
Factoring Integers – an Introduction

Richard P. Brent
MSI & RSCS, ANU

1 August 2012

Richard Brent Integer Factorisation

Motivation – Unique Prime Factorisation

Every natural number (integer) n > 1 is a product of prime
powers

n = pα1
1 pα2

2 · · · p
αk
k ,

and this representation is unique except for the ordering, i.e. it
is unique if we assume that p1 < p2 < · · · pk and the exponents
αi are positive.

1001 = 7 · 11 · 13

500 = 22 · 53

232 + 1 = 641 · 6700417

Given a large integer n, how can we actually find the prime
factors of n?

Richard Brent Integer Factorisation

Historical Example

Mn = 2n − 1 is a Mersenne number. Mersenne (1644) claimed
that

M67 = 147573952589676412927

was prime.

Lucas (1875) showed that M67 was composite, but he did not
find any factors (we’ll see later how to show that a number is
composite without factoring it, using Fermat’s little theorem).
Cole (1903) showed that

M67 = 193707721 · 761838257287,

but it took him “three years of Sundays”.
Nowadays, the Magma package running on my laptop takes
about one second to find Cole’s factors of M67. The smallest
Mersenne number that is not completely factored is now M929.

Richard Brent Integer Factorisation

Historical Example

Mn = 2n − 1 is a Mersenne number. Mersenne (1644) claimed
that

M67 = 147573952589676412927

was prime.
Lucas (1875) showed that M67 was composite, but he did not
find any factors (we’ll see later how to show that a number is
composite without factoring it, using Fermat’s little theorem).

Cole (1903) showed that

M67 = 193707721 · 761838257287,

but it took him “three years of Sundays”.
Nowadays, the Magma package running on my laptop takes
about one second to find Cole’s factors of M67. The smallest
Mersenne number that is not completely factored is now M929.

Richard Brent Integer Factorisation

Historical Example

Mn = 2n − 1 is a Mersenne number. Mersenne (1644) claimed
that

M67 = 147573952589676412927

was prime.
Lucas (1875) showed that M67 was composite, but he did not
find any factors (we’ll see later how to show that a number is
composite without factoring it, using Fermat’s little theorem).
Cole (1903) showed that

M67 = 193707721 · 761838257287,

but it took him “three years of Sundays”.

Nowadays, the Magma package running on my laptop takes
about one second to find Cole’s factors of M67. The smallest
Mersenne number that is not completely factored is now M929.

Richard Brent Integer Factorisation

Historical Example

Mn = 2n − 1 is a Mersenne number. Mersenne (1644) claimed
that

M67 = 147573952589676412927

was prime.
Lucas (1875) showed that M67 was composite, but he did not
find any factors (we’ll see later how to show that a number is
composite without factoring it, using Fermat’s little theorem).
Cole (1903) showed that

M67 = 193707721 · 761838257287,

but it took him “three years of Sundays”.
Nowadays, the Magma package running on my laptop takes
about one second to find Cole’s factors of M67. The smallest
Mersenne number that is not completely factored is now M929.

Richard Brent Integer Factorisation

Algebraic Factors

Sometimes it’s easy to find some (usually not all) factors of a
number using algebra.

For example, we know that

x3 + 1 = (x + 1)(x2 − x + 1).

Put x = 2k . This gives

23k + 1 = (2k + 1)(22k − 2k + 1).

For example, 233 + 1 has a factor 211 + 1.
Similarly, 1067 − 1 has a factor 10− 1 = 9.
This is obvious if you write 1067 − 1 = 99 · · · 99︸ ︷︷ ︸

67 digits

.

Richard Brent Integer Factorisation

Algebraic Factors

Sometimes it’s easy to find some (usually not all) factors of a
number using algebra.
For example, we know that

x3 + 1 = (x + 1)(x2 − x + 1).

Put x = 2k . This gives

23k + 1 = (2k + 1)(22k − 2k + 1).

For example, 233 + 1 has a factor 211 + 1.

Similarly, 1067 − 1 has a factor 10− 1 = 9.
This is obvious if you write 1067 − 1 = 99 · · · 99︸ ︷︷ ︸

67 digits

.

Richard Brent Integer Factorisation

Algebraic Factors

Sometimes it’s easy to find some (usually not all) factors of a
number using algebra.
For example, we know that

x3 + 1 = (x + 1)(x2 − x + 1).

Put x = 2k . This gives

23k + 1 = (2k + 1)(22k − 2k + 1).

For example, 233 + 1 has a factor 211 + 1.
Similarly, 1067 − 1 has a factor 10− 1 = 9.

This is obvious if you write 1067 − 1 = 99 · · · 99︸ ︷︷ ︸
67 digits

.

Richard Brent Integer Factorisation

Algebraic Factors

Sometimes it’s easy to find some (usually not all) factors of a
number using algebra.
For example, we know that

x3 + 1 = (x + 1)(x2 − x + 1).

Put x = 2k . This gives

23k + 1 = (2k + 1)(22k − 2k + 1).

For example, 233 + 1 has a factor 211 + 1.
Similarly, 1067 − 1 has a factor 10− 1 = 9.
This is obvious if you write 1067 − 1 = 99 · · · 99︸ ︷︷ ︸

67 digits

.

Richard Brent Integer Factorisation

Aurifeuillian Factors

These are trickier than algebraic factors, and harder to spell!

For example,

4x4 + 1 = (4x4 + 4x2 + 1)− 4x2

= (2x2 + 1)2 − (2x)2

= (2x2 + 2x + 1)(2x2 − 2x + 1)

Put x = 2k :

24k+2 + 1 = (22k+1 + 2k+1 + 1)(22k+1 − 2k+1 + 1).

For example, 2118 + 1 = (259 + 230 + 1)(259 − 230 + 1).

Richard Brent Integer Factorisation

Aurifeuillian Factors

These are trickier than algebraic factors, and harder to spell!
For example,

4x4 + 1 = (4x4 + 4x2 + 1)− 4x2

= (2x2 + 1)2 − (2x)2

= (2x2 + 2x + 1)(2x2 − 2x + 1)

Put x = 2k :

24k+2 + 1 = (22k+1 + 2k+1 + 1)(22k+1 − 2k+1 + 1).

For example, 2118 + 1 = (259 + 230 + 1)(259 − 230 + 1).

Richard Brent Integer Factorisation

Aurifeuillian Factors

These are trickier than algebraic factors, and harder to spell!
For example,

4x4 + 1 = (4x4 + 4x2 + 1)− 4x2

= (2x2 + 1)2 − (2x)2

= (2x2 + 2x + 1)(2x2 − 2x + 1)

Put x = 2k :

24k+2 + 1 = (22k+1 + 2k+1 + 1)(22k+1 − 2k+1 + 1).

For example, 2118 + 1 = (259 + 230 + 1)(259 − 230 + 1).

