Primitive and Almost Primitive
Trinomials over GF(2)*

Richard P. Brent
Computing Laboratory
University of Oxford

eccad03@rpbrent.co.uk

April 5, 2003

*East Coast Computer Algebra Day, Clemson, SC
Copyright ©2003, R. P. Brent. eccad03t

Abstract

We consider the problem of testing trinomials
over GF(2) for irreducibility or primitivity. In
particular, we consider trinomials whose degree
r is a Mersenne exponent. We describe a new
algorithm for testing primitivity of such
trinomials. The algorithm has been used to find
primitive trinomials of very high degree, e.g.

r = 6972593.

For certain r, primitive trinomials of degree r
do not exist. We show how to overcome this
difficulty by finding almost primitive

trinomials — polynomials with a primitive factor
of degree r and overall degree slightly greater
than r. In most applications, almost primitive
trinomials are almost as useful as primitive
trinomials.

Outline

e Introduction

e Definitions

e Sieving

e The standard algorithm

e The new algorithm

e Performance

e Some new primitive trinomials
e Almost primitive trinomials
e Implicit algorithms

e The Fermat connection

e Random number generators
o Acknowledgement

e Bibliography

Introduction

Irreducible and primitive polynomials over finite
fields have many applications in cryptography,
coding theory, random number generation etc.
See, for example, the books by Golomb, Knuth
(Vol. 2), and Menezes et al.

In this talk I will describe a new algorithm that
has been used to find primitive polynomials of
very high (in fact, “world record”) degree over
the field GF(2) of two elements.

The results can be generalised to almost
primitive polynomials, which are (roughly
speaking) polynomials with a large primitive
factor.

Polynomials over GF(2)

GF(2) is just the set Zo = {0, 1} with operations
of addition and multiplication modulo 2.

Equivalently, GF(2) is the set of Boolean values
{F,T} with operations & (exclusive or) and
& (and).

We cousider polynomials over GF(2), that is,
polynomials whose coefficients are in GF(2).
For the sake of brevity, we won’t repeat this
statement every time!

Note that, for polynomials u, v over GF(2),
2u=2v=0.
This implies that v — v = v+ v and

(u+v)? =u? 402,

Some Definitions

We say that a polynomial P(z) is reducible if it
has nontrivial factors; otherwise it is irreducible.

If P(z) is irreducible of degree r > 1, then
GF(2") = Zs[z]/P(z) ,

so we have a representation of the finite field
GF(2") with 2" elements. If z is generator for
the multiplicative group of Zs[z]/(P(z)), then
we say that P(z) is primitive.

Since the multiplicative group has order 2" — 1,
we need to know the complete factorisation of
2" — 1 in order to test if an irreducible
polynomial is primitive. However, if r is a
Mersenne exponent, i.e. 2" — 1 is prime, then
irreducibility implies primitivity.

Some Well-Known Results

The following results can be found in texts such
as Lidl, Menezes et al. Here u is the Mobius
function, and ¢ is Euler’s phi function.

1. 2" + z is the product of all irreducible

polynomials of degree d|n. For example,
8 _ 3 2 3
+r=c(l+z)1+z+z”)(1+z°+2°).

2. Let J, be the number of irreducible
polynomials of degree n. Then

1
Y dJg=2" and J, == 2%u(n/d).
dln n dln

In particular, if n is prime then
I = (2™ = 2)/n.

3. The number of primitive polynomials of
degree n is P, = ¢(2" — 1)/n < J,.

In particular, if n is a Mersenne exponent,
then P, = J, = (2" — 2)/n.

The Reciprocal Polynomial

If P(z) =37 a;z’ is a polynomial of degree 7,
with ag # 0, then

Pa(z) =a"P(1/2) = Y aza™
j=0

is the reciprocal polynomial. Clearly P(z) is
irreducible (or primitive) iff Pr(z) is irreducible
(or primitive).
In particular, if
Plz)=142z°+2z", 0<s<r
is a trinomial, then the reciprocal trinomial is
Pr(z)=142""°+2".

If it is convenient, we can assume that s < r/2
(else consider the reciprocal trinomial).

Similarly, if r is odd, we can assume that s is
odd (this will be useful later).

