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Abstract

We cousider the classical problem of testing if a
given (large) number n is prime or composite.
First we outline some of the efficient
randomised algorithms for solving this problem.

For many years it has been an open question
whether a deterministic polynomial time
algorithm exists for primality testing,

i.e. whether

“PRIMES is in P”.

Recently Agrawal, Kayal and Saxena answered
this question in the affirmative. They gave a
surprisingly simple deterministic algorithm.
We describe their algorithm, mention some
improvements by Bernstein and Lenstra, and
consider whether the algorithm is useful in
practice.

Finally, as a topic for future research, we
mention a conjecture that, if proved, would give
a fast and practical deterministic primality test.
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“0O” and “O-tilde” Notation

As usual, we say that
f(n) = O(n*)
if, for some ¢ and nyg, for all n > ny,
f(n) <enk .
We say that N
f(n) = O(n")
if, for all € > 0,
f(n) = O(n**+) .

The “O” notation is useful to avoid terms like
logn. For example, we can multiply n-bit
numbers in O(n?) operations with the classical
algorithm, but this can be reduced to O(n) if
we use the Schonhage-Strassen algorithm.

It is easier to write

O(n)
than the (more precise)

O(nlognloglogn) .




Complexity Classes

We give an informal definition of some
complexity classes. See Motwani and
Raghavan [21, §1.5] for the formal definitions.

P is the class of problems that have a
deterministic polynomial time algorithm, i.e. an
algorithm running in time O(\*) on inputs of
length A, for some exponent k.

Z PP is the class of problems that have an
error-free randomised algorithm running in
expected time O(\F).

RP is the class of problems that have a
randomised algorithm running in expected time
O(MF), with (one-sided) error probability at
most 1/2. co-RP is the same as RP, but
permitting an error on the other side.

BPP is similar but allows errors (with
probability at most 1/4) on both sides.

Reducing Probability of Error

Given a problem in RP, co-RP, or BPP, we
can reduce the probability of error below any
given € > 0 by iterating O(log(1/¢)) times with
independent random choices at each iteration.
In this context an iteration is called a “trial”.

Containment Relationships

RP

C = - C
PC ZPP = RPnNco RP_{ co-RP

}QBPP.

It is not known if any of the inclusions is strict.
It is conjectured that BPP C NP # P.

Unique Factorisation

We never encounter prime factorisations like

43235479271 = 8059 x 5364869 = 4337 x 9968983

because factorisation into prime powers is
unique!.

1Except for this example ?

Factoring Primes ?

“The obvious mathematical
breakthrough would be development
of an easy way to factor large prime

numbers.”
— Bill Gates?

By definition, primes do not have a nontrivial
factorisation over the integers Z. However, if we
counsider a larger domain, e.g. Z[i], then some
primes can be factored, e.g.

5=(2+i)(2—1).

In fact, Gauss proved that an odd prime p can
be written as a sum of two (integer) squares iff
p=1 mod 4, and in this case

p=a’+ b = (a+ bi)(a — bi)

gives a factorisation of p into a product of
Gaussian integers.

2Bill Gates, Nathan Myhrvold and Peter M. Rinearson,
The Road Ahead, Viking Press, 1995, p. 265.




An Algorithm for “Factoring” Primes

There is a nice ZPP algorithm for finding a
and b, given any prime p =1 mod 4. This
gives the factorisation into Gaussian integers:

p=(a+bi)(a—bi).

It is usually called Cornacchia’s Algorithm
although it was discovered by H. Smith in
1885 — see Crandall and Pomerance [12, §2.3.4].

Randomisation is used to find a quadratic
non-residue mod p. This can be done in
expected polynomial time by random sampling,
since half of the numbers {1,2,...,p — 1} are
quadratic residues and the other half are
non-residues. We can easily check if a number
is a quadratic residue, using Gauss’s law of
quadratic reciprocity.

There is a deterministic polynomial time
algorithm (due to Schoof) for computing a
quadratic non-residue mod p. However, this
algorithm takes time O((logp)®).

Fermat’s Little Theorem

If n is prime and a is any integer, then
a”™ =a mod n.

Thus, if we find a such that a™ # a mod n, we
can be sure that n is composite. We say that

“a is a witness to the compositeness of n”.

Note: we can guarantee that n is composite
without knowing the factors of n.

The converse of Fermat’s little theorem is false:
if @™ = a mod n we can not be sure that n is
prime. There are infinitely many examples
(called Carmichael numbers) of composite n for
which o™ is always a mod n. The smallest
example is

561 =3-11-17

and the number of Carmichael numbers up to
N is at least of order N?/7 (Alford, Granville
and Pomerance [5]).
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Certificates

A certificate for a property is some information

that proves the property and can be verified in

polynomial time.

For example, a “witness” a such that

a™ # a mod n is a certificate of the

compositeness of n.

