

achieve a linear complexity in parallel size for cascaded second-order recursive 

filters. Combining parallel processing with pipelining we finally describe two ef

ficient pipelined and parallel architectures for direct-form recursive filters. This 

combination of techniques enables a substantial increase in throughput compared 

to previously known architectures. 
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CHAPTER 2 

CUT-SET LOCALIZATION RULES 

2.1. Introduction 

A non-systolic system can be transformed into a systolic array by using ar

chitecture transformation techniques. The original work was done by Leiserson 

and Saxe (27,28]; they introduced various rules such as retiming and slowdown 

and showed how these rules can be used to obtain an efficient systolic array from 

a given synchronous system. H. T. Kung and Lam (19] derived a cut theorem to 

show how to add delays to a given system without affecting its function. Because 

the main purpose of this theorem is to construct a two-level pipelined systolic 

array from a uni-directional structure, it is required that all the lines in the cut 

must point in the same direction. Thus further applications to more complicated 

systems are limited. Cut-set localization rules ( or "systolization" rules) were in

troduced by S. Y. Kung (24]. By using these simpler, but more powerful rules, one 

can easily transform a signal flow graph (SFG) computing network into a systolic 

array. It has also been proved in (24] that all computable SFG arrays can be 

temporally localized by using these rules. 

Although an SFG computing network (or synchronous system) can be con

verted into a systolic array by using the methods metioned above, we cannot 

guarantee that the derived system is the most efficient systolic array for solving 

the given problem. The reason is that the chosen SFG computing network may 

be inefficient. A method for converting a dependence graph into an efficient SFG 

computing network was introduced in (25]. Since a dependence graph may as-
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sociate with many different SFGs, we may choose the most efficient one among 

them (25]. 

In the following, we first describe the SFG notations and the systolization 

rules. Then we introduce a commutative rule for obtaining efficient systolic arrays 

from certain SFG computing networks without feedback. We give two examples 

to show that by applying the commutative law of addition, the direction of some 

lines in this kind of system may be changed without affecting the overall function. 

More efficient systolic arrays can thus be obtained after the modification. 
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2.2. SFG Notations and Cut-Set Localization Rules 

SFG notations 

The SFG notations used herein are similar to those in [24]. They are described 

as follows: A node is denoted by a square ( or a circle) representing an arithmetic 

or logic function performed with zero delay. On the other hand, a line denotes 

a delay. When a Ene is labeled with a number t ( a non-negative integer), it 

represents a time delay operator with a delay time t. We omit the number when 

it is zero. Therefore, a line without a number represents a zero delay operator. 

For convenience we sometimes use another notation for a time delay operator; 

a time delay operator with a delay time t ( t f- 0) is denoted by a small square 

( smaller than a node) with a number t in it. The t\vo equivalent representations 

are depicted in Fig. 2.1. 

t 
~ 

Fig. 2.1. Equivalent notations for a time delay operator 
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Cut-set localization rules 

1. 

2. 

There are only two basic rules: 

Time-scaling: AU delays in a system may be scaled by a single positive 

integer a. Correspondingly, the input and output rates also have to be scaled 

by a factor a. 

Delay-transfer: Given any cut-set of the SFG, we can group the lines in 

the cut-set into in-bound lines and out-bound lines, depending on the direc

tions assigned to the lines. Rule 2 allows an advance of k time units on all 

the out-bound lines and a delay of k time units on the in-bound lines, and 

vice versa, provided the resulting delays are non-negative. 

The proof of cut-set localization rules and many examples of deriving systolic 

array structures from SFG computing networks can be found in [24-26]. 
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2.3. Commutative Rule 

From cut-set localization rules we see that the throughput rate of the derived 

systolic array is inversely proportional to the scaling factor a. The optimal local

ization algorithm [26] is then proposed to search non-rescaling (NR) cut-sets so 

that a can be minimized. An NR cut-set is a "good" cut-set in which all the lines 

( excluding input lines) in the opposite direction to the zero-delay target line to be 

localized, have delays of at least two time units. (A "bad" cut-set is one in which 

this condition does not hold.) Once an NR cut is determined, one can simply 

apply the delay-transfer operation along the cut and localize the target line(s). If 

there exist no NR cut-sets in the original SFG computing network, time-scaling 

has to be applied, which will decrease the throughput of the system. In this section 

we give two examples to show how to avoid application of time-scaling to SFGs 

without feedback by using the commutative rule. 

2.3.1. Linear convolution 

A well known SFG computing network for linear convolution problems [18] 

is depicted in Fig. 2.2. It is easy to see that there exist no NR cut-sets in the 

structure. Time-scaling has to be applied and the throughput of the resulting 

systolic array is then decreased. 

To avoid use of time-scaling, we use the following transformation procedure. 

First we apply delay transfer to the SFG, as shown in Fig. 2.4( a). We see that each 

of the computation steps has now been divided into two stages; first all nodes or 

cells perform multiplications, and then these multiplication terms are accumulated 

from right to left as one of the outputs. Note that the order of additions is 
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X X X ... 2 1 0 

Yo Y1 Y2 ... 

x . 
In 

Y out 
h· I 

X out := X in 

Fig. 2.2. SFG array for linear convolution 

Fig. 2.3. Systolic array for linear convolution in [27] 

changeable according to the commutative law. Therefore, the multiplication terms 

can also be accumulated from left to right. This means that we can change all 

left-pointing lines into right-pointing lines without affecting the function of the 

system. Thus we next change the direction of the left-pointing lines in Fig. 2.4( a). 

Since all the lines are now pointing in one direction, we can introduce a set of new 

cuts and add one delay to each of the lines in the cuts. The final result is the same 

as that described in [18] and has been proved to be the most efficient among 1-D 

systolic arrays for solving linear convolution problems [29]. 
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I 

~ ho J.!
11 h1 

(a) Transfer delays 

(b) Change the direction of left-pointing lines 

I I I 
I 2 '2 '2 

~ ~ I l 1~ I l 1~ I l 1 :1 ho h1 h2 h3 

( c) Add delays 

Fig. 2.4. Transformation steps for obtaining an efficient sys

tolic array from Fig. 2.2 

2.3.2. Multiplication of two band matrices 

Consider the problem of multiplying two band matrices as follows: 

C11 C1:? C13 C14 0 a11 a12 0 b11 b1:? b13 

C21 C22 C23 C2-1 a21 a22 a23 b21 b22 b23 

C31 C32 C33 C34 a31 a32 a33 b32 033 

C41 C-12 a-12 

0 0 0 

0 
b24 

b34 

Fig. 2.5 depicts an SFG network for computing the above matrix multipli

cation. This structure was originally reported by Chern and Murata [9]. The 

corresponding systolic array, as shown in Fig. 2.6, was derived from Fig. 2.5 by 

using cut-set localization rules [24]. The derived systolic array is not very efficient 
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b43 b44 b45 b46 

b32 b33 b34 b35 
b in 

b21 b22 b23 b24 Cout 

0 b11 b12 b13 
ain aout 

... a34 a23 a12 0 
bout C in 

... a44 a33 a22 a11 aout 
. 

ain .-

bout .- bin 

... as4 a43 a32 a21 * bin Cout 
. 

Cin + ain . -

Fig. 2.5. SFG array for multiplication of two band matrices 

0 0 b23 0 
0 b22 0 0 
b21 0 0 b13 

0 0 b12 0 

0 b 11 0 0 
0 0 0 0 

a32 0 0 a 21 O O 

0 0 a3 1 0 0 0 

Fig. 2.6. Systolic array for multiplication of two band matrices in (24] 
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because time-scaling with a = 3 is applied, which results in a reduction of the 

throughput by a factor of 3. Linear convolution and matrix multiplication are 

similar problems. We can use the localization procedure described in the previous 

sub-section to obtain a systolic array without decreasing the original throughput. 

Fig. 2. 7 depicts the transformation steps for obtaining a new systolic array. In 

Fig. 2. 7( a) we introduce a set of horizontal cuts and apply delay transfer. For the 

reason described in the previous sub-section, we can change the direction of the 

diagonal lines without affecting the function of the system. Finally we introduce 

a set of vertical cuts and add one delay to each of the lines in the cuts. A systolic 

array which maintains the original throughput is then obtained. (This array is 

the same as that in (49].) The only difference between these two systolic arrays is 

that all diagonal lines are reversed in direction, but the throughput of the array 

in Fig. 2. 7( c) is three times greater than that in Fig. 2.6. 
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(a) step 1 (b) step 2 

b54 b44 b34 b24 

~3 b33 t}z3 b13 

b32 b22 b12 0 

b21 b11 0 0 
0 0 0 0 

(c) step 3 

Fig. 2. 7. Transformation steps for obtaining an efficient sys

tolic array from Fig. 2.5 
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2.4. Discussion 

In this chapter we first introduced the SFG notation to be used throughout 

this work. Then cut-set localization rules were described. Using these powerful 

rules all computable SFG networks can easily be converted into systolic arrays . 

The key problem in using these rules is to minimize the time-scaling factor. We 

introduced a new rule--the commutative rule. By applying this rule, we can 

avoid time-scaling and obtain better results from certain SFG networks without 

feedback. In Chapter 3 we use cut-set localization rules plus this commutative 

rule to transform one 2-D systolic ring structure into another for solving linear 

convolution problems. For SFG networks with feedback, however, it is not so easy 

to avoid time-scaling. In transforming an SFG structure ( derived from a serial 

algorithm) for an Nth order recursive filter into a systolic array, it is impossible 

to maintain the same throughput. In Chapters 4 and 5 we shall see that, if a high 

throughput is essential, the original algorithm has to be modified. This will cause 

an increase in complexity of the system. 
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CHAPTER 3 

2-D SYSTOLIC IMPLEMENTATIONS FOR 

NON-RECURSIVE DIGITAL FILTERS 

3.1. Introduction 

A non-recursive filter, or a linear convolution problem, can be expressed as 

N1-l 

Yn = L hiXn-i, 0 < n < N1 + N2 - 2 
i=O 

(3.1) 

where N 1 and N 2 are the numbers of coefficients and inputs respectively. This is a 

very important computational problem in modern signal processing. To perform 

this computation at high speed, various kinds of systolic architectures have been 

introduced [8,17 ,18,21,22,24,43,46]. Since most of these architectures are 1-D, the 

throughput is limited by the word-serial nature. To achieve higher throughput, 

2-D word-parallel structures have to be considered. 

One of the most important characteristics of non-recursive filters is that they 

can be designed to have exactly linear phase [38]. The finite impulse response for 

a causal non-recursive filter with linear phase has the property that 

Therefore, equation (3.1) can be rewritten as 

Ni/2-1 

Yn = L hj(Xn-j + Xn-(N1 -1-j)) 

j=O 

where we assume that N 1 is even. 

(3.2) 

(3.3) 

A 1-D systolic array can easily be obtained by applying cut-set localization 

rules to SFG structures corresponding to equation (3.3). (One example is described 
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in (24].) The derived systolic structure uses N 1 /2 multipliers. In section 3.2 we 

derive a 2-D systolic array for solving the same problem. By using N 1 multipliers, 

our 2-D systolic array can achieve twice the throughput of the 1-D array. Thus 

this 2-D implementation is preferable for high speed signal processing. 

The concept of a systolic ring was first introduced by H. T. Kung and Lam (19]. 

Section 3.3 introduces two N1 x L 2-D systolic ring structures for solving linear 

convolution problems in (3.1), where L < N2. These N 1 x L 2-D systolic ring 

structures are based on nearest neighbour interconnections and can achieve the 

same throughput rate as the L x N 1 structure described in (30]. The complexity 

measure AP2 for this systolic ring is inversely proportional to L, but AP is inde

pendent of L. By varying L we can then trade off area versus period for a given 

problem. We shall see that the most efficient 1-D systolic array for solving linear 

convolution problems is just the special case of a 2-D systolic ring structure with 

L = 1. 
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3.2. Linear Phase Non-Recursive Filters 

In this section we derive a 2-D systolic array with twice the throughput of 

the 1-D systolic version for linear phase non-recursive filters. We only consider 

the case when N1 is even. The derivation for the filter with N 1 odd is similar. 

The basic idea for constructing this 2-D systolic array is as follows. The 

equation in (3.3) can be arranged into two groups, one containing the outputs 

with even subscripts and the other those with odd subscripts-

Ni/2-1 

Y2p = L hi(X2p-i + X2p-(N1 -1-i)) 

i=O 

Ni/2-1 

Y2p+1 = L hi(X2p+1-i + X2p+l-(N1-l-i)) 
i=O 

(3.4) 

It is easy to see that the above two equations can be computed independently. 

Therefore, we may use two sub-systems to solve these two problems in parallel. 

If each sub-system can achieve the same throughput as that of the l-D systolic 

version, the throughput of the entire system for the complete problem is then 

doubled. 

Since the two equations in (3.4) are similar, we can visualize that the struc

tures for solving these equations are also similar. Therefore, we just give a detailed 

description for the structure for computing Y2p· 
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X2p 

y(OO) 
2p+1 

Xaut := Xin 

Y out := Yin + h i * X in 

Fig. 3.1. Linear systolic array for computing y~~o) (N1 = 6) 

3.2.1. Sub-system for computing Y2p 

We divide the equation for y 2 p into two sub-equations as 

M/2-1 

Yi~) = L h2q( X2p-2q + X2p-(N1-1-2q)) 

q=O 

(1) 
Y2p 

where M = N1 /2. 

M/2-1 

L h2q+1(X2p-(2q+l) + X2p-(N1-1-(2q+1))) 

q=O 

(3.5) 

The superscript O ( or 1) in (3.5) indicates that the equation contains only 

those coefficients with even ( or odd, respectively) subscripts. 

Again the two sub-equations in (3.5) have similar structures, so we only con-

"d (0) s1 er y2P • 

y~~) in (3.5) consists of two parts 

M/2-1 
(00) ~ h 

Y2p = L...J 2qX2p-2q 

q=O 

M/2-1 
(3.6) 

(01) ~ h 
Y2p L...J 2qX2p-(N1-1-2q) 

q=O 

where the second component of the superscript being O ( or 1) denotes that only 

the inputs with even ( or odd) subscripts are required for solving that problem. 

It is easy to see that the equation for y~~o) is a linear convolution problem 

which can be implemented in a 1-D systolic array, as shown in Fig. 3.1. 
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Based on the symmetric property of the linear phase non-recursive filter (i.e., 

(3.7) 

Thus the equation for y~~l) is also a linear convolution problem. Instead of using 

the array depicted in Fig. 3.1, however, we use another well known 1-D systolic 

array [18] to compute y~~l), as shown in Fig. 3.2( a). Using the symmetric property 

again, we obtain -Fig. 3.2(b ). The reasoning is as follows: If y~~l) is implemented 

as in Fig. 3.1, the coefficients should be placed in the opposite order. These two 

arrays cannot easily be combined into one array. We would then have to use N 1 /2 

multipliers for computing the equations for y~~o) and y~~l). But the equation for 

y~~) in (3.5) shows that only N 1 /4 multipliers are required for the problem. 