Searching for Irreducible Polynomials

The irreducible polynomials (over GF(2), as
usual) of degree r are analogous to primes with
r digits. When searching for large primes we
can quickly eliminate most candidates by
sieving out multiples of small primes. Similarly,
when searching for irreducible polynomials, we
can eliminate candidates by checking if they are
divisible by irreducible polynomials of low
degree.

Sieving

Given a candidate P(z), we check if
GCD(P(z),z*" +z) #1,forn =1,2,3,...,N
where N < deg(P) is some bound. Since all
irreducible polynomials of degree n are divisors
of 22" + x, P(x) passes these checks iff it has no
irreducible factors of degree < N.

If 2™ > r = deg(P), we can save time and space
by computing 22" mod P(z) by repeated
squaring and reduction, before computing the
GCD.

Irreducible Trinomials

For applications such as random number
generation, we want irreducible (or better,
primitive) polynomials of high degree r and
with a small number of nonzero terms. Hence,
we restrict attention to trinomials of the form

P(z)=Ps(z)=1+z+2", 0<s<r.

Swan’s Theorem

Swan (1962) determines the parity of the
number of irreducible factors by an argument
involving the discriminant (actually, Swan’s
main result is due to Pellet (1878) and
Stickelberger (1897)).

If r is an odd prime, then Swan’s theorem
implies that P, s(z) has an even number of
irreducible factors (and hence is reducible) if
r==23mod8 and s # 2 or r —2.

The condition on s can not be omitted,
e.g. 229 + 22 + 1 is irreducible.

10

Expectation of Success

For simplicity, assume r is an odd prime.

The probability that a randomly chosen
polynomial of degree r is irreducible is of order
1/r. Empirically, it seems that the same holds
for trinomials of prime degree » = +1 mod 8
(this condition implies that Swan’s theorem
does not rule out irreducibility).

Thus, if we consider all s in the range

0 < s < 7/2, we expect a small constant number
c of irreducible trinomials of degree r.
Empirical evidence suggests that ¢ =~ 3.2 .

For example, considering the 523 prime

r € [1000,10000] such that » = +1 mod 8, we
find exactly 1683 irreducible trinomials, giving
an estimate ¢ = 3.22 £ 0.08 .

Open Question. What is this constant ¢ 7

11

Searching for Irreducible Trinomials

Suppose r is an odd prime, r = £1 mod 8, and
sieving has failed to show that P(z) = P, 4(z) is
reducible. The standard algorithm computes

2% mod P(z)

by r steps of squaring and reduction, then uses
the result that P(z) is irreducible iff

¥ = z mod P(z) .

All authors of papers that give tables of
irreducible trinomials (Watson, Rodemich,
Zierler, Kurita, Heringa, Kumada, ...) seem to
have used essentially this algorithm, which is
why we call it the standard algorithm.

12

Complexity of the Standard Algorithm

Since we are working over GF(2),
2

Y ajel | =Y aje¥ |
J J
Thus, each squaring step takes O(r) operations.

Each reduction step also takes O(r) operations,
since P(z) is a trinomial and we can apply

I+ = 9% 4 27 mod P(x)

for j=r—2,r—3,...,0 to reduce the result of
squaring to a polynomial of degree less than r.

Thus, the complete test for reducibility of P, ,
takes O(r?) operations, and to test all s takes
O(r?) operations (assuming that sieving leaves
a constant fraction of trinomials to test).

If the sieve limit is N and 2V ~ r¢ for some

¢ < 1, then N = clog, and we expect O(r/N)
trinomials to survive sieving, so the overall
complexity might be reduced from O(r3) to
O(r3/logr).

13

Improving the Standard Algorithm

The standard algorithm uses 2r bits of memory
for squaring, and 2r + O(1) @ operations for
each reduction (we count bit-operations but in
practice we perform 32 or 64 bit-operations in
parallel using word-operations; this also applies
to our new algorithm). Many of these
operations are on bits that are necessarily zero.
There is a better algorithm that avoids these
redundant operations.

Both algorithms represent a polynomial
Az) = Z;;é a;z as a bit-vector ag ... ar_1.

Since r is odd and we can consider either P, or
its reciprocal P,,_,, we can assume that s is
odd.

