
Reversible rotations, or

how rho lost its tail∗

Richard P. Brent

Australian National University
Canberra, ACT 0200, Australia

rotations@rpbrent.com

21 July 2006

∗Computing by the Numbers, Berlin, 21 July 2006.
Copyright c©2006, the author. berlin06t

Abstract

In addition to thanking the organisers and
session chairmen for their heroic efforts, and the
speakers for their stimulating talks, I will
discuss a small problem which might be of
interest to both numerical analysts and number
theorists: when is a rotation, performed with
rounding to nearest, reversible in the sense that
we can apply the inverse rotation (again with
rounding to nearest) and get back to the
starting vector? I will also explain the second
part of the title.
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Irreversible rotations

Let Q be an orthogonal matrix, and x ∈ R
n a

vector. If we compute y = Qx and then
z = QT y in floating-point arithmetic, we usually
find z 6= x. In other words, we do not get back
to our starting point.

There may be two distinct vectors x′ 6= x′′ such
that, if we compute y′ = Qx′ and y′′ = Qx′′

using floating point arithmetic, then y′ = y′′.
Thus, the operation of multiplication by Q is
not reversible, even in principle, because some
information has been lost.

The aim of this talk is to investigate when
multiplication by Q is reversible. However, since
the answer to the general problem is “hardly
ever”, and the problem as posed above using
floating-point arithmetic is too hard, we shall
look at a simpler (but still interesting) model
problem using fixed-point arithmetic.
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The model problem

We shall restrict our attention to the
two-dimensional case, i.e. plane rotations.
Thus, our orthogonal matrices Q have the form

Q =

[

c −s
s c

]

,

where
c2 + s2 = 1 .

To model fixed-point arithmetic, we assume
that the components of the input vectors x are
integers, i.e. x ∈ Z

2.

Complex multiplication
[

c −s
s c

] [

x1

x2

]

=

[

y1

y2

]

iff
(c + is)(x1 + ix2) = (y1 + iy2) ,

so another viewpoint is that we are considering
multiplication by complex numbers on the unit
circle. This might be relevant to the FFT.
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Rounding

Let R(x) = ⌊x + 1/2⌋ be the result of rounding
x ∈ R to the nearest integer1. We also apply R
to vectors by rounding each component.

Rounded rotations

A rounded rotation is an operation of the form

y = R (Qx) .

We assume that Qx is computed exactly and
then the components are rounded. This is the
best that we can hope for.

It is easy to see that the search for reversible
rotations is hopeless unless c and s are rational.
Thus, we’ll make this assumption.

1The rule for breaking ties is not important.
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Rational rotations

One way to get rational c and s is to take a
rational

t = tan(θ/2) =
p

q
say,

then let

c = cos θ =
1 − t2

1 + t2
=

q2 − p2

q2 + p2
,

s = sin θ =
2t

1 + t2
=

2pq

q2 + p2
.

Of course, we also have

tan θ =
2t

1 − t2
=

2pq

q2 − p2

provided t 6= ±1.

We’ll assume that q > 0 and gcd(p, q) = 1.
Also, there is no harm in restricting attention to
the case p > 0.
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Pythagorean triples

A right-angle triangle with sides of length A, B,
C, where C is the hypotenuse, satisfies

A2 + B2 = C2 .

It is well-known that we can obtain all
nontrivial solutions A, B, C ∈ Z>0 in the
parametric form

A = 2mn ,

B = n2 − m2 ,

C = n2 + m2 ,

where m, n ∈ Z, 0 < m < n.

A primitive triple is a triple (A, B, C) with
gcd(A, B, C) = 1. We can get all the primitive
Pythagorean triples by restricting attention to
(m, n) with gcd(m, n) = 1 and m + n odd.

Any Pythagorean triple (A, B, C) gives a
rational rotation

1

C

[

B −A
A B

]

=
1

n2 + m2

[

n2 − m2 −2mn
2mn n2 − m2

]

.
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Pythagorean triples

�
�

�
�

�
�

�
�

�
�

�
�

�
��

A = 2mn

B = n2 − m2

C = n2 + m2

(n2 + m2)2 = (n2 − m2)2 + (2mn)2
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The connection

Suppose p ≤ q (otherwise interchange p ↔ q).

We can identify our two constructions of
rational rotations by taking (m, n) = (p, q).
This is fine if p + q is odd. However, if p + q is
even2 it does not give a primitive Pythagorean
triple, since all components of

(A, B, C) = (2pq, q2 − p2, p2 + q2)

are even. In this case it is better to take

(A, B, C) =

(

pq,
q2 − p2

2
,
p2 + q2

2

)

which corresponds to

(m, n) =

(

q − p

2
,
p + q

2

)

.

