
Decomposing Gram matrices

Richard P. Brent
MSI & CECS

ANU

Describing joint work with
Will Orrick, Judy-anne Osborn

and Paul Zimmermann

14 May 2010

Richard Brent Decomposing Gram matrices

Abbreviations

I maxdet — Hadamard maximal determinant problem
or a matrix with maximal determinant

I JO — Judy-anne Osborn
I PZ — Paul Zimmermann
I WO — Will Orrick

I OS — Will Orrick and Bruce Solomon

I BOOZ — Brent, Orrick, Osborn & Zimmermann

Richard Brent Decomposing Gram matrices

Abstract

When searching for maximal or large-determinant {−1, +1}
matrices R we construct putative Gram matrices G and try to
decompose them — either find R such that G = RRT or show
that no such decomposition exists. We may also know another
matrix H such that (possibly) H = RT R; this extra information
can be used to speed up the search for R. In this talk we
outline a backtracking search algorithm to find R or prove that it
does not exist. The algorithm is similar to one used by Orrick to
find a maximal matrix of order 15, but has some significant
differences. We describe our C implementation, its current
limitations, and mention possible future improvements.

Richard Brent Decomposing Gram matrices

The problem

Given n ∈ Z, n > 0, we want to find matrices R ∈ {±1}n×n with
maximal (or sometimes just large) determinant det(R).
(Or |det(R)| since the sign is irrelevant.)

The case n = 0 mod 4 is the “Hadamard order” case which you
have heard about in Jennifer Seberry’s talks and will hear more
about tomorrow.

If n > 2 and n 6= 0 mod 4, we can not meet Hadamard’s upper
bound nn/2, but we can still ask for a matrix with maximal
determinant. There are applications to “D-optimal designs”.

We shall restrict attention to the case n odd, since the case
n = 2 mod 4 has some technical differences. When n is odd,
we naturally get two sub-cases: n = 1 mod 4 and n = 3 mod 4.

Richard Brent Decomposing Gram matrices

Our approach

Our approach is similar to that used in 2004 by WO to find the
maxdet matrix of order n = 15 (following earlier work by Ehlich,
Moyssiadis, Kounias and Chadjipantelis for other orders).

First we find putative Gram matrices G as described in PZ’s talk
this morning; then we try to decompose them

G = RRT , R ∈ {±1}n×n.

Richard Brent Decomposing Gram matrices

Some history of the decomposition program(s)

In her Honours thesis (2002), JO outlined essentially the
procedure that we use, and it was implemented (in
Mathematica) at about the same time by WO.

In April–May 2009, JO and I visited PZ in Nancy, and a
prototype Maple program was written (by PZ, with us looking
over his shoulder).

After returning to Canberra, JO and I started writing a C
program based on PZ’s Maple program. This project soon
“forked” to give two programs, one (which I will describe today)
aiming for efficiency in the decomposition, and the other (to be
mentioned in JO’s talk) to give information about the search
trees.

Richard Brent Decomposing Gram matrices

More details

We can assume that PZ’s Gram-finding program finds, up to
equivalence, all the matrices G satisfying the obvious
necessary conditions for a decomposition to exist, and having
det(G) ≥ B2 for some bound B ≤ nn/2.

The conditions on G include:
I G ∈ {−n, . . . ,+n}n×n, diag(G) = nI;
I G symmetric and positive definite;
I det(G) a perfect square;
I the elements gi,j of G satisfy gi,j = n mod 4 (this is not

necessary, but we can assume it without loss of generality).

Richard Brent Decomposing Gram matrices

Equivalence

If P and Q are signed permutation matrices, then PRQ is
equivalent to R (for our purposes) since det(PRQ) = ±det(R).
We write PRQ ∼ R.

If G = RRT then (PRQ)(PRQ)T = PGPT , so we can regard G
as equivalent to PGPT . In other words, we are free to permute
rows and columns of G and/or change their signs (but
preserving symmetry). We write PGPT ' G.

Similarly, we can permute the columns of R, and/or change
their signs, since (RQ)(RQ)T = RRT .

Richard Brent Decomposing Gram matrices

Using pairs of Gram matrices

If G = RRT , then there is a “dual” Gram matrix H = RT R. Also,
det(H) = det(G), so PZ’s program should have found (a matrix
equivalent to) H as well as G. Using H as well as G gives more
constraints on possible factors R, so speeds up the search.