Richard Brent Integer Factorisation

Algebraic and Aurifeuillian factors

Aurifeuillian factors are usually different from algebraic factors.
For example, 1515 + 1 has algebraic factors 15 + 1, 153 + 1,
155 + 1, and Aurifeuillian factors 19231, 142111. Combining
this information, we find:

1515 + 1 = 24 · 31 · 211 · 1531 · 19231 · 142111.

Unfortunately, algebraic and Aurifeuillian factors only apply in
very special cases. They don’t give a general factoring method.

Richard Brent Integer Factorisation

Modular Arithmetic

Recall that
a = b mod N

means that N divides (a− b). We sometimes write this

N | (a− b).

Exercise. If p | N, a = b mod N, and b = c mod p,
then a = c mod p.
e.g. 17 = 32 mod 15, 32 = 2 mod 3, so 17 = 2 mod 3.

It’s not generally true unless p | N.
e.g. 17 = 32 mod 15, 32 = 0 mod 2, but 17 6= 0 mod 2.

Richard Brent Integer Factorisation

Modular Arithmetic

Recall that
a = b mod N

means that N divides (a− b). We sometimes write this

N | (a− b).

Exercise. If p | N, a = b mod N, and b = c mod p,
then a = c mod p.
e.g. 17 = 32 mod 15, 32 = 2 mod 3, so 17 = 2 mod 3.
It’s not generally true unless p | N.
e.g. 17 = 32 mod 15, 32 = 0 mod 2, but 17 6= 0 mod 2.

Richard Brent Integer Factorisation

Fast Algorithms
A polynomial time algorithm is an algorithm (think of a
computer program if you prefer) whose running time is at most
a polynomial in the length ` of the input data.

e.g. N = 123456789 is an integer whose length is 9 (in units of
decimal digits).
Usually length is measured in units of binary digits (bits), but
this does not change the definition of polynomial-time
algorithm.
A polynomial is a function like

P(x) = ax3 + bx2 + cx + d︸ ︷︷ ︸,
but we can ignore the low-order terms here.
Generally, “fast” = “polynomial time”, but the degree of the
polynomial and the size of the constant “a” are important in
practice.

Richard Brent Integer Factorisation

Fast Algorithms
A polynomial time algorithm is an algorithm (think of a
computer program if you prefer) whose running time is at most
a polynomial in the length ` of the input data.
e.g. N = 123456789 is an integer whose length is 9 (in units of
decimal digits).

Usually length is measured in units of binary digits (bits), but
this does not change the definition of polynomial-time
algorithm.
A polynomial is a function like

P(x) = ax3 + bx2 + cx + d︸ ︷︷ ︸,
but we can ignore the low-order terms here.
Generally, “fast” = “polynomial time”, but the degree of the
polynomial and the size of the constant “a” are important in
practice.

Richard Brent Integer Factorisation

Fast Algorithms
A polynomial time algorithm is an algorithm (think of a
computer program if you prefer) whose running time is at most
a polynomial in the length ` of the input data.
e.g. N = 123456789 is an integer whose length is 9 (in units of
decimal digits).
Usually length is measured in units of binary digits (bits), but
this does not change the definition of polynomial-time
algorithm.

A polynomial is a function like

P(x) = ax3 + bx2 + cx + d︸ ︷︷ ︸,
but we can ignore the low-order terms here.
Generally, “fast” = “polynomial time”, but the degree of the
polynomial and the size of the constant “a” are important in
practice.

Richard Brent Integer Factorisation

Fast Algorithms
A polynomial time algorithm is an algorithm (think of a
computer program if you prefer) whose running time is at most
a polynomial in the length ` of the input data.
e.g. N = 123456789 is an integer whose length is 9 (in units of
decimal digits).
Usually length is measured in units of binary digits (bits), but
this does not change the definition of polynomial-time
algorithm.
A polynomial is a function like

P(x) = ax3 + bx2 + cx + d︸ ︷︷ ︸,
but we can ignore the low-order terms here.

Generally, “fast” = “polynomial time”, but the degree of the
polynomial and the size of the constant “a” are important in
practice.

Richard Brent Integer Factorisation

Fast Algorithms
A polynomial time algorithm is an algorithm (think of a
computer program if you prefer) whose running time is at most
a polynomial in the length ` of the input data.
e.g. N = 123456789 is an integer whose length is 9 (in units of
decimal digits).
Usually length is measured in units of binary digits (bits), but
this does not change the definition of polynomial-time
algorithm.
A polynomial is a function like

P(x) = ax3 + bx2 + cx + d︸ ︷︷ ︸,
but we can ignore the low-order terms here.
Generally, “fast” = “polynomial time”, but the degree of the
polynomial and the size of the constant “a” are important in
practice.

Richard Brent Integer Factorisation

Fast Modular Exponentiation

The example “Exponentiating Mod Wise” on page 35 of John
Hutchinson’s notes illustrates a “fast” algorithm for computing

ab mod N.

This is feasible even for numbers with hundreds of digits,
because the time is (at most) a cubic polynomial in the input
size.

Richard Brent Integer Factorisation

Greatest Common Divisor (GCD)

The Euclidean Algorithm is a fast algorithm for computing the
greatest common divisor gcd(M,N) of two integers M and N.

Application. If p | M and p | N, then p | gcd(M,N) and it could
happen that p = gcd(M,N).
This can be useful when trying to factor N.

Richard Brent Integer Factorisation

Greatest Common Divisor (GCD)

The Euclidean Algorithm is a fast algorithm for computing the
greatest common divisor gcd(M,N) of two integers M and N.
Application. If p | M and p | N, then p | gcd(M,N) and it could
happen that p = gcd(M,N).

This can be useful when trying to factor N.

Richard Brent Integer Factorisation

Greatest Common Divisor (GCD)

The Euclidean Algorithm is a fast algorithm for computing the
greatest common divisor gcd(M,N) of two integers M and N.
Application. If p | M and p | N, then p | gcd(M,N) and it could
happen that p = gcd(M,N).
This can be useful when trying to factor N.

Richard Brent Integer Factorisation

Testing Primality
Fermat’s little Theorem “FLT” (Thm. 19, pg. 44):
If p is prime then

ap = a mod p.

Sometimes the Theorem is stated as

ap−1 = 1 mod p,

but then we need the extra condition a 6= 0 mod p.

Suppose we
are given an integer N > 2. Before trying to factor N, choose
some integer a, where 1 < a < N − 1, and compute

b = aN mod N.

If b 6= a mod N, then N must be composite (otherwise get a
contradiction to FLT), so it makes sense to try to factor N. If
b = a mod N then probably N is prime, so we could be wasting
our time trying to factor N. Better to check if N really is prime.
This can be done “fast” – see “talks” on my web page.

Richard Brent Integer Factorisation

Testing Primality
Fermat’s little Theorem “FLT” (Thm. 19, pg. 44):
If p is prime then

ap = a mod p.

Sometimes the Theorem is stated as

ap−1 = 1 mod p,

but then we need the extra condition a 6= 0 mod p. Suppose we
are given an integer N > 2. Before trying to factor N, choose
some integer a, where 1 < a < N − 1, and compute

b = aN mod N.

