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Preface

This is a book about algorithms for performing arithmetiodaheir imple-

mentation on modern computers. We are concerned with saftmare than

hardware — we do not cover computer architecture or the degigomputer

hardware since good books are already available on thegestdpstead, we
focus on algorithms for efficiently performing arithmetiperations such as
addition, multiplication, and division, and their conrieos to topics such
as modular arithmetic, greatest common divisors, the fastiér transform

(FFT), and the computation of special functions.

The algorithms that we present are mainly intended for r@yitprecision
arithmetic. That is, they are not limited by the computerdgire 0f32 or 64
bits, only by the memory and time available for the compatatWe consider
both integer and real (floating-point) computations.

The book is divided into four main chapters, plus one shaaptér (essen-
tially an appendix). Chaptéll 1 covers integer arithmetitisThas, of course,
been considered in many other books and papers. Howeveg, lias been
much recent progress, inspired in part by the applicatioputaic key cryp-
tography, so most of the published books are now partly odat# or incom-
plete. Our aim is to present the latest developments in as®ntanner. At the
same time, we provide a self-contained introduction forréeaer who is not
an expert in the field.

Chapte[R is concerned with modular arithmetic and the Fd tlaeir appli-
cations to computer arithmetic. We consider different nemepresentations,
fast algorithms for multiplication, division and exponiaiobn, and the use of
the Chinese remainder theorem (CRT).

Chapter[B covers floating-point arithmetic. Our concern ighvhigh-
precision floating-point arithmetic, implemented in safte if the precision
provided by the hardware (typically IEEE standasgtbit significand) is
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inadequate. The algorithms described in this chapter foousrrect round-
ing, extending the IEEE standard to arbitrary precision.

Chaptel’¥ deals with the computation, to arbitrary preaisaf functions
such as sqgrt, exp, In, sin, cos, and more generally functiefised by power
series or continued fractions. Of course, the computatigpecial functions is
a huge topic so we have had to be selective. In particularawve boncentrated
on methods that are efficient and suitable for arbitrargigien computations.

The last chapter contains pointers to implementationsfuliseeb sites,
mailing lists, and so on. Finally, at the end there is a orge@ummary of
complexitiesvhich should be a usefalide-némoire

The chapters are fairly self-contained, so it is possibleeta them out of
order. For example, Chapter 4 could be read before Chapt&;sahd Chap-
ter 5 can be consulted at any time. Some topics, such as Newtmthod,
appear in different guises in several chapters. Crossemtes are given where
appropriate.

For details that are omitted, we give pointers in thetes and references
sections of each chapter, as well as in the bibliography. 8ve fried, as far
as possible, to keep the main text uncluttered by footnatdseferences, so
most references are given in the Notes and referencessectio

The book is intended for anyone interested in the designraptéimentation
of efficient algorithms for computer arithmetic, and morenglly efficient
numerical algorithms. We did our best to present algoritttmas are ready to
implement in your favorite language, while keeping a highel description
and not getting too involved in low-level or machine-depamtddetails. An
alphabetical list of algorithms can be found in the index.

Although the book is not specifically intended as a textbabkpuld be
used in a graduate course in mathematics or computer sciandefor this
reason, as well as to cover topics that could not be discuaskesgth in the
text, we have included exercises at the end of each chaptereXercises vary
considerably in difficulty, from easy to small research pot§, but we have
not attempted to assign them a numerical rating. For saistio the exercises,
please contact the authors.

We welcome comments and corrections. Please send thenhév eftthe
authors.

Richard Brent and Paul Zimmermann
Canberra and Nancy
MCA@rpbrent.com
Paul.Zimmermann@inria.fr
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Notation

set of complex numbers

set of extended complex numbé&isJ {oo}

set of natural numbers (nonnegative integers)

set of positive integer®\ {0}

set of rational numbers

set of real numbers

set of integers

ring of residues modula

set of (real or complex) functions with continuous derivatives
in the region of interest

real part of a complex number
imaginary part of a complex number
conjugate of a complex number
Euclidean norm of a complex number
or absolute value of a scalar

Bernoulli numbersy_ -, B,2"/n! = z/(e* — 1)
scaled Bernoulli numbers;,, = Bs,,/(2n)!,