Since G = RHR−1 is similar to H, the matrices G and H have
the same characteristic equation. Thus, if PZ’s program
generates a list of matrices G1, . . . , Gm say, we can restrict
attention to pairs (Gi , Gj) with the same characteristic equation
(and a fortiori the same determinant).

Richard Brent Decomposing Gram matrices

Effect of signed permutations on H

If, instead of H = RT R, we have a (symmetric) permutation
H̃ = QT HQ, then

H̃ = R̃T R̃, G = R̃R̃T ,

where R̃ = RQ. Thus, we should obtain a solution R̃ ∼ R.

Without loss of generality, we can assume that H = H̃ and
R = R̃.

Richard Brent Decomposing Gram matrices

Weakly self-dual solutions

If RT ∼ R, we say that R is self-dual.

If RRT ' RT R, we say that R is weakly self-dual.

In all known cases, if R is a maxdet matrix, then R is weakly
self-dual. Is this always true?

Note: The conjectured maxdet matrix of order 27 (with
determinant 546× 611 × 226, found by Tamura) is weakly
self-dual but not self-dual. Similarly for some Hadamard
matrices of orders ≥ 16.

Richard Brent Decomposing Gram matrices

Linear constraints

Suppose that G = RRT and

RT = [r1|r2| · · · |rn],

i.e. the rows of R are rT
1 , . . . , rT

n . Then

rT
i rj = gi,j , 1 ≤ i , j ≤ n.

If we already know the first k rows, then we get k linear
constraints involving row k + 1:

rT
i rk+1 = gi,k+1 for 1 ≤ i ≤ k .

Richard Brent Decomposing Gram matrices

Pruning the search space

Recall that we can permute columns of R without changing
G = RRT .

When finding row k + 1 we can permute columns to obtain the
lexicographically least solution, subject to the constraint that
rows 1, . . . , k are unchanged.

If we are trying to find a solution that also satisfies H = RT R,
then the permutations have to be restricted (with a slight abuse
of notation, they have to lie in the automorphism group of H).

Richard Brent Decomposing Gram matrices

Example

For example, writing “−” for −1, “+” for +1, “|” to show a block
boundary, and taking n = 7, we might consider a first row

−−−|+ + + +

then a second row

−− |+ | − −|+ +

then a third row
−|+ | − | − |+ | − |+ |

The blocks form a tree: row k contains at most 2k blocks, and
each block at row k splits into at most two blocks at row k + 1
(until eventually each block is a singleton and can not be
divided further).

Richard Brent Decomposing Gram matrices

Using the block structure

Suppose we have a block of size m at row k + 1. In general
there are 2m possible ways of filling the block with elements of
{±1}. However, we only need to distinguish m + 1 ways,
corresponding to say x entries +1 and m − x entries −1.

Suppose there are m blocks, with corresponding “x” values
x1, . . . , xm. We can express the k linear constraints as an
underdetermined system of k linear equations in the m
variables x1, . . . , xm. Of course, the xi have to be nonnegative
integers satisfying certain upper bounds (the corresponding
block sizes).

Richard Brent Decomposing Gram matrices

Storing the tree

In order to make it easy to construct the linear constraints and
to backtrack where necessary, we store the tree in a 3-D array
which is called the part structure (short for “partition”.)

A more storage-efficient data structure is possible, but storage
of order n3 is not a problem for the values of n that we are
considering (typically n < 40).

Richard Brent Decomposing Gram matrices

Solving the linear equations

We have k linear equations in m > k variables. The
corresponding matrix has full rank (i.e. rank k) because G is
positive definite.

Using Gaussian elimination with column pivoting, we can
assume that the leading k × k matrix is nonsingular. This
corresponds to k “basic” variables xi , i ∈ B.

The remaining m − k “non-basic” variables xi , i ∈ B can be
regarded as parameters. We enumerate the non-basic
variables exhaustively, and obtain the basic variables by a
matrix-vector multiplication, since the linear constraints imply
that the basic variables are an affine function of the non-basic
variables.