X2p+1 

~ I ~:1 h3 I ~:1 t: h1 hs y (01) Xin Xout 2p 
hi 

Yin Y out (a) 

I I xout := Xin 
X2p+1 :t 1 l ~:1 I l~:1 ~ Yin + hi * Xin h4 h2 ho Y out := 
Yk~1

) 
I I 

(b) 

Fig. 3.2. Two equivalent systolic arrays for computing y~~l) (N1 = 6) 

Although the coefficients in Fig. 3.1 and Fig. 3.2(b) are in the same order, 

there are two problems to be solved before they can be combined into one array· 

with Ni/4 multipliers for computing y;~). One problem is that the outputs moving 

from one cell to the next in the two arrays do not travel at the same speed. The 
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other is that the inputs to these arrays do not accord with the demands of the 

equation for y~~) in (3.5). 

From Fig. 3.1 we see that y~~o) needs two time units for travelling from one 

cell to the next, while y~~l) in Fig. 3.2(b) requires only one time unit. Therefore, 

to solve the first problem we apply a set of cuts in Fig. 3.2(b) and add one delay 

to each line in the cuts. 

To solve the second problem, we consider the difference between the two inputs 

in (3.5). Let D be the difference. Then 

D = 2p - 2q - (2p - (N1 - 1 - 2q) 

(3.8) 

= N1 -1 - 4q 

Since the outputs in the arrays travel at the same speed after the first modification, 

we need only to consider D in the leftmost cells. Substituting q = M /2 - 1 into 

(3.8), we then obtain D = 3. This can be done by adding extra two delays to the 

leftmost input line in Fig. 3.2(b ). 

(a) 

(b) 

-.111~-...,__.........._ X 1 out 

X 1 out := X \n 

x2 out := x2in 

X2out 

Yout 

Y out ·- Yin +hi * ( X \n + x2 in) 

Fig. 3.3. Systolic arrays ( a) for computing y~~) and (b) for y~~) 

After the above two modifications, we can combine these two arrays into one 

for computing y~~) = y~~o) + y1~l) with N 1 /4 multipliers. The combined array is 
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depicted in Fig. 3.3(a). 

Since the equation for y~~) has a similar structure to the one for y~~), \Ve can 

use the same method described above to construct an array for computing y~~) . 

(See Fig. 3.3(b).) 

' ' ' ' ' ' 
h4 ' h2 \ 

x2p 

Y2p 

1 
X2p+1 ' hs ' h1 ' ' ' \ ' ' ' \ \ ' 

(a) 

' ' ' ' ' ' 
hs \ h3 h1 

X2p ' \ 

Y2p+1 

X2p+1 
h4 \ h2 ' ho 

\ \ 
\ \ 

(b) 

Fig. 3.4. 2-D systolic arrays ( a) for computing Y2p and (b) for 

computing Y2p+1 

We now combine the two partial results into the result y 2 p = y~~) + y~~). One 

way of doing this is to place an additional adder at the right ends of the two 

arrays in Fig. 3.3. Observing that the outputs in each array take two time units 

for moving from one cell to the immediately next, we can also accumulate the 

output Y2p by letting it move diagonally between these two arrays. Therefore, not 
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only one adder, but also about N 1 /2 shift registers can be saved. The array is 

depicted in Fig. 3.4( a). It is clear that this array requires only N 1 /2 multipliers 

for computing Y2p· 

3.2.2. Compact form 

By using the same method a similar systolic structure for Y2p+l may be ob

tained, as shown in Fig. 3.4(b ). Though the two sub-systems in Fig. 3.4 can solve 

the complete problem with twice the throughput of 1-D arrays, we give a more 

compact form in this sub-section. 

To obtain the compact form, we first apply a set of cuts to the two sub

systems in Fig. 3.4. It can be seen that all the lines in the cuts are pointing in 

one direction. Thus we can add one delay to each line in the cuts. The modified 

version is depicted in Fig. 3.5. The blank square in the figure denotes a null cell. It 

passes data through it, but has no other function. It is easy to see, from Fig. 3.5, 

that the inputs x 2p and x2p+l move through both sub-systems in exactly the same 

manner and the basic processing elements in Fig. 3.5( a) take the position of the 

null cells in Fig. 3.5(b ), and vice versa. If we put them together, the functions 

of the two sub-systems will not be changed. Therefore, the final compact form is 

obtained, as shown in Fig. 3.6. 

Although the idea described above can be extended to achieve a higher 

throughput, regular systolic structures cannot be constructed because long com

munication lines in the system are required. This problem requires further study. 
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2 2 2 

x2p 
1 h4 1 h2 1 ho 

Y2p 

X2p+1 
hs 2 h3 2 h1 

(a) 

2 2 2 

X2p 
hs 1 h3 1 h1 1 

2p+1 

X2p+1 
1 

1 h4 2 h2 2 

(b) 

Fig. 3.5. The modified version of Fig. 3.4 

X2p 
hs h4 h3 h2 h1 

Y2 

p+ 

x2p+1 
h4 h1 

Fig. 3.6. 2-D systolic array for a linear phase filter 
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3.3. Linear Convolution Problems 

In Subsection 3.3.1 we describe the L x N 1 systolic array which was derived 

in (30]. The following subsections then derive two N 1 x L systolic ring structures. 

We first derive an N1 x N2 systolic array for solving a linear convolution problem 

with N1 coefficients and N2 inputs. This 2-D systolic array is impractical if N 2 is 

large. We next modify it and introduce an N 1 x L systolic ring structure for solving 

the same problem, where Lis an arbitrary integer in the range 1 < L < N 2 • By 

using cut-set localization rules plus the commutative rule described in Chapter 2, 

an equivalent N 1 x L systolic ring structure can be obtained. Then we can see 

that the most efficient l-D systolic array for solving linear convolution problems 

is just a special case of this 2-D array with L = l. An upper bound on AP2 for 

these ring structures is also presented in the following discussion. 

3.3.1. L x N 1 2-D systolic array 

In this subsection, we review the L x N 1 (L < N 2 ) 2-D systolic array derived 

by Lu and others (30]. 

Fig. 3. 7 depicts an L x K systolic array. This array is called a matrix-vector 

multiplier because it can perform a matrix-vector multiplication y = Hx, where 

H is an L x K matrix and y and x are L x 1 and K x 1 vectors respectively. 

The matrix H is prestored in the array. While the input data travel vertically 

from top to bottom and remain unchanged, the outputs accumulate their terms 

horizontally and obtain the final results at the right side of the array. If the same 

H can be used for computing a number of problems, then the period for this array 

becomes equal to one. 
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0 

0 

0 

Xo X1 X2 X3 X4 

hoo ho1 ho2 rlo3 ho4 Yo 

h10 h11 h12 h13 h14 Y1 

h20 h21 h22 h23 h24 Y2 

Fig. 3.7. The matrix-vector multiplier 

Use the notation x~K) to denote a K x 1 vector, that is, 

X(K) = 
n 

Xn 

Xn-1 

x in 

Yin h .. 
I J 

Xout 

Xout := xin 

Yout := Yin+hij 

The linear convolution problem in (3.1) can then be expressed as 

Yn = hT xc:'1) 

Yout 

* x in 

(3.9) 

(3.10) 

where hT is the transpose of the coefficient vector and x~1
) is a vector of N1 

successive input data items. 

To achieve a high throughput rate, we can compute L outputs simultaneously 

by using the following equation 

(L) H (N1+L-l) 
YjL == xjL (3.11 ) 

where j = 0, 1, 2, 3 · · · and His an L x (N1 + L - l) banded Toeplitz matrix. For 
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0 ho h1 h2 YjL 

1 

0 ho h1 h2 Yj L-1 

1 

0 ho h1 h2 YjL~2 

Fig. 3.8. The L x N 1 systolic array for solving linear convolu

tion pro bl ems 

example, when L = 3 and N 1 = 3, the equation has the form 

XjL 

( YiL ) (10 h1 h2 0 

JJ XjL-1 

YiL-1 ho h1 h2 XjL-2 

YiL-2 0 ho h1 XjL-3 

XjL-4 

(3.12) 

The above equation describes a matrix-vector multiplication. It can then be 

computed by using the matrix-vector multiplier depicted in Fig. 3. 7. Because some 

input data has to be reused for computing different blocks of output (which is easily 

seen by taking two successive blocks of output into account), extra communication 

lines have to be introduced. From Fig. 3.8 we can see that the area taken by the 

communication lines is very large. Therefore, this implementation is not area 

efficient in VLSI. 
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3.3.2. N 1 x N 2 2-D systolic array 

. 
15 

or 

For convenience, we consider a simple example with N 1 = 3 and N 2 = 4, that 

2 

Yn = L hiXn-i, 

i=O 

Yo= hoxo 

(3.13.a) 

(3.13.b) 

By inspection of the equations (3.13) a 2-D systolic structure can easily be 

obtained, as shown in Fig. 3.9. 

h2 h2 h2 h2 h· I 

Yout 
xout 

h1 h1 h1 h1 Xout := Xin 

Y out:= Yin+h i * Xin 

ho ho ho ho ir . r-delay . 

Fig. 3.9. An N 1 x N 2 systolic array for solving linear 

convolution problems 
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In this systolic array, the coefficients are pre-stored in the cells. Cells in the 

same row contain the same coefficient. While the input data travel in parallel from 

top to bottom, the partial results move diagonally downward to accumulate the 

terms for each sum in (3.13). 

From Fig. 3.9 it can be seen that the computation for a subsequent problem 

can start immediately after the inputs of the previous problem have entered the 

array and that the area is proportional to the product of N1 and N2. Therefore, 

AP2 = O(N1 N 2 ), which is asymptotically optimal [8]. 

3.3.3. N 1 x L systolic ring structure 

The 2-D systolic array derived above is impractical because it has too many 

input/output lines and requires too large an area for a large problem. If we use 

only one part of the array and do some modifications so that it can still solve the 

same problem, then this modified systolic array is also much faster than any 1-D 

systolic array for solving a given problem since more inputs can enter the system. 

- ---~ --
'4-L-+ 

a 

M-1 M-2 ... 1 0 N1 

H 

Fig. 3.10. A block-diagram of the N 1 x N2 systolic array 

34 



Fig. 3.10 gives a block-diagram of the 1V1 x N 2 systolic array. In this figure the 

array is divided into M blocks with L columns of cells per block, that is N 2 =ML. 

As mentioned above, only one block of the array is to be used for solving the given 

problem. The input has also to be organized as an M x L data matrix. Data 

enters this one-block array row by row. An example is given in Fig. 3.11, in which 

N2 = 9, N1 = 5 and L = 3, so M = N2 / L = 3. 

ho ho ho 

Fig. 3.11. One block of the systolic array in Fig. 3.10 

If N 2 is not a multiple of L, we can easily add some zeros to the left or right 

sides of the input. ( Correspondingly, we can put some extra columns of cells on 
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the left or right boundaries of Fig. 3.10.) This does not affect the correctness of 

the computation. 

From Subsection 3.3.2 it is known that the period is one for this systolic 

array. The corresponding partial results produced by different rows of the input 

in Fig. 3.11 cannot be accumulated to form the final output. By observing the 

block-diagram in Fig. 3.10, it can be seen that each block communicates only 

with adjacent blocks on the left and right boundaries. We can visualize that in 

Fig. 3.11 there must be some extra interconnections between the block's left and 

right boundaries in order to obtain the desired result for a given problem. 

In the following discussion we show that an N 1 x L ring structure, as shown 

in Fig. 3.12, can solve linear convolution problems. The only difference between 

Figs. 3.11 and 3.12 is that there are extra two-delay lines connecting the left and 

right boundaries in Fig. 3.12. A similar systolic ring structure was introduced 

in [19] for the LU-decomposition of a band matrix. It uses nearest neighbour 

interconnections, as shown in Fig. 3.13. 

The systolic layout in Fig. 3.13 can be obtained by the following method. We 

first number the columns from left to right as 1, 2, 3 and so on. For the first row, 

we bring the left and right columns together and get a ring structure. We then 

expand the space between columns by one cell length, so that if we flatten out this 

ring the consecutive columns in the "front" and "back" parts will be interleaved. 

For the remaining rows, we apply odd-even column interchanges. 

Before proving that the N 1 x L systolic ring structure can solve linear con

volution problems, we set up Cartesian coodinates to locate the input Xk in the 

data matrix and the coefficients hi in the array. The coordinate axes are given in 
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Xg X7 Xs 
X5 X4 X3 

m 

X2 X1 Xo 14 
h4 h4 h4 

J 

ho ho ho 

Fig. 3.12. An N1 x L ring structure for solving linear convolution 

problems 

Fig. 3.12. 

The input XJ.: can be represented by XZTn· The relation between k and the two 

indices, l and m, is 

k = l +mL (3.14) 

where O < k < N 2 - 1, 0 < l < L - l and O < m < M - l. 

A cell in the systolic array is defined by its coordinates (j, l). For example, the 
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1 2 3 1 2 

1 2 3 3 2 

2 3 3 

x line 

1 2 3 2 

1 

I y line 

2 3 2 

Fig. 3.13. Systolic layout of the 2-D systolic ring structure for 

solving linear convolution problems 

3 

top-right cell in Fig. 3.12 is cell (0, 0) and the bottom-left cell is cell (N1 -1, L-1 ). 

Since cells on the same row store the same coefficient, it is easy to locate the 

coefficients in the array by using the j axis as 

i = Ni -1-j (3.15) 

where i is the subscript of the coefficients. 

Lemma 3.1 : The relation between the output Yn and the coordinates j, l and 

m must satisfy 

n = N1 - 1 + mL + l - j 
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where n is the subscript of the output Yn· 

Proof: It can be seen from (3.1) that 

n-i = k (3.17) 

where n, i and k are the subscripts of y, h and x, respectively. 

Substituting (3.14) and (3.15) into (3.17), we obtain (3.16). D 

We define them th row in the data matrix as the m th wavefront since it requires 

m unit-time delays before it enters the systolic array. 

Consider the mih wavefront and the m~h or ( m 0 + a )th wavefront, where a is 

an arbitrary integer in the range 1 < a< M. IT these two wavefronts produce the 

corresponding partial results for a given n, the equation (3.16) must be satisfied. 