If b 6= a mod N, then N must be composite (otherwise get a
contradiction to FLT), so it makes sense to try to factor N.

If
b = a mod N then probably N is prime, so we could be wasting
our time trying to factor N. Better to check if N really is prime.
This can be done “fast” – see “talks” on my web page.

Richard Brent Integer Factorisation

Testing Primality
Fermat’s little Theorem “FLT” (Thm. 19, pg. 44):
If p is prime then

ap = a mod p.

Sometimes the Theorem is stated as

ap−1 = 1 mod p,

but then we need the extra condition a 6= 0 mod p. Suppose we
are given an integer N > 2. Before trying to factor N, choose
some integer a, where 1 < a < N − 1, and compute

b = aN mod N.

If b 6= a mod N, then N must be composite (otherwise get a
contradiction to FLT), so it makes sense to try to factor N. If
b = a mod N then probably N is prime, so we could be wasting
our time trying to factor N. Better to check if N really is prime.
This can be done “fast” – see “talks” on my web page.

Richard Brent Integer Factorisation

“Divide and Conquer” Factoring Strategy

N is a large integer that we know is composite. We want to find
a nontrivial factor f of N (nontrivial means 1 < f < N).

Once f has been found, we can test f and q = N/f to see if
they are prime; if so the factorisation of N = f · q is complete.
Otherwise, we have at least reduced the problem to one or two
smaller problems (factoring f and/or q).
This is an example of the very useful “divide and conquer”
strategy – if you can’t immediately solve a problem, try to
reduce it to one or more smaller problems.

Richard Brent Integer Factorisation

“Divide and Conquer” Factoring Strategy

N is a large integer that we know is composite. We want to find
a nontrivial factor f of N (nontrivial means 1 < f < N).
Once f has been found, we can test f and q = N/f to see if
they are prime; if so the factorisation of N = f · q is complete.

Otherwise, we have at least reduced the problem to one or two
smaller problems (factoring f and/or q).
This is an example of the very useful “divide and conquer”
strategy – if you can’t immediately solve a problem, try to
reduce it to one or more smaller problems.

Richard Brent Integer Factorisation

“Divide and Conquer” Factoring Strategy

N is a large integer that we know is composite. We want to find
a nontrivial factor f of N (nontrivial means 1 < f < N).
Once f has been found, we can test f and q = N/f to see if
they are prime; if so the factorisation of N = f · q is complete.
Otherwise, we have at least reduced the problem to one or two
smaller problems (factoring f and/or q).

This is an example of the very useful “divide and conquer”
strategy – if you can’t immediately solve a problem, try to
reduce it to one or more smaller problems.

Richard Brent Integer Factorisation

“Divide and Conquer” Factoring Strategy

N is a large integer that we know is composite. We want to find
a nontrivial factor f of N (nontrivial means 1 < f < N).
Once f has been found, we can test f and q = N/f to see if
they are prime; if so the factorisation of N = f · q is complete.
Otherwise, we have at least reduced the problem to one or two
smaller problems (factoring f and/or q).
This is an example of the very useful “divide and conquer”
strategy – if you can’t immediately solve a problem, try to
reduce it to one or more smaller problems.

Richard Brent Integer Factorisation

Example

Try to factor N = 1001.

It’s easy to see that 2, 3, 5 are not divisors of N, but f = 7 | N,
and the quotient is q = N/f = 143.
f is prime, but q is not.
From q = 122 − 1 we get q = 11 · 13. Thus N = 7 · 11 · 13.

Since it is easy to divide out powers of 2, I’ll assume from now
on that N is odd.

Richard Brent Integer Factorisation

Example

Try to factor N = 1001.
It’s easy to see that 2, 3, 5 are not divisors of N, but f = 7 | N,
and the quotient is q = N/f = 143.

f is prime, but q is not.
From q = 122 − 1 we get q = 11 · 13. Thus N = 7 · 11 · 13.

Since it is easy to divide out powers of 2, I’ll assume from now
on that N is odd.

Richard Brent Integer Factorisation

Example

Try to factor N = 1001.
It’s easy to see that 2, 3, 5 are not divisors of N, but f = 7 | N,
and the quotient is q = N/f = 143.
f is prime, but q is not.

From q = 122 − 1 we get q = 11 · 13. Thus N = 7 · 11 · 13.

Since it is easy to divide out powers of 2, I’ll assume from now
on that N is odd.

Richard Brent Integer Factorisation

Example

Try to factor N = 1001.
It’s easy to see that 2, 3, 5 are not divisors of N, but f = 7 | N,
and the quotient is q = N/f = 143.
f is prime, but q is not.
From q = 122 − 1 we get q = 11 · 13. Thus N = 7 · 11 · 13.

Since it is easy to divide out powers of 2, I’ll assume from now
on that N is odd.

Richard Brent Integer Factorisation

Trial division

The simplest way to factor N is to divide it by 2, 3, 4, . . . until we
find some p | N. Then p is the smallest factor of N and must be
prime (otherwise N would have a smaller factor).

Drawback. The time required is proportional to p. Thus, trial
division can be very slow if p is large. Since p is the smallest
prime factor of N,

p ≤
√

N.

Improvements. We only need to divide by primes
2,3,5,7,11, . . . (but we need a list of these or some way of
generating them).
By the Prime Number Theorem this saves a factor of order
log N, which is not very significant.

Richard Brent Integer Factorisation

Trial division

The simplest way to factor N is to divide it by 2, 3, 4, . . . until we
find some p | N. Then p is the smallest factor of N and must be
prime (otherwise N would have a smaller factor).
Drawback. The time required is proportional to p. Thus, trial
division can be very slow if p is large. Since p is the smallest
prime factor of N,

p ≤
√

N.

Improvements. We only need to divide by primes
2,3,5,7,11, . . . (but we need a list of these or some way of
generating them).

By the Prime Number Theorem this saves a factor of order
log N, which is not very significant.

Richard Brent Integer Factorisation

Trial division

The simplest way to factor N is to divide it by 2, 3, 4, . . . until we
find some p | N. Then p is the smallest factor of N and must be
prime (otherwise N would have a smaller factor).
Drawback. The time required is proportional to p. Thus, trial
division can be very slow if p is large. Since p is the smallest
prime factor of N,

p ≤
√

N.

Improvements. We only need to divide by primes
2,3,5,7,11, . . . (but we need a list of these or some way of
generating them).
By the Prime Number Theorem this saves a factor of order
log N, which is not very significant.

Richard Brent Integer Factorisation

Fermat’s Method
Trial division is good for finding small factors. Fermat (1643)
proposed a method that is good for finding factors that are
close to

√
N – the other extreme.

Suppose N is odd and N = uv , where 0 < u ≤ v .
Let

x =
v + u

2
, y =

v − u
2

.

Note that x and y are integers, since v ± u is even.

x + y = v , x − y = u,

N = uv = (x − y)(x + y) = x2 − y2

Fermat tries to find integers x and y satisfying the equation
x2 − N = y2, with y small. Thus, he starts with x = d

√
Ne, the

smallest integer whose square is ≥ N.

