Computer Arithmetic —

*

A Programmer’s Perspective

Richard P. Brent
Computing Laboratory
University of Oxford
rpb@comlab.ox.ac.uk
http://www.comlab.ox.ac.uk

*Presented at ARITH14, Adelaide, 14 April 1999.
Copyright (©1999, R. P. Brent.
arith14t typeset using BTEX

Abstract

Advances in computer hardware often have
little impact until they become accessible to
programmers using high-level languages. In this
talk we discuss several areas in which computer
hardware, especially arithmetic hardware, can
or should significantly influence programming
language design. These include:

e vector units,
e floating-point exception handling,
e floating-point rounding modes,

e high /extended precision registers and
arithmetic.

Relevant application areas include interval
arithmetic, high-precision integer arithmetic for
computer algebra and cryptography, and testing
of hardware by comparison with software
simulations.

Hardware, Systems & Software

Computing involves many levels of abstraction.
Some of the most important are —

e Hardware (memories, processors,
arithmetic units, . ..)

e System Design (instruction set,
connection and communication, .. .)

e System Software (operating systems,
compilers, display managers, web
interfaces, editors, word processors, .. .)

e User-level software/applications (written
by /for a particular user or group of users)

Of course, one can argue about the boundaries
between these levels, but our point is that
computer arithmetic is at the “bottom” level
and is hidden from the typical user by several
intervening levels.

Computer Arithmetic and
Computer Users

This is a symposium on Computer Arithmetic.
For example, over the next three days there are
sessions on algorithms for implementing

e addition, multiplication, division, sqrt etc
e floating-point arithmetic

e various number systems, etc

Some advances in Computer Arithmetic lead to
faster/cheaper arithmetic units and these
advances automatically help at the other levels
(unless hindered by some other bottleneck,

e.g. memory bandwidth).

Other advances give new capabilities, e.g. longer
arithmetic, different rounding modes, hardware
square root or elementary functions.

Such advances at the hardware level have little
impact on most users unless the other levels
make them readily accessible.

Example - Vector Operations

Since the 1970s vector operations have been
popular as a way of obtaining high throughput
and hiding memory latency (CDC, Cray, .. .).
However, building the vector arithmetic units is
not enough.

e Other system components need to be
designed to avoid bottlenecks
(e.g. memories and I/O systems need high
bandwidth, and vector registers are
desirable to reduce memory traffic)

e Instruction sets need to include vector
operations

e Compilers need to be written to take
advantage of the vector operations
(preferably automatically, or at least in a
way which is backward compatible)

o Writers of system software may need to
change their algorithms and programming
style

Floating Point Arithmetic

Since about 1985 we have become accustomed
to the IEEE Standard for (binary) floating-point
arithmetic. It is worth remembering that the
standard was the subject of heated debate and
its introduction was controversial.

Base 2 7

There was debate about the base/radix (two,
ten, sixteen, ...). IBM had used base sixteen in
the System 360 and 370 series, and was
reluctant to change to base 2 although the
technical advantages were clear. Others, e.g.
Hull, thought that decimal was more natural
and would have advantages in I/0, variable-
precision arithmetic, etc.

The radix debate was “resolved” by deciding to
have two standards, one for binary arithmetic
and one more general, but the binary standard
had by far the greater impact and is usually
called the standard.

Rounding Modes and Exceptions

Probably the most controversial aspects of the
IEEE binary floating-point standard were the
different rounding modes and the treatment of
exceptions, including the introduction of
gradual underflow, infinities, and non-numbers
(NaNs). These features could all be justified,
but they made the standard much lengthier and
more difficult to implement than would
otherwise have been the case.

Now, 15 years later, it seems that different
rounding modes, infinities, NaNs etc have had
minimal impact, because they are difficult (or in
many cases impossible) to use from high-level
languages. Certainly the rounding modes

(e.g. round up, round down) have been used in
specialised packages to implement interval
arithmetic, but interval arithmetic is itself
rarely used. The default of round to nearest is
probably used more than 99% of the time.