14

The New Algorithm — Squaring

The first point is that there is no need to
actually perform the squaring step! The
standard algorithm would replace the bit vector

apa1ae . . .Gr—20r—1
by its “square”
a00a10a2 e OaT_QOO,T_l .
However, we can simply keep the bit vector
apa1ae . .. Gr_20r_1

and regard it as implicitly representing a square
(in other words, we do not store the coeflicients
of odd-degree terms, since they are known to be
7€ero).

15

The New Algorithm — Reduction

To see how the reduction can be performed
after our “implicit squaring”, consider the
example r = 7,5 = 3.

We initialise A(z) + =, i.e. ap...ag + 0100000.
The “squaring” operation is implicit: we keep
the bit-vector 0100000 and regard this as
representing

apa2a406a8a10a12

We now reduce mod P(z) =1+ 23+ z7.
Observe that 2'2 = 2° 4 28 mod P(z), so we
should replace ag by ag @ a12 and a5 by

as @ a2, but as is currently zero, so we can
simply regard the rightmost bit as representing
as rather than ais. Thus, after the first step of
the reduction we have a bit-vector representing

a0a2040643801005 -

The only bit(s) that could have changed,
because they depend on the result of an @
operation, are underlined.

16

Example of Reduction continued

Proceeding in a similar fashion, we observe that
219 = 23 + 2% mod P(z), but a3 =0 , so we
replace ag by ag @ a1p and implicitly regard the
second bit from the right as representing ag
rather than a19. Thus, after the reduction we
have a bit-vector representing

apa2a4ae6a8a3as .

One more step of reduction gives a bit-vector
representing

apa2a40e6a1a30as .

Observe that this bit-vector contains the
coefficients of A(z)? mod P(z), but they are in
a shuffled order. We need to apply an interleave
permutation to get back to the natural order

apa102030405a06 .

17

Interleaving

Interleaving is closely related to squaring. In
fact, if we square agasaqag:

agazaqag — aplaz20a40a60 ,
square and rightshift ajagas0:
a1a3a50 — 0a10a30a500 ,
and apply a bitwise V operation, we obtain
apaiaza3aqasag0 .

Thus, interleaving can be implemented by
squaring and a few additional operations
(shifting and V-ing). Although two squarings
are necessary, the bit-vectors are only half as
long as before, so the work involved is almost
the same.

18

A Complete Example

Consider the example r = 7, s = 3. The k-th
operation of (implicitly) squaring and reducing
mod P(z) is denoted by S, and the k-th
operation of interleaving by If.

If we start with A(z) = = and perform
operations S1, 1,53, I2, ..., S7, I7 we obtain the
following;:

Sp — 0100000, I; — 0010000 = z2

Sy — 0010000, I — 0000100 = z*

S5 — 0010100, I3 — 0100100 = & + z*

Sy — 0110100, Iy — 0110100 = © + 22 + z*
S5 — 0100100, Iy — 0110000 = z + =2

Se — 0110000, I — 0010100 = z2 + z*

S7 — 0000100, I7 — 0100000 =

Since the final result is =, we deduce that
P(z) =1+ 23 + 27 is irreducible.

19

The New Algorithm

We now describe the new algorithm formally, in
terms of bit-operations. As before, assume that
r and s are odd.

To avoid confusion, we denote the working
bit-array by bgb1 - - - b.—1. This bit-array is used
to represent the coefficients aga; - - - ar—1 of the
polynomial A(z), but not necessarily in the
natural order.

Let « = (r—1)/2 and 6 = (r — s)/2. Since r
and s are odd, o and ¢ are integers. Initially we
set by < 1 and the other b; < 0 to represent
Az) =z.

20

Squaring and Reduction

Each step Sy is implemented by

for j +r —1 downto a4+ 1 do
bj_s + bj_s D bj.
Squaring and reduction step S
Note that there are only 7/2 + O(1) “@®”
bit-operations in the loop, which is a 75%

reduction over the 2r 4+ O(1) for the reduction
step of the standard algorithm.

21

Interleaving

The obvious implementation of the interleaving
step Ij, requires a temporary bit-array (say
cpc1 - - - ¢r—1). For example:

cy — bo;
for j + 1 to a do {forward interleave}
begin
c2j—1 + bjta;
Coj < bj;
end;
for j < 0tor—1do bj < cj.