Richard Brent Integer Factorisation

Fermat’s Method
Trial division is good for finding small factors. Fermat (1643)
proposed a method that is good for finding factors that are
close to

√
N – the other extreme.

Suppose N is odd and N = uv , where 0 < u ≤ v .
Let

x =
v + u

2
, y =

v − u
2

.

Note that x and y are integers, since v ± u is even.

x + y = v , x − y = u,

N = uv = (x − y)(x + y) = x2 − y2

Fermat tries to find integers x and y satisfying the equation
x2 − N = y2, with y small. Thus, he starts with x = d

√
Ne, the

smallest integer whose square is ≥ N.

Richard Brent Integer Factorisation

Fermat’s Method
Trial division is good for finding small factors. Fermat (1643)
proposed a method that is good for finding factors that are
close to

√
N – the other extreme.

Suppose N is odd and N = uv , where 0 < u ≤ v .
Let

x =
v + u

2
, y =

v − u
2

.

Note that x and y are integers, since v ± u is even.

x + y = v , x − y = u,

N = uv = (x − y)(x + y) = x2 − y2

Fermat tries to find integers x and y satisfying the equation
x2 − N = y2, with y small. Thus, he starts with x = d

√
Ne, the

smallest integer whose square is ≥ N.

Richard Brent Integer Factorisation

Fermat’s Method
Trial division is good for finding small factors. Fermat (1643)
proposed a method that is good for finding factors that are
close to

√
N – the other extreme.

Suppose N is odd and N = uv , where 0 < u ≤ v .
Let

x =
v + u

2
, y =

v − u
2

.

Note that x and y are integers, since v ± u is even.

x + y = v , x − y = u,

N = uv = (x − y)(x + y) = x2 − y2

Fermat tries to find integers x and y satisfying the equation
x2 − N = y2, with y small. Thus, he starts with x = d

√
Ne, the

smallest integer whose square is ≥ N.

Richard Brent Integer Factorisation

Fermat by hand (or on a calculator)

Suppose N = 9401. We find 962 < N < 972 = 9409, so start
with x = 97 and increase x by 1 until (hopefully) we find a value
such that x2 − N is a perfect square.

It’s easy to increase x by 1 and update x2 − N, since
(x + 1)2 − x2 = 2x + 1.

x 2x + 1 x2 − N
97 195 8
98 197 203
99 199 400 = 202

Thus N = 992 − 202 = (99− 20)(99 + 20) = 79 · 119.
It would be much more work to find this by trial division!

Richard Brent Integer Factorisation

Fermat by hand (or on a calculator)

Suppose N = 9401. We find 962 < N < 972 = 9409, so start
with x = 97 and increase x by 1 until (hopefully) we find a value
such that x2 − N is a perfect square.
It’s easy to increase x by 1 and update x2 − N, since
(x + 1)2 − x2 = 2x + 1.

x 2x + 1 x2 − N
97 195 8
98 197 203
99 199 400 = 202

Thus N = 992 − 202 = (99− 20)(99 + 20) = 79 · 119.

It would be much more work to find this by trial division!

Richard Brent Integer Factorisation

Fermat by hand (or on a calculator)

Suppose N = 9401. We find 962 < N < 972 = 9409, so start
with x = 97 and increase x by 1 until (hopefully) we find a value
such that x2 − N is a perfect square.
It’s easy to increase x by 1 and update x2 − N, since
(x + 1)2 − x2 = 2x + 1.

x 2x + 1 x2 − N
97 195 8
98 197 203
99 199 400 = 202

Thus N = 992 − 202 = (99− 20)(99 + 20) = 79 · 119.
It would be much more work to find this by trial division!

Richard Brent Integer Factorisation

Problems with Fermat’s Method

I The factors u and v of N that are found by Fermat’s method
might not be prime, so they have to be factored (but this
should not be so hard, since they are smaller than N).

I The worst case (u = 3, v = N/3) is very slow – even
slower than trial division.

Trial division (by odd divisors) takes about u/2 steps.
Fermat takes about

x −
√

N =
u + v

2
−
√

N =
u
2

+

(
N
2u
−
√

N
)

steps,

and
N
2u

>
√

N if u <
√

N
2

.

Richard Brent Integer Factorisation

Problems with Fermat’s Method

I The factors u and v of N that are found by Fermat’s method
might not be prime, so they have to be factored (but this
should not be so hard, since they are smaller than N).

I The worst case (u = 3, v = N/3) is very slow – even
slower than trial division.

Trial division (by odd divisors) takes about u/2 steps.

Fermat takes about

x −
√

N =
u + v

2
−
√

N =
u
2

+

(
N
2u
−
√

N
)

steps,

and
N
2u

>
√

N if u <
√

N
2

.

Richard Brent Integer Factorisation

Problems with Fermat’s Method

I The factors u and v of N that are found by Fermat’s method
might not be prime, so they have to be factored (but this
should not be so hard, since they are smaller than N).

I The worst case (u = 3, v = N/3) is very slow – even
slower than trial division.

Trial division (by odd divisors) takes about u/2 steps.
Fermat takes about

x −
√

N =
u + v

2
−
√

N =
u
2

+

(
N
2u
−
√

N
)

steps,

and
N
2u

>
√

N if u <
√

N
2

.

Richard Brent Integer Factorisation

Improving Fermat – the Quadratic Sieve
Fermat’s method tries to find x , y such that x2 − y2 = N, but it
would be enough to find x , y such that

x2 − y2 = 0 mod N,

i.e.
x2 = y2 mod N,

provided x 6= ±y mod N.

Then gcd(x − y ,N) will give a factor of N.
The quadratic sieve (QS) method tries to factor x2

i mod N for
several different xi , and combine the results to get an equation

x2 = y2 mod N.

With luck (at least 50% of the time) this gives nontrivial
factors of N.

Richard Brent Integer Factorisation

Improving Fermat – the Quadratic Sieve
Fermat’s method tries to find x , y such that x2 − y2 = N, but it
would be enough to find x , y such that

x2 − y2 = 0 mod N,

i.e.
x2 = y2 mod N,

provided x 6= ±y mod N.
Then gcd(x − y ,N) will give a factor of N.

The quadratic sieve (QS) method tries to factor x2
i mod N for

several different xi , and combine the results to get an equation

x2 = y2 mod N.

With luck (at least 50% of the time) this gives nontrivial
factors of N.

Richard Brent Integer Factorisation

Improving Fermat – the Quadratic Sieve
Fermat’s method tries to find x , y such that x2 − y2 = N, but it
would be enough to find x , y such that

x2 − y2 = 0 mod N,

i.e.
x2 = y2 mod N,

provided x 6= ±y mod N.
Then gcd(x − y ,N) will give a factor of N.
The quadratic sieve (QS) method tries to factor x2

i mod N for
several different xi , and combine the results to get an equation

x2 = y2 mod N.

With luck (at least 50% of the time) this gives nontrivial
factors of N.