NaNs etc

Regarding NaNs, infinities, and unnormalised
numbers — most high level languages do not
even have a convenient way of denoting or
testing for these. They are usually recognised
only by the output routines (which, of course, is
better than nothing).

A Topical Application for
Computer Arithmetic

Although it is not new, cryptography is rapidly
becoming more important with the growth of
electronic commerce and increasing dependence
on the security of computer systems which are
connected to the outside world via the Internet.
Public key or asymmetric cryptography is
becoming as important as the more traditional
symmetric cryptography.

The public key systems which are generally
believed to be secure include

e RSA (Rivest-Shamir-Adleman)

¢ El Gamal (possibly over elliptic curves)

Also important as part of a public-key system is
the Diffie-Hellman key exchange protocol,
which is closely related to the El Gamal
signature scheme.

Implementations of RSA etc

RSA, El Gamal and Diffie-Hellman require
arithmetic operations over large integers
(typically 1024 bits) or large finite fields

(e.g. GF(p) or GF(2")). For example, RSA and
Diffie-Hellman require exponentiation mod N,

x y°*mod N

and this can be performed by repeated squaring
and multiplication mod N, using the binary
representation of the exponent e. The modulus
N is fixed but large (in RSA it might be the
product of two 512-bit primes).

On a typical RISC microprocessor, the
operation of exponentiation modulo a 1024-bit
number is slow and for the obvious algorithm
the time increases like the cube of the number
of bits.

For example, we might split 1024-bit numbers
into 32 x 32-bit numbers, and use 32-bit

multiplication (giving a 64-bit product) etc to
implement multiplication of 1024-bit numbers.

10

Choice of (software) base

On many 32-bit systems it is hard to get a full
64-bit unsigned product (especially when
writing in a high-level language) so the base
may have to be reduced to 31 (or even 15) bits.

For division (the mod operation) we would like
to divide a 64-bit number by a 32-bit number,
getting 32-bit quotient and remainder, in order
to estimate each 32-bit quotient “digit”. It is
tricky to do this correctly (avoiding any
overflows etc) on most systems, so again the
base may have to be reduced, which increases
the time and space required for
multiple-precision arithmetic.

Similar comments (even more so) apply to
64-bit systems and 128-bit products.

11

Integers via Floating Point

For an implementation on a vector processor
(Fujitsu VP2200) in Fortran we found it more
convenient to use floating-point arithmetic for
the integer operations ! The base was chosen to
be 226 because multiplication of 26-bit integers
could be performed exactly in 64-bit
floating-point arithmetic.

The program was later ported to machines with
IEEE floating-point arithmetic (VPP300, SGI,
DEC alpha, Sun Sparc etc) and on these
machines the base was reduced to 224,

12

Extracting Digits

When performing multiple-precision arithmetic
in base 3, we often compute a product

p+axb

and then want to extract the high and low
base-g digits

pdiv # and p mod (.

On most machines it is hard to do this without
performing redundant computations

(e.g. dividing by 3 twice). For our
implementation using floating point, we scaled
by a suitable power of 2 and used the
(vectorised) INT operation to extract the high
digit, then subtracted it off and rescaled to get
the low digit.

The inner loop required 9 operations and 4
cycles on the VP/VPP vector processors. A
machine optimised for multiple-precision
arithmetic might perform the inner loop (using
base 232 or larger) in 1 or 2 cycles.

13

Redundant number representations

When computing
z <+ y*mod N

we repeatedly form products mod N. It is not
necessary for these products to be in the range
[0, N — 1]. If we relax the allowable range to say
[0, N] or even (—N,2N) the “mod” operation
can be implemented more easily because the
estimated quotient can be slightly incorrect.

Similarly, when using base 3 for
multiple-precision arithmetic, we may allow
digits in the range [—1, f], not just in the range
[0,8 —1].

14

Factorisation of Fermat Numbers

An application of multiple-precision arithmetic
is the factorisation of large integers using the
elliptic curve method (ECM).

Fermat numbers are examples of integers with
no “obvious” (algebraic) factors. They are
integers of the form 22" 4 1.