Forward interleave I; with copy

We call this a “forward interleave” because the
first loop index j increases.

We can avoid the final loop (copying the c array
to b) by alternately using the array b and the
array ¢ (or by interchanging pointers
appropriately). However, the space required is
still 2r + O(1) bits, the same as for the standard
algorithm.

22

A Refinement: Overlapping Arrays

We can interleave in the backward direction
(replace “for j < 1 to &” by “for j + «
downto 1” above). Suppose we also interchange
the roles of b and ¢ to avoid the final copy.

The point of interleaving alternately in the
forward and backward directions is that we can
save space by using a single working array of
size 3r/2 + O(1) bits. The b and ¢ arrays can
partially overlap — in fact b; can occupy the
same memory as cj+q (j =0,1,...), as shown:

‘bObl"'ba"'br—l‘

|CO(31"'CO¢"'CT—1‘

Note that the “forward interleave” transmits
data from b to ¢ (i.e. to the left) and the
“backward interleave” transmits data from c to
b (i.e. to the right)!

23

Effect of the Refinement

Partially overlapping the arrays b and ¢ can
improve performance dramatically on machines
with memory hierarchies and cache sizes of less
than 2r bits, because the working set is reduced
in size by 25%. It has little effect on machines
with much larger caches.

Generalisation of the New Algorithm
If we replace 1 + z° + z" by
14+ 2% 4+ 2 2"

then an obvious generalisation of our new
algorithm is applicable provided that r is odd
and the s; all have the same parity (all odd or
all even).

24

Comparison of the Algorithms

The new algorithm has 75% fewer @ operations
than the standard algorithm.

Perhaps more significant than the number of
operations is the number of memory references,
which is reduced by 56%, from 8r/w + O(1)
loads/stores to 7= + O(1) loads/stores, on a
machine with wordlength w bits.

Also significant on some machines is that the
working set size is reduced by 25%, so memory
references are more likely to be in the cache.

In practice the improvement provided by the
new algorithm depends on many factors: the
values of 7 and (to a lesser extent) s, the cache
size, the compiler and compiler options used,
whether inner loops are written in assembler,
etc, but it is generally at least a factor of two.

25

Performance of the New Algorithm

Table 1 gives normalised times for the standard
and new algorithms on various processors, for

r = 3021377. The third column is the
“normalised time” ¢ = time(nsec)/r2.

processor algorithm c

300 Mhz P-II standard 6.31
” new (no overlap) | 2.60
new (overlap) | 1.64

”

500 Mhz P-III 7 0.77
833 Mhz P-III 7 1.66
300 Mhz SGI R12000 7 1.16
667 Mhz DEC Alpha 7 0.60

Table 1: Normalised time to test reducibility

Note that 3r/2 bits is 553KB. The L2 cache size
was 512KB on the P-II and P-ITI machines
ezcept only 256KB for the 833 Mhz P-IIL

The program was written in C, except that on
PCs the inner loops were written in assembler
to use the 64-bit MMX registers.

26

Times for Various Degrees

In Table 2 we show the time for a full
reducibility test with our new algorithm and
various degrees r on a machine (300 Mhz
Pentium P-II) with 512KB L2 cache.

r time T (sec) | ¢ = 10°T/r?
19937 0.42 1.06
44497 2.10 1.06
110503 14.4 1.18
132049 21.7 1.24
756839 812 1.42
859433 1027 1.39

3021377 15010 1.64
6972593 198000 4.10

Table 2: Time to test reducibility on a P-II

27

New Primitive Trinomials

In Table 3 we give a table of primitive
trinomials 2" + 2° + 1 where r is a Mersenne
exponent (i.e. 2" — 1 is prime). We assume that
0<2s<r (soz"+z"*+1is not listed).

Results for r < 756839 are given by
Heringa et al. [11]. We have confirmed these
results.

The entries for r < 3021377 have been checked
by running at least two different programs on
different machines.

During this checking process, the entry with

r = 859433, s = 170340

was found. This was surprising, because
Kumada et al. [13] claimed to have searched the
whole range for r» = 859433. It turns out that
Kumada et al. missed this entry because of a
bug in the sieving routine!