Richard Brent Integer Factorisation

Small Example of the Quadratic Sieve
Consider N = 1649, so 40 <

√
N < 41.

412 = 1681 = 32 = 25 mod N (∗)
422 = 1764 = 115 = 5 · 23 mod N
432 = 1849 = 200 = 23 · 52 mod N (∗)

Multiply the two “relations” marked (∗), giving

(41 · 43)2 = 28 · 52 = (24 · 5)2 mod N,

i.e. x2 = y2 mod N,

where x = 41 · 43 = 114 mod N, and y = 24 · 5 = 80.
We were lucky, because x 6= ±y mod N.

gcd(x − y ,N) = gcd(114− 80,N) = 17,

and it’s easy to check that 17 | N, in fact N = 17 · 97. This
would not have been so easy to find using Fermat’s method.

Richard Brent Integer Factorisation

How lucky were we?
Suppose N = p · q where p, q are distinct primes, and

x2 = y2 mod N.

Thus N | (x − y)(x + y),

so p | (x − y) or p | (x + y)

and q | (x − y) or q | (x + y).

There are 4 cases. If p | (x − y) and q | (x − y) then N|(x − y),
so x = y mod N and we don’t find a factor of N.
Similarly, if p | (x + y) and q | (x + y) then N|(x + y), so
x = −y mod N and we don’t find a factor.

However, in the other two cases we do find a factor. For
example, if p | (x − y) and q | (x + y), we get p from
gcd(N, x − y) and q from gcd(N, x + y).
If the 4 cases are equally likely, we have a 50% chance of
success.

Richard Brent Integer Factorisation

How lucky were we?
Suppose N = p · q where p, q are distinct primes, and

x2 = y2 mod N.

Thus N | (x − y)(x + y),

so p | (x − y) or p | (x + y)

and q | (x − y) or q | (x + y).

There are 4 cases. If p | (x − y) and q | (x − y) then N|(x − y),
so x = y mod N and we don’t find a factor of N.
Similarly, if p | (x + y) and q | (x + y) then N|(x + y), so
x = −y mod N and we don’t find a factor.
However, in the other two cases we do find a factor. For
example, if p | (x − y) and q | (x + y), we get p from
gcd(N, x − y) and q from gcd(N, x + y).

If the 4 cases are equally likely, we have a 50% chance of
success.

Richard Brent Integer Factorisation

How lucky were we?
Suppose N = p · q where p, q are distinct primes, and

x2 = y2 mod N.

Thus N | (x − y)(x + y),

so p | (x − y) or p | (x + y)

and q | (x − y) or q | (x + y).

There are 4 cases. If p | (x − y) and q | (x − y) then N|(x − y),
so x = y mod N and we don’t find a factor of N.
Similarly, if p | (x + y) and q | (x + y) then N|(x + y), so
x = −y mod N and we don’t find a factor.
However, in the other two cases we do find a factor. For
example, if p | (x − y) and q | (x + y), we get p from
gcd(N, x − y) and q from gcd(N, x + y).
If the 4 cases are equally likely, we have a 50% chance of
success.

Richard Brent Integer Factorisation

A Larger Example
Let’s try N = 1098413. Compute x2 − N for x >

√
N

and try to factor x2 − N using only primes in the
factor base S = {2,3,5,7,11,13,17,19,23}:

10512 = 22 · 7 · 13 · 17 mod N
10632 = 22 · 73 · 23 mod N (∗)
10772 = 22 · 7 · 133 mod N (∗)
11192 = 22 · 7 · 172 · 19 mod N
11422 = 72 · 13 · 17 · 19 mod N
12372 = 22 · 13 · 192 · 23 mod (∗)

Multiply the relations (∗) to get:

(1063 · 1077 · 1237)2 = (23 · 72 · 132 · 19 · 23)2 mod N,

i.e. 3263302 = 3916382 mod N,

and compute gcd(N,391638− 326330) = 563,
giving N = 563 · 1951.

Richard Brent Integer Factorisation

How to find the starred relations

If N is large we might get thousands of relations – how do we
predict which ones to multiply in order to get a square?

The problem boils down to linear algebra.
Take a matrix with a column for each prime in the factor base,
and a row for each relation. Enter 0 if the prime exponent is
even and 1 if it is odd.
Now, we have to find a set of rows whose sum (mod 2) is all
zeros.
In other words, find a linear dependency between the rows of
the matrix, working over the field F2 = {0,1} (where the
operations are addition and multiplication mod 2).

Richard Brent Integer Factorisation

How to find the starred relations

If N is large we might get thousands of relations – how do we
predict which ones to multiply in order to get a square?
The problem boils down to linear algebra.

Take a matrix with a column for each prime in the factor base,
and a row for each relation. Enter 0 if the prime exponent is
even and 1 if it is odd.
Now, we have to find a set of rows whose sum (mod 2) is all
zeros.
In other words, find a linear dependency between the rows of
the matrix, working over the field F2 = {0,1} (where the
operations are addition and multiplication mod 2).

Richard Brent Integer Factorisation

How to find the starred relations

If N is large we might get thousands of relations – how do we
predict which ones to multiply in order to get a square?
The problem boils down to linear algebra.
Take a matrix with a column for each prime in the factor base,
and a row for each relation. Enter 0 if the prime exponent is
even and 1 if it is odd.

Now, we have to find a set of rows whose sum (mod 2) is all
zeros.
In other words, find a linear dependency between the rows of
the matrix, working over the field F2 = {0,1} (where the
operations are addition and multiplication mod 2).

Richard Brent Integer Factorisation

How to find the starred relations

If N is large we might get thousands of relations – how do we
predict which ones to multiply in order to get a square?
The problem boils down to linear algebra.
Take a matrix with a column for each prime in the factor base,
and a row for each relation. Enter 0 if the prime exponent is
even and 1 if it is odd.
Now, we have to find a set of rows whose sum (mod 2) is all
zeros.

In other words, find a linear dependency between the rows of
the matrix, working over the field F2 = {0,1} (where the
operations are addition and multiplication mod 2).

Richard Brent Integer Factorisation

How to find the starred relations

If N is large we might get thousands of relations – how do we
predict which ones to multiply in order to get a square?
The problem boils down to linear algebra.
Take a matrix with a column for each prime in the factor base,
and a row for each relation. Enter 0 if the prime exponent is
even and 1 if it is odd.
Now, we have to find a set of rows whose sum (mod 2) is all
zeros.
In other words, find a linear dependency between the rows of
the matrix, working over the field F2 = {0,1} (where the
operations are addition and multiplication mod 2).

Richard Brent Integer Factorisation

Example
For example, with N = 1098413, the matrix we get is:

2 3 5 7 11 13 17 19 23
0 0 0 1 0 1 1 0 0
0 0 0 1 0 0 0 0 1 (∗)
0 0 0 1 0 1 0 0 0 (∗)
0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0 1 (∗)


(the numbers in grey are the primes in the factor base)

Adding the rows marked (∗), using arithmetic mod 2, we get[
0 0 0 0 0 0 0 0 0

]
,

which means that these rows are linearly dependent over F2.
Finding a linear dependency takes about the same work as
solving a system of linear equations, and is feasible even if the
matrix is very large.