Pratt [25] showed that every prime has a

certificate. The idea is to write
p—1=pi" - p

and give a primitive root a of p. This can be

verified by checking that

a,p71:1 mod p
and
a(p—l)/pﬁ7é1 mod p for B=1,...,v.

We (recursively) give certificates for p1,...,p,
unless they are sufficiently small (say in
{2,3,5,7}).
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First Extension of Fermat

A slight extension of Fermat’s little Theorem is
useful for primality testing.

If n = 2%q + 1 is an odd prime, and 0 < a < n,
then either a? =1 mod n, or the sequence
(anq mod n)
i=0,1,....k
ends with 1, and the value just preceding the
first appearance of 1 must be —1 mod n .

That is, the sequence looks like

1,1,...1
or —1,1,...,1
or?,...,7,-1,1,...,1

Proof: If y> =1 mod n then n|(y — 1)(y + 1).
Since n is prime, n|(y — 1) or n|(y + 1).
Thus y = £1 mod n. a

This has been known for a long time.

Rabin [26, 27] proved its usefulness in a
randomised algorithm.

12




The Rabin-Miller Algorithm

The extension of Fermat’s little Theorem gives
a necessary (but not sufficient) condition for
primality of n. The [Artjuhov]-Rabin-Miller
algorithm [15] checks if this condition is
satisfied for a random choice of a, and returns
“yes” if it is, “no” otherwise.

If n is prime, the answer is always “yes”
(correct).

If n is composite, the answer is “no” with
probability greater than 3/4, i.e. the probability
of error is < 1/4 (this is a theorem of Rabin).

Thus we have an RP-algorithm for testing
compositeness. We can say that compositeness

is in RP, or (equivalently)

primality is in co-RP

The Rabin-Miller algorithm gives a certificate
for compositeness, but not a certificate for
primality.
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Popular Primality-Testing Algorithms

Popular algorithms include:

e The Jacobi Sums algorithm of Adleman,
Pomerance and Rumely.

e The Elliptic Curve Primality Proving
algorithm ECPP of Atkin and Morain,
based on a proposal by Goldwasser and
Kilian [13].

e The Rabin-Miller algorithm.

These algorithms all have their good (and bad)
points. We’ll look at each more closely.
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Jacobi Sums

The Jacobi Sums algorithm of Adleman,
Pomerance and Rumely [2] runs in deterministic
time
(logn)O(logloglogn) .
This is almost polynomial time3.

In fact, we can be more precise: Odlyzko and
Pomerance have shown that, for all large n, the
running time is in

)Alogloglogn’ ( )Blogloglogn]

[(logn logn

l

where A, B are positive constants.

The Jacobi sums algorithm is deterministic and
practical — it has been used for numbers of at
least 3395 decimal digits (Mihailescu — 6.5 days
on 500 Mhz Dec Alpha).

3While it has been proved that logloglogn tends to
infinity with n, it has never been observed doing so
[Pomerance].
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ECPP

The Elliptic Curve Primality Proving algorithm
ECPP of Atkin and Morain [7, 20], runs in
ezpected polynomial time under some plausible
assumptions, but the time bound has not been
proved rigorously (there may be a thin
exceptional set). Empirically the time is

O(log® n).

ECPP produces a certificate of primality that
can be checked in deterministic polynomial time
O(log®n).

ECPP is a Las Vegas algorithm — the running
time is random but the result is error-free.

ECPP is practical and has been used to prove
primality of numbers of at least 5878 decimal
digits (Gomez — 22 weeks on AMD XP1800+).

In practice ECPP is comparable to the Jacobi

Sums algorithm, but ECPP has the advantage
of producing an easily-checked certificate.

16




The Adelman-Huang Algorithm

There is a complicated algorithm?, due to
Adleman and Huang [1], that gives a certificate
for primality in ezpected polynomial time. Thus

primality is in RP

It follows from Adelman-Huang and
Rabin-Miller that

primality is in RP N co-RP = ZPP.

The reason why we can prove that the
Adelman-Huang algorithm runs in expected
polynomial time, but can not do this for ECPP,
is that the Hasse-Weil interval for curves of
genus two is sufficiently large (©(p®/%) versus
@(pl/ 2) for elliptic curves).

In practice no one uses the Adelman-Huang
algorithm — it is of theoretical interest only.

4Using abelian varieties, which are generalisations of
elliptic curves.
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Rabin-Miller

The Rabin-Miller algorithm is fast: one trial
takes time O(log? n).

If we assume a certain Riemann Hypothesis
(ERH), then 2In%n trials with a = 2,3,... are
sufficient to guarantee a correct result
[Ankeny-Montgomery-Lenstra-Bach], so we have
a deterministic polynomial-time algorithm.
However, no one knows how to prove ERH.