For the mih wavefront we then have 

n = N1 - 1 + moL + lo - io (3.18) 

and for the (mo+ a)th wavefront, 

n = N1 - 1 +(mo+ a)L + la - ia• (3.19) 

Combining (3.18) and (3.19) yields 

lo - io = aL + la - ia• (3.20) 

Since the difference between Figs. 3.11 and 3.12 is the interconnections be

tween two boundaries, we only consider 10 = L - 1 (left boundary) and la = 0 

(right boundary). The equation (3.20) becomes 

io+(a-1)L+l=ia• 
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The above equation shows that for a given n the partial result from the m 6h 

wavefront accumulates the final term at cell (j0,L -1), while the (mo+ a )th 

wavefront produces its first term for that n at cell (j0 + (a - l)L + 1, 0). It can be 

seen from Fig. 3.14 that the partial result at cell (j0 , L - 1) can only arrive at cell 

(jo + ( a - 1 )L + 1, 0). Therefore, we need to show that the partial result produced 

by the mih wavefront arrives at cell (j0 + ( a - 1 )L + 1, 0) at the same time as the 

(mo+ a)th wavefront arrives. 

U o, K-1) 

2 
(j 0+ 1, 0) 

K 

(j 0+K, K-1) 

K 

(j 0 +2K,K-1) 

2 
(j 0+2K+ 1, 0) 

Fig. 3.14. The route for one output in the ring structure 

Lemma 3.2 : For a partial result to move downward L rows takes L + 1 units 

of time. 
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Proof: In Fig. 3.14, a partial result moving from cell (jo, L - l) to cell (j0 + 

L, L-1) first goes through a two-delay line to cell (jo + 1, 0) on the right boundary 

and then moves diagonally downward L rows to cell (jo + L, L - 1 ), which takes 

L - 1 units of time. Therefore the total time required is 

t = 2 + L - 1 = L + 1. 

It is easy to see that this is true not only for the first column on the left boundary, 

but also for other columns. D 

Suppose that the computation starts at time t = 0 and that the partial results 

from the (mo +a)th wavefront and from the m~h wavefront arrive at cell (j0 ,0) or 

(io + ( a - 1 )L + 1, 0) at times ta and to, respectively. 

The (mo + a)th wavefront requires m0 + a units of time before entering the 

system and then ia + l units of time to travel from the first row to the i!h row. 

The time ta is 

ta =mo+ a+ ia + l. (3.22) 

Now ia = io + (a - l)L + l, so the above equation becomes 

ta = mo + a + io + ( a - 1 )L + 2. (3.23) 

Similarly, the mih wavefront arriving at the jJh row takes to1 units of time, 

that is, 

to1 =mo+ io + 1. (3.24) 

The partial result produced by the m~h wavefront then moves zigzag down

ward (a-l)L rows to cell (j0 +(a-l)L, L-1), which requires (a-l)L+a-1 units 
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of time according to Lemma 3.2. Finally this partial result has to pass through a 

two-delay line before arriving at cell (jo + ( a - l )L + 1, 0) on the right boundary. 

Fig. 3.14 gives an example with a = 3. The time for the partial result to move 

from cell (j0 , L - I) to cell (jo + ( a - I )L + 1, 0) is 

to2 = ( a - I )L + a - I + 2 = ( a - 1 )L + a + 1. (3.25) 

Therefore, combining (3.24) and (3.25), we obtain 

to= to1 + to2 =mo+ a+ io + (a - I)L + 2 = ta. (3.26) 

Since we assumed that a is arbitrary in the above discussion, all the partial 

results for the given output can properly be accumulated in the system. There

fore, we conclude that the N 1 x L systolic ring structure can indeed solve linear 

convolution problems. 

3.3.4. An upper bound on AP2 

In this subsection we derive an upper bound on AP2 for the systolic ring 

structure described in Section 3.3.3. 

We first consider the area taken by the systolic array. From Fig. 3.13, it is 

easy to see that the area is dominated by cells. Therefore, the area taken by an 

N 1 x L systolic ring is proportional to the product of N 1 and L, that is, 

(3.27) 

Since linear convolution problems can be computed by using the N1 x L 

-
systolic ring, it is obvious that two product terms of hiXin produced by Xi

11 
and 

Xib are accumulated by one output Yn in the N1 x L systolic ring if and only if 
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lia - ib l < N1 - 1. Therefore, in order to avoid two successive linear convolution 

problems interfering with each other, the first problem must be followed by N 1 -1 

zeros. However, since L inputs can enter the systolic array simultaneously at one 

time, the period is 

(3.28) 

Combining (3.27) and (3.28), we obtain the upper bound 

From (3.27) and (3.28), it can also be seen that AP is independent of L. 

Therefore, by varying L we can trade off area versus period for a given linear 

convolution problem. 

3.3.5. The second systolic ring structure 

Using cut-set localization rules plus the commutative rule described in Chap

ter 2, we can transform the systolic array in Fig. 3.12 into the array in Fig. 3.15. 

First we apply a set of horizontal cuts and subtract one delay from each line 

in these cuts; the delays on the input ( Xi) lines become zero. Since Xi remains 

unchanged during the computation, we can change the direction of the input lines. 

We then apply a set of diagonal cuts and delay transfer for the lines in the cuts 

so that the delays on all diagonal lines become zero. We can change the direction 

of the diagonal lines without affecting the final result since this is a non-feedback 

system so that the commutative law for addition can be applied. 

Finally we apply another set of horizontal cuts and add one delay to each 

line on these cuts. The array in Fig. 3.12 is then transformed into the array in 

Fig. 3.15. 
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ho ho ho 

1 

Fig. 3.15. A systolic array equivalent to that of Fig. 3.12 

The above three transform steps are given in Fig. 3.16. 

For L = 1, the 2-D systolic ring in Fig. 3.15 becomes a 1-D systolic array, as 

shown in Fig. 3.17. This 1-D systolic array is the most efficient 1-D systolic array 

for solving linear convolution problems among those reported in the literature [29]. 
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(a) step 1 

(b) step 2 

(c) step 3 

Fig. 3.16. Steps for transforming Fig. 3.12 into Fig. 3.15 
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Fig. 3.17. A systolic ring structure with L = 1 
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3.4. Discussion 

In this chapter we derived several 2-D systolic architectures for non-recursive 

digital filters. 

We derived a 2-D systolic array for 1-D linear phase non-recursive filters. 

In this design we first divided the problem into several sub-problems. All these 

sub-problems are implemented in 1-D systolic arrays. Then we applied cut-set 

localization rules to put those l-D arrays together to form a regular 2-D system. 

By using N1 multipliers, this 2-D systolic array can achieve twice the throughput 

of the 1-D systolic arrays which use N 1 /2 multipliers for a given problem. The 

disadvantage of this design is that long communication lines are required to achieve 

a higher throughput. 

We also introduced two 2-D N 1 x L systolic ring structures for solving lin

ear convolution problems. The method used in this design is different from the 

one for parallel implementation of linear phase filters. We first constructed a 2-D 

N1 x N 2 system for linear convolution problems with N 1 coefficients and N 2 in

puts, and then partitioned this system into an N 1 x L ring structure. A systolic 

array for solving the same problem was obtained after applying odd-even column 

interchanges to the ring structure. The derived N 1 x L systolic ring structures are 

more efficient than the L x N 1 array described in [30] because to achieve the same 

throughput our arrays require less area in VLSI implementation. It is interesting 

to note that the property of the nearest neighbour interconnection in these systolic 

ring structures is always guaranteed when the length of Lis changed. With L = l 

a 2-D ring structure becomes a 1-D array which has been proved to be the most 

efficient 1-D systolic array for solving linear convolution problems. Because AP is 
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independent of L, we can trade off area versus time for a given problem by varying 

L. 

When we were constructing the 2-D systolic arrays for non-recursive filters , 

we also demonstrated the power and generality of cut-set localization rules. There 

are already several well known applications of these rules, such as to localize a 

computing network with global communications, to transform one structure into 

other different ones with the same functions and to apply second-level pipelining to 

a given system so that the throughput of that system is greatly increased without 

a great increase in complexity. In this chapter we showed that cut-set localization 

rules are also useful in combining several sub-systems to form an efficient system 

with high throughput. 

With some minor modifications, the systolic ring structures can also 

solve DFT, circular convolution and 2-D linear convolution problems because 

these problems can easily be transformed into 1-D linear convolution prob

lems [11,22,43]. We shall see in Chapter 5 that the 2-D ring structures can be 

applied as a linear part in an efficient parallel structure for direct-form recursive 

filters. 
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CHAPTER 4 

STABILIZED PARALLEL ALGORITHMS FOR 

DIRECT-FORM RECURSIVE FILTERS 

4.1. Introduction 

Recursive filtering is one of the most important techniques in digital signal 

processing. A lot of effort has been made in the past few years to achieve high

throughput implementation of this type of filtering [2,30,34,36,39-41,43,51,53-55]. 

However, these methods were mainly based on the conventional look-ahead com

putation. Although this technique has been applied successfully to the parallel 

implementation of state-variable-form recursive filters, it may cause numerical in

stability when applied to direct-form recursive filters, due to the effect of finite 

wordlength. Thus this chapter introduces new methods for deriving stabilized 

parallel algorithms for direct-form recursive filters. These algorithms lead to very 

efficient pipelined and/ or parallel structures, which will be described in Chapter 5. 

The derived structures belong to the category of systolic/wavefront arrays and are 

suitable for VLSI. 

In Section 4.2, we describe the conventional look-ahead computation technique 

and show that it may cause numerical instability in the direct-form implementation 

of recursive filters. Section 4.3 introduces a new method for deriving, in the Z 

domain, a stabilized parallel algorithm for direct-form recursive filters. The degree 

of parallelism and the stability of this algorithm are also analyzed. In order to 

obtain this stabilized algorithm, extra zeros and poles have been introduced. The 

complexity is then greatly increased. In Section 4.4 we introduce a technique 
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called decomposition to minimize this increase in complexity. Since the algorithm 

is derived in the Z domain, it cannot be used for time-varying recursive systems. 

In Section 4.5, we consider a time domain derivation of the parallel algorithms for 

direct-form recursive filters. 
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4.2. Conventional Look-Ahead Computation 

In the look-ahead technique, the given recursion is iterated as many times 

as desired to create the necessary concurrency and then the concurrency created 

can be used to obtain pipelined and/or parallel implementation of recursive sys

tems [41). In the following we give an example to show that this conventional tech

nique may cause numerical instability in the practical implementation of direct

form recursive filters due to the effect of finite wordlength. 

An Nth order direct-form recursive filter can be expressed as 

N N 

Yn = L TjYn-j + L WjXn-j ( 4.1) 
j=l j=O 

Because Yn in ( 4.1) depends on the availability of the immediately previous output 

Yn-l, it is not obvious that any two outputs can be computed in parallel. Con

ventional look-ahead computation is applied to increase the degree of parallelism 

as follows. 

Using ( 4.1 ), we write Yn-1 explicitly as 

N N 

Yn-1 = L TjYn-1-j + L WjXn-1-j ( 4.2) 
j=l j=O 

Let j' = j + l. Then 

N+l N+l 

Yn-1 = L Tj 1 -1Yn-j' + L Wj 1 -1Xn-j' (4.3) 
j'=2 j'=l 

Substituting ( 4.3) into ( 4.1), we obtain 

N N 

Yn = T1Yn-1 + L TjYn-j + L WjXn-j 

j=2 j=O 

N+l N+l N N 

= r1( L Tj-1Yn-j + L Wj-1Xn-j) + L TjYn-j + L WjXn-j (4.4) 
j=2 j=l j=2 j=O 

N+l N+l 
~ (1) ~ (1) 
L.J rj Yn-j + L.J Wj Xn-j 

j=2 j=O 
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where 

and 

j == 0 
1 <j < N 
j==N+l 

Since Yn is independent of Yn-1 after the modification, two outputs can be com

puted simultaneously. We can prove that, after L - 1 iterations, Yn will become 

N+L-1 N+L-1 
~ (L-1) ~ (L-1) 

Yn = L..t rj Yn-j + L..t Wj Xn-j (4.5) 
j=L j=O 

In the above equation, the coefficients can be computed by the following iterative 

algorithm. 

for i < l < L do - -

begin 

for O < j < N + l - 1 do 

begin { to compute wJl-l) } 

if O < j < l - l then 

(l-1) (l-2) 
wj := wj 

else if l - l < j < N + l - l then 

(Z-1) ·- (l-2) (l-2) 
wj .-wj +r1_ 1 *Wj-(l-1) 

else w ( l-l) ·- r(l- 2) * w 
j .- l-1 N 

end; { end of computing wf-l) } 

for O < j < N + l - l do 

begin { to compute rf-l) } 

if O < j < l then 

r\l-1) := 0 
J 
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else if Z < j < N + l - l then 

( l-1 ) ( Z-2 ) (Z-2 ) 
rj :=rj +rz_1 *rj- (l-l ) 

( l-1 ) ( l-2 ) else r ·- r * r j .- . l-1 N 

end { end of computing ry-i) } 

end. 

( The proofs of ( 4.5) and ( 4.6) are given in Appendix 4.1.) 

To analyze the stability of the modified algorithm, we transform it into the Z 

domain and then obtain the impulse response function as 

N+L-1 (L-1) -j 
• O W· Z H( ) J= J 

Z = ~N+L-1 (L-1) _ · 
1-L..,L rj z J 

(4.7) 

We prove, in Appendix 4.2, that H(z) in (4.7) can be rewritten as 

H(z) = H(z)~~:~ ( 4.8) 

In the above equation, fI ( z) is the impulse response function before the modifica

tion and D(z) is an (L - 1rh order polynomial in z-1 , which is defined as 

L-1 

D(z) = 1 + L ry-i) z-i (4.9) 
j=l 

where r;j-l) can be computed by the iterative algorithm in ( 4.6). 

From ( 4.8) we see that, to obtain a parallel algorithm, we have multiplied both 

numerator and denominator of the original impulse response function by a factor 

D( z). Because of the zero and pole cancellation, the impulse response function 

after the modification is theoretically equivalent to the original one. However, 

we cannot guarantee that all roots of D( z) are within the unit circle. Thus the 

modification may cause numerical instability due to the effect of finite wordlength. 

We give an example below. 
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Consider a second-order recursive filter. The denominator of H(z) is given 

as 1 - l.5z-1 + 0.56z-2 . Since the two roots of this denominator are 0. 7 and 

0.8, the system is stable. We now derive a parallel algorithm by using the above 

conventional technique. After one iteration, the root of D( z) = 1 + r1 z-1 is 

-1.5, which is outside the unit circle. After two iterations, the roots of D( z) 

l+r1z- 1 +r?) z- 2 are -0. 75±1.5i. They are also outside the unit circle. Therefore, 

the modified system is definitely unstable. 
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4.3. Stabilized Parallel Algorithm 

In the previous section, we have shown that applying the conventional look

ahead computation to the implementation of direct-form recursive filters may cause 

numerical instability because the extra poles introduced cannot be guaranteed to 

be inside the unit circle. In this section we derive a new parallel algorithm which 

is guaranteed to be stable if the original (serial) algorithm is stable. 