Richard Brent Decomposing Gram matrices

Checking constraints

If the basic variables thus obtained are not integral or lie
outside their bounds, there is no solution corresponding to the
given set of non-basic variables.

Richard Brent Decomposing Gram matrices

Weighting columns
Suppose the bounds on variable xi are 0 ≤ xi ≤ ui . The
enumeration of non-basic variables involves

U =
∏
i∈B

(ui + 1)

matrix-vector multiplications. Thus, to minimize U, it is best to
have the variables with large upper bounds ui in the basis.

One way of doing this, without provoking numerical instablility,
is to give column i a weight proportional to ui . Then the partial
pivoting is automatically biased towards selecting columns with
large ui so they tend to go in the basis.

For example, to decompose the conjectured maxdet Gram
matrix of order 29 (determinant (320× 712 × 228)2) took 9.4
seconds without weights but only 0.18 seconds with weights.

Richard Brent Decomposing Gram matrices

Quadratic constraints
How can we take advantage of the constraint RT R = H? One
way would be to build up columns of R at the same time as we
build rows of R using the constraint RRT = G. It is easier (and
probably faster) to build rows of R, but prune the search tree
using the information provided by H.

We have the relations

Gq+1 = RHqRT , q ∈ Z

(at most n such are linearly independent, by the
Cayley-Hamilton theorem). We can use these relations to
prune the search when generating R by rows.

It is best to use the relation for q = 2 instead of (or as well as)
the relation for q = 1, so as to use information from the lower
right corner of H earlier.

Richard Brent Decomposing Gram matrices

Use of linear programming

We have an integer programming problem, but if we drop the
constraint that the variables xi are integers, we get a linear
programming problem: find a feasible solution to a system of
linear equations subject to some inequality constraints.

If some subset of the non-basic variables have (integer) values
assigned, then the remaining non-basic and basic variables
have to satisfy a (smaller) linear program.

Using linear programming reduces the size U of the search
space, but at the cost of making each step slower. We have not
found a convincing example where linear programming actually
speeds up the search, but it could happen for sufficiently large
problems.

Richard Brent Decomposing Gram matrices

Randomised search

In cases where G is decomposable but it is difficult to find a
factor using a deterministic search, we can often do better with
a randomised search.

For example, if n = 27, there is a known Gram matrix G which
decomposes into RRT , giving a {±1} matrix R of determinant
546× 611 × 226 which is conjectured to be maximal [Tamura,
2005].

A randomised search explored 1, 295, 826 nodes and found a
solution in 8 hours; the deterministic search explored over 100
times as many nodes but only reached depth 17 before the
system crashed. The tree size is probably greater than 4× 109.

Richard Brent Decomposing Gram matrices

Some computational results

Computations were performed on the MSI’s AMD cluster orac:

I 224 AMD 64-bit processors
(56× quad-core 2.3 GhZ Opterons)

I 1 GB RAM each

Richard Brent Decomposing Gram matrices

Order 19

19 = 3 mod 4 so order 19 is harder than say order 21 (done in
1987) or order 25 (1959).

WO (2004) said: “Convincing conjectures exist for the maximal
determinants for orders n = 19, 22, 23, and 37. We hope that
the methods of this paper can be extended to handle at least
some of these cases. Order 19 may be tractable using the
current method with efficiency improvements in the computer
code, and perhaps parallelization.”

The prediction was correct, at least regarding orders 19 and 37!

Richard Brent Decomposing Gram matrices

Results for order 19

We took B = 833× 46 × 218 (97.5% of the Ehlich bound) since
there is a known {±1} matrix R1 with determinant B (found by
Smith, 1988, and conjectured to be optimal).

More precisely, there are known Gram matrices G1, G2 with
determinant B2, such that

G1 = R1RT
1 [Smith],

G2 = R2RT
2 = R3RT

3 [Cohn, 2000; OS, 2003],

where R1, R2, R3 are pairwise inequivalent.