S Cp2* = (2/2)/ tanh(z/2)

tangent numbers,. 7,221 /(2n — 1)! = tan z
harmonic numbep_"_, 1/j (0if n < 0)

binomial coefficient #» choosek” = n!/(k! (n — k)!)
(0if k<0ork >n)
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a=>bmodm
q<—adivb
r «— a mod b
(a,b)
(%) or (alb)
iff

iNj

A

1Dy

1<k

i >k

a-b, axb
ax*b

v(n)

a(e)
¢(n)

Notation

“word” base (usually23? or 264) or “radix” (floating-point)
“precision”: number of basg digits in an integer or in a
floating-point significand, or a free variable

“machine precision’3'=" /2 or (in complexity bounds)
an arbitrarily small positive constant

smallest positive subnormal number

rounding of real numbet in precisionn (Definition[3.1)
for a floating-point numbet, one unit in the last place

time to multiplyn-bit integers, or polynomials of
degreen — 1, depending on the context

a functionf(n) such thatf(n)/M(n) — 1 asn — oo

(we sometimes lazily omit the~” if the meaning is clear)
time to multiply anm-bit integer by am-bit integer

time to divide &n-bit integer by am-bit integer,

giving quotient and remainder

time to divide anm-bit integer by am-bit integer,

giving quotient and remainder

a is a divisor ofb, that isb = ka for somek € Z

modular equalityyn|(a — b)

assignment of integer quotientd¢d0 < a — gb < b)
assignment of integer remaindert@0 < r» = a — ¢b < b)
greatest common divisor afandb

Jacobi symbol¥{ odd and positive)

if and only if

bitwiseand of integersi andj,

or logicaland of two Boolean expressions
bitwiseor of integersi andy,

or logicalor of two Boolean expressions
bitwise exclusive-omf integers: and;j
integeri multiplied by 2*

quotient of division of integei by 2*
product of scalars, b

cyclic convolution of vectors, b

2-valuation: largest such tha2” dividesn (v(0) = o)
length of the shortest addition chain to compeite
Euler’s totient function#{m : 0 <m <n A (m,n) = 1}



deg(A)
ord(A)

exp( ) ore®

In(x)
logb(m)
lg(z)
g()
g"(x)

1

0
lo

[]

Ed
]

[a,b), (a,b]
t[a,b] or [a, b]!

[a, b; ¢, d]

e
Pingiin i . s i g
S~—" \/\/\/3\/\/\/

2

SN

3

S—

123456 789

Notation XV

for a polynomialA, the degree oft
for a power seriesl = 3-; a;27,
ord(A) = min{j : a; # 0} (ord(0) = 400)

exponential function
natural logarithm

baseb logarithmln(z)/ In(b)
base2 logarithmln(z)/In(2)
logarithm to any fixed base
(log )"

= logy ()

ceiling functionmin{n € Z : n > =}
floor function,max{n € Z : n < =}
nearest integer functiony + 1/2]

+1ifn>0,-1ifn<0,and0if n =0
llg(n)] +1ifn>0,0ifn=0

closed intervalz € R : a < z < b} (empty ifa > b)
openintervaz € R:a < x < b} (empty ifa > b)
half-open intervalsg < x < b, a < x < b respectively

a
column vector < b )

2 x 2 matrix (a b)
c d

element of the (forward) Fourier transform of vector
element of the backward Fourier transform of veetor

Je,ng such that f(n)| < cg(n) forall n > ng
e > 0,n9 such that f(n)| > cg(n) for all n > ng

f(n) = O(g(n)) andg(n) = O(f(n))

n)/g(n) — 1asn — oo

~ T

f(n)
f(n)
f(n) (n))
g(n) )
fz) -

o a;j/z? = o(1/z™) asx — 400

O(yg
)
g(n) — 0asn — oo
O(yg
(

/\\H

n

T

123456789 (for large integers, we may use a space after

every third digit)
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a c e .
b+ dt f+

Al

PV [ f(z)dx

st

> <text>

O

Notation

a numberzzz.yyy written in basep;
for example, the decimal numb&r25 is 11.015 in binary

continued fractiom/(b+ c¢/(d+¢/(f +---)))
: . a b
determinant of a matrix, e.g.‘ e d