4.3.1. Algorithm 

The impulse response of an Nth order recursive filter can be expressed as 

( 4.10) 

where X(z) and Y(z) represent the Z transforms of input and output, respectively. 

To obtain our parallel algorithm, we first introduce a well known N x N 

matrix, which is called a companion matrix, 

0 1 0 0 
0 0 1 0 

B= ( 4.11) 

0 0 0 1 
-bo -b1 -b2 -bN-1 

In this matrix, the elements on the first superdiagonal are all equal to one and the 

jth element on the last row is -bj-l, but all other elements are equal to zero. It 

is known that 

det(zl - B) =ZN+ bN-1ZN-l + • • • + b1z + bo 
N 

N " N . = Z + L.J bN-jZ -J 

j=l 

( 4.12) 

where det(X) denotes the determinant of the matrix X and I is an N x N identity 
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matrix. Let -bj = rN-j· Then 

and 

0 1 0 0 
0 0 1 0 

B= 
0 0 0 1 

TN TN-1 TN-2 r1 

N 

det(zl - B) = zN - ~ TjZN-j 

i=l 

Multiplying both sides of ( 4.14) by z-N, we obtain 

N 

det(I - Bz-1
) = 1 - ~ riz-i 

i=l 

( 4.13) 

( 4.14) 

( 4.15) 

From the above equation, we see that by using the companion matrix B, the 

denominator of the impulse response function in ( 4.10) can be expressed in matrix 

form. Thus we can rewrite H(z) as 

'\;"'N -i 
H(z) - _LJ_;...i_O _w_i z __ 

- det(I - Bz-1 ) 
( 4.16) 

We next multiply both numerator and denominator of ( 4.16) by a factor 

det(LJ-0
1 Bi z-i), where B 0 = I and Bi is a product of j matrices B. (An 

efficient method for computing Bi is given in Appendix 4.3.) The impulse response 

function then becomes 

_ det(Lf 0
1 Bi z-i) 

H ( z) = H ( z )-d _(_"'_L ___ 1 B-. -_-.) 
et L.Ji=O J z J 

("'N -i)d t("'L-1 Bi -i) L.Ji=O WiZ e L.Ji=O z 
( 4.17) 

- det(I - Bz-1 )det(I:f 
0
1 Bi z-i) 

("'N -i)d t("'L-1 Bi -i) - L.Ji=O WiZ e L.Ji=O z 

det((I - Bz-1 )(I:f 0
1 Bi z-i)) 

Now 
L-1 

(I- Bz-1 )(~ Biz-i) = I- BLz-L ( 4.18) 
i=O 
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Substituting ( 4.18) into ( 4.17), we finally obtain our modified impulse response 

function as 

(""'N -i)d t(""'L-1 Bi -j) H z - Ltj=O WjZ e Ltj=O z 
( ) - det(I - BLz-L) ( 4.19) 

which implies a parallel algorithm. The rest of this section will analyze the degree 

of parallelism and the stability of this algorithm. 

4.3.2. Degree of parallelism 

We may divide ( 4.19) into two parts: 

Y(z) U(z) 
H(z) = U(z) X(z) = H2(z)H1(z) ( 4.20) 

In the above equation, U(z) is an intermediate variable, and H2(z) and H1(z) are 

the recursive part and linear part, respectively, defined as follows 

Y(z) 1 
H2(z) = U(z) = det(I- BLz-L) ( 4.21) 

and 
N L-1 

U(z) ~ . ~ .. 
H1(z) = = (L..,, WjZ-J)det(L..,, BJz-J) 

X(z) . . 
;=O ;=O 

( 4.22) 

It is recursion that limits the parallel implementation of recursive filters. To ana

lyze the degree of parallelism, therefore, we only consider the recursive part H2 ( z ). 

Lemma 4.1. Suppose that B is an N x N matrix. Then det(I - BL z-L) can 

be expressed as an N Lth order polynomial in z-1 with only N + l terms, that is, 

N 

det(I - BLz-L) = 1 - L bjLZ-jL 
j=l 

where bjL is a combination of some elements in BL. 
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Proof: Let A= zL. Then 

( 4.24) 

Since B is an N x N matrix, so is BL. Thus det(I - BL A- 1 ) is an Nth order 

polynomial in z-1 and can be expressed as 

N 

det(I- BLA- 1
) = 1- L bjLA-j 

j=l 

where bjL is a combination of some elements in BL. 

Substituting zL for A in ( 4.25), we then obtain ( 4.23). 

Using Lemma 4.1, we can rewrite H2(z) as 

H2(z) = Y(z) = N 1 . 
U(z) 1 - ~j=l bjLz-JL 

Converting ( 4.26) into the time domain, we obtain 

N 

Yn = L bjLYn-jL + Un 
j=l 

( 4.25) 

0 

( 4.26) 

( 4.27) 

Because Yn in ( 4.27) depends only on Yn-jL for j = 1 to N, L outputs can be 

computed simultaneously. That is why we call our modified algorithm a parallel 

algorithm. 

In the following, we give an example of N = 2. 

( 

(L-2 ) 

From Appendix 4.3, we can obtain that BL = r fL-l) 

rL+l 
is computed by using ( 4.6). Then 

r L-1.. ( l ) 
(L-?)) 
(L-l ) , where r j 

I-BLz-L= -rL z 
( 

l (L-2) -L 

(L-1) -L 
-rL+1 z 
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(L-2) -L ) -rL-1 z 

1 (L-1 ) -L 
- TL Z 

( 4.28) 



We have 

d t(I _ BL -L) _ (l _ (L-2) -L)(l _ (L-1 ) -L) _ (L-2 ) (L-1 ) -2L 
e Z - TL Z TL Z TL-l TL+l Z 

_ l _ ( (L-2) + (L-1 ) ) -L _ 
- rL rL z 

( 
(L-2) (L-1) (L-2) (L-1)) -2L 

- rL-1 rL+1 - rL rL z 

where tr(BL) denotes the trace of BL, b1L = tr(BL) and b2L = -det(BL). 

Since H2(z) = YU((z)) = I;' 1 
_ .L, then 

Z 1- b · LZ J 
i=l J 

Yn = b1LYn-L + b2LYn-2L + Un 

4.3.3. Stability 

Since we have assumed that Bis an N x N matrix, 

and 
L-1 L-1 

det(L Bi z-i) = z-N(L-l)det(L Bi zL-l-i) 

i=O i=O 

We can rewrite H(z) into another form as 

("!'_I . N-i)d t("~-1 Bi L-1-i) 
61=0 WJZ e DJ=O Z 

H(z) = det(IzL - BL) 

Similarly, H(z) in (4.16) can be rewritten as 

°"N N-i 
- L.ij=O WjZ 

H ( z) - ---'----
- det(Iz - B) 
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( 4.30) 

( 4.31) 

( 4.32) 

( 4.33) 

( 4.34) 



Suppose that the original algorithm before the modification is stable. Then the 

roots of det(Iz - B) are all in the unit circle. This means that the eigenvalues Zi 

of B are all in the unit circle. It is clear that the eigenvalues zf of BL are also 

in the unit circle and closer to the origin than their corresponding z/s. Thus, the 

stability of our modified algorithm is obvious. 
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4.4. Reduction of Complexity 

In this section we consider the number of multipliers required for implementing 

the modified algorithm in the 1-D case. (It will be seen, in the next chapter, that 

the number of multipliers in the 2-D case is only increased by a factor of L.) 

We shall see that the direct implementation of the modified algorithm is not very 

practical because the number of multipliers for that algorithm is very large. A 

technique called decomposition is introduced to reduce the number of multipliers. 

Lemma 4.2. Suppose B is an N x N matrix, then det(I:J 0
1 Bi z-i) is an 

N(L - l)th polynomial in z-1 . 

Proof: From Lemma 4.1, det(I - BLz-L) is an N Lth order polynomial in z-1 . 

We also know that det(I - Bz-1 ) is an Nth order polynomial in z- 1 . However, 

we have det(I - BLz-L) = det(I - Bz-1 )det(LJ 0
1 Bi z-i). Thus the order of 

( ~L-1 · · ( ) 0 det Lij=O BJz-J) must be NL - N =NL -1. 

Since det(LJ 0
1 Bi z-i) is an N(L - l)th order polynomial, N(L - 1) multi

pliers are required for computing the associated convolution. Therefore, N(L -1) 

extra multipliers have been introduced in the modified algorithm, which dominates 

the total number of multipliers. In the following, we apply the decomposition tech

nique to reduce this number of multipliers. 

Lemma 4.3. If L = l 1 l 2 , where 11 and 12 are positive integers, then LJ 0
1 Bi z-j 

can be expressed as 

L-1 11-l 11-l 

L Bi z-j = ( L (Bz-1 )il1 )( L (Bz-1 )5) ( 4.35) 
j=O j=O j=O 

where B 0 == I. 
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Proof: We arrange L terms of ~J-0
1 Bi z-i into l2 groups with l1 terms each 

as follows 

L-1 L Bi z-i = [I+ Bz- 1 + ... + (Bz- 1 ) 11-l ]+ 
i=O 

( 4.36) 

Let 
l1-l 

Q =I+ Bz-1 + ... + (Bz-1 )li-1 == L (Bz-1 )i ( 4.37) 
i=O 

For the ith group in ( 4.37) we have 

We then obtain 

L-1 L Bi z-i = Q + (Bz-1 )Zi Q + ... + (Bz-1 )(12-1)11 Q 
i=O 

= [I+ (Bz-l l1 + ... + (Bz-1 )<Z2-l)Z1 ]Q 
Z2-l 

= ( L (Bz-1 )il1 )Q 
i=O 
Z2-l Z1-l 

= ( L (Bz-1 )ili )( L (Bz-1 )i) 
i=O i=O 

D 

Lemma 4.4. If L = TI[ 1 lk, where lk is a positive integer, then 

L-1 K l1c-1 

L Bi z-j = II ( L (Bz-1 / n::11 li) ( 4.39) 
i=O k=l i=O 

where B 0 = I and the li are not necessarily distinct. 

Proof: By induction on K from Lemma 4.3. D 
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We give an example with L = 12. Since 12 can be expressed as a product of 

three prime numbers 3, 2 and 2, we have 

11 

L Bi z-i =(I+ Bz-1 + B 2z-2 ) + (B 3 z-3 + B 4 z-4 + B 5 z-5 )+ 
j=O 

( 4.40) 

From the above example, it is easy to see that a large polynomial has been 

decomposed into a product of three small polynomials. Then 'I:~ 1 
0 Bi z-i can be 

implemented in a three-stage cascaded structure with only 4N multipliers, instead 

of llN multipliers, where we suppose B is an N x N matrix. This reduction of 

the number of multipliers can be formally expressed by the following two lemmas. 

Lemma 4.5. Suppose that B is an N x N matrix and q and p are constants, 

then 
q-1 (q-l)N 

det(L(Bz-1 )iP) = l + L djpz-iP ( 4.41) 
j=O j=l 

where B 0 = I and djp is a combination of some elements in BP,·· B(q-l)p. 

Proof: Let zP = .X. Then 

q-1 q-1 

det(L(Bz-1 )iP) = det(L BiP _x-i) ( 4.42) 
j=O j=O 

From Lemma 4.2, we know that det(I:1-~ BiP.X-i) is an N(q - l)th order poly

nomial in .x-1
. It can then be expressed as 

q-1 (q-1)N 

det(L BiP .X-i) = L djp_x-1 ( 4.43) 
j=O j=O 
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where djp is a combination of some elements in B P, · · · B (q -l )p . 

Since the coefficient of ).0 is unity both in det (I-BL ).-L ) and in de t(I-B).-1 ) , 

the coefficient of ). 0 in ( 4.43) must also be unity. Then 

q-1 (q-l ) N 

det(I: BiP ).-i) = 1 + L djp).-J ( 4.44) 
j=O j=l 

Replacing ). by zP in ( 4.44), we then obtain 

q-1 (q-l)N 

det(L(Bz-1 )iP) = 1 + L djpZ-jp 

j=O j=l 

D 

We see, from Lemma 4.5, that there are only N( q - 1) multipliers required to 

compute the associated convolution although det(Lj-~ (Bz-1 )iP) is an Np( q- l )th 

order polynomial. By extending this result, we have Lemma 4.6. 

Lemma 4.6. If L = rrf 1 lk, there are N(Lf 1 lk - K) multipliers required 

for computing the convolution associated with det(LJ 0
1 Bi z-i) by using the 

decomposition technique, where B is an N x N matrix. 

Proof: From Lemma 4.4, we may have 

L-1 K l1c-l 

det( L Bj z-j) = det( II ( L (Bz- 1 )j rr:::t z.)) 
j=O k=l j=O 

K l1c-l 1c 

= II det( L (Bz-1 
/ rr.::t z.) 

( 4.45) 

k=l j=O 

. L-1 · · We see, from the above equation, that det(Lj=O B 1 z-1 ) can be expressed as a 

product of K small polynomials. It can then be implemented in a K-stage cascaded 

structure. From Lemma 4.5, however, there are N(lk - 1) multipliers required in 

the kth stage. For K stages, the total number of multipliers is then 

K K 

L N(lk - l) = N(L lk - K) ( 4.46) 
k=l k=l 
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Since ~f 1 lk - K may be much smaller than Tif 1 h - 1, the number of 

multipliers may be greatly decreased after the decomposition. If L = 2K ( or 

K = log2 L), for example, then the number in ( 4.46) becomes 

K 

~N(lk) = NK == Nlog 2 L ( 4.4 7) 
k=l 
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4.5. Time Domain Derivation 

In this section we consider a time domain derivation of the parallel algorithms 

for direct-form recursive filters. This is of particular interest for time-varying 

recursive systems. 

From Section 4.3 we see that the stabilized parallel algorithm derived in the 

Z domain has the form 
N 

Yn == ~ bjLYn-jL + Un 

j=l 

( 4.48) 

Thus our goal is to derive, in the time domain, a parallel algorithm with the same 

form. In Section 4.5.1, we use a second-order recursive filter as an example to 

demonstrate two methods of achieving this form from the original (serial) algo

rithm. There are many other ways to achieve this form and one could ask if all 

these methods produce the same solution. Section 4.5.2 shows that uniqueness 

holds under one condition. If this condition is satisfied, all the methods give a 

unique solution and this solution is stable (if the original algorithm is stable), be

cause it is the same as the one derived in Section 4.3, which has been proved to 

be stable. If the condition for uniqueness is not satisfied, we need to analyze the 

stability of the derived algorithm. This problem is discussed in Section 4.5.3. 
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4.5.1. Methods of derivation 

In this subsection, we use a second-order recursive filter as an example to 

demonstrate two methods for obtaining parallel algorithms with the same form as 

that in ( 4.48). We assume that the condition for the unique solution (which will 

be discussed in the next subsection) holds, so all steps of the following derivations 

are valid. 