2
p and q are both odd here, since gcd(p, q) = 1.
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Example

(p, q) = (1, 5) gives

(A, B, C) =

(

pq,
q2 − p2

2
,
p2 + q2

2

)

= (5, 12, 13)

and this corresponds to parameters

(m, n) =

(

q − p

2
,
q + p

2

)

= (2, 3) .

What is the relationship between
θ/2 = arctan(1/5) and θ′/2 = arctan(2/3)?

We have

tan(θ/2 + θ′/2) =
1/5 + 2/3

1 − 2/15
= 1 ,

so
θ + θ′ =

π

2
.

Thus, we are just considering the same triangle
from a different point of view (A ↔ B, p ↔ q).
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The (3, 4, 5) triangle
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A = 4

B = 3

C = 5

θ/2

θ/2

θ′/2
θ′/2

(p, q) = (1, 2) or (1, 3) , (m, n) = (1, 2) ,

tan(θ/2) = 1/2 , tan(θ′/2) = 1/3 ,

tan(θ) = 4/3 , tan(θ′) = 3/4 .

11

Using periodicity mod C

Let

Q =
1

C

[

B −A
A B

]

be a rational rotation defined by a Pythagorean
triple (A, B, C). Our problem is: for each
lattice point x = (x1, x2) ∈ Z

2, compute

y = R(Qx) and z = R(QT y) ,

and see if x = z. Since

Qx =
1

C

[

B −A
A B

] [

x1

x2

]

=
1

C

[

Bx1 − Ax2

Ax1 + Bx2

]

,

it is sufficient to consider x1 and x2 modulo C.

For a given triple (A, B, C), there are at most
C2 cases to consider. We’ll see that this can be
reduced to O(C) cases.
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Another way to view the problem

Instead of performing rotations through angles
θ and −θ, we can rotate the lattice L of integer
points in Z

2 by −θ to obtain a new lattice L′.
Then we just have to round x to the “nearest”
lattice point y in L′, and round y back to the
“nearest” lattice point z in L.

What is “nearest” ?

“nearest” depends on the lattice – essentially it
means nearest in the L∞ or max-norm, in the
coordinate system defined by the (second)
lattice.
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Two lattices, L′ rotated through angle −θ
relative to L.

tan(θ) = 3/4 , tan(θ/2) = 1/3 .

The symbol • indicates an exact intersection of
the two lattices.
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Reduction in cases to consider

Instead of considering all (x1, x2) modulo C,
where C = m2 + n2, it is sufficient to consider
the lattice points inside a square bounded by
four • symbols. Each such square has area
C = m2 + n2, so contains O(C) points instead
of C2.

We can ignore the vertices of the squares (since
the lattices intersect there and no rounding
occurs). Thus, the number of points to consider
is C − 1. Considerations of symmetry reduce
this by a factor of 4 to (C − 1)/4.

Taking these shortcuts into account, there is
essentially only one case to consider for the
rotation defined by the (3, 4, 5) triangle!
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(3, 4, 5) is reversible

We have seen that there is essentially only one
case to consider for the (3, 4, 5) triangle: any
x ∈ L\L′ will do. We may as well take the unit
vector x = e1.

R

(

1

5

[

4 −3
3 4

] [

1
0

])

= R

([

4/5
3/5

])

=

[

1
1

]

and

R

(

1

5

[

4 3
−3 4

] [

1
1

])

= R

([

7/5
1/5

])

=

[

1
0

]

Thus, Q defined by tan θ = 3/4 is a reversible
rotation.
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(5, 12, 13) is reversible

Here (m, n) = (p, q) = (2, 3). Using symmetry,
we only need consider the (13 − 1)/4 = 3 lattice
points “•” lying inside the square with opposite
vertices at the origin and (1/2, 5/2). For
example,

R

(

1

13

[

12 −5
5 12

] [

0
2

])

= R

[

−10/13
24/13

]

=

[

−1
2

]

R

(

1

13

[

12 5
−5 12

] [

−1
2

])

= R

[

−2/13
29/13

]

=

[

0
2

]

.
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(8, 15, 17) is not reversible

R

(

1

17

[

15 −8
8 15

] [

1
1

])

= R

([

7/17
23/17

])

=

[

0
1

]

and

R

(

1

17

[

15 8
−8 15

] [

0
1

])

= R

([

8/17
15/17

])

=

[

0
1

]

Thus, (1, 1) → (0, 1), and the rotation is not
reversible.

Also, (0, 1) → (0, 1), so (0, 1) has in-degree at
least 2.
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Geometric explanation

Consider

Q =
1

17

[

15 −8
8 15

]

.