Cauchy principal value integral, defined by a limit
if f has a singularity ifja, b)

‘:ad—bc

concatenation of stringsandt
comment in an algorithm

end of a proof



1
Integer arithmetic

In this chapter, our main topic is integer arithmetic. Hoagwe
shall see that many algorithms for polynomial arithmete sim-

ilar to the corresponding algorithms for integer arithmehut
simpler due to the lack of carries in polynomial arithme@an-
sider for example addition: the sum of two polynomials ofréeg

n always has degree at maestwhereas the sum of twe-digit in-
tegers may have + 1 digits. Thus, we often describe algorithms
for polynomials as an aid to understanding the correspgndin
algorithms for integers.

1.1 Representation and notations

We consider in this chapter algorithms working on integ¥®vs. distinguish
between the logical — or mathematical — representation aft@ger, and its
physical representation on a computer. Our algorithmsaeaded for “large”
integers — they are not restricted to integers that can besepted in a single
computer word.

Several physical representations are possible. We conkite only the
most common one, hamely a dense representation in a fixed ®agese an
integralbases > 1. (In case of ambiguity; will be called theinternal base.)
A positive integetA is represented by the lengthand the digits:; of its base
(8 expansion

A=an 1" 4+ a1+ ao,

where0 < a; < g —1, anda,_; is sometimes assumed to be non-zero.
Since the bas@ is usually fixed in a given program, only the lengthand
the integers(a;)o<i<n Need to be stored. Some common choices/are
232 on a32-bit computer, 0% on a64-bit machine; other possible choices
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are respectively0? and10'Y for a decimal representation, 213 when using
double-precision floating-point registers. Most algarithgiven in this chapter
work in any base; the exceptions are explicitly mentioned.

We assume that the sign is stored separately from the absd@iute. This
is known as the “sign-magnitude” representation. Zero isrgoortant special
case; to simplify the algorithms we assume that 0 if A = 0, and we usually
assume that this case is treated separately.

Except when explicitly mentioned, we assume that all ope@natareoff-line,
i.e. all inputs (resp. outputs) are completely known at thgifning (resp. end)
of the algorithm. Different models includazy and relaxedalgorithms, and
are discussed in the Notes and refereng&gj.

1.2 Addition and subtraction

As an explanatory example, here is an algorithm for integeliteon. In the
algorithm,d is acarry bit.

Our algorithms are given in a language that mixes mathealatiatation
and syntax similar to that found in many high-level compuégrguages. It
should be straightforward to translate into a language sscl. Note that
“:=" indicates a definition, and<-" indicates assignment. Line numbers are
included if we need to refer to individual lines in the deptidn or analysis of

the algorithm.

Algorithm 1.1 IntegerAddition

Input: A = 23—1 a;3%, B = 23—1 b; 3%, carry-in0 < d;,, <1

Output: C :=>0""¢;4" and0 < d < 1 such thatd + B + d;, = d3" + C
1. d «— diy,

2: for ifrom 0ton — 1 do

3: s—a; +b;+d

4

5

(d,¢;) « (s div 8,s mod f3)
: returnC, d.

Let T' be the number of different values taken by the data type septeg
the coefficients:;, b;. (Clearly,5 < T, but equality does not necessarily hold,
for example = 10° andT = 232)) At step[3, the value of can be as
large as23 — 1, which is not representable if = 7. Several workarounds
are possible: either use a machine instruction that givepdssible carry of
a; + b;, or use the fact that, if a carry occursdan + b;, then the computed
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sum — if performed modul®@’ — equalg := a; + b, — 1" < a;; thus, comparing
t anda; will determine if a carry occurred. A third solution is to kea bit in
reserve, taking < T'/2.

The subtraction code is very similar. Sfép 3 simply becosmesa; —b; +d,
whered € {—1,0} is theborrow of the subtraction, and- 5 < s < . The
other steps are unchanged, with the invariant B + d;,, = dg" + C.

We use thearithmetic complexitymodel, wherecostis measured by the
number of machine instructions performed, or equivalefly to a constant
factor) thetimeon a single processor.

