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Abstract

Consider polynomials over GF(2). We define
almost irreducible and almost primitive
polynomials, explain why they are useful, and
give some examples and conjectures relating to
them.

Introduction

Irreducible and primitive polynomials over finite
fields have many applications in cryptography,
coding theory, random number generation, etc.

For simplicity we restrict our attention to the
finite field Zy = GF(2); the generalization to
other finite fields is straightforward. All
polynomials are assumed to be in Zg[z], and
computations on polynomials are performed in
Zs[z] or in a specified quotient ring.

A polynomial P(z) € Zs[z] may be written as P
if the argument z is clear from the context.
We are often concerned with trinomials of the
form T'(z) = 2™ 4+ 2® + 1, and in such cases we
can assume that s < n/2 (else consider
"T(1/z) = 2™ + 25 + 1).

Definitions

We recall some standard definitions.

Definition 1 A polynomial P(z) with P(0) # 0
has period p if p is the least positive integer
such that z° = 1 mod P(z). We say that = has
order p mod P(x).

Definition 2 A polynomial P(z) is reducible if
it has nontrivial factors; otherwise it is
irreducible.

Definition 3 A polynomial P(z) of
degree n. > 0 4s primitive if P(z) is irreducible

and has period 2™ — 1. (Recall our assumption
that P(z) € Zo[z].)

If P(z) is primitive, then z is a generator for
the multiplicative group of the field Zo[z]/P(z),
giving a concrete representation of GF(2").




Almost irreducible/primitive
polynomials

Tromp, Zhang and Zhao [20] asked the
following question: given an integer r > 1, do
there exist integers n, s such that

G =ged(z" + 25 + 1,27 71 4+ 1)

is a primitive polynomial of degree r? They
verified that the answer is “yes” for r < 171,
and conjectured that the answer is always

Llyes” A

Blake, Gao and Lambert [2] confirmed the
conjecture for 7 < 500. They also relaxed the
condition slightly and asked: do there exist
integers n, s such that G has a primitive factor
of degree r? Motivated by [2], we make some
definitions.

Definition 4 A polynomial P(z) of degree n is
almost primitive (almost irreducible) if

P(0) # 0 and P(z) has a primitive (irreducible)
factor of degree r, for some r > n/2. We say
that P has exponent r and increment n — r.

Special cases

Note that, according to Definition 4, a primitive
polynomial is a fortiori an almost primitive
polynomial (the case r =n).

Similarly, an irreducible polynomial other than
1 or z is almost irreducible.

A small example

For example, the trinomial £'6 + 23 + 1 is
almost primitive with exponent 13 and
increment 3, because

210 423 41 = (234 22 +1)D(z),
where
D(z) =z +2 +a" +2° + 2+ 2P+ + 27 +1

is primitive.

Representing finite fields

Zs[z]/ D(z) represents the finite field GF(2'3),
but from a computational viewpoint it is more
efficient to work in the ring Zo[z]/(z¢ + 23 + 1)
than in the field F = Zs[z]/D(x).

We shall outline how it is possible to work in
the field F', while performing most arithmetic in
the ring Zo[z]/(z'% + 23 + 1), and without
explicitly computing the dense primitive
polynomial D(z).

We can not replace D(z) by a primitive
trinomial of degree 13, because such a trinomial
does not exist! We could use a primitive
pentanomial of degree 13, but this would be less
efficient than using an almost primitive
trinomial of degree 16.

Long-period linear recurrences

The linear recurrence
Zn = Zn—16 + Zn—3 mod 2

has a generating function of the form

A(z) B(z)
B+z2+1  D(z)’

where the polynomials A and B are determined
by 20y ---5%215-

Provided we ensure that B # 0 (easily done),
the period of the sequence (z,) will be a
multiple of 213 — 1.

Similar sequences could be useful in
cryptographic applications, and for random
number generation.

We see that, for many practical purposes,
almost primitive trinomials of exponent r and
small increment are almost as useful as
primitive trinomials of degree r.




Swan’s theorem and its implications

Swan’s theorem is a rediscovery of 19th century
results. Let v(P) denote the number of
irreducible factors (counted according to their
multiplicity) of a polynomial P € Zy[z].

Theorem 1 Swan [19, Corollary 5]. Suppose
n>s>0,n—s odd. Then

v(z™ 4+ 2® + 1) = 0 mod 2 iff one of the
following holds:

a)n even, n#2s, ns/2 mod 4 € {0,1};

b) 2n # 0 mod s, n = £3 mod 8;

¢) 2n =0 mod s, n= =1 mod 8.