28

New Primitive Trinomials cont.

The entries in Table 3 are new, with the
exception of one entry due to Kumada et al.
The new entries except for the last one are from
Brent, Larvala and Zimmermann (BLZ) [5].

r s Notes
756839 | 215747 | BLZ, 14 June 2000
267428 | BLZ, 11 June 2000
279695 | BLZ, 9 June 2000
859433 | 170340 | BLZ, 26 June 2000
288477 | Kumada et al. [13]
3021377 | 361604 | BLZ, 8 August 2000
1010202 | BLZ, 17 Dec 2000
6972593 | 3037958 | BLZ, 31 Aug 2002
search 82% complete

Table 3: Primitive trinomials

29

“Almost Primitive” Trinomials

For about half the Mersenne exponents r (those
with r = £3 mod 8, r > 5), primitive trinomials
of degree r probably do not exist. Examples are
r=13,19,61,....

In applications it would be almost as good to
find trinomials of slightly higher degree, say

7 + §, having a primitive polynomial of degree r
as a factor. Thus the period of the associated
linear recurrence would be a small multiple of
2" — 1 (except for certain exceptional initial
conditions that are easy to avoid). Blake, Gao
and Lambert recently found some such
trinomials of degree up to 500.

We can use a slight modification of our
searching algorithm to find such trinomials.
The sieving phase needs some modifications,
and we have to allow the possibility of
trinomials of even degree.

30

Definition of “Almost Primitive”

Let’s make the concept ”almost primitive” more
precise.

Following Brent and Zimmermann [7], we say
that a polynomial P(z) of degree n is almost
primitive if P(0) # 0 and P(z) has a primitive
factor of degree r, where 0 <n —r <r.

We say that P has ezponent r and increment
n—r.

The restriction § =n — r < r (equivalently,
r > n/2) is convenient. In practice § is usually a
small constant.

Some examples are given in Table 4.

31

Some Almost Primitive Trinomials

For the values of 7,0 and s given in Table 4,
.’I,‘T+6 + 8 +1
has a primitive factor of degree exactly r and

period
(2r _ l)f > gr+é—1

The values of r are all the Mersenne exponents
for which primitive trinomials of degree r do
not exist, 107 < r < 2976221.

r é s f
2203 3 355 7
4253 8 1806 | 255
9941 3 1077 7
11213 6 227 63

21701 3 6999 7
86243 2 2288 3
216091 | 12 | 42930 | 3937
1257787 | 3 | 74343 7
1398269 | 5 | 417719 | 21

Table 4: Some Almost Primitive Trinomials

32

Implicit Algorithms

Suppose we wish to work in the finite field
GF(2") where r is the exponent of an almost
primitive trinomial 7. We can write

T=8D,

where deg(S) = §, deg(D) = r. Roughly
speaking, T is large and sparse, S is small, and
D is large and dense. [We also know that D is
primitive and ged(S, D) = 1, but this is not
essential here.]

We have
GF(2") = Zs[z]/D(x),

but because D is dense we wish to avoid
working directly with D, or even explicitly
computing D. We show that it is possible to
work modulo the trinomial 7.

33

Redundant Representations

We can regard Zo[z]/T () as a redundant
representation of Zo[z]/D(z). Each element
A € Zs[z]/T(z) can be represented as

A=A, + AgD,

where A, € Zs[z]/D(z) is the “canonical
representation” that would be obtained if we
worked in Zo[z]/D(xz), and Ay € Zo[z] is some
polynomial of degree less than 4. [In fact, A, is
the remainder, and Ay is the quotient, when A
is divided by D, but we don’t want to perform
divisions by the large, dense polynomial D.]

Zs|z] — Zo[x]/T(z) — Zo/D(x)

34

Taking Advantage of Sparsity

We can perform computations such as addition,
multiplication and exponentiation in
Zs[z]/T(x), taking advantage of the sparsity of
T in the usual way.

If A € Zy[z]/T(z) and we wish to map A to its
canonical representation A., we use the identity

Ac = (AS mod T)/S,

where the division by the (small) polynomial S
is exact. A straightforward implementation
requires only O(dr) operations.