Addition and subtraction of-word integers cosP(n), which is negligible
compared to the multiplication cost. However, it is wortyirig to reduce the
constant factor implicit in thi€)(n) cost. We shall see i3 that “fast” mul-
tiplication algorithms are obtained by replacing multpliions by additions
(usually more additions than the multiplications that theglace). Thus, the
faster the additions are, the smaller will be the threshfldshanging over to
the “fast” algorithms.

1.3 Multiplication

A nice application of large integer multiplication is tkeonecker—Saobnhage
trick, also calledsegmentatioror substitutionby some authors. Assume we
want to multiply two polynomialsA(x) and B(z), with non-negative integer
coefficients (see Exercie 1.1 for negative coefficientssuine both polyno-
mials have degree less thapand the coefficients are boundedmyNow take
apowerX = 3% > np? of the bases, and multiply the integers = A(X) and

b = B(X) obtained by evaluating andB atz = X . If C(z) = A(x)B(z) =

> cixt, we clearly havel(X) = 3 ¢; X*. Now since the:; are bounded by
np? < X, the coefficients; can be retrieved by simply “reading” blocks bof
words inC'(X). Assume for example that we want to compute

(625 + 62* 4+ 423 + 922 + 2+ 3)(Ta* + 23 + 227 + 2+ 7),

with degree less tham = 6, and coefficients bounded by= 9. We can take
X =103 > np?, and perform the integer multiplication

6006 004 009001 003 x 7001 002001 007
= 42048046 085072086 042 070010 021,

from which we can read off the product

4229 + 482% + 462" + 852° + 7225 + 862t + 4222 + 7022 + 10x + 21.
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Conversely, suppose we want to multiply two integers- » ., a;3
andb =}, _, b;’. Multiply the polynomialsA(z) = 3., _,, a;z* and
B(x) = 3 y<;, bjz’, obtaining a polynomial’(z), then evaluate’(z) at
x = [ to obtainab. Note that the coefficients @f («) may be larger thag, in
fact they may be up to abouts?. For example, withu = 123, b = 456, and
B = 10, we obtainA(z) = 22 + 2z + 3, B(x) = 42 + 5z + 6, with product
C(z) = 42* + 1323 + 2822 + 27z + 18, andC(10) = 56088. These examples
demonstrate the analogy between operations on polynoamdiitegers, and
also show the limits of the analogy.

A common and very useful notation is to l&f(n) denote the time to mul-
tiply n-bit integers, or polynomials of degree— 1, depending on the context.
In the polynomial case, we assume that the cost of multiglgimefficients is
constant; this is known as treithmetic complexitynodel, whereas thbit
complexitymodel also takes into account the cost of multiplying coffits,
and thus their bit-size.

1.3.1 Naive multiplication

Algorithm 1.2 BasecaseMultiply
Input: A =S"0""a;8, B=Y0""b;5
Output: C = AB =30 e F

1. C+— A-by

2: for jfrom 1ton — 1 do

3: C(—C"ﬁ‘ﬁj(AbJ)

4: returnC.

Theorem 1.1 Algorithm BasecaseMultiply computes the productAB
correctly, and use®(mn) word operations.

The multiplication by’ at sted B is trivial with the chosen dense representa-
tion; it simply requires shifting by words towards the most significant words.
The main operation in AlgorithnBasecaseMultiplyis the computation of

A - b; and its accumulation int@’ at sted B. Since all fast algorithms rely on
multiplication, the most important operation to optiminemultiple-precision
software is thus the multiplication of an array.afwords by one word, with
accumulation of the result in another arraynoft- 1 words.
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We sometimes call AlgorithrBasecaseMultiplyschoolbook multiplication
since it is close to the “long multiplication” algorithm thased to be taught at
school.

Since multiplication with accumulation usually makes esige use of the
pipeline, it is best to give it arrays that are as long as jpessivhich means
that A rather thanB should be the operand of larger size (he> n).

1.3.2 Karatsuba’s algorithm

Karatsuba’s algorithm is a “divide and conquer” algorithon multiplication
of integers (or polynomials). The idea is to reduce a mutttion of lengthn
to three multiplications of length /2, plus some overhead that coéin).