Richard Brent Integer Factorisation

Example
For example, with N = 1098413, the matrix we get is:

2 3 5 7 11 13 17 19 23
0 0 0 1 0 1 1 0 0
0 0 0 1 0 0 0 0 1 (∗)
0 0 0 1 0 1 0 0 0 (∗)
0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0 1 (∗)


(the numbers in grey are the primes in the factor base)
Adding the rows marked (∗), using arithmetic mod 2, we get[

0 0 0 0 0 0 0 0 0
]
,

which means that these rows are linearly dependent over F2.

Finding a linear dependency takes about the same work as
solving a system of linear equations, and is feasible even if the
matrix is very large.

Richard Brent Integer Factorisation

Example
For example, with N = 1098413, the matrix we get is:

2 3 5 7 11 13 17 19 23
0 0 0 1 0 1 1 0 0
0 0 0 1 0 0 0 0 1 (∗)
0 0 0 1 0 1 0 0 0 (∗)
0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0 1 (∗)


(the numbers in grey are the primes in the factor base)
Adding the rows marked (∗), using arithmetic mod 2, we get[

0 0 0 0 0 0 0 0 0
]
,

which means that these rows are linearly dependent over F2.
Finding a linear dependency takes about the same work as
solving a system of linear equations, and is feasible even if the
matrix is very large.

Richard Brent Integer Factorisation

Related Factoring Methods

I Instead of just considering x2 − N we can consider several
quadratic polynomials aix2 + bix + ci where
b2

i − 4aici = N. This gives the Multiple Polynomial
Quadratic Sieve (MPQS), which is faster than the quadratic
sieve if the polynomials are chosen correctly.

I Instead of working over the integers modN, we can work
over number fields. This gives the Number Field Sieve
(NFS) which is complicated but the best method known for
factoring large N.

I QS, MPQS and NFS take a time which depends mainly on
the size of N and is more or less independent of the size of
the factors of N (unlike trial division and other methods that
we’ll consider later).

Richard Brent Integer Factorisation

Example – the Ninth Fermat Number
Fermat numbers are numbers of the form 22n

+ 1.

Fermat thought they were all prime, but Euler found the
factorisation:

F5 = 641 · 6700417.

F6, F7 and F8 are not too hard to factor, but

F9 = 2424833 · c148,

where c148 is a composite number with 148 decimal digits.
Using the Number Field Sieve, the factors of c148 were found:

c148 = p49 · p99,

where
p49 = 7455602825647884208337395736200454918783366342657
and p99 is a prime with 99 decimal digits – you can find it by
division!

Richard Brent Integer Factorisation

Example – the Ninth Fermat Number
Fermat numbers are numbers of the form 22n

+ 1.
Fermat thought they were all prime, but Euler found the
factorisation:

F5 = 641 · 6700417.

F6, F7 and F8 are not too hard to factor, but

F9 = 2424833 · c148,

where c148 is a composite number with 148 decimal digits.

Using the Number Field Sieve, the factors of c148 were found:

c148 = p49 · p99,

where
p49 = 7455602825647884208337395736200454918783366342657
and p99 is a prime with 99 decimal digits – you can find it by
division!

Richard Brent Integer Factorisation

Example – the Ninth Fermat Number
Fermat numbers are numbers of the form 22n

+ 1.
Fermat thought they were all prime, but Euler found the
factorisation:

F5 = 641 · 6700417.

F6, F7 and F8 are not too hard to factor, but

F9 = 2424833 · c148,

where c148 is a composite number with 148 decimal digits.
Using the Number Field Sieve, the factors of c148 were found:

c148 = p49 · p99,

where
p49 = 7455602825647884208337395736200454918783366342657
and p99 is a prime with 99 decimal digits – you can find it by
division!

Richard Brent Integer Factorisation

Current Record

The largest number factored so far by NFS is RSA768, which is
a number with 768 bits (232 decimal digits). It turned out to be
a product of two primes, each having 116 decimal digits
(though not close enough to be found by Fermat’s method).

3347807169895689878604416984821269081770479498371376856891

2431388982883793878002287614711652531743087737814467999489

and

3674604366679959042824463379962795263227915816434308764267

6032283815739666511279233373417143396810270092798736308917

It’s not yet feasible to factor 1024-bit (≈ 300 digit) numbers, but
it might be in a few years’ time.

Richard Brent Integer Factorisation

Current Record

The largest number factored so far by NFS is RSA768, which is
a number with 768 bits (232 decimal digits). It turned out to be
a product of two primes, each having 116 decimal digits
(though not close enough to be found by Fermat’s method).

3347807169895689878604416984821269081770479498371376856891

2431388982883793878002287614711652531743087737814467999489

and

3674604366679959042824463379962795263227915816434308764267

6032283815739666511279233373417143396810270092798736308917

It’s not yet feasible to factor 1024-bit (≈ 300 digit) numbers, but
it might be in a few years’ time.

Richard Brent Integer Factorisation

Another Idea – the Pollard “p-1” Method
Suppose N = p · q where p is a prime (not too large); q might
be prime or composite.

By Fermat’s little theorem,

2p−1 = 1 mod p.

Let E be any multiple of p − 1. Then

2E = 1 mod p,

so
p | (2E − 1).

If we don’t know p but can guess a suitable E , we can compute

gcd(2E − 1,N),

and (with some luck) this will give us p.

Richard Brent Integer Factorisation

Another Idea – the Pollard “p-1” Method
Suppose N = p · q where p is a prime (not too large); q might
be prime or composite.
By Fermat’s little theorem,

2p−1 = 1 mod p.

Let E be any multiple of p − 1. Then

2E = 1 mod p,

so
p | (2E − 1).

If we don’t know p but can guess a suitable E , we can compute

gcd(2E − 1,N),

and (with some luck) this will give us p.

Richard Brent Integer Factorisation

Another Idea – the Pollard “p-1” Method
Suppose N = p · q where p is a prime (not too large); q might
be prime or composite.
By Fermat’s little theorem,

2p−1 = 1 mod p.

Let E be any multiple of p − 1. Then

2E = 1 mod p,

so
p | (2E − 1).

If we don’t know p but can guess a suitable E , we can compute

gcd(2E − 1,N),

and (with some luck) this will give us p.

Richard Brent Integer Factorisation

Another Idea – the Pollard “p-1” Method
Suppose N = p · q where p is a prime (not too large); q might
be prime or composite.
By Fermat’s little theorem,

2p−1 = 1 mod p.

Let E be any multiple of p − 1. Then

2E = 1 mod p,

so
p | (2E − 1).

If we don’t know p but can guess a suitable E , we can compute

gcd(2E − 1,N),

and (with some luck) this will give us p.
Richard Brent Integer Factorisation

Guessing E

If all the prime power factors of p − 1 are ≤ B, take

E =
∏

p
αi
i ≤B

pαi
i .