If both n and s are odd, we can replace s by

n — s (leaving the number of irreducible factors
unchanged), and apply Swan’s theorem. If n
and s are both even, then T =z" 4+ 2° +1is a
square and v(T) is even. Thus, in all cases we
can determine v(7") mod 2 using Swan’s
theorem.

Since a polynomial that has an even number of
irreducible factors is reducible, we have:

Corollary 1 Ifn is prime, n = £3 mod 8,
s#2,s#n—2, then 2" + x° + 1 is reducible
over Zo.

Corollary 1 shows that there are no irreducible
trinomials with degree a Mersenne exponent

n = £3 mod 8 (except possibly for s =2 or

n — 2). This appears to prevent us from using
trinomials with periods 2" — 1 in these cases.

In the cases where primitive trinomials are
ruled out by Swan’s theorem, the conventional
approach is to use primitive polynomials with
more than three nonzero terms. A polynomial
with an even number of nonzero terms is
divisible by = + 1, so we must use polynomials
with five or more nonzero terms. This is
considerably more expensive, because the
number of operations required for multiplication
or division by a sparse polynomial is
approximately proportional to the number of
nonzero terms.

Fortunately, we can circumvent Swan’s theorem
by using almost irreducible trinomials.
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A large example

Let T(z) = 2976229 4 51193004 4 1 Then a
computation shows that

where

S(z)=a8+a" +a% + b a2t + 2341
is irreducible of degree 8, and D(z) is
irreducible of degree 2976221.

NTL can verify these statements in less than
ten hours on a fast PC.

Since 2976221 is a Mersenne exponent, D(x) is
primitive.

Since D(z) is dense, with about 1.5 x 108
nonzero terms, we shall not try to write it out
explicitly!

By Swan’s theorem, there is no irreducible
trinomial of degee 2976221.
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Implicit algorithms

Suppose we wish to work in the finite field
GF(2"), where 7 is the exponent of an almost
primitive trinomial 7. We can write T = SD,
where deg(S) =4, deg(D) =r. Thus

GF(2") = Zo[z]/D(x),

but because D is dense we wish to avoid
working directly with D, or even explicitly
computing D. We show that it is possible to
work modulo the trinomial 7'.

We can regard Zs[z]/T(z) as a redundant
representation of Zs[z]/D(z). Each element
A € Z;[z]/T(z) can be represented as

A=A, + AgD,

where A, € Zy[z]/D(z) is the “canonical
representation” that would be obtained if we
worked in Zy[z]/D(z), and Ay € Zo[z] is some
polynomial of degree less than 4.
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Implicit algorithms cont.

We can perform computations such as addition,
multiplication and exponentiation in
Zo[z]/T(x), taking advantage of the sparsity of
T in the usual way.

If A € Zs[z]/T(z) and we wish to map A to its
canonical representation A., we use the identity

A, = (AS mod T)/S,

where the division by the (small) polynomial S
is exact. A straightforward implementation
requires only O(dr) operations.

We avoid computing A. = A mod D directly; in
fact we never compute the (large and dense)
polynomial D: it is sufficient that D is
determined by the trinomial 7" and the small
polynomial S.
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Finding almost irreducible trinomials

In the spirit of implicit algorithms, we can
modify the standard algorithms for finding
irreducible trinomials for the almost irreducible
case. Details are given in our paper! in the
Proceedings (Algorithm AIT).

Similarly for almost primitive trinomials,
assuming that the complete factorization of
2" — 1 is known (where 7 is the exponent,

i.e. the degree of the large irreducible factor).

'Preprint at http://www.comlab.ox.ac.uk/oucl/
work/richard.brent/pub/pub212.html
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Algorithm AIT — preliminaries

Suppose 0 < § <7, 0< s <r+ 9, and we wish
to test if the trinomial T'(z) = 2"t + 2° + 1 is
almost irreducible with exponent r. If it is not
then we discard it, and (perhaps) try again with
different (r, s, d).

Input to the algorithm is (r,s,d) and a sieving
bound B € [4,r).

Recall that polynomials are in Zs[z], so
computations on polynomials are performed in
Zy[z] or in a quotient ring such as Zo[z]/T(z).
Algorithm AIT follows on the next slide. For
the justification of each step, and various
extensions and refinements, see §4 of the
Proceedings paper.
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Algorithm AIT(r,s,d, B)

1. If ged(r + 6,s) = 0 mod 2 then return
false.

2.d:=0;k:=0;8:=1;T:=a" 42541,
fori:=2tod do
g = ged(T, (2% mod T) + x);
g9:=g9/ged(g,5); §:=g x S;
d = d+ deg(9); k := k + deg(g)/i;
3. if (d # 0) or (k =v(T) mod 2) then
return false.

4. fori:=§+1to Bdo
g = ged(T, (2% mod T) + x);
if S mod g # 0 then return false.