In the following,ny > 2 denotes the threshold between naive multiplica-
tion and Karatsuba’s algorithm, which is used fgrword and larger inputs.
The optimal “Karatsuba thresholdi, can vary from about ten to abow®0
words, depending on the processor and on the relative casuttiplication
and addition (see Exercigell.6).

Algorithm 1.3 KaratsubaMultiply
Input: A=S"0"a;6, B=30""b;
Output: C = AB := Zg”_l cn Bk
if n < ng then returnBasecaseMultiply A, B)
k«— [n/2]
(AQ,B()) = (A,B) mod ﬂk, (Al,Bl) = (A, B) div ﬁk
sa < sign(Ag — A1), sp « sign(By — B1)
Cy «— KaratsubaMultiply (Ao, Bo)
C — KaratsubaMultiply (4;, By)
Cy «— KaratsubaMultiply (|4g — A1, |Bo — B1])
returnC := Cy + (Co + C1 — SASBCQ)ﬂk + Clﬂmc.

Theorem 1.2 Algorithm KaratsubaMultiply computes the productd B
correctly, using (n) = O(n®) word multiplications, withw = 1g 3 ~ 1.585.

Proof. Sincesa|Ag — A1| = Ao — 41 andsp|By — Bi| = By — By, we
haveSASB|A0 — A1||BO — B1| = (Ao — Al)(BO — Bl), and thusC =
AoBo+(AoB1 + A1Bo) B + A1 By 3.

SinceAy, By, |Ag— A1| and| By — By | have (at most)n /2] words, and4,
andB; have (at most)n /2| words, the numbekK () of word multiplications
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satisfies the recurrend€ (n) = n? for n < ng, andK (n) = 2K ([n/2]) +
K(|n/2)) for n > ng. Assume2‘~1ny < n < 2‘ng with ¢ > 1. ThenK (n)
is the sum of threds(j) values withj < 2°~'ng, so at mosB’ K(j) with
§ < ng. Thus,K (n) < 3max(K (ng), (ng — 1)?), which givesK (n) < Cn®
with C' = 317180 max (K (ng), (ng — 1)?). 0

Different variants of Karatsuba'’s algorithm exist; theigat presented here
is known as thesubtractiveversion. Another classical one is thdditivever-
sion, which usesly+A; andBy+ B instead of Ag— A, | and| By— By |. How-
ever, the subtractive version is more convenient for integighmetic, since it
avoids the possible carries iy, + A; and By + By, which require either an
extra word in these sums, or extra additions.

The efficiency of an implementation of Karatsuba’s algeritthepends heav-
ily on memory usage. It is important to avoid allocating meynfor the inter-
mediate result§dy — A1, |Bo — B1|, Co, C1, andC;, at each step (although
modern compilers are quite good at optimizing code and rémgownneces-
sary memory references). One possible solution is to alltavge temporary
storage ofm words, used both for the intermediate results and for therrec
sive calls. It can be shown that an auxiliary spacewof 2n words — or even
m = O(log n) — is sufficient (see Exercises1l.7 1.8).

Since the product’; is used only once, it may be faster to have auxiliary
routinesKaratsubaAddmul andKaratsubaSubmul that accumulate their re-
sults, calling themselves recursively, together vidratsubaMultiply (see
Exercisé_1.10).

The version presented here use$n additions (or subtractions: x (n/2)
to compute| 4y — A4| and|By — B4|, thenn to addC, and (4, againn to
add or subtraaf’,, andn to add(Cy + C; — s455C2) 3% to Cy + C15%F. An
improved scheme uses only7n /2 additions (see Exerci§e1.9).

When considered as algorithms on polynomials, most fastiphiattion
algorithms can be viewed as evaluation/interpolation ritlgms. Karatsuba'’s
algorithm regards the inputs as polynomidls+ A2 and By + B2 evaluated
atz = (¥, since their product(z) is of degree2, Lagrange’s interpolation
theorem says that it is sufficient to evaluétér) at three points. The subtrac-
tive version evaluatEsC(x) atz = 0,—1, 00, whereas the additive version
usesr = 0,+1, co.