Because E might be large (roughly eB), we don’t usually
compute E explicitly; instead we compute 2E mod N using a
loop like:

a← 2; for i = 1,2, . . . do a← ap
αi
i mod N.

Richard Brent Integer Factorisation

Guessing E continued

In practice we don’t know the factors of p− 1 (because we don’t
know p), but we do know that the time for the computation is
proportional to B, so we just take a fairly large value, say
B ≈ 1000000, depending on how much computer time we are
willing to use.

If we are lucky, and all the prime power factors of p− 1 are ≤ B,
then we will find the factor p of N.
Otherwise, we have to increase B and try again, or try another
method (e.g. MPQS).

Richard Brent Integer Factorisation

Guessing E continued

In practice we don’t know the factors of p− 1 (because we don’t
know p), but we do know that the time for the computation is
proportional to B, so we just take a fairly large value, say
B ≈ 1000000, depending on how much computer time we are
willing to use.
If we are lucky, and all the prime power factors of p− 1 are ≤ B,
then we will find the factor p of N.

Otherwise, we have to increase B and try again, or try another
method (e.g. MPQS).

Richard Brent Integer Factorisation

Guessing E continued

In practice we don’t know the factors of p− 1 (because we don’t
know p), but we do know that the time for the computation is
proportional to B, so we just take a fairly large value, say
B ≈ 1000000, depending on how much computer time we are
willing to use.
If we are lucky, and all the prime power factors of p− 1 are ≤ B,
then we will find the factor p of N.
Otherwise, we have to increase B and try again, or try another
method (e.g. MPQS).

Richard Brent Integer Factorisation

Example

The Pollard p − 1 method is great if we are lucky enough that
p − 1 has all “small” prime factors.

For example, Nohara found a 66-decimal digit factor p of
N = 960119 − 1.
It turns out that

p−1 = 22 ·3 ·5 ·7 ·17 ·23 ·31 ·163 ·401 ·617 ·4271 ·13681 ·22877 ·
43397 · 203459 · 1396027 · 6995393 · 13456591 · 2110402817,

and 2110402817 is small enough (if you have a fast computer).
However, this situation is unusual. A 66-digit number is
extremely unlikely to have all its prime factors so small.
(The chance is roughly 1 in a million.)

Richard Brent Integer Factorisation

Example

The Pollard p − 1 method is great if we are lucky enough that
p − 1 has all “small” prime factors.
For example, Nohara found a 66-decimal digit factor p of
N = 960119 − 1.

It turns out that

p−1 = 22 ·3 ·5 ·7 ·17 ·23 ·31 ·163 ·401 ·617 ·4271 ·13681 ·22877 ·
43397 · 203459 · 1396027 · 6995393 · 13456591 · 2110402817,

and 2110402817 is small enough (if you have a fast computer).
However, this situation is unusual. A 66-digit number is
extremely unlikely to have all its prime factors so small.
(The chance is roughly 1 in a million.)

Richard Brent Integer Factorisation

Example

The Pollard p − 1 method is great if we are lucky enough that
p − 1 has all “small” prime factors.
For example, Nohara found a 66-decimal digit factor p of
N = 960119 − 1.
It turns out that

p−1 = 22 ·3 ·5 ·7 ·17 ·23 ·31 ·163 ·401 ·617 ·4271 ·13681 ·22877 ·
43397 · 203459 · 1396027 · 6995393 · 13456591 · 2110402817,

and 2110402817 is small enough (if you have a fast computer).

However, this situation is unusual. A 66-digit number is
extremely unlikely to have all its prime factors so small.
(The chance is roughly 1 in a million.)

Richard Brent Integer Factorisation

Example

The Pollard p − 1 method is great if we are lucky enough that
p − 1 has all “small” prime factors.
For example, Nohara found a 66-decimal digit factor p of
N = 960119 − 1.
It turns out that

p−1 = 22 ·3 ·5 ·7 ·17 ·23 ·31 ·163 ·401 ·617 ·4271 ·13681 ·22877 ·
43397 · 203459 · 1396027 · 6995393 · 13456591 · 2110402817,

and 2110402817 is small enough (if you have a fast computer).
However, this situation is unusual. A 66-digit number is
extremely unlikely to have all its prime factors so small.
(The chance is roughly 1 in a million.)

Richard Brent Integer Factorisation

Worst Case

If p − 1 = 2q where q is a prime, then the Pollard “p − 1”
method is very slow.

(p,q) is called a “Sophie Germain” pair after Marie-Sophie
Germain (1776–1831). There seem to be infinitely many such
pairs, e.g. (5,2), (7,3), (11,5), (23,11), but no one has proved
this.
The problem is similar to the problem of twin primes, that is
pairs (p,p + 2) where p and p + 2 are both prime.

Richard Brent Integer Factorisation

Worst Case

If p − 1 = 2q where q is a prime, then the Pollard “p − 1”
method is very slow.
(p,q) is called a “Sophie Germain” pair after Marie-Sophie
Germain (1776–1831). There seem to be infinitely many such
pairs, e.g. (5,2), (7,3), (11,5), (23,11), but no one has proved
this.

The problem is similar to the problem of twin primes, that is
pairs (p,p + 2) where p and p + 2 are both prime.

Richard Brent Integer Factorisation

Worst Case

If p − 1 = 2q where q is a prime, then the Pollard “p − 1”
method is very slow.
(p,q) is called a “Sophie Germain” pair after Marie-Sophie
Germain (1776–1831). There seem to be infinitely many such
pairs, e.g. (5,2), (7,3), (11,5), (23,11), but no one has proved
this.
The problem is similar to the problem of twin primes, that is
pairs (p,p + 2) where p and p + 2 are both prime.

Richard Brent Integer Factorisation

The Elliptic Curve Method (ECM)

The set G = {1,2, . . . ,p − 1} forms a group of order p − 1 with
the operation “multiplication mod p” if p is a prime.

The Pollard p − 1 method works well if the group order is
“smooth” – meaning that all its prime factors are small.
In Lenstra’s Elliptic Curve Method (ECM), we can choose
different groups with orders close to (but not usually equal to) p,
until we are lucky and find one whose order is sufficiently
smooth.
By a result of Hasse, the group orders are in the interval
(p + 1− 2

√
p,p + 1 + 2

√
p).

ECM is the best method for finding “small” factors p of large
numbers N, say factors p < N1/3.
The running time of ECM depends mainly on the size of p, and
only weakly on the size of N.

Richard Brent Integer Factorisation

The Elliptic Curve Method (ECM)

The set G = {1,2, . . . ,p − 1} forms a group of order p − 1 with
the operation “multiplication mod p” if p is a prime.
The Pollard p − 1 method works well if the group order is
“smooth” – meaning that all its prime factors are small.

In Lenstra’s Elliptic Curve Method (ECM), we can choose
different groups with orders close to (but not usually equal to) p,
until we are lucky and find one whose order is sufficiently
smooth.
By a result of Hasse, the group orders are in the interval
(p + 1− 2

√
p,p + 1 + 2

√
p).