A second-order recursive filter is expressed as 

( 4.49) 

where Vn = WoXn + W1Xn-1 + W2Xn-2. To increase the degree of parallelism by a 

factor of L = 6, a modification is made so that the following form is obtained 

Yn = b1LYn-L + b2LYn-2L + Un 

( 4.50) 

To achieve this, we introduce two methods. The first one needs (L - l)N steps to 

complete the derivation. Thus it is called the derivation without decomposition. 

The second one is called the derivation with decomposition because it takes only 

('I:;;° 1 h - K)N steps, where L = IT;;° 1 h. 
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1 (1 X 2 3)1 (0 1 2] 

2 (2X 3 4)1 (0 2 3] 

3 (3x 4 5)1 (0 3 4] 

4 (4X 5 6)1 (0 4 5] 

5 (5X 6 7)1 [O 5 6] 

6 (6 7x 8)1 [O 6 7) 

7 (6 3x 9)2 [O 6 8] 

8 (6 gx 10)3 (0 6 9) 

9 (6 1ox 11)4 (0 6 10] 

10 (6 11 X 12)5 [O 6 11] 

11 [O 6 12] 

Fig. 4.1. The derivation without decomposition (N = 2 and L = 6) 

4.5.1.1. Derivation without decomposition 

We are concerned with the derived form, but not with the exact values of 

coefficients. For simplicity, therefore, we use index notation to describe the pro

cedure of our derivation, as shown in Fig. 4.1. The number in the first column 

denotes the step of the derivation. The numbers in the other columns represent 

an output. For example, 2 stands for Yn-2 and 3 for Yn-l. The numbers between 

the square brackets at the ith row represent an equation, which is the result from 

the immediately previous step and is called the equation at step i. For example, 

(0 6 7] on the sixth row denotes 

(5) (5) (5) 
Yn = b6 Yn-6 + b7 Yn-7 + Vn ( 4.51) 

where b)5
) is the jth coefficient of the equation, which is derived from step 5. A 
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group of numbers between parentheses with a superscript i denotes that an output, 

the corresponding number of which has a superscript "x", is written explicitly by 

using the equation at step i. Since the equation at step 1 is expressed as 

(o) (o) (o) 
Yn = bl Yn-1 + b2 Yn-2 + Vn ( 4.52) 

(o) (o) (o) ( where b1 = r1, b2 = r2 and Vn = vn, then 6 7 8)1 can be written as 

(o) (o) (o) 
Yn-6 = bl Yn-7 + b2 Yn-8 + Vn-6 ( 4.53) 

. Thus (6 7x 8)1 on the sixth row is expressed as 

( 4.54) 

In the above we have assumed that bio) =/. 0. 

The operation at step i is described as follows: First an output is written ex

plicitly according to the coefficients between the parentheses. Next the expression 

of this output is substituted into the equation at step i, which is determined by 

the coefficients between the square brackets and is derived from step i - 1. An 

equation for the next step is 'then obtained. An example follows. At step 6 in Fig. 

4.1, we write Yn-7 explicitly, using the equation at step 1. The result is given in 

( 4.54). Next we substitute it into ( 4.51 ), the equation at step 6. Then we obtain 

( 4.55) 

It is easy to verify, from Fig. 4.1, that the final result after ten iterations can 

be expressed as 

( 4.56) 
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where 
10 

Un= Vn + L djVn-j 

j=l 

( 4.57) 

Because ten extra multipliers are introduced for computing un, the complexity 

after the modification is greatly increased. This number of multipliers is just 

(L - l)N. That is why we call this method derivation without decomposition. In 

the following, we describe a more efficient method with decomposition. 

4.5.1.2. Derivation with decomposition 

1 (lx 2 3)1 (0 1 2] 

2 (2X 3 4)1 (0 2 3] 

3 (3 4x 5)1 (0 3 4] 

4 (3 5x 6)2 [O 3 5] 

5 (3X 6 9)5 (0 3 6] 

6 (6 gx 12)5 (0 6 9] 

7 (0 6 12] 

Fig. 4.2. Derivation with decomposition (N = 2 and L = 6) 

The index notation of this derivation is depicted in Fig. 4.2. Since we are 

considering the decomposition, the detailed derivation at each step ( as listed in 

Appendix 4.4) must be studied carefully. 

From Appendix 4.4 it is easily verified that Un can be computed in two stages, 

that is, 

4 

- "d(l) 
Un = Vn + L..J j Vn- j ( 4.58) 

j=l 
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and 
2 - L d (2) -

Un = Un + 3j Un-3j ( 4.59) 
j=l 

Therefore, only six multipliers are required for computing Un. 

1 (1 X 2 3 4)1 [O 1 2 3] 

2 (2 3x 4 5)1 [O 2 3 4] 

3 (2 4 5x 6)2 [O 2 4 5] 

4 (2x 4 6 8)4 [O 2 4 6] 

5 (4 5x 8 10)4 [O 4 6 8] 

6 (4 8 1ox 12)5 [O 4 8 10] 

7 (4X 8 12 16)7 [O 4 8 12] 

8 (8 12x 16 20)7 [O 8 12 16] 

9 (8 16 2ox 24) 8 [O 8 16 20] 

10 (0 8 16 24] 

Fig. 4.3. Derivation with decomposition ( N = 3 and L = 8) 

The idea described above can easily be extended to more complicated cases. 

Fig. 4.3 depicts an example of N = 3 and L = 8. It is easy to prove that Un in 

this example can be computed in three stages, using only nine multipliers ( which 
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4.5.2. Condition for unique solution 

In section 4.5.1, we described two methods for obtaining a time domain deriva

tion. However, there are many other methods of achieving the same goal. Two 

of them are depicted in Fig. 4.4. In this subsection we give the condition for the 

unique solution of the stabilized parallel algorithm. 

The problem is defined as follows: Suppose that 

N (L-l)N N 

(1 - L Tjz-i)( L ajz-i) = L bjLZ-jL ( 4.60) 
j=l j=O j=O 

where b0 = 1 and 1 - ~f 1 TjZ-j is the determinant of the Z transform of a 

stable recursive filter. The question is whether there exists a unique solution for 

determining LN + 1 unknowns aj for O < j < (L - l)N and bjL for 1 < j < N. 

We first modify ( 4.60). Multiplying both sides of ( 4.60) by 

then 
(L-l)N "\;"'N b. -jL 

L -. L.,j=O :JLZ 
a ·z :J - -------:J - N . 

j=O 1 - Lj=l rjz-J 

By a power series expansion, we have 

l N N 
__ "\;"'_N ___ . = 1 + L TjZ-j + (L Tjz-i) 2 + ... 
1 - L.,j=l Tjz-J j=l j=l 

oo N 

= L(L TjZ-j)k 

k=O j=l 

00 

~ -k = L.J SkZ 

k=O 

1 

1- r · z-, 
~

N . ) 

j=l , 

( 4.61) 

( 4.62) 

where so = 1 and s k is a combination of some r j. (The calculation of s k for 

1 < k < (L - l)N can be found in Appendix 4.5.) The above expansion is 

convergent for z-1 in the unit circle because the original system is stable. 
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1 (1 2x 3)1 (0 1 2] 

2 (1 X 2 3)1 (0 1 3] 

3 (2X 3 5)2 (0 2 3] 

4 (3 5x 6)3 (0 3 5] 

5 (3X 6 9)5 [O 3 6] 

6 (6 gx 12)5 (0 6 9] 

7 (0 6 12] 

(a) 

1 (1 X 2 3)1 (0 1 2] 

2 (2 3x 4)1 (0 2 3] 

3 (2X 4 6)3 (0 2 4] 

4 (4X 6 8)3 (0 4 6] 

5 (6 3x 10)3 (0 6 8] 

6 (6 1ox 12)4 [O 6 10] 

7 [O 6 12] 

(b) 

Fig. 4.4. Two other methods for the time domain 

derivation (N = 2 and L = 6) 

Using ( 4.61) and ( 4.62), we can rewrite ( 4.60) as 

(L-l)N N oo 

L ajz-j = (L bjLZ-jL)(L skz-k) 
j=O j=O k=O 

( 4.63) 

From ( 4.63) it is easy to verify that, once bjL for O < j < N is determined, there is 

an unique solution for aj for O < j < (L- l)N. Therefore, our problem is reduced 
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to finding the condition for the unique solution of N unknowns bjL for 1 < j < N. 

Lemma 7. Consider an equation of the form ( 4.60) or ( 4.63). There exists a 

unique solution for bjL for 1 < j < N if and only if the following inequality is 

satisfied 

det 

S(L-l)N+l-L S(L-l)N+l-2L 

S(L-l)N+2-L S(L-l)N+2-2L 

SLN-1-L 

where s k = 0 for k < 0. 

S£N-1-2L 

SL-N+l 

SL-N+2 

SL-1 

Proof: We define aj = 0 for j > (L - l)N. Then we can write 

(L-l)N oo 

L ajz-i = L ajZ-j 
j=O j=O 

Substituting ( 4.65) into ( 4.63), we have 

oo N oo 

L ajz-i = (L bjLZ-jL)(L Skz-k) 
j=O j=O k=O 

( 4.64) 

( 4.65) 

( 4.66) 

Except for the first ( L - 1 )N + 1 linear equations, which are used to determine ai 

for O < j < (L- l)N, from (4.66) we can write an infinite set of linear equations 

as 

( 4.67) 

+ '' ' s L b(N-l)L 

where Sk = 0 for k < 0. 

Although there is a countably infinite number of linear equations in ( 4.67), 

only at most N of them are independent. This is proved as follows: Substituting 
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( 4.65) into ( 4.60), then 

N oo N 

(1 - L rjz-i)(L ajz-j) == L bjLZ-jL ( 4.68) 
j=l j=O j=O 

Since I:f O bjLZ-jL is an N Lth order polynomial in z-1 , the coefficient for any 

term with an order higher than NL must be zero. Thus we can write 

( 4.69) 

From the above equations it is easy to see that once the first N coefficients ai 

for (L - l)N + 1 < j < NL are known, aNL+l can be determined by the first 

equation, then aNL+2 is determined by the second and then aNL+3 by the third, 

and so on. Therefore, only at most N linear equations among those equations in 

( 4.67) are independent. 

To compute bjL for 1 < j < N, we choose the first N linear equations from 

( 4.67). Since bo == s 0 == 1, we then have 

0 == 8 (L-l)N+l +s(L-l)N+l-L bL + · · · +sL-N+l b(N-l)L 

0 == 8 (L-l)N+2 +s(L-1)N+2-L bL + ... +s L-N+2 b(N-l)L 

0 == SLN +sLN-L bL + ... +sL b(N-l)L +bNL 

or in a matrix form, 

S(L-1)N+1-L S£-N+l 0 bL S(L-1)N+1 

S(L-1)N+2-L S£-N+2 0 b2L S(L-1)N+2 

S£N-1-L S£-1 0 b(N-l)L S£N-1 

S£N-L SL 1 bNL SLN 
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where Sk = 0 for k < 0. From ( 4. 71 ), it is easy to see that the necessary and 

sufficient condition for the unique solution of bjL for 1 < j < N is 

det 

or 

S(L-l)N+l-L S(L-l)N+l-2L 

S(L-l)N+2-L S(L-l)N+2-2L 

det 

SLN-l-L 

SLN-L 

S£N-l-2L 

S£N-2L 

S(L-l)N+1-L S(L-l)N+l-2L 

S(L-l)N+2-L S(L-l)N+2-2L 

SLN-l-L 

where Sk = 0 for k < 0. 

S£N-l-2L 

4.5.3. Stability 

SL-N+l 0 
S£-N+2 0 

SL-l 0 
SL 1 

SL-N+l 

S£-N+2 

SL-l 

#0 ( 4. 72) 

D 

In the previous subsection we derived the condition for the unique solution 

of the stabilized parallel algorithm. In certain problems, however, this condition 

does not hold. Since the solutions in these cases are not the same, we need to 

analyze the stability of the derived algorithm. The following is an example with 

N = 2 and L == 6. 

From ( 4.64) we can express the condition of the unique solution for N == 2 

and L = 6 as 

S5 # 0 ( 4. 73) 

By using ( 4.A5.13) and ( 4.6), S5 can be written as 

( 4. 74) 

Therefore, the solutions will not be unique if eithe~ r 1 , rr + 3r2 or rf + r2 is equal 

to zero. 
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To investigate stability, we consider one of the above three cases, that is, 

(4.75) 

Since bj = 0 for j :/= iL in ( 4.A5.2), we can obtain a linear homogeneous system 

of N(L -1) equations. Using these equations plus the constraint (4.75), we can 

calculate the coefficient aj and then obtain 

10 

L ajz-i = (l + r1z-1 - r2z- 2)(l - r2z- 2)(l + a6z-6) 

j=O 

( 4. 76) 

Suppose that the original system is stable. The two poles z1 and z2 of the 

system are inside the unit circle. It is easy to verify that the roots of 1 + r 1 z-1 -

inside the unit circle. To obtain a stabilized parallel algorithm, therefore, the 

absolute value of a6 in ( 4. 76) must be smaller than unity, that is, 

Consider one extreme case when a6 = 0. Then 

1 3 -6 = - r 2 z 

( 4. 77) 

( 4. 78) 

It can be verified that this result may be obtained by just using the conventional 

look-ahead technique described in Section 4.2. 

Using the same method described above to the other two cases, we can see 

that ( 4.77) is the condition for obtaining a stabilized algorithm with a degree of 

parallelism L = 6 for a second-order recursive filter when the condition for the 

unique solution ( 4.73) is not satisfied. 
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4.6. Discussion 

In this chapter we first showed that conventional look-ahead computation for 

obtaining parallel algorithms for recursive systems can cause numerical instability 

in the direct-form implementation of recursive filters. The reason is that the 

introduced poles cannot be guaranteed to be inside the unit circle. Then we 

introduced a new method for deriving, in the Z domain, an algorithm for direct

form recursive filters. We showed that not only is the degree of parallelism of this 

new algorithm increased, but the stability is also improved. If the original serial 

computation is stable, that is, the eigenvalues Zi of the companion matrix in the 

original algorithm are all in the unit circle, the eigenvalues zf of the companion 

matrix in the parallel system will also be in the unit circle and closer to the origin 

than their corresponding zi's. This enhanced stability may mean that less bits per 

word are necessary in our parallel implementation. 

The penalty for using the new method is a great increase in complexity. For 

example, an extra N(L - 1) multipliers are required if we want to increase the 

degree of parallelism by a factor of L for an Nth order recursive filter. However, 

to implement the original serial algorithm requires only 2N + 1 multipliers. To 

alleviate this problem, we introduced a decomposition technique. After decompo

sition, the extra multipliers introduced are decreased to N("2:f 1 lk - K) where 

L = IT~ 1 lk. 