Rabin-Miller is a Monte Carlo algorithm — there
is a nonzero probability of error. In practice the
probability of error is negligible if we take at
last ten independent trials.

Rabin-Miller is feasible for numbers of 10°
(maybe even 108) decimal digits.

Rabin-Miller produces a certificate of

compositeness, but not a certificate of primality
(compare ECPP).
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Extension of Fermat to Polynomials

If n is prime and a is fixed, then
(z+a)"=2"+a mod n (1)

holds, where each side of the equality is a
polynomial in z. Formally, we are working in
the ring (Z/nZ)[z] of polynomials whose
coefficients are in the ring Z/nZ of integers
mod 7n..

Agrawal and Biswas [3] noticed that (1) is both
necessary and sufficient for the primality of n.

In general, we can not compute
(z +a)™ mod nm in time polynomial in logn.

Nevertheless Agrawal and Biswas [3] were able
to give an RP compositeness test based on (1).
The idea (similar to hashing) is to compute
each side of (1) modulo some polynomial of low
degree. The resulting test is slower than the
Rabin-Miller test, so it did not attract much
attention at the time.
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The AKS Algorithm

In August 2002, Agrawal, Kayal and Saxena [4]
announced a deterministic polynomial-time
primality test based on (1). Thus,

primality is in P.

The idea is to compute

(x4 a)® mod (2" —1,n) for 1 <a<sand
sufficiently large 7, s. The not-so-obvious fact is
that it is sufficient to choose

r=0(logn)®, s=0O(logn)*.
Thus, we can do everything in time 6(10g n)k.

The precise value of the exponent & depends on
details of the implementation. In the original
AKS paper k = 19 (if classical algorithms are
used for multiplication and division), or k = 12
if faster algorithms are used. k can be reduced
further, as I shall mention later.
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Example

Take n =1729 =7 x 13 x 19. This is a
Carmichael number, so

a” =a mod n
for all integers a. However,
(z4+1)"#2"+1 mod n.
In fact, working mod n (i.e. in (Z/nZ)[z]),
(x+1)" =2 4247472 4. 247" 4 1.

We can more easily verify that
(z+1)"#2"+1 mod n by working
mod (z° — 1) as well as mod n: we find that

(z+1)" = 1342* + 133023 + 53222 + 1330 + 134
in (Z/nZ)[z]/(z® - 1).

Here 7° — 1 acts rather like a hash function —

it lets us sum every fifth term in the binomial
expansion of (z 4+ 1)", thus reducing n + 1 terms

to five. The computation involves polynomials
of degree at most eight.
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The Key Theorem

Theorem (AKS-Bernstein [8, Thm 1]; see also
Morain [20, Thm 4.1])

Suppose that n,r,s > 0, where r is prime and ¢
is the largest prime factor of r — 1. Suppose that

<q+s—1> S 2V

S

that n has no prime factor < s, and that
n("=1/¢ mod r ¢ {0,1}. Finally, suppose that

(z—a)"=2"—a

in Z/nZ[z]/(z" — 1) for 1 <a < s. Then n is a
prime power.

Remarks

The time bound is O(rslog? n).

The original AKS result [4] has r = O(log® n),
q > 4/rlogn, s > 2,/rlogn, giving time
O(log'?n).
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Reducing the Exponent and Constant

A Sophie-Germain prime is a prime ¢ such that
r =2q+ 1 is also prime, e.g. ¢ = 11, r = 23.

It is conjectured that there are infinitely many
Sophie-Germain primes, and that the number
up to N is asymptotic to 2Co N/ log® N, where
Co =~ 0.66016.

If the conjecture about Sophie-Germain primes
is true, then there is a suitable 7 = O(log? n),
much better than the unconditional result

r = O(logbn).

If r = O(log? n) then
s = O(y/rlogn) = O(log? n) and the time
bound is

O(rslog?n) = O(log®n) .

Lenstra & Bernstein [8, Thm 2] reduced the
implicit constant in the time bound by a factor
of 60,000 over that in the original paper [4]
(from 1024 to 0.01764).
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Recent Improvements

Improvements by Bernstein, Berrizbeitia,
Cheng, H. W. Lenstra, Mihailescu, Pomerance,
Poonen, Vaaler, Voloch etc come out almost
daily!

For example, Bernstein [9, §4] claims to have
reduced the constant to 0.0005027 (a factor of
2.037 x 106 better than the original).

The best deterministic exponent is 6 + €. If we
are willing to accept randomization, Bernstein
claims an AKS-like algorithm that finds a
certificate of primality in expected time
O(log?n). The certificate can be verified in
(deterministic) time O(log* n).

Comparing Bernstein’s new result with ECPP,
we see that finding the certificate is
[asymptotically] faster than for ECPP, but
verifying it is slower. (These are theoretical
comparisouns, ignoring the constant factors,
which are important in practice.)
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Experimental Results

The following table gives some times for a
Magma implementation of the AKS algorithm
(with Lenstra & Bernstein’s improvements of
August 2002) on a 300 Mhz Pentium II.