The tenth Fermat number Fg = 22" + 1 was
the “most wanted” number in various lists of
composite numbers published after the
factorization of Fy = 22" in 1990 (by the Special
number field sieve, or SNFS method).

15

Factorisation of Fj,

Using ECM we found a 40-digit factor pgo on
October 20, 1995. The 252-digit quotient pase
was proved to be prime. Thus, the complete
factorization of Fyg is

45592577 - 6487031809 -
4659775785220018543264560743076778192897 -

D252 -
The two “small” factors were known since 1953.

The decimal representation of poss is

130439874405488189727484768796509903946608530841611892186895295
776832416251471863574140227977573104895898783928842923844831149
0329137987290886016179460941194490105959067101305631906171018354
491609619193912488538116080712299672322806217820753127014424577

16

The Amount of Computation

Overall, our factorization of Fyg took 1.4 x 10!
multiplications (mod N), where

N = pyg X pasa = c291. Numbers mod co91 were
represented with 38 digits and base 226 (on the
VP100/VP2200) or with 41 digits and base 224
(on the Sparc), so each multiplication (mod N)
required more than 10* floating-point
operations.

Special-purpose hardware capable of performing

long integer operations efficiently would have
saved quite a few KWhours !

17

Twin Primes and Pentium Bugs

A twin prime is a prime p such that p — 2 or
p+ 2 is also prime. In 1919 Brun showed that
the sum of reciprocals of twin primes converges
to a finite limit B, now called Brun’s constant.
In contrast, the sum of reciprocals of all primes
diverges (Euler).

An amusing (and useful !) application of
multiple-precision arithmetic is the computation
of B(z) (the sum over twin p < z) and by
extrapolation the estimation of B.

In 1976 T estimated B using the twin primes to
8 x 10%0. In the ’90s, Thomas Nicely started to
improve my estimate by going much further,
using Intel 80486 and later Pentium processors.
He has now gone past 100,

The leading bits of primes are not at all special
(any pattern 1zxz - - can occur). Thus, forming
sums of reciprocals of primes to high accuracy is
an excellent test of reciprocal/division hardware
(and software).

18

Discovery of the Pentium Bug

Nicely found a discrepancy between the sums of
reciprocals computed on 80486 and certain
Pentium processors, and eventually (after
eliminating many other possibilities such as
logical errors, compiler/library bugs, disk and
memory problems) narrowed it down to a bug
in the Pentium hardware. This was the
(in-)famous Pentium bug. It was caused by
incomplete entries in a table of reciprocals used
for first approximations (although Nicely did
not know this).

On December 20, 1994, Intel offered to replace
faulty Pentium processors free of charge.

Nicely’s computations up to 104 have been
confirmed (to at least 16 decimal places) by an
independent computation by Kutrib and
Richstein. Repeating part of them is a good
test of reciprocal/division hardware/software.

19

Changes in Technology

As new technologies are developed, the tradeoffs
between different algorithms and systems
implementation decisions change. What used to
be a good idea may no longer be one.

The best-known example is the idea of
representing years with only two decimal
digits — this was convenient and efficient in the
days of 8-bit microprocessors and small,
expensive memories, and when the year 2000
seemed a very long way off. Now it does not
seem such a good idea!

Some other examples —

e Carry lookahead for addition —
Manchester carry chains versus
binary “parallel prefix” trees versus
n-way trees - --

e Highly parallel computers (e.g. CM1)
e Virtual memory, memory hierarchies, ...

o Microcode

20

Integer Arithmetic

We are accustomed to thinking of computer
arithmetic performed on fixed-length operands,
e.g. 16/32/64 bits. In the past there were good
reasons for this, and software was developed to
handle “long” integers (though at considerable
cost in speed and convenience).

For applications such as cryptography and
symbolic computation, the algorithms are
naturally expressed in terms of operations on
arbitrary length (and actually rather large)
integers.

Is it time to reconsider what integer and integer
arithmetic should mean ? In other words, is it
time to bring our definitions in line with those
of the mathematicians, and allow
arbitrary-length integers ? Surely cycle times
are now fast enough and memory cheap enough
to make this practical (if it will ever be
practical).