1.3.3 Toom-Cook multiplication

Karatsuba’s idea readily generalizes to what is known asnFétookr-way
multiplication. Write the inputs ag+- - -+a,_12" ' andbg+- - - +b,_ 2" 1,

1 EvaluatingC(x) atoo means computing the produdy B; of the leading coefficients.
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with z = ¥, andk = [n/r]. Since their product(z) is of degree2r — 2,

it suffices to evaluate it atr — 1 distinct points to be able to recovél(z),
and in particulaiC(3%). If r is chosen optimally, Toom—Cook multiplication
of n-word numbers takes time!+O(1/vIogn),

Most references, when describing subquadratic multiptinaalgorithms,
only describe Karatsuba and FFT-based algorithms. Neslegh, the Toom—
Cook algorithm is quite interesting in practice.

Toom—Cookr-way reduces one-word product t@2r — 1 products of about
n/r words, thus cost®(n”) with v = log(2r — 1)/ logr. However, the con-
stant hidden by the big* notation depends strongly on the evaluation and
interpolation formulae, which in turn depend on the chosdntpoOne possi-
bility is to take—(r — 1),...,—1,0,1,..., (r — 1) as evaluation points.

The caser = 2 corresponds to Karatsuba’s algorithL3.2). The case
r = 3 is known as Toom-CooR-way, sometimes simply called “the Toom—
Cook algorithm”. AlgorithmToomCook3uses the evaluation poinis1, —1,

2, oo, and tries to optimize the evaluation and interpolatiomfoliee.

Algorithm 1.4 ToomCook3
Input: two integerd) < A, B < g"
Output: AB := cy + c1 8% + o8 + c38%F + ¢y 8*F with k = [n/3]
Require: athreshold:; > 3
1: if n < n; then returnKaratsubaMultiply (A, B)
write A = ag + a12 + asx?, B = by + bix + box? with z = 3*.
v < ToomCook3(ag, by)
V1 — ToomCOOk3(a02+a1, b02+b1) Wherea02 «— ag+taz, boa «— bo+ba
V_q1 < ToomCOOk3(a02 —ai, boa — bl)
Vg — ToomCOOk3(a0 + 2a1 + 4as, by + 2b1 + 4b2)
Voo <— TOOMCO0K3 ag, bo)
t1 «— (Bug + 2v_1 + v2)/6 — 2000, ta «— (V1 +v_1)/2
Co < Vg, C| < V] —t1,C <ty — V) — Vo, C3 < L1 — 2, C4 — Vo.

© O N g RN

The divisions at stepl 8 are exact;dfis a power of two, the division bg
can be done using a division By- which consists of a single shift — followed
by a division by3 (see{l.4.7).

Toom—-Cookr-way has to invert §2r — 1) x (2r — 1) Vandermonde matrix
with parameters the evaluation points; if we choose corisecimteger points,
the determinant of that matrix contains all primes u@to— 2. This proves
that division by (a multiple of cannot be avoided for Toom—-Codkway
with consecutive integer points. See Exer€isell.14 for @igdimation of this
result.
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1.3.4 Use of the fast Fourier transform (FFT)

Most subquadratic multiplication algorithms can be seervaduation-inter-
polation algorithms. They mainly differ in the number of xadion points, and
the values of those points. However, the evaluation andgatation formulae
become intricate in Toom—Coakway for larger, since they involveO (r?)
scalar operations. The fast Fourier transform (FFT) is ategerform evalu-
ation and interpolation efficiently for some special poifiteots of unity) and
special values of. This explains why multiplication algorithms with the best
known asymptotic complexity are based on the FFT.

There are different flavours of FFT multiplication, depergdon the ring
where the operations are performed. The@dtage—Strassen algorithm, with
a complexity ofO(n log n loglogn), works in the ringZ/ (2™ + 1)Z. Since it
is based on modular computations, we describe it in Chapter 2

Other commonly used algorithms work with floating-point gdex num-
bers. A drawback is that, due to the inexact nature of floghioigt computa-
tions, a careful error analysis is required to guaranteedhectness of the im-
plementation, assuming an underlying arithmetic with mags error bounds.
See Theorem 3.6 in Chapfér 3.