ECM is the best method for finding “small” factors p of large
numbers N, say factors p < N1/3.
The running time of ECM depends mainly on the size of p, and
only weakly on the size of N.

Richard Brent Integer Factorisation

The Elliptic Curve Method (ECM)

The set G = {1,2, . . . ,p − 1} forms a group of order p − 1 with
the operation “multiplication mod p” if p is a prime.
The Pollard p − 1 method works well if the group order is
“smooth” – meaning that all its prime factors are small.
In Lenstra’s Elliptic Curve Method (ECM), we can choose
different groups with orders close to (but not usually equal to) p,
until we are lucky and find one whose order is sufficiently
smooth.

By a result of Hasse, the group orders are in the interval
(p + 1− 2

√
p,p + 1 + 2

√
p).

ECM is the best method for finding “small” factors p of large
numbers N, say factors p < N1/3.
The running time of ECM depends mainly on the size of p, and
only weakly on the size of N.

Richard Brent Integer Factorisation

The Elliptic Curve Method (ECM)

The set G = {1,2, . . . ,p − 1} forms a group of order p − 1 with
the operation “multiplication mod p” if p is a prime.
The Pollard p − 1 method works well if the group order is
“smooth” – meaning that all its prime factors are small.
In Lenstra’s Elliptic Curve Method (ECM), we can choose
different groups with orders close to (but not usually equal to) p,
until we are lucky and find one whose order is sufficiently
smooth.
By a result of Hasse, the group orders are in the interval
(p + 1− 2

√
p,p + 1 + 2

√
p).

ECM is the best method for finding “small” factors p of large
numbers N, say factors p < N1/3.
The running time of ECM depends mainly on the size of p, and
only weakly on the size of N.

Richard Brent Integer Factorisation

The Elliptic Curve Method (ECM)

The set G = {1,2, . . . ,p − 1} forms a group of order p − 1 with
the operation “multiplication mod p” if p is a prime.
The Pollard p − 1 method works well if the group order is
“smooth” – meaning that all its prime factors are small.
In Lenstra’s Elliptic Curve Method (ECM), we can choose
different groups with orders close to (but not usually equal to) p,
until we are lucky and find one whose order is sufficiently
smooth.
By a result of Hasse, the group orders are in the interval
(p + 1− 2

√
p,p + 1 + 2

√
p).

ECM is the best method for finding “small” factors p of large
numbers N, say factors p < N1/3.

The running time of ECM depends mainly on the size of p, and
only weakly on the size of N.

Richard Brent Integer Factorisation

The Elliptic Curve Method (ECM)

The set G = {1,2, . . . ,p − 1} forms a group of order p − 1 with
the operation “multiplication mod p” if p is a prime.
The Pollard p − 1 method works well if the group order is
“smooth” – meaning that all its prime factors are small.
In Lenstra’s Elliptic Curve Method (ECM), we can choose
different groups with orders close to (but not usually equal to) p,
until we are lucky and find one whose order is sufficiently
smooth.
By a result of Hasse, the group orders are in the interval
(p + 1− 2

√
p,p + 1 + 2

√
p).

ECM is the best method for finding “small” factors p of large
numbers N, say factors p < N1/3.
The running time of ECM depends mainly on the size of p, and
only weakly on the size of N.

Richard Brent Integer Factorisation

ECM Examples
I factored the 10-th and 11-th Fermat numbers using ECM.

For example,

F10 = 21024 + 1 = p8 · p10 · p40 · p252,

p8 = 45592577
p10 = 6487031809
p40 = 4659775785220018543264560743076778192897

p252 = 130439874405 · · · 127014424577

p8 and p10 are “easy”.
p40 was found by ECM, and would have been very hard to find
by any other method.
p252 can be found by division once the other factors are known
(of course, we have to check that it is prime).

Richard Brent Integer Factorisation

ECM Examples
I factored the 10-th and 11-th Fermat numbers using ECM.
For example,

F10 = 21024 + 1 = p8 · p10 · p40 · p252,

p8 = 45592577
p10 = 6487031809
p40 = 4659775785220018543264560743076778192897

p252 = 130439874405 · · · 127014424577

p8 and p10 are “easy”.
p40 was found by ECM, and would have been very hard to find
by any other method.
p252 can be found by division once the other factors are known
(of course, we have to check that it is prime).

Richard Brent Integer Factorisation

ECM Examples continued

F11 = 22048 + 1 = p6 · p′6 · p21 · p22 · p564,

p6 = 319489
p′6 = 974849

p21 = 167988556341760475137
p22 = 3560841906445833920513

p564 = 1734624471 · · · 6598834177

The 21-digit and 22-digit factors were found by ECM; then it is
easy to find the 564-digit factor p564 (though proving that it is
prime is not so easy).

Richard Brent Integer Factorisation

ECM Record

The largest factor found by ECM is a 73-digit factor

p73 = 1808422353177349564546512035512530001279481259854248860454348989451026887

of
21181 − 1

(found by Bos, Kleinjung, Lenstra and Montgomery on 7 March
2010, using a cluster of PlayStation 3 game consoles).

The largest prime factor of the group order is 10801302048203.

Richard Brent Integer Factorisation

ECM Record

The largest factor found by ECM is a 73-digit factor

p73 = 1808422353177349564546512035512530001279481259854248860454348989451026887

of
21181 − 1

(found by Bos, Kleinjung, Lenstra and Montgomery on 7 March
2010, using a cluster of PlayStation 3 game consoles).
The largest prime factor of the group order is 10801302048203.

Richard Brent Integer Factorisation

Summary

We’ve looked at several methods for factoring integers:
I Trial division (simple but slow).
I Fermat’s method (also simple, but slow in most cases).
I Quadratic sieve (QS) and MPQS.
I Number field sieve (NFS) – the best general-purpose

method.
I Pollard p − 1 (fast if you are lucky).
I Elliptic curve method (ECM) – the best method for finding

“small” factors.
A good strategy for factoring is:

I Check if the number N to be factored is a prime power!
I If not, try to find factor(s) by ECM and divide them out.
I If what remains is not a prime power, try MPQS or NFS.

Richard Brent Integer Factorisation

References

1. Richard Brent, Factor Tables,
http://wwwmaths.anu.edu.au/~brent/factors.html
(has links to other websites of interest).

2. Richard Crandall and Carl Pomerance, Prime Numbers: A
Computational Perspective, second edition, Springer-Verlag,
New York, 2005.

3. G. H. Hardy, E. M. Wright, A. Wiles et al, An Introduction to
the Theory of Numbers, sixth edition, Oxford University Press,
2008.

4. Hans Riesel, Prime Numbers and Computer Methods for
Factorization, second edition, Birkhäuser Boston, 1994.

5. Sam Wagstaff, The Cunningham Project,
http://homes.cerias.purdue.edu/~ssw/cun/.

Richard Brent Integer Factorisation

http://wwwmaths.anu.edu.au/~brent/factors.html
http://homes.cerias.purdue.edu/~ssw/cun/