Let u = (0, 1)T , v = (1, 1)T , w = (0, 1)T .

Qu = (−8/17, 15/17)T , Qv = (7/17, 23/17)T ,
so ||Qu − w||∞ < 1/2 and ||Qv − w||∞ < 1/2.

Whenever two points of L(θ) lie in a region of
radius less than 0.5 (in the max-norm) from a
point w ∈ L(0), reversibility is ruled out
because the in-degree of w is at least 2.

The converse is also true, so we have a purely
geometric characterisation of reversibility.

(0, 0)

(1, 1)
oQu

o Qv

w
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The pattern

If a rotation Q(θ) through an angle θ is
reversible, then so is Q(kπ/2 ± θ). Also,
Q(0) = I is trivially reversible, and Q(π/4) is
not rational. Thus, we can (if we wish) restrict
attention to θ ∈ (0, π/4), although for the
moment we allow θ ∈ (0, π/2).

As before, assume that p > 0, q > 0 and
gcd(p, q) = 1, where tan(θ/2) = p/q.

Conjecture

For θ ∈ (0, π/2), Q(θ) is reversible iff
m = n − 1 ≥ 1. (An equivalent condition is
C = A + 1.)

Equivalent conjecture

For θ ∈ (0, π/4), Q(θ) is reversible iff
p = 1 and q ≥ 3 is odd.

Note: (p, q) = (n − 1, n) gives θ > π/4 so we
have to replace θ by π/2 − θ which gives
(p, q) = (1, 2n − 1). For example, in the case
(5, 12, 13) we have (m, n) = (2, 3), (p, q) = (1, 5).
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Evidence

• The conjecture has been verified for
0 < m < n ≤ 1000.

• We can prove certain cases, e.g. if p = 1
and q = 4k then Q is not reversible.

Proving that Q(θ) is reversible if m = n − 1
should be straightforward, and I hope to
complete the details soon (watch this space).
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Genesis of the problem

Wallace’s method for generating pseudo-random
numbers with a normal distribution depends on
applying orthogonal transformations to a pool
of normally-distributed numbers. Wallace used
4 × 4 transformations Q with entries ±1/2
(scaled Hadamard matrices), but in my
implementation I used 2 × 2 transformations of
the form Q(θ) where tan θ = 3/4 or 4/3.

Wallace’s transformations have small order
(Q8 = I), which seems risky, even though the
way the transformations are used in his normal
random number generator may be satisfactory.

I chose transformations Q(θ) where θ/π is
irrational. Thus, the order of Q is infinite for
exact arithmetic. Naturally I was interested in
the order when floating-point arithmetic was
used, and I investigated the simpler problem of
fixed-point arithmetic to gain some insight.
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Finding the tail and cycle

In order to find the cycle length, I started from
some nonzero lattice point x(0) ∈ Z

2, and
considered the sequence defined by

x(k) = R
(

Qx(k−1)
)

.

I searched for the first positive k such that

x(2k) = x(k)

in a manner that will be familiar to those of you
who know the Floyd cycle-finding and Pollard
rho integer factoring algorithms. The latter is
named “rho” because of the shape of the Greek
letter

ρ

which has a “tail” attached to a “loop” or
“cycle”.
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Using the Floyd-Pollard idea I could find the
non-periodic “tail” of the sequence, say
x(0), . . . , x(α−1), and the periodic “cycle”
x(α), . . . , x(α+τ−1), where x(α+τ) = x(α). The
minimal such τ > 0 is the period and the
minimal α ≥ 0 is the length of the tail.

In general, as expected, α > 0. However,
I found α = 0 when using the (3, 4, 5) and
(5, 12, 13) triangles, and soon discovered the
pattern: α = 0 if m = n − 1, and usually α > 0
if m < n − 1.

Summary. When n = m + 1, “ρ” loses its tail.

Remark. If Q is reversible, then my age
divides ABC.
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The period

If we start with w-bit integers as components of
x(0), the period appears to be 2O(w), where the
exponent is larger for reversible rotations than
for irreversible rotations. It is plausible that the
correct exponent is 2w/3 in the irreversible
case.

For example, with w = 16 and 100 trials, we
found a mean cycle length of 5.98 × 2w for the
(3, 4, 5) triple, and 0.136 × 2w = 5.47 × 22w/3 for
the (8, 15, 17) triple.

The points on the cycle appear to be uniformly
distributed in a thin annulus close to the circle
of radius ||x(0)||2.

Other rounding rules

If we round away from zero, the iterates appear
to diverge (they spiral out to infinity).

If we round towards zero, the iterates spiral in
and eventually get stuck in a small cycle close
to the origin.
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