We avoid computing A, = A mod D directly; in
fact we never compute the (large and dense)
polynomial D: it is sufficient that D is
determined by the trinomial 7" and the small
polynomial S.

35

Example

An entry in Table 4 with » = 1257787, § = 3,
gives

T(z) = 257790 4 ;74343 4 1
= (P +2>+1)D(z),

where D(z) is a dense primitive polynomial of
degree 1257787.

We can work in the field GF(2!257787) without
ever computing or dividing by D(z). All we
need is operations mod T'(z) and
multiplications/divisions by the small
polynomial S(z) = 23 + 22 + 1.

36

The Fermat Connection

Let Fj = 22 +1 be the j-th Fermat number.
If r = 2%, then

2T—1:F0F1-"Fk_1 .
For example,
92 | = FyRFy=3-5-17.

The complete factorizations of F; are known for
7 < 11, so we can factor 22° 1 for k <12

By Swan’s theorem, a primitive trinomial of
degree 2% does not exist for k > 3. However, we
can work efliciently in the finite fields GF(ZQk),
k € [3,12], using almost primitive trinomials
and implicit algorithms.

For example, take k = 12, r = 28 = 4096, § = 3,
s = 600. The trinomial

T(.’L‘) — $4099 + :1:‘600 +1

is almost primitive, with a small factor
2% + 2+ 1 and a large primitive factor of
degree 4096.

37

Existence Questions - Given Degree

It seems difficult to prove anything about the
existence of almost primitive trinomials. We
have shown by computation that an almost
primitive trinomial of degree n exists for all

n € [2,2000]\{12}.

A probabilistic argument suggests that almost
primitive trinomials exist for all degrees n > 12.

In the exceptional case (degree 12),
224241 = (23422 +1) (2 +2* +1) (2 +23+ 22 +2+1)

has primitive factors of degrees 3, 4, and 5, but
5 is too small, so z'2 + z + 1 is not “almost
primitive” by our definition.

Another candidate is £'2 + 25 4 1; this is
irreducible but not primitive, having period
(212 —1)/5.

38

Existence Questions - Given Exponent

Instead of asking for an almost primitive
trinomial of given degree, we can ask for one of
given exponent. This is closer to the spirit of
Blake et al.

For all 7 € [2,712] there is an almost primitive
trinomial "9 4 z* 4+ 1 with exponent r and
(minimal) increment § < 43. The extreme

d = 43 occurs for (r,s) = (544,47). The mean
value of § is less than 4.

We can not go any further without knowing the
factors of 2713 — 1. However, a probabilistic
argument suggests that almost primitive
trinomials exist for all exponents r > 2.

39

Random Number Generators

Pseudo-random number generators (RNGs) are
widely used in simulation.

A program running on a fast computer or
cluster of PCs might use 10° random numbers
per second for many hours. Small correlations
or other deficiencies could easily lead to
spurious results.

In order to have confidence in the results of
simulations, we need to have confidence in the
statistical properties of the random numbers
used.

Primitive and almost primitive trinomials are
useful for the construction of high quality
random number generators, because the
generating function for a 3-term linear
recurrence corresponds to a trinomial.

40

Almost Primitive Trinomials in RNGs

If the almost primitive trinomial
T=2x2"+2z°41= 5D is the denominator of the
generating function for a linear recurrence

Uk = Uk—s + Uk—n, it is possible (by choosing
appropriate initial conditions that annihilate
the unwanted component) to generate a
sequence that satisfies the recurrence defined by
the polynomial D.

This refinement is not necessary if all that
matters is that the linear recurrence generates a
sequence with period at least 2" — 1, where

r = deg(D).

41

Acknowledgement

This talk describes joint work with Samuli
Larvala (HUT) and Paul Zimmermann (INRIA
Lorraine).

Thanks are also due to Nate Begeman, Nicolas
Daminelli, Shuhong Gao, Robert Hedges,
Brendan McKay, Barry Mead, Mark
Rodenkirch, Juan Varona, and Mike Yoder for
their assistance in various ways.

42

References

[1] S. L. Anderson, Random number generators on
vector supercomputers and other advanced
architectures, STAM Rev. 32 (1990), 221-251.