We say that multiplication ign the FFT rangeif n is large and the multi-
plication algorithm satisfied/ (2n) ~ 2M (n). For example, this is true if the
Schinhage-Strassen multiplication algorithm is used, butifrtbie classical
algorithm or Karatsuba’s algorithm is used.

1.3.5 Unbalanced multiplication

The subquadratic algorithms considered so far (KaratsnadaTaom—Cook)
work with equal-size operands. How do we efficiently muitipitegers of dif-
ferent sizes with a subquadratic algorithm? This case i®itapt in practice,
but is rarely considered in the literature. Assume the laogerand has size
m, and the smaller has size< m, and denote by/ (m, n) the corresponding
multiplication cost.

If evaluation-interpolation algorithms are used, the etegiends mainly on
the size of the result, i.en + n, so we haveM (m,n) < M((m +n)/2), at
least approximately. We can do better thii(m +n)/2) if nis much smaller
thanm, for exampleM (m, 1) = O(m).

Whenm is an exact multiple of,, saym = kn, a trivial strategy is to cut the
larger operand inté pieces, givingV/ (kn,n) = kM (n) + O(kn). However,
this is not always the best strategy, see Exefcisd 1.16.
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Whenm is not an exact multiple of, several strategies are possible:

e split the two operands into an equal number of pieces of walegizes;
e or split the two operands into different numbers of pieces.

Each strategy has advantages and disadvantages. We diachss turn.

First strategy: equal number of pieces of unequal sizes
Consider for example Karatsuba multiplication, andAgtn, n) be the num-
ber of word-products for am x n product. Take for example, = 5, n = 3.
A natural idea is to pad the smaller operand to the size ofdtget one. How-
ever, there are several ways to perform this padding, asrshothe following
figure, where the “Karatsuba cut” is represented by a douilemn:

as | as az | ar | ao as | as az | a1 | ap a4 | a3 az | ai | ao
bQ b1 bo bQ bl bo b2 bl bO
Ax B A x (BB) A x (8°B)

The left variant leads to two products of sizg.e.2K (3, 3), the middle one to
K(2,1)+K(3,2)+ K (3,3), and the right one t& (2, 2) + K (3,1) + K (3, 3),
which give respectively4, 15, 13 word-products.

However, whenevem /2 < n < m, any such “padding variant” will re-
quire K([m/2], [m/2]) for the product of the differences (or sums) of the
low and high parts from the operands, due to a “wrap-aroufi@tewhen
subtracting the parts from the smaller operand; this wiiimately lead to a
cost similar to that of am x m product. The “odd—even scheme” of Algorithm
OddEvenKaratsuba(see also Exercige T]13) avoids this wrap-around. Here is
an example of this algorithm fon, = 3 andn = 2. TakeA = ay2? +a12 +ag
andB = byx + bgy. This yie'dSAo = asx + ag, A1 = a1, Bg = by, B1 = b1;
thus,Cy = (agx + CLo)bQ, Ci = (az.’L‘ + ag + Cbl)(bo + bl), Cy = a1b;.

Algorithm 1.5 OddEvenKaratsuba
Input: A= Zgn_l a;x', B = Zg_l bjzd,m>n>1
Output: A-B
if n=1thenreturn>0""" a;boa’
write A = Ag(2?) + xA1(2?), B = Bo(2?) + 2B1(2?)
Cy «— OddEvenKaratsuba( Ay, By)
C «+ OddEvenKaratsuba(Ag + Ay, By + Bi)
Cy «— OddEvenKaratsuba(A;, By)
returnCo(z2) + z(Cy — Co — C)(22) + 22Ca(2?).




10 Integer arithmetic

We therefore gefk'(3,2) = 2K(2,1) + K(1) = 5 with the odd—even
scheme. The general recurrence for the odd—even scheme is

K(m,n) =2K([m/2], [n/2]) + K(|m/2], [n/2]),
instead of
K(m,n) =2K([m/2],[m/2]) + K(|m/2],n — [m/2])

for the classical variant, assuming> m /2. We see that the second parameter
in K (-,-) only depends on the smaller sizdor the odd—even scheme.