Times marked “(est)” are estimated from the
time taken for one of the s iterations.

Times marked “(?)” are estimated by
extrapolation, assuming the exponent k& = 6.

n T s time
109+ 7 43 315 3 sec
1019 4 51 67 | 5427 2500 sec

104 +9 491 | 28801 | 107 hours (est)
1090 1 267 | 3541 | 58820 | 3.3 years (est)
2°11 4111 44 years (?)

21023 1 1155 2800 years (?)

Table 1: Times for the (slightly improved) AKS
algorithm
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Comparison with Other Algorithms

The following table gives times for Magma
implementations® of the Rabin-Miller,

ECPP and AKS algorithms on a 300 Mhz
Ultrasparc 10. In all cases the number tested
was 10100 + 267.

Algorithm | trials time
Rabin-Miller 1 0.01 sec
Rabin-Miller 10 0.10 sec
Rabin-Miller | 100 1.00 sec

ECPP 6.68 sec
AKS 2.36 years (est)

Table 2: Times for various algorithms

5Our Magma, programs are rather inefficient, but they
are not biased towards any one algorithm. Thanks to
Paul Zimmermann for his assistance with the Magma im-
plementation of the AKS algorithm.
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Bernstein’s Implementation

Bernstein has proved 2'924 4 643 prime by his
improved AKS-like algorithm in 13 hours on an
800 Mhz PC. This is much faster than the
original AKS algorithm.

Rabin-Miller takes less than one second, and
ECPP takes about 50 seconds (Morain, on a
450 Mhz PC). Thus, ECPP is about 1660 times
faster than Bernstein for numbers of this size
(ignoring implementation differences).

In the race between ECPP and AKS-like
algorithms, ECPP is well ahead, but the
AKS-like algorithms are catching up fast,
so it is hard to predict the eventual winner.

If the exponents for Bernstein’s algorithm and
ECPP are 4 and 5 respectively, then by
extrapolation we expect Berstein’s to be faster
for numbers of 500,000 decimal digits or more.
However, a number this large would take about
100 years to prove prime by either algorithm!
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Reliability of the Result

ECPP gives a certificate of primality, and the
certificate can be checked quickly. Tt should be
checked, to guard against hardware and/or
programming errors. It is conjectured that the
expected time to find a certificate is O(log® n).
The time to check a certificate is O(log® n).

Rabin-Miller does not give a certificate of
primality. It takes time O(log? n) per trial.

T trials give probability of error less than 4~ 7 if
n is composite; there is no error if n is prime.

Theoretically, AKS is error-free. However, in a
long computation there is a significant
probability of a hardware error. Such an error
would in most cases make a prime n “appear”
composite; a composite n would usually still
“appear” to be composite.

To be safe, one should make an independent

check of the certificate (if available), or use at
least two different algorithms.
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The Ultimate Primality Test ?

Conjecture (Bhattacharjee and Pandey [11])

If r is an odd prime that does not divide
n(n? — 1), and

(r—1)"=2"-1
in (Z/nZ)[z]/(z" — 1), then n is prime.

Remarks

1. We can find an odd prime r = O(log n)
that does not divide n? — 1 simply by
checking r = 3,5,7,11,.... (If r|n then we
are finished.)

2. Ihe time for t1~16 test is
O(rlog?n) = O(log®n).

3. The conjecture has been verified for
r < 100, n < 10'°, and also for Carmichael
numbers up to 10® (checking the smallest
applicable r). For partial results and
connections with other conjectures, see
Kayal and Saxena [14].
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Generating Primes for Cryptography

In cryptographic applications, we may want to
generate large, “random” primes. In practice
Rabin-Miller is quite adequate for this.
However, it is possible to generate a random
prime at the same time as constructing a proof
of its primality. This is analogous to
constructing a correctness proof at the same
time as writing a program.

The idea is to (recursively) generate provable
odd primes qi,...,q, say, such that

P=2q--q +1

is prime. Since we know the factorisation of
p — 1, we can easily prove that p is prime.

This procedure does not generate the primes in
a given interval with equal probability, but all
we need is to generate primes uniformly from a
sufficiently large set of possibilities.
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Conclusions

e The AKS algorithm is theoretically
significant, since it shows without doubt
that primality is in P.

e The AKS algorithm is quite “elementary”.
There could be other elementary
algorithms for interesting problems
(e.g. integer factorisation) waiting to be
discovered by clever undergraduates.

e The AKS algorithm is too slow in
practice. ECPP is much faster.
Rabin-Miller is even faster, at the price of
a minute probability of error. However,
faster AKS-like algorithms keep
appearing; it’s not yet clear if they will be
able to compete with ECPP.
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