21

Ideal Integer Arithmetic

In 1981 I suggested how integer arithmetic
might be perfected in a paper entitled An
idealist’s view of semantics for integer and real
types, but clearly this was an idea before its
time.

Most of the 1981 paper was concerned with
programming language semantics and software,
but I did consider the possibility of a hardware
(or mixed hardware/microcode/software)
implementation.

I suggested that each word could have a “tag”
bit to indicate if the remaining bits were to be
regarded (in integer operations) as
single-precision integers or as pointers to
multiple-precision integers. Then the facility for
performing multiple-precision arithmetic would
not significantly increase the cost of operations
on small integers. Multiple-precision arithmetic,
when necessary, could be performed by software
with possible assistance from hardware.

22

Conclusion

It’s fun to work on Computer Arithmetic, but if
you want your work to have wide impact you
need to

e Think about its implications for computer
systems design and systems/user-level
software;

e Talk to systems designers and try to get
your ideas incorporated in complete
systems and made accessible to users.

o Keep up with developments in technology,
and consider how new developments
change the tradeoffs.

e Don’t be afraid to use old ideas if new
technologies make them viable.

23

References

[1] R. P. Brent, On the precision attainable
with various floating-point number
systems, IEEE Trans. on Computers C-22
(1973), 601-607.

[2] R. P. Brent, Irregularities in the
distribution of primes and twin primes,
Math. Comp. 29 (1975), 43-56.

[3] R. P. Brent, Algorithm 524: MP, a Fortran
multiple-precision arithmetic package,
ACM Trans. Math. Software 4 (1978),
71-81.

[4] R. P. Brent, An idealist’s view of semantics
for integer and real types, Australian
Computer Science Communications 4
(1982), 130-140.

[5] R. P. Brent, Factorization of the tenth
Fermat number, Math. Comp. 68 (1999),
429-451.

24

[6] M. S. Cohen, V. C. Hamacher and T. E.
Hull, CADAC, an arithmetic unit for clean
decimal arithmetic and controlled
precision, in ARITH-5, Proc. Fifth
Symposium on Computer Arithmetic
IEEE/CS Press, 1981, 105-112.

[7] W. Diffie and M. E. Hellman, New
directions in cryptography, IEEE Trans. on
Information Theory IT-22 (1976), 644 654.

[8] T. El Gamal, A public-key cryptosystem
and a signature scheme based on discrete
logarithms, IEEFE Trans. on Information
Theory IT-31 (1985), 469-472.

[9] T. E. Hull and M. S. Cohen, Towards an
ideal computer arithmetic, in ARITH-8,
Proc. Eighth Symposium on Computer
Arithmetic (M. Irwin and R. Stefanelli,
eds.), IEEE/CS Press, 1987, 131-138.

[10] T. E. Hull, M. S. Cohen, J. T. M. Sawchuk
and D. B. Wortman, Exception handling in
scientific computing, ACM Trans. Math.
Software 14 (1988).

25

[11] IEEFE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard
754-1985.

[12] W. Kahan and J. Palmer, On a proposed
floating-point standard, SIGNUM
Newsletter, Oct. 1979, 13-21.

[13] D. E. Knuth, The Art of Computer
Programming, Volume 2: Seminumerical
Algorithms (third edition). Addison-Wesley,
Menlo Park, 1997.

[14] D. J. Kuck, High Performance Computing,
Oxford University Press, Oxford, 1996.

[15] U. W. Kulisch and W. L. Miranker
(editors), A New Approach to Scientific
Computation, Academic Press, New York,
1983.

[16] T. R. Nicely, Enumeration to 10'* of the
twin primes and Brun’s constant, Virginia
Journal of Science 46 (1995), 195-204.
Reviewed in Math. Comp. 66 (1997),
924-925.

26

[17] R. L. Rivest, A. Shamir and L. Adleman, A
method for obtaining digital signatures and
public-key cryptosystems, Comm. ACM 21
(1978), 120-126.

[18] B. Schneier, Applied Cryptography:
Protocols, Algorithms, and Source Code in
C, second edition, John Wiley and Sons,
1996.

27