I. F. Blake, S. Gao and R. Lambert,
Construction and distribution problems for
irreducible trinomials over finite fields, preprint,
July 2001.

[3] R. P. Brent, On the periods of generalized
Fibonacci recurrences, Math. Comp. 63 (1994),
389-401. http://www.comlab.ox.ac.uk/oucl/
work/richard.brent/pub/pub133.html

[2

[4] R. P. Brent, Random number generation and
simulation on vector and parallel computers,
Proc. Fourth Euro-Par Conference, LNCS
1470, Springer-Verlag, Berlin, 1998, 1-20.
-+-/pub185.html

[5] R. P. Brent, S. Larvala and P. Zimmermann,
A fast algorithm for testing reducibility of
trinomials mod 2 and some new primitive
trinomials of degree 3021377, Math. Comp., to
appear. Preprint and update at
http://www.comlab.ox.ac.uk/oucl/work/
richard.brent/pub/pub199.html

43

[6] R. P. Brent and P. Zimmermann, Random
number generators with period divisible by a
Mersenne prime, Proc. ICCSA 2003, Montreal,
May 2003, to appear in LNCS. Preprint at
http://www.comlab.ox.ac.uk/oucl/work/
richard.brent/pub/pub211.html

[7] R. P. Brent and P. Zimmermann, Algorithms
for finding almost irreducible and almost
primitive trinomials, Proc. Conference in
Honour of Professor H. C. Williams, Banff,
Canada (May 2003), The Fields Institute,
Toronto, to appear. Preprint available at
http://www.comlab.ox.ac.uk/oucl/work/
richard.brent/pub/pub212.html

(8] D. Coppersmith, H. Krawczyk and Y. Mansour,
The shrinking generator, Proc. CRYPTO’93,
LNCS 773 (1994), 22-39.

GIMPS, The Great Internet Prime Search,
http://www.mersenne.org/

[10] S. W. Golomb, Shift register sequences,
Aegean Park Press, revised edition, 1982.

[11] J. R. Heringa, H. W. J. Blote and
A. Compagner. New primitive trinomials of
Mersenne-exponent degrees for random-number
generation, International J. of Modern Physics
C 3 (1992), 561-564.

9

44

[12]

[13]

[14]

(15]

[16]

[17]

D. E. Knuth, The art of computer programming,
Volume 2: Seminumerical algorithms (third
ed.), Addison-Wesley, Menlo Park, CA, 1998.

T. Kumada, H. Leeb, Y. Kurita and M.
Matsumoto, New primitive ¢-nomials (¢ = 3, 5)
over GF(2) whose degree is a Mersenne
exponent, Math. Comp. 69 (2000), 811-814.

Y. Kurita and M. Matsumoto, Primitive
t-nomials (¢ = 3,5) over GF(2) whose degree is
a Mersenne exponent < 44497, Math. Comp. 56
(1991), 817-821.

R. Lidl and H. Niederreiter, Introduction to
Finite Fields and their Applications, Cambridge
Univ. Press, Cambridge, second edition, 1994.

G. Marsaglia, A current view of random
number generators, in Computer Science and
Statistics: The Interface, Elsevier Science
Publishers B. V.,1985, 3-10.

A. J. Menezes, P. C. van QOorschot and S. A.
Vanstone, Handbook of Applied Cryptography,
CRC Press, New York, 1997.
http://cacr.math.uwaterloo.ca/hac/

45

[18]

[19]

[20]

(21]

[22]

R. G. Swan, Factorization of polynomials over
finite fields, Pacific J. Math. 12 (1962),
1099-1106.

S. Tezuka, Efficient and portable combined
Tausworthe random number generators, ACM
Trans. on Modeling and Computer Simulation 1
(1991), 99-112.

I. Vattulainen, T. Ala-Nissila and K. Kankaala,
Physical tests for random numbers in
simulations, Phys. Rev. Lett. 73 (1994),
2513-2516.

N. Zierler and J. Brillhart, On primitive
trinomials (mod 2), Inform. and Control 13
(1968), 541-554 and 14 (1969), 566-569.

N. Zierler, Primitive trinomials whose degree is
a Mersenne exponent, Inform. and Control 15
(1969), 67-69.

46