Richard Brent Decomposing Gram matrices

The Gram matrix G1

The Gram matrix found and decomposed by Smith is

G1 =



19 3 3 3 3 3 3 − − − − − − − − − − − −
3 19 3 3 − − − − − − − − − − − − − − −
3 3 19 3 − − − − − − − − − − − − − − −
3 3 3 19 − − − − − − − − − − − − − − −
3 − − − 19 3 3 − − − − − − − − − − − −
3 − − − 3 19 3 − − − − − − − − − − − −
3 − − − 3 3 19 − − − − − − − − − − − −
− − − − − − − 19 3 3 − − − − − − − − −
− − − − − − − 3 19 3 − − − − − − − − −
− − − − − − − 3 3 19 − − − − − − − − −
− − − − − − − − − − 19 3 3 − − − − − −
− − − − − − − − − − 3 19 3 − − − − − −
− − − − − − − − − − 3 3 19 − − − − − −
− − − − − − − − − − − − − 19 3 3 − − −
− − − − − − − − − − − − − 3 19 3 − − −
− − − − − − − − − − − − − 3 3 19 − − −
− − − − − − − − − − − − − − − − 19 3 3
− − − − − − − − − − − − − − − − 3 19 3
− − − − − − − − − − − − − − − − 3 3 19


Here, as usual, “−” means “−1”.

Richard Brent Decomposing Gram matrices

The Gram matrix G2

The Gram matrix decomposed by Cohn and (differently) by OS
is:

G2 =



19 − − 3 − − 3 − − 3 − − − − − − − − −
− 19 3 3 − − − − − − − − − − − − − − −
− 3 19 3 − − − − − − − − − − − − − − −
3 3 3 19 − − − − − − − − − − − − − − −
− − − − 19 3 3 − − − − − − − − − − − −
− − − − 3 19 3 − − − − − − − − − − − −
3 − − − 3 3 19 − − − − − − − − − − − −
− − − − − − − 19 3 3 − − − − − − − − −
− − − − − − − 3 19 3 − − − − − − − − −
3 − − − − − − 3 3 19 − − − − − − − − −
− − − − − − − − − − 19 3 3 − − − − − −
− − − − − − − − − − 3 19 3 − − − − − −
− − − − − − − − − − 3 3 19 − − − − − −
− − − − − − − − − − − − − 19 3 3 − − −
− − − − − − − − − − − − − 3 19 3 − − −
− − − − − − − − − − − − − 3 3 19 − − −
− − − − − − − − − − − − − − − − 19 3 3
− − − − − − − − − − − − − − − − 3 19 3
− − − − − − − − − − − − − − − − 3 3 19



Richard Brent Decomposing Gram matrices

Our results for n = 19

PZ’s Gram finding program was run on 50 processors of orac.
The search was split into 2766 tasks, each corresponding to a
node at level 5 of the search tree (so each processor did 55 or
56 tasks).

After 188 hours, all processors had finished their tasks, and a
total of 9 putative Gram matrices had been found, including the
known matrices G1 and G2. The total CPU time was about 900
hours (so the load was not well-balanced).

In fact, all 9 candidates were found after 4 hours — the
remaining 184 hours were spent in a fruitless search for more.
This seems to be typical behaviour (e.g. for n = 29,
B = 329× 712 × 228).

Richard Brent Decomposing Gram matrices

Details of the cases

The square roots of the determinants of the putative Gram
matrices G, divided by 46 × 218, were:

I 840 (5 cases)
I 836.0625 = 13377/42 (1 case)
I 836 (1 case)
I 833 (2 cases, known)

Our decomposition program found that the first 7 matrices were
indecomposable, but the last two decomposed (as expected).
The running time was only 15 seconds (on one processor of
orac).

The 9 matrices all had different characteristic equations, so we
only had to consider the weakly self-dual case (G = H).

Richard Brent Decomposing Gram matrices

One of the solutions

Our program found the following factor of G1:

R =



− 1 1 1 1 1 1 − − − − − − − − − − − −
1 1 1 1 1 1 − 1 1 − 1 1 − 1 1 − − − −
1 1 1 1 1 − 1 1 − 1 1 − 1 1 − 1 − − −
1 1 1 1 − 1 1 − 1 1 − 1 1 − 1 1 − − −
1 1 1 − 1 1 1 − − 1 − 1 − 1 − − 1 1 1
1 1 − 1 1 1 1 1 − − − − 1 − 1 − 1 1 1
1 − 1 1 1 1 1 − 1 − 1 − − − − 1 1 1 1
− 1 1 − − 1 − 1 1 1 1 − 1 − − − 1 1 −
− 1 − 1 − − 1 1 1 1 1 1 − − − − 1 − 1
− − 1 1 1 − − 1 1 1 − 1 1 − − − − 1 1
− − − − 1 1 1 1 1 − − 1 1 1 − 1 1 − −
− − − − 1 1 1 1 − 1 1 1 − − 1 1 − 1 −
− − − − 1 1 1 − 1 1 1 − 1 1 1 − − − 1
− − 1 1 − − 1 − − − 1 1 1 1 1 − 1 1 −
− 1 1 − 1 − − − − − 1 1 1 − 1 1 1 − 1
− 1 − 1 − 1 − − − − 1 1 1 1 − 1 − 1 1
− 1 1 − − − 1 1 1 − − − − 1 1 1 − 1 1
− 1 − 1 1 − − − 1 1 − − − 1 1 1 1 1 −
− − 1 1 − 1 − 1 − 1 − − − 1 1 1 1 − 1


Exercise: Show that R is equivalent to Smith’s R1.

Richard Brent Decomposing Gram matrices

Summary for order 19

The maximal determinant is B = 833× 46 × 218 with three
(previously known) inequivalent solutions and two (previously
known) Gram matrices.

There may be more (inequivalent) solutions, but there are no
other Gram matrices of determinant B2.

Hence all solutions must be weakly self-dual.

The maxdet problem is now solved for n ≤ 21; the smallest
unknown case is n = 22.

Richard Brent Decomposing Gram matrices

Order 37

37 is much larger than 19. However, there is hope because
37 = 1 mod 4 and the maxdet matrix of order 37 must have
determinant close to the Barba bound.

Maxdet matrices are not known for orders 29 or 33, but they are
known for orders 25 and 41, since in these cases the Barba
bound can be attained — by Brouwer’s construction for order
25, and from the symmetric block design with parameters
(41, 16, 6) for order 41.

37 in some sense is “close” to 41.

Richard Brent Decomposing Gram matrices

Results for order 37

Here we took B = 72× 917 × 236. There is a known {±1}
matrix R with determinant B (93.6% of the Barba bound), found
by OS (2003). The corresponding Gram matrix is

G =



37 5 5 5 5 5 5 5 5 5 1 ... 1
5 37 1 1 1 1 1 1 1 1 1 ... 1
5 1 37 1 1 1 1 1 1 1 1 ... 1
5 1 1 37 1 1 1 1 1 1 1 ... 1
5 1 1 1 37 1 1 1 1 1 1 ... 1
5 1 1 1 1 37 1 1 1 1 1 ... 1
5 1 1 1 1 1 37 1 1 1 1 ... 1
5 1 1 1 1 1 1 37 1 1 1 ... 1
5 1 1 1 1 1 1 1 37 1 1 ... 1
5 1 1 1 1 1 1 1 1 37 1 ... 1
1 1 1 1 1 1 1 1 1 1 37 ... 1...

...
...

...
...

...
...

...
...

...
...

. . .
...

1 1 1 1 1 1 1 1 1 1 1 ... 37



Richard Brent Decomposing Gram matrices

Details for order 37

PZ’s Gram-finding program took 77 hours (on one orac
processor) to find 807 putative Gram matrices (including the
known one on the previous slide). There were 489 different
characteristic polynomials, and 1528 pairs (G, H) to consider.

Our decomposition program took 52 minutes to show that 806
of the putative Gram matrices did not decompose (in no case
could more than two rows of R be constructed).

It failed to terminate on the remaining case after running for 147
hours and exploring > 1.7× 108 nodes, reaching level 26, but
(fortunately) we already know that this matrix does decompose.

A randomised search also failed (after 151 hours). It estimated
a tree size (to level 26) greater than 3× 1014.

Richard Brent Decomposing Gram matrices

Summary for order 37

The maximal determinant is B = 72× 917 × 236.

There is a unique (up to equivalence) Gram matrix G with
determinant B2.

There may be other (inequivalent) solutions — the known one
was constructed by OS from a “doubly 3-normalized”
Hadamard matrix of order 36.

Richard Brent Decomposing Gram matrices

Brief summary of other results, n = 1 mod 4

I We have (easily) confirmed the known maximal
determinants for n = 5, 9, 13, 17, 21, 25.