5. if ((#¥" mod T) + x)S # 0 mod T then
return false.

6. for each prime divisor p # r of r
if gcd(((wy/p mod T) +z)S,T) # S
then return false.

7. return true. [T is almost irreducible with
exponent 7.]
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Computational results

We conducted a search for almost primitive
trinomials whose exponent 7 is also a Mersenne
exponent. For all Mersenne exponents

r = +1 mod 8 with r < 107, primitive
trinomials of degree r are known, see [4]. Here
we consider the cases 7 = £3 mod 8, where the
existence of irreducible trinomials z" + 2° + 1 is
ruled out by Swan’s theorem (except for s = 2
or r — 2, but the only known cases are r = 3,5).

For each exponent r, we searched for all almost
primitive trinomials with the minimal increment
§ for which at least one almost primitive
trinomial exists. The search has been completed
for all Mersenne exponents r < 2976221.

For each Mersenne exponent r < 107, there is
an almost primitive trinomial with exponent r
and increment § < 12 (allowing the case § = 0 if
a primitive trinomial of degree r exists).

The new results for 7 = £3 mod 8, where

500 < 7 < 107, are summarized in Table 1.
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Table 1 — Mersenne exponents

r é s f
2203 3 355 7
4253 8 1806 255

1960 85

9941 3 1077 7
11213 6 227 63
21701 3 6999 7
7587 7

86243 2 2288 3
216091 | 12 | 42930 | 3937

1257787 | 3 74343 7

1398269 | 5 | 417719 21

2976221 | 8 | 1193004 | 85
Table 1:

Some almost primitive trinomials over Z,.
z™t% 4 2° 4+ 1 has a primitive factor of degree r;
d is minimal; 2s < r + §; the period p = (2" — 1) f.
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The Fermat connection

Another case of interest is when r is a power of
two, say r = 2F. Then

2" —1=FF - Fpq,

where F; = 22 11 is the j-th Fermat number.
The complete factorizations of these F; are

known for 7 < 11, so we can factor 22" _ 1 for
k<12.

In Table 2 we give almost primitive trinomials
T ="+ + 2% + 1 with exponent r = 2* for

3 <k <12. Thus T = SD, where D is primitive
and has degree 2*. The irreducible factors of S
are not always primitive. The period of T is
LCM(2" — 1,period(S)) = (2" — 1) f.

By Swan’s theorem, a primitive trinomial of
degree 2% does not exist for k > 3. However, we
can work efliciently in the finite fields GF(ZQk),
k € [3,12], using the trinomials listed in Table 2
and implicit algorithms.
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Table 2 — power of 2 exponents

k r é S f
3 8 5 1 31
2 7
4 16 11 2 7
5 32 8 3 1
6 64 | 10 3 21
21 341

7| 128 | 2 17 1
8 | 256 |16 | 45 1
9 | 512 | 9 | 252 | 31
10 | 1024 | 3 22 7
11 | 2048 | 10 | 101 | 341

12 | 4096 | 3 | 600 7
628 7
1399 | 7

Table 2:

Some almost primitive trinomials over Zs.
2" 4+ 2% 4 1 has a primitive factor of degree r = 2%;
d is minimal; 2s < r + §; the period p = (2" — 1) f.
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Existence questions — given degree

We have shown by computation that an almost
irreducible trinomial of degree n exists for all

n € [2,10000]. We conjecture that this holds for
all n > 1.

Similarly, we have shown that an almost
primitive trinomial of degree n exists for all

n € [2,2000]\{12}. In the exceptional case
(degree 12), z'2 + z + 1 has primitive factors of
degrees 3, 4, and 5, but degree 5 is too small, so
z'2 + £ 4 1 is not “almost primitive” by our
Definition. The other candidate that is not
easily excluded is £'2 4 2° 4 1; this is irreducible
but not primitive, having period (2!2 —1)/5.

21

Existence questions — given exponent

For all r € [2,2000] there is an almost
irreducible trinomial 27+% 4 2° 4+ 1 with
exponent 7 and (minimal) increment

0 = dgit(r) < 23. The extreme increment
dqit(r) = 23 occurs for (r, s) = (1930,529), and
the mean value of dg;(r) for r € (1000,2000] is
~ 2.14. A plausible conjecture is that

dqit(r) = O(logr).

Similarly, for all r € [2,712] there is an almost
primitive trinomial with exponent r and
(minimal) increment gp(r) < 43. The extreme
dapt () = 43 occurs for (r, s) = (544,47), and
the mean value of d4p¢(7) for r € (356, 712] is
~ 3.41.

We can not go any further (at least not
rigorously) because the complete factorization
of 2713 _ 1 is not known.
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