We also considered the method for obtaining, in the time domain, parallel 

algorithms with the same form as the one obtained in the Z domain. The derived 

parallel algorithm can be applied to time-varying recursive systems which are an 

important tool in modern digital signal processing. There are many different ways 

78 

.... 



to achieve the same goal. We then discussed the condition for uniqueness of the 

stabilized parallel algorithm. We showed that if this condition is not satisfied, 

the derived algorithms are stable only under certain conditions. Therefore, the 

problem of stability has to be carefully considered when one is deriving parallel 

algorithms for a time-varying recursive system. 

The method described in this chapter can also be extended to obtain parallel 

algorithms for recursive filters in state-variable form. However, the decomposition 

technique is useful to reduce the increased complexity only if certain conditions 

are satisfied. A detailed description of this issue can be found in Appendix 4.6. 
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Appendix 4.1 

In this appendix, we prove ( 4.5) and ( 4.6) by using induction. 

From ( 4.2), ( 4.3) and ( 4.4), we see that ( 4.5) holds for L = 2. By induction, 

assume that the algorithm holds after L - 2 iterations, that is, 

N+L-2 N+L-2 
~ (L-2) ~ (L-2 ) 

Yn = .L..J r j Yn-j + .L..J W j Xn-j 

j=L-1 j=O 

where 

and 

(L-2) - r j + r L-2 r j-(L-2)' 

{ 

(L-3) (L-3) 

rj - (L-3) 

(L-2) 
W· = J 

rL-2 TN, 

(L-3) 
wj ' 

(L-3) (L-3) 
wj + rL-2 Wj-(L-2), 

(L-3) 
rL-2 WN, 

L - 1 < j < N + L - 2; 

j=N+L-2 

0 < j < L - 2; 

L - 2 < j < N + L - 2; 

j = N + L - 2. 

Using (4.1), we write Yn-(L-l) explicitly as 

N N 

Yn- (L-1) = L TjYn- (L-1)-j + L WjXn- (L-l) -j 

j=l j=O 

Let j 1 = j + L - 1. Then 

N+L-1 N+L-1 

Yn-(L-1 ) = L rj'- (L-l )Yn-j' + L Wj'- (L-1 ) Xn-j' 

j'=L j'=L-1 
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Substituting ( 4.Al.5) into ( 4.Al.l ), we have 

N+L-l N+L-l 

(L-2) ( " " ) Yn = rL-l L_.,; Tj- (L-l )Yn-j + L_.,; Wj-(L-l)Xn-j + 
j=L j=L-l 

N+L-2 N+L-2 
" (L-2) " (L-2) + L,.,; rj Yn-j + L,.,; wj Xn-j 

j=L j=O 

N+L-2 
" ( (L-2) (L-2) ) (L-2) 
L_.,; rj + rL-l Tj-(L-l) Yn-j + rL-1 TnYn-(N+L-1)+ 
j=L ( 4.Al .6) 

L-2 N+L-2 
" (L-2) " ( (L-2) (L-2) ) + L,.,; wj Xn-j + L,.,; wj + rL-l Wj-(L-1) Xn-j+ 

j=O j=L-1 

(L-2) 
+ TL-1 WnXn-(N+L-1) 

N+L-1 N+L-1 
" (L-1) " (L-1) L,.,; rj Yn-j + L,.,; Wj Xn-j 

j=L j=O 

In the above equation, 

{ 

(L-2) (L-2) 
(L-1) - r j + r L-1 r j-(L-1)' 

rj - (L-2) 
rL-1 TN, 

and 

(L-1) 
W · = ] 

(L-2) 
wj ' 

(L-2) (L-2) 
wj + rL-1 Wj-(L-1), 

(L-2) 
rL-1 WN, 
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L < j < N + L -1; 

j=N+L-1 

0 < j < L - l; 

L -1 < j < N + L - 1; 

j = N + L -1. 

( 4.Al. 7) 

(4.Al.8) 



Appendix 4.2 : 

In the following, we prove 

N+L-1 N 
L w;L-l ) z-j = (L Wjz-i)D(z) ( 4.A2.1) 
j=O j=O 

where 
L-1 

D(z) = l + L r;j-l) z-i ( 4.A2.2) 
j=l 

The proof of the denominator of H(z) in (4.8) is similar. 

First let L = 2. Since we have, from ( 4.6), 

{ 

wo, j = O; 
w ;1) = w i + r1 w j-1, 1 < j < N + l; 

r1wN, j = N + l 

thus 

N+l N 

L w;1)z-i = wo + L(wj + r1Wj-i)z-i + r1wNZ-(N+i) 
j=O j=l 

N N 

= wo + L WjZ-j + r1(L Wj-lZ-i + WNZ-(N+i)) ( 4.A2.3) 
j=l j=l 

N N+l 

= L WjZ-j + r1 L Wj-1Z-j 
j=O j=l 

Let j' = j - 1. Then 

( 4.A2.4) 

Substituting ( 4.A2.4) into ( 4.A2.3), we obtain 

N+l N N 
L wJ1) z-i = L WjZ-j + r 1 z-1 L WjZ-j 
j=O j=O j=O 

N 
( 4.A2.5) 

= (L Wjz-i)D(z) 
j=O 
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By induction, assume that ( 4.A2.l) holds for L - 2, that is, 

N+L-2 N L-2 

L w;L-
2

) z-j = (L Wjz-i)(l + L rf-l ) z-i) 

j=O j=O j=l 

Since we can also have, from ( 4.6), 

(L-1) 
W· = ] 

(L-2) 
w. ' ] 

(L-2) (L-2) 
wj + rL-1 Wj-(L-1), 
(L-2) 

rL-1 WN, 

thus 

N+L-1 L-2 N+L-2 

0 < j < L - 1; 

L - 1 < j < N + L - 1; 

j=N+L-1 

( 4.A2.6) 

~ (L-1) -j _ ~ (L-2) -j + ~ ( (L-2) + (L-2) . ) -j+ 
L.,,; wj z - L.,,; wj z L.,,; wj rL-l w 1_(L-l) z 

j=O j=O j=L-1 

+ (L-1) -(N+L-1) 
rL-1 WNZ 

L-2 N+L-2 

= L w;L-2) z-i + L w;L-2) z-i + 
j=O L-1 

N+L-2 

+ r1L /) ( L Wj-(L-1)Z-j + WNZ-(N+L-1)) 

j=L-1 

N+L-2 N+L-1 
~ (L-2) -j + (L-2) ~ -J 
L.,,; W J Z TL-l L.,,; Wj-(L-l)Z 

j=O j=L-1 

( 4.A2. 7) 

But 
N+L-1 N L Wj-(L-i)Z-j = z-(L-l) L WjZ-j ( 4.A2.8) 
j=L-1 j=O 

Thus 

N 
(L-2) -j + (L-2) -(L-1) ~ -j 

wj Z rL-1 Z L.,,; WjZ ( 4.A2.9) 
j=O j=O j=O 

Subtituting ( 4.A2.6) into ( 4.A2.9), we obtain ( 4.A2.l ). 
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Appendix 4.3 : 

In this appendix, we give an efficient method for computing B k. For simplicity, 

we show it in an example of N == 4. 

First we mention the shift matrix 

0 1 0 0 
0 0 1 0 

T== (4.A3.1) 

0 0 0 1 
0 0 0 0 

The effect of premultiplication by T is to upshift a matrix by one row and replace 

its last row by zeros. For example, 

0 1 0 0 a11 a12 a13 a14 a21 a22 a23 a24 

0 0 1 0 a21 a22 a23 a24 a31 a32 a33 a34 ( 4.A3.2) 
0 0 0 1 a31 a32 a33 a34 a41 a42 a43 a44 

0 0 0 0 a41 a42 a43 a44 0 0 0 0 

If the elements on the last row in the shift matrix are not all equal to zero, it is 

easy to see that nothing in the resulting matrix in ( 4.A3.2) is changed except that 

the elements on the last row will not all be equal to zero. 

Now consider B 2 , that is, 

0 1 0 0 

B2 == 0 0 1 0 
0 0 0 1 
r4 r3 r2 r1 

Using the property of T, we have 

B2 == 

where 

0 1 0 0 
0 0 1 0 
0 0 0 1 
r4 r3 r2 r1 

0 0 1 0 
0 0 0 1 
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j == 5. 

( 4.A3.3) 

( 4.A3.4) 



By induction, suppose that, for k = K - l where k > N, we have 

(K-5) 
rK-1 

(K-5) 
rK-2 

(K-5) 
rK-3 

(K-5 ) 
rK-4 

(K-4) (K-4) (K-4) (K-4) 
BK-1 = rK rK-1 rK-2 rK-3 (4.A3.5) (K-3) (K-3) (K-3 ) (K-3 ) 

rK+l rK rK-1 rK-2 
(K-2) 

rK+2 
(K-2) 

rK+l 
(K-2) 

rK 
(K-2) 

rK-1 

where rY) can be computed by using the iterative algorithm in ( 4.6). 

Fork= K, then 

(K-5) (K-5) (K-5) (K-5) 
0 1 0 0 rK-1 rK-2 rK-3 rK-4 

0 0 1 0 
(K-4) (K-4) (K-4) (K-4) 

BK= BBK-1 = rK rK-1 rK-2 rK-3 

0 0 0 1 (K-3) (K-3) (K-3) (K-3) 
rK+l rK rK-1 rK-2 

T4 T3 r2 r1 (K-2) (K-2) (K-2) (K-2) 
rK+2 rK+l rK rK-1 

( 4.A3.6) 

From the property of the shift matrix T, we know that BK should have the 

fallowing farm 

(K-4) 
rK 

(K-4) 
rK-1 

(K-4) 
rK-2 

(K-4) 
rK-3 

(K-3) (K-3) (K-3) (K-3) 
BK= rK+l rK rK-1 rK-2 ( 4.A3.7) (K-2) (K-2) (K-2) (K-2) 

rK+2 rK+1 rK rK-1 

X41 X42 X43 X44 

To compute x4j for 1 < j < 4 from ( 4.A3.6) requires N 2 = 16 multiplications. 

However, we have 

Then we can easily prove that 

X43 X44) = ( r(K-l) 
K+3 

(K-1)) 
rK 

( 4.A3.8) 

( 4.A3.9) 

where rJK-l) can be computed from r;K-2) by using the iterative algorithm in 

( 4.6), that is, 

{ 

(K-2) (K -2) 
(K-1) _ rj +rK-1 Tj-(K-1), 

rj - (K-2) 
rK-1 r4, 
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From the above equation, we see that it takes only N 

compute X4j. 

In general, consider that B is an N x N matrix. Then 

fork< N, 

N-k+l 

and fork> N, 

Bk= 

0 

0 

0 

(k-1) 
rN+k-1 

(k-N) 
rk 
(k-N+l) 

rk+1 

. 
(k-1) 

rN+k-1 

k+l k+2 

1 

0 

0 

0 

1 

0 

TN-k TN-k-1 

(k-1) (k-1) 
rN-1 rN-2 

... 

(k-N) (k-N) 
r rk-N+l k-1 
(k-N+l) (k-N+1) 

rk ... 
rk-N+2 

. . 
(k-1) 

rN+k-2 
(k-1) 

rk 

4 multiplications to 

0 

0 

1 

(k-1) 
rk 

( 4.A3.10) 

(4.A3.11) 

Using the iterative algorithm in ( 4.6), the number of multiplications for computing 

Bk is Nk. 
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Appendix 4.4 : 

This appendix lists the detailed derivation steps using an example of N = 2 

and L = 6 with decomposition. 

The original equation can be written as 

(o) (o) (o) 
Yn = bl Yn-l + b2 Yn-2 + Vn 

where bio) = r 1 , b~o) = r 2 and v~o) = Vn. In each step of the following, the first 

equation is associated with the denotation on the second column in Fig. 4.2, the 

second one is the derived equation for the next step and the third is the modified 

equation for the linear part. We assume that no divisors below are equal to zero. 

Step 1: 

(0) (0) (0) 
Yn-l = bl Yn-2 + b2 Yn-3 + Vn-1 

(1) (1) (1) 
Yn = b2 Yn-2 + b3 Yn-3 + Vn 

Step 2: 

(0) (0) (0) 
Yn-2 = bl Yn-3 + b2 Yn-4 + Vn-2 

(2) (2) (2) 
Yn = b3 Yn-3 + b4 Yn-4 + Vn 

Step 3: 
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Step 4: 

(4) (4) (4) 
Yn = b3 Yn-3 + b6 Yn-6 + Vn 

Step 5: 

(4) (4) (4) 
Yn-3 = b3 Yn-6 + b6 Yn-9 + Vn-3 

(5) (5) (5) 
Yn = b6 Yn-6 + bg Yn-9 + Vn 

Step 6: 

1 b~4
) 1 (4) 

Yn-9 = wYn-6 - wYn-12 - wvn-6 
b3 b3 b3 

b
(6) b(6) (6) 

Yn = 6 Yn-6 + 12 Yn-12 + Vn 

From the above equations, it is easy to verify that 

4 

v( 4) = v(o) + "d\1) v (o) . 
n n L._,; J n-; ( 4.A4.l) 

j=l 

and 
2 

v(6) = v(4) + "d\2)v(4) . 
N n L._,; J n-3 ( 4.A4.2) 

j=l 

Let Un = v~
4

) and Un = v~
6
). We then obtain ( 4.58) and ( 4.59). 

88 



Appendix 4.5 : 

In this appendix, we calculate the value of s k for 1 < k < ( L - l )N. 

We first define bi = 0 for i -/= j L. Then 

Thus ( 4.60) can be rewritten as 

N (L-l)N NL 

(1 - L Tjz-i)( L ajz-i) = L bjz-i 
j=O j=O j=O 

( 4.A5.1) 

( 4.A5.2) 

Using the above equation, we can write a linear system of (L - l)N + 1 equations 

as 

ao bo 
a1 b1 
. . . . . . 

( 4.A5.3) 
an bn -TN -r1 1 

0 a(L-l)N b(L-l)N 

or 

Ra=b ( 4.A5.4) 

where R is an ((L - l)N + 1) x (((L - l)N + 1) triangular Toeplitz matrix, a and 

b are ( ( L - 1 )N + 1) x 1 vectors. It is easy to verify that 

det(R) = 1 ( 4.A5.5) 

Therefore, R- 1 exists and ( 4.A5.4) can be rewritten as 

( 4.A5.6) 

Substituting ( 4.A5.l) into ( 4.63), we have 

(L-l)N NL oo 

L ajZ-j = (L bjz-i)(L skz-k) (4.A5.7) 
j=O j=O k=O 
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We can also write, from ( 4.A5.7), a linear system of (L - l)N + l equations as 

a= Sb ( 4.A5.8) 

where 

a= ( ao a1 a(L-1)N )T, 

b = ( bo b1 b(L-1)N )T 

and 
1 

S1 1 

S= S2 s1 1 

S(L-1)N S2 S1 1 

Comparing ( 4.A5.6) and ( 4.A5.8), we obtain 

( 4.A5.9) 

Therefore, to calculate s k for 1 < k < ( L - 1 )N, we can use the following equation 

SR=I ( 4.A5.10) 

Since Sis also a triangular Toeplitz matrix, all the information needed is contained 

in the first column ( or the last row). Then we can also use the following simplified 

equation for computing s k. 