I For n = 29, with lower bound 320 [omitting the factor
712 × 228], upper bound 370, we improved the upper bound
to < 330, disproving the conjectured 336. (Generated
5962 putative Gram matrices in 542 hours and checked
them in 19 hours.)

I For n = 33, with lower bound 441 [omitting the factor
814 × 232], upper bound 516, we improved the upper bound
to < 471. (Checked 9054 putative Gram matrices in 210
hours.)

I For n = 45, with lower bound 83 [omitting the factor
1121 × 244], upper bound 104, we improved the bounds to
[89, 99). (New lower bound due to WO, upper bound by
checking 1495 putative Gram matrices.)

Richard Brent Decomposing Gram matrices

Brief summary of other results, n = 3 mod 4

I We have (easily) confirmed the known maximal
determinants for n = 7, 11, 15.

I For n = 23, we have generated some putative Gram
matrices with determinants larger than
(42411× 56 × 222)2, but none decompose. The
Gram-finding phase is incomplete.

I For n = 23 and n = 27 our program can decompose the
Gram matrix corresponding to the best known (possibly but
not proved optimal) R.

Richard Brent Decomposing Gram matrices

Future work

A known weakness of our decomposition program is that it
does not use the full automorphism groups of G and H when
pruning. There is certainly scope for improvement here.

It would also be useful to write a parallel version of our
decomposition program, so several processors can share the
work of searching the tree in difficult cases. This has been
done for the Gram-finding program, but in a fairly primitive way
which could be improved to balance the load better. We expect
similar load-balancing problems in a parallel version of the
decomposition program.

Richard Brent Decomposing Gram matrices

Hasse-Minkowski

Using the Hasse-Minkowski theorem, it can often be shown that
a putative gram matrix G does not decompose into RRT = RT R
even if R is allowed to be a matrix over the rationals. Our
program does not currently take advantage of this.

Richard Brent Decomposing Gram matrices

References

G. Barba, Intorno al teorema di Hadamard sui determinanti a
valore massimo, Giorn. Mat. Battaglini 71 (1933), 70–86.

A. E. Brouwer, An infinite series of symmetric designs, Math.
Centrum, Amsterdam, Report ZW 202/83 (1983).

T. Chadjipantelis, S. Kounias and C. Moyssiadis, The maximum
determinant of 21× 21(+1,−1)-matrices and D-optimal
designs, J. Statist. Plann. Inference 16 (1987), 167–178.

J. H. E. Cohn, Almost D-optimal designs, Utilitas Math. 57
(2000), 121–128.

H. Ehlich, Determinantenabschätzungen für binäre Matrizen
mit N ≡ 3 mod 4, Math. Z. 84 (1964), 438–447.

William P. Orrick, The maximal {−1, 1}-determinant of order 15,
Metrika 62, 2 (2005), 195–219.
http://arxiv.org/abs/math/0401179

Richard Brent Decomposing Gram matrices

http://arxiv.org/abs/math/0401179

References continued
William P. Orrick, On the enumeration of some D-optimal
designs, J. Statist. Plann. Inference 138 (2008) 286–293.
http://arxiv.org/abs/math/0511141v2

William P. Orrick, The Hadamard maximal determinant
problem, http://www.indiana.edu/~maxdet/

William P. Orrick and Bruce Solomon, Large determinant sign
matrices of order 4k + 1, Discrete Math. 307 (2007), 226–236.
http://arxiv.org/abs/math/0311292v1

Judy-anne H. Osborn, The Hadamard Maximal Determinant
Problem, Honours Thesis, University of Melbourne, 2002,
142 pp. http://wwwmaths.anu.edu.au/~osborn/
publications/pubsall.html

Warren D. Smith, Studies in Computational Geometry
Motivated by Mesh Generation, Ph. D. thesis, Princeton
University, 1988.

Richard Brent Decomposing Gram matrices

http://arxiv.org/abs/math/0511141v2
http://www.indiana.edu/~maxdet/
http://arxiv.org/abs/math/0311292v1
http://wwwmaths.anu.edu.au/~osborn/publications/pubsall.html
http://wwwmaths.anu.edu.au/~osborn/publications/pubsall.html