1 

R 

S(L-1)N 

It is easy to verify that, for 1 < k < (L - l)N, 

1 
0 

0 

where rik-l) can be computed by using the iteration algorithm in ( 4.6). 
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Appendix 4.6 

This appendix extends the method derived in Chapter 4 to the state-variable 

form implementation of recursive filters. 

The state-variable form of an Nth order recursive filter can be expressed in 

two equations, that is, the state update equation 

x(n + 1) = Ax(n) + bu(n) ( 4.A6.l) 

and the output equation 

y(n) = cT x(n) + du(n) ( 4.A6.2) 

where A is an N x N matrix, b and c are N x 1 vectors, dis a scalar, x( n) represents 

an N x 1 state vector and u( n) and y( n) are input and output, respectively. 

To obtain a parallel algorithm, we consider the state update equation ( 4.A6.l) 

since only this equation contains recursion. Transforming ( 4.A6.l) into the Z 

domain, we have 

or 

X(z)z = AX(z) + bU(z) 

X(z) 
U(z) 

( 4.A6.3) 

( 4.A6.4) 

where I is an identity matrix and X( z) and U( z) represent the Z transforms of 

x( n) and u( n ), respectively. 

Multiplying both numerator and denominator of ( 4.A6.4) by a factor 

"'M-1 Ai -i th L-i=O z , en 

X(z) 
U(z) (I - Az-1 )(I:f1;1 Ai z-i) 

(~~;
1 Ai z-i)bz-1 

I-AMz-M 
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The above equation can be divided into two parts, that is, a recursive part 

and a linear part 

1 X(z) 
V(z) I-AMz-M 

( ) 
M-1 

V z == ( L Ai z-i)bz-1 
U(z) i=O 

M-1 
== L Aibz-(j+1) 

i=O 

where V(z) is a vector of intermediate variables. 

( 4.A6.6) 

( 4.A6.7) 

To analyze the degree of parallelism, we transform ( 4.A6.6) into the time 

domain and then obtain 

x(n + M) == AMx(n) + v(n + M) ( 4.A6.8) 

It can be seen from the above equation that M vectors of state var~ables x( n + i) 

for O < i < M - l can be computed simultaneously. 

Since Ai bis an N x 1 vector and can be precomputed, to implement ( 4.A6. 7) 

requires NM multipliers. The complexity of the modified system is increased. Un

like the case in the direct form implementation, however, this number of multipliers 

may not be reduced by using decomposition if A is an N x N full matrix. 

Suppose that M can be factored as M == ITf 1 mk where mk is a positive 

integer. Applying the decomposition technique, Lf ; 1 Ai z-i can be expressed 

as a product form. Then 

M-1 K m"-1 

bz-1( L Ai z-i) == bz-1 II L (Az-1 )i rr:~t mi ( 4.A6.9) 
J= k=l i=O 

When A is an N x N full matrix, it is easy to verify that to implement ( 4.A6.9) re

quires N 2(Lf 1 mk-K)+N multipliers where N 2 is due to full-matrix and vector 
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multiplications involved in the computation. Thus the decomposition technique is 
. 

not useful if N(~1( 1 mk - K + 1) is greater than M = IT1( 1 mk. 

To solve the above described problem, we recommend that A is a block

diagonal matrix with block size q by q for q much smaller than N. A matrix 

with this form can easily be obtained from a parallel combination of qth order 

recursive filters. When A is a block-diagonal matrix with block size q by q, only 

qN multipliers are required for implementing each matrix-vector multiplication 

involved in ( 4.A6.9). Thus the number of multipliers is reduced to qN(~f 1 mk -

K)+N. Note that A will not be a simple diagonal matrix in most cases. Otherwise 

complex numbers will appear in the computation, which increases the complexity 

of the system. Consider the best case with q = 2. The number of multipliers 

required for implementing ( 4.A6.9) is minimized to 2N(~1( 1 mk - K) + N, which 

may be much smaller than N ITf 1 mk. 
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CHAPTER 5 

PIPELINED AND/OR PARALLEL ARCHITECTURES 

FOR DIRECT-FORM RECURSIVE FILTERS 

5.1. Introduction 

This chapter describes some efficient architectures associated with the stabi

lized parallel algorithms derived in the previous chapter. The two-level pipeline, 

first introduced by H. T. Kung and his colleagues [19,21], is a good method not 

only for achieving high throughput computation, but also for having less area in 

VLSI implementation in comparison with other parallel approaches. In Section 

5.2 we show that, by using the stabilized parallel algorithms, an efficient two-level 

pipelined structure can easily be obtained. Another approach to achieving high 

throughput computation is by using parallel processing. We derive two parallel 

structures in Section 5.3. The first structure has the advantage of regularity while 

the second one can achieve a linear complexity in parallel size for cascaded second

order recursive filters. Since the two-level pipelined structure has less area in VLSI 

implementation than parallel structures, the system should desirably be imple

mented by first using pipelining to the maximum possible extent, and then using 

parallel processing in combination with pipelining if further increase in throughput 

is required. Therefore, we finally describe pipelined and parallel architectures for 

direct-form recursive filters in Section 5.4. 
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5.2. Two-Level Pipelined Structure 

In this section, we derive an efficient two-level pipelined structure with a 

throughput of M for Nth order recursive filters. As we know, the algorithm derived 

in the previous chapter can be divided into two parts, the recursive part and the 

linear part. We first introduce a structure for the recursive part and show that 

our stabilized algorithms can easily be used for second-level pipelining. Then 

we describe a structure for the linear part. Since this structure is unidirectional 

without feed-back, it can have as many second-level pipelined stages as desired. 

Therefore, the two structures can easily be matched with the same throughput. 

Recursive part : 

For convenience, we rewrite ( 4.27) as follows 

N 

Yn = L bjMYn-jM + Un 

j=l 

(5.1) 

It is easy to construct a structure for computing this algorithm, as shown in 

Fig. 5.1. The system has N identical basic processing elements ( or cells), each 

of which performs a simple multiplication-and-accumulation operation. It inputs 

the data Un at the leftmost cell and outputs the result Yn at the rightmost cell. 

The result is then fed back immediately into the system from the rightmost cell as 

another input for later results. Since Yn depends only on Yn-jM for j = 1, 2, · · · N, 

the required NM delays are evenly distributed in the system. By using cut-set 

localization rules described in Chapter 2, a two-level pipeline with M stages can 

be obtained. Therefore the throughput is M times higher than that of the system 

for computing the unmodified algorithm. 
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y.M~y. 1-~~I 

b· I 
Yout 

Fig. 5.1. The structure for the recursive part (N = 2 and M = 4) 

Linear part : 

From Lemmas 4.4 and 4.5, the impulse response function of the linear part H1 (z) 

in ( 4.22) can be expressed as a product of K + l polynomials in z- 1 as 

N K (m1c-l)N 

H 1 (z)=(~wiz-i)Il(l+ ~ d}k)z-ifI:,:tmi) (5.2) 
j=O k=l j=l 

where M = TI[ 1 m1.: for mk is a positive integer and d)k) denotes the coefficient 

in the kth stage in the product term. A I( + l stage cascaded structure may be 

applied for implementing this algorithm. Because of the similarity of these stages, 

we only consider one as follows 

U(z) (q-l)N 

V(z) = 1 + h djz-iP (5.3) 

where p and q are positive integers and V(z) and U(z) are the Z transforms of 

input and output, respectively. 

Converting (5.3) into the time domain, we have 

(q-l)N 

Un= Vn + ~ djVn-jp 

j=l 
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The above equation can then be computed by using a structure such as that 

depicted in Fig. 5.2. This structure is similar to the one in Fig. 5.1, the only 

difference is that it is unidirectional without feed-back. 

V n-(q-1 )Np 

Un 

d· I 
U out 

Fig. 5.2. The structure for computing (5.4) 

Since the structure in Fig. 5.2 is unidirectional, as mentioned before it can 

have as many second-level pipelined stages as desired. Therefore, we can easily 

make Fig. 5.2 match ;Fig. 5.1 with the same throughput. An example of N = 2 

and M = 4 is given in Fig. 5.3. 

We see from the above discussion that N multipliers are required for cornput

ing the recursive part. For implementing ~f O WjZ-j, we need N + 1 multipliers. 

Therefore, N + l + N(~f 1 mk - K) multipliers are required for computing the 

linear part. The total number of multipliers required for an Nth order recursive 

filter is then 

K K 

N + N(L mk - I()+ N + 1 = N(L mk - I(+ 2) + 1 (5.5) 
k=l k=l 

When mk is not a prime number and can be expressed as a product of some prime 

numbers, the small polynomial on the right-hand side of ( 5.2) can be further 
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Fig. 5.3. The structure with four stages of second-level pipeline 

for second-order recursive filters 

K' 
decomposed. In the best case ,vhen M = [Ik=l Pk where Pk is a prime number, 

therefore, the total number of multipliers can be reduced to N(Lf(' 1 Pk - I(' + 

2) + 1. If M is a power of two, for example, the total number of multipliers in 

(5.5) becomes 

1V + N log2 M + N + l = N(log 2 M + 2) + 1 (5.6) 
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5.3. Parallel Structures 

In this section, we derive two efficient parallel structures with a throughput 

of L for Nth order recursive filters. The first one is derived by using the stabilized 

algorithm and decomposition technique described in Chapter 4. The second one 

is derived by using the stabilized algorithm in combination with the original un

modified algorithm. This technique is called incremental output computation and 

was originally introduced in [41] for block ( or parallel) implementation of recursive 

filters in state-variable form. 

5.3.1. Structure 1 

The structure can be divided into two parts, that is, the recursive part and 

the linear part. We first consider the recursive part. 

Recursive part : 

The algorithm for the recursive part is expressed as 

N 

Yn = L bjYn-jL + Un 

j=l 

Arranging the output Yn into L groups, we have 

for O < l < L -1 

N 

YLn+l = L biYL(n-j)+l + ULn+l 
j=l 

(5.7) 

(5.8) 

From the above equation it can be seen that to compute YLn+l we need YL(n-j)+l 

for j = l to N. However, they are just consecutive outputs in the same group. 

Therefore, the ~tructure for computing (5.7) or (5.8) may consist of L identical 

1-D sub-structures, which are independent of each other. Fig. 5.4 gives an exam-

ple with N = 2 and L = 4. 
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U4n+3 
Uin Y out 

b· I 
1 1 1 1 

1 Y out:= Yin 

Y 4n+1 Y4n+2 Y4n+3 

Fig. 5.4. The structure for the recursive part 

(N =. 2 and L = 4) 

Linear part : 

By using the decomposition techique, the linear part can be expressed as 

N K (lk-l)N 

H1 (z) = (L WjZ-j) IT (1 + L d)k) z-j n:,:t Zi) (5.9) 
j=O k=l j=l 

where L = fif 1 lk with lk a positive integer (or a prime number). A I(+ 1 

stage cascaded structure may be applied for computing this equation. However, 

to derive a parallel structure for each stage is not as simple as that in the two-level 

pipelined structure. Further effort is required. 

Consider one stage in (5.9) as follows 

or in the time domain 

U (q-1)N 

(z) = 1 + '°' d·z-iP 
V(z) ~ J 

J=l 

(q-l)N 

Un = Vn + L djVn-jp 

j=l 

where p and q are positive integers. 
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V4n+2 V 4n+1 V 4n+3 

u4n+3 

Fig. 5.5. The structure for computing (5.12) 

(N = _2, L = 4 and p = q = 2) 

We first arrange the output Un into p groups as 

for O < n2 < p and n1 = 0, 1, 2 · · · , 
(q-l)N 

Upn1+n2 = Vpn1+n2 + L djVpn1+n2-iP 

j=l 

(q-l)N 

= Vpn1+n2 + L djVp(n1-i)+n2 

j=l 

(5.12) 

From (5.12) we see that to compute Upni+n 2 we need those inputs only in group 

pn1 + n2. Thus p groups of the output can be computed independently. We 

can also see that each sub-equation in (5.12) is just a linear convolution problem 

so that they can be computed by using the systolic ring structure described in 

Chapter 3. Therefore, the system for computing (5.11) or (5.12) may consist of p 

identical ( q - 1 )N x L / p systolic ring structures. It is_ easy to determine that the 

number of multipliers required for computing (5.12) is 

p(q - l)NL/p = NL(q- l ) (5.13) 

An cxar11plc with N = 2, L = 4 and p = q = 2 is depicted in Fig. 5.5. 
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We have shown that NL multipliers are needed for computing the recursive 

part. Using (5.13), it can be shown that to implement the linear part requires 

N LC~[ 1 h - K + l) + L multipliers. Therefore, the total number of multipliers 

for this implementation is 

K K 

NL+ NL(L lk - K + l) + L = NL(L lk - K + 2) + L (5.14) 
k=l k=l 

5.3.2. Structure 2 

The second structure is derived from the incremental output computation. 

Consider the unmodified algorithm of an Nth order recursive filter 

where Vn = ~f O WjXn-j• 

N 

Yn = L rjYn-j + Vn 

j=l 

(5.15) 

We arrange the output into L groups and assume that (1) N < L and (2) the 

first N groups of the output are known. Then a regular and computable structure 

can easily be obtained. Fig. 5.6 gives an example with N = 4 and L = 8. 

It is known from the previous subsection that each group of the output can be 

computed independently by using the modified algorithm. Therefore our modified 

algorithm is applied for computing the first N groups of the output, which is 

expressed as follows 

for O < l < N - l 

N 

YLn+l = L bjYL(n-j)+l + ULn+l 
j=l 

(L-l)N 

ULn+l = VLn+l + L djVLn+l-j 
j=l 
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Van+4 V an+S V an+6 Van+? 

Yan V · y 
in out 

r3 r3 r3 r3 
r · I 

Yan+1 

r2 r 2 r2 r2 V out Yin 

Yout:= Yin 

Yan+2 V out:= Vin +r i * Yin 

r 1 r 1 r 1 r 1 

Yan+3 

Yan+4 Yan+S Yan+6 Yan+? 

Fig. 5.6. The structure for computing Ysn+l for 4 < l < 7 

where Vn = ~f O WjXn-j· 

The structures for computing YLn+l for O < l < L - l and U£n+l for O < l < 

N - l are depicted in Figs. 5. 7 and 5.8, respectively. 

For computing Vn with a throughput rate of L we need (N + l)L multipliers. 

There are NL multipliers for computing L groups of the output YLn+l for l = 0 

to L - l. However, for the first N groups of the output we need to compute the 

intermediate result uLn+l for l = 0 to N -1, which requires (L- l)N 2 multipliers. 

Therefore, the total number of multipliers for this implementation is 

(N + l)L +NL+ (L - l)N2 = (2N + l)L + (L - l)N2 ( 5 .1 7) 

There are several disadvantages in this direct implementation of Nth order 
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1 

1 1 

r 1 

1 

Y4n+1 Y4n+2 Y4n+3 

Fig. 5. 7. The structure for computing Y4n+l for O < l < 3 

V 4n V 4n+2 V 4n+1 

u1 ,,1 ,1 , ,2 , '2 ~,2 

1 -- d1 - d2 -- d3 -- d4 .... ds -- ds ~ - - - - - - u 4n+1 

,,1 H , ' · U H H 

-- d1 -- d2 - d3 - d4 - ds - ds ~ -- -- - - - - U4n 

V out:= Vin 

V out 

Fig. 5 .8. 'l'he structure for computing U4n+l for O < l < 1 

recursive filters. Under the assumption we made previously, the incremental out

put computation technique can only be applied in the case when N < L. Since we 
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must use two different algorithms for computing the two sets of L groups of the 

output, the structure is not as regular as the first one. From ( 5.17) we see that the 

number of multipliers is proportional to LN2
• By comparing (5.14) and (5.17), 

it can be verified that this implementation requires less multipliers than the first 

one only if the following inequality is satisfied: 

(5.18) 

where L = IJf 1 h. For example, if L = 8 then N < 4. 

This implementation can, however, be applied very efficiently for cascaded 

second-order recursive filters. The number of multipliers for one second-order 

stage is 

(2 x 2 + l)L + 22 (L - 1) = 9L - 4 

Then the total number of multipliers for N /2 stages becomes 

N 
-(9L - 4) = 4.5NL - 2N 
2 

This number is linearly proportional to the parallel size L. 
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5.4. Pipelined and Parallel Structures 

In the previous two subsections, we have constructed one two-level pipelined 

structure and two parallel structures for Nth order recursive filters. Now we com-

bine these two techniques together to construct efficient pipelined and parallel 

structures. To achieve the throughput of LM, we shall construct two systems by 

using a parallel size of L and a two-level pipeline with M stages. The first one can 

efficiently be applied in the case when L < N and the second one is used when 

the parallel size L is greater than the filter order N. 

5.4.1. Case 1: L < N 

As described in Subsection 5.3.2, the incremental output computation tech

nique cannot be applied when L < N. To construct this structure, we then use 

the method in Subsection 5.3.1 for parallel processing. 

To achieve the throughput of LM, the algorithm ( derived in Section 4.3) can 

be expressed as 

( 5.21) 

Similar to the structures described in Section 5.2 and 5.3.1, this system also con

sists of two parts, the recursive part and the linear part. These are as follows: 
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Recursive part : 

It is known that the algorithm in the time domain for the recursive part can 

be expressed as 

N 

Yn = L bjLMYn-jLM + Un 

j=l 

Arranging the output Yn into L groups, we have 

for O < l < L - 1, 

N 

YLn+l = L bjLMYLn+l-jLM + ULn+l 
j=l 

N 

= L bjLMYL(n-jM)+l + ULn+l 
j=l 

(5.22) 

(5.23) 

It can be seen that each group of outputs can be computed independently since 

YLn+l depends only upon YL(n-jM)+l for j = 1 to N. We can also see that each 

sub-equation in (5.23) is essentially identical to the equation in (5.1 ). Therefore, 

the structure for the recursive part may consist of L identical 1-D sub-structures, 

each of which is a two-level pipelined structure with M stages as depicted in 

Fig. 5.1. 
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Linear part : 

The algorithm for the linear part is expressed as 

N LM-1 

H1(z) = (L Wjz-i)det( L Bi z-i) (5.24) 
j=O j=O 

From Lemma 4.3, we can rewrite (5.24) as 

N L-1 M-1 

H1(z) = (L Wjz-i)det(L Biz-i)det( L BiLz-iL) (5.25) 
j=O j=O j=O 

In order to apply the decomposition technique, we assume that L and M can be 

factored, that is, L = IT[ 1 1 lk and Af = rrf l 1 ffik for lk and mk positive integers 

(not necessarily prime numbers). 

small polynomials in z-1 . Then the method for implementing this factor is ex

actly the same as that described in Section 5.3.1. The term ~f O WjZ-j can be 

implemented by using an ( N + 1) x L systolic ring structure. Thus for implementing 

the linear part, we need only to consider the factor det(~f ; 1 BiL z-iL). 

Let BL = C and zL = .X. Then 

M-1 M-1 

det( L BjL z-jL) = det( L ci _x-i) ( 5.26) 
j=O j=O 

Since M = IJf 2 

1 mk, by using the decomposition technique we have 

(5.27) 
j=O k=l j=l 

Replacing .X by zL, then 

(5.28) 
j=O k=l j=l 
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Consider stage k in the above equation, that is, 

(m1c-l )N 

U(z) = l + " c (.k) -jLm(k) 
V(z) ~ 1 z 

J=l 

(5.29) 

where m(k) = IT~ 1
1 mi, Transforming (5.29) into the time domain, we have 

(5.30) 

Arranging Un into L groups, we obtain 

for O < l < L - l, 

(m1c-l)N 

" (k) U£n+l = VLn+l + L....,; Cj VLn+l-jLm(k) 

j=l 

(m1c-l)N 
(5.31) 

= VLn+l + L ( k) 
Cj VL(n-jm(k))+l 

j=l 

It is easy to see that the L sub-equations in (5.31) are essentially the same as that 

in (5.4). Therefore, they can be implemented independently in the 1-D structure 

depicted in Fig. 5.2. 

Let LM = IT[ 1 l~ where K = Ki + K2, It is easy to determine that the 

number of multipliers required for computing the linear part is N L(Lf 1 l~ -K + 

1) + L. To implement the recursive part requires NL multipliers. Therefore, the 

total number of multipliers for this implementation is 

K K 

NL(L l~ - K + l) + L +NL= NL(L l~ - K + 2) + L (5.32) 
k=l k=l 

Using parallel implementation alone to achieve the same throughput requires 

N LM(Lf 1 l~ - K + 2) + LM multipliers. Thus the number of multipliers is 

reduced by a factor of M by using the pipelined and parallel implementation de-

scribed above. 
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5.4.2. Case 2: L > N 

When L > N, the incremental output computation technique can be applied 

to achieve a further reduction of complexity. 

As in the construction of the parallel structure in Section 5.3.2, the output 

Yn is arranged into L groups, that is, YLn+l for O < I < L - 1. For computing the 

first N groups of the output, we use our modified algorithm in (5.22) or (5.23). 

Then the associated structure may consist of N identical 1-D sub-structures and 

each sub-structure is just a two-level pipelined structure with M stages depicted 

in Fig. 5.1. By using the original unmodified algorithm in (5.15), the next L - N 

groups of output can be implemented in the structure in Fig. 5.6. Combining 

these two structures together, we obtain a structure for computing the L groups 

of the output YLn+l for O < l < L - 1. An example with N = 2 and L = 4 is 

depicted in Fig. 5.9. However, this structure is not a two-level pipelined structure 

with M stages. To solve this problem, we introduce a set of cuts to the system, as 

shown in Fig. 5.9. It can be seen that all the lines in the cuts are pointing in one 

direction. Therefore, the second-level pipeline with M stages in this structure is 

easily obtained by adding M delays to every line in the cuts. 

For the first N groups of the output, we need to compute 

U( ) LM-1 
_z_ = det( ~ Bj z-i) 
V(z) ~ 

;=O 

L-1 M-1 
(5.33) 

= det( L Bi z-i)det( L BiL z-jL) 
j=O j=O 

The first term det(:Z::J ; Bi z-i) can be implemented in the structure in Fig. 5.8. 

For implementing the second term, as described in the previous subsection a 
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,-- ------- -
I ---
I I 
I I 

b2 b2 I r2 I r2 I I 
I I 
I I 
I I 
I I 
I I 
I I 

I I 
I I 

b1 b1 I r 1 I r 1 I I 
I I 
I I 
I I 
I I 
I I 
I I 

I 

Fig. 5.9. The structure with M stages of second-level pipeline 

for computing Y-1n+l for O < Z < 3 

K 2 stage cascaded structure can be applied (when M = ITf(2 

1 m1.:) and each stage 

consists of N independent 1-D sub-structures depicted in Fig. 5.2. 

It is easy to determine that to implement (5.33) we need N 2 (L - 1) + 

N 2 (~['l 1 mk - 1(2) multipliers. To implement I:f O WjZ-j requires (N + l)L 

multipliers, and NL multipliers are required for computing YLn+l for O < Z < 

L - 1. Therefore, the total number of multipliers in this implen1entation is 

N 2 (~!('l 1 mk + L - K 2 - 1) + L(2N + 1). For cascaded second-order recursive 

filters, this number is reduced to 4.5N L + 2N(~f'l 1 mk - I(z - 1). 
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5.5. Discussion 

This chapter introduced several efficient pipelined and/ or parallel structures 

for direct-form recursive filters by using the stabilized algorithms derived in t he 

previous chapter. 

We showed that those algorithms can lead directly to an efficient two-level 

pipelined structure with the complexity linearly proportional to I:f 1 mk - K 

when the size of two-level pipelining is M = IT[ 1 mk. Note that for simplicity 

we did not localize the feedback line in the recursive part of the structure. When 

this matter is taking into account, the size of two-level pipelining will be reduced 

to M - 1. In Chapter 2 we mentioned that applying cut-set localization rules 

to localize a recursive system derived from the original unmodified algorithm will 

decrease the throughput because time-scaling cannot be avoided. Our modified 

algorithm can be applied to maintain the original throughput. To achieve this 

goal, 3N + 1 multipliers are required. (This is easily verified by setting M = 2 in 

(5.6).) However, the system derived from the original unmodified algorithm only 

requires 2N + 1 multipliers. Thus the penalty is an increase in complexity. 

By using the method of parallel processing, we constructed two parallel ar

chitectures. Although the first parallel implementation requires more multipliers 

than the second one, it has a regular form. Thus it is more easily implemented 

in VLSI. Moreover, the first architecture only uses our modified algorithm. It is 

known that this algorithm is more stable than the original unmodified one. There

fore, in some applications the number of bits per word used in this implementation 

may be smaller than that used in the second one. 

We also constructed two efficient pipelined and parallel structures for direct-
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form recursive filters. With this combination of the methods for parallel processing 

and pipelining, the constructed architectures can achieve the same throughput 

with many fewer multipliers than pure parallel structures. This results in more

efficient VLSI implementation of recursive filters. 
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CHAPTER 6 

CONCLUSIONS 

Special-purpose systolic arrays are a most promising VLSI architecture for 

modern signal processing and form a useful basis for high throughput applications. 

Demands for ever-higher speeds in signal processing are seemingly insatiable. This 

thesis demonstrates that substantial increases in throughput can be achieved by 

developing parallel computing structures which take advantage of the high degree 

of parallelism inherent in typical signal processing algorithms. These structures 

can at the same time benefit from the power of VLSI and fit within its contraints. 

Since the throughput of 1-D systolic arrays is limited by their word serial 

nature, in many high-throughput applications (two-level) pipelined and/or (2-D) 

parallel architectures have to be considered seriously. This thesis has investigated 

a number of pipelined and/ or parallel systolic architectures for high-speed signal 

processing, particularly for high-throughput digital filters. The main conclusions 

which can be drawn from this study are summarized below. 

The architecture transformation technique based on cut-set localization rules 

can convert all computable SFG networks into systolic arrays. The key problem 

in using this technique is to minimize the time-scaling factor. Using the commu

tative rule described in Chapter 2, together with the previously known rules, one 

can avoid time-scaling and obtain better results from a class of feedforward SFG 

computing networks. 

A very important characteristic of non-recursive filters is that they can be 

designed to have exactly linear phase. 1-D systolic implementations of linear-phase 
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non-recursive filters can easily be obtained. Although the task of constructing 2-D 

systolic architectures is more difficult, we have demonstrated that th.is task can 

be simplified by synthesizing the 2-D structure from l-D computational modules. 

Using twice the area in VLSI implementation, our 2-D systolic architecture can 

achieve twice the throughput of l-D systolic arrays for a given problem. This 

results in no changes in the complexity measure AP. 

Linear convolution is a very important computational problem in modern 

signal processing. The simple and regular pattern of the convolution equation 

makes it well suited for VLSI implementation. Suppose that N 1 is the number of 

coefficients and L is a positive integer smaller than the number of inputs. Two 

N 1 x L systolic structures have been introduced. These structures are more effi

cient than those described in the literature. They are based on nearest neighbour 

interconnections and can achieve L times the throughput of 1-D systolic arrays 

for the same problem. Moreover, the complexity measure AP is independent of L 

and the most efficient l-D systolic array for solving linear convolution problems 

is just a special case of a 2-D systolic ring structure with L = l. By varying L 

we can thus trade off area versus time for a given problem. Our 2-D systolic ring 

structures can also be applied to solve a number of other problems such as DFT, 

circular convolution and 2-D linear convolution because these problems can easily 

be transformed into 1-D linear convolution problems. 

Although look-ahead computation is a good method to derive parallel algo

rithms for state-variable-form recursive filters, this conventional technique may 

cause numerical instability in direct-form recursive filters due to the effect of finite 

wordlength. Using the new method of Z domain derivation given in Chapter 4, 
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not only can parallel algorithms for direct-form recursive filters with guaranteed 

stability be derived, but the additional complexity required for this purpose can 

be minimized through a decomposition technique. 

A time domain derivation of parallel algorithms for direct-form recursive filters 

has also been introduced. The derived algorithms, which have the same form 

as those derived in the Z domain, are of a particular interest for time-varying 

recursive systems. The condition for unique solution of the stabilized parallel 

algorithms has been derived as one tool for determining the stability of the derived 

algorithm. 

Using the stabilized parallel algorithms for Nth order recursive filters, very 

efficient pipelined and/ or parallel architectures can be constructed. An efficient 

1-D systolic structure with two-level pipelining is directly obtained from those 

algorithms. Two different parallel systolic structures have also been derived based 

on those algorithms. The first one has the advantage of regularity while the second 

one can achieve a linear complexity in parallel size for cascaded second-order recur

sive filters. Using 2-D parallel processing in combination with two-level pipelining, 

pipelined and parallel architectures can also be constructed. With the same degree 

of complexity, these architectures can achieve much greater throughput than pure 

parallel structures. 
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