As for the classical variant, there are several ways of papdith the odd—
even scheme. Consider = 5, n = 3, and write4 = asz* + a3z + as2® +
a1x + ap = vA1(2?) + Ag(2?), with Ay (z) = azr + a1, Ao(z) = agz® +
asx +ag; andB := byz? + bz + by = 2By (2?) + Bo(x?), with By (z) = by,
Bo(z) = bax+bo. Without padding, we writel B = 22(A; By)(2?)+x((Ag+
Al)(B() + Bl) — A1By — AoBo)(Z’Q) + (AoBo)(l‘Q), which giVGSK(5, 3) =
K(2,1) + 2K(3,2) = 12. With padding, we considetB = xB}(z%) +
B{(x?), with B (z) = byx + by, B}, = byx. This givesK (2, 2) = 3 for A, B,
K(3,2) = 5for (Ag + A1)(Bj + By), andK (3,1) = 3 for AyB{, — taking
into account the fact thaB), has only one non-zero coefficient — thus, a total
of 11 only.

Note that when the variable corresponds to say = 2%, Algorithm
OddEvenKaratsuba as presented above is not very practical in the integer
case, because of a problem with carries. For example, irutineds + A; we
have|m/2] carries to store. A workaround is to consideto be say3'?, in
which case we have to store only one carry bit for ten wordsead of one
carry bit per word.

The first strategy, which consists in cutting the operantisan equal num-
ber of pieces of unequal sizes, does not scale up nicely.nrdsgar example
that we want to multiply a number &9 words by another number ¢b9
words, using Toom—Coadkway. With the classical variant — without padding —
and a “large” base 06333, we cut the larger operand into three piece83sf
words and the smaller one into two pieces83 words and one small piece of
33 words. This gives four fulB33 x 333 products — ignoring carries — and one
unbalanced33 x 33 product (for the evaluation at = ~o). The “odd—even”
variant cuts the larger operand into three piece338fwords, and the smaller
operand into three pieces 233 words, giving rise to five equally unbalanced
333 x 233 products, again ignoring carries.
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Second strategy: different number of pieces of equal sizes

Instead of splitting unbalanced operands into an equal eurobpieces —
which are then necessarily of different sizes — an altereatirategy is to split
the operands into a different number of pieces, and use dptzdtion al-
gorithm which is naturally unbalanced. Consider again ttevgle of multi-
plying two numbers 0§99 and699 words. Assume we have a multiplication
algorithm, say Toom3, 2), which multiplies a number dfn words by another
number of2n words; this requires four products of numbers of abowtords.
Usingn = 350, we can split the larger number into two pieces366 words,
and one piece 0299 words, and the smaller number into one piece3ad
words and one piece 69 words.

Similarly, for two inputs ofL000 and500 words, we can use a Too(#; 2)
algorithm, which multiplies two numbers df, and2n words, withn = 250.
Such an algorithm requires five evaluation points; if we cgoiie same points
as for Toom3-way, then the interpolation phase can be shared betweén bot
implementations.

It seems that this second strategy is not compatible with‘dle—even”
variant, which requires that both operands are cut into &mesnumber of
pieces. Consider for example the “odd—even” variant mogulid writes the
numbers to be multiplied agd = a(8) and B = b(3) with a(t) = ag(t?) +
tay (t3)+t2aq(t?), and similarlyb(t) = bo(t3)+tby (t3)+12b2(t3). We see that
the number of pieces of each operand is the chosen moduhes; (see Exer-
cise[1.11). Experimental results comparing different iplittation algorithms
are illustrated in Figurg_1.1.

Asymptotic complexity of unbalanced multiplication

Supposen > n andn is large. To use an evaluation-interpolation scheme,
we need to evaluate the productrat+ n points, whereas balancédby &
multiplication need&k points. Taking: ~ (m+n)/2, we see thad/ (m,n) <
M((m+n)/2)(1+ o(1)) asn — oo. On the other hand, from the discussion
above, we havé/(m,n) < [m/n]M(n). This explains the upper bound on
M (m,n) given in theSummary of complexitiett the end of the book.

1.3.6 Squaring

In many applications, a significant proportion of the muitigtions have equal
operands, i.e. are squarings. Hence, it is worth tuning aialpsquaring im-
plementation as much as the implementation of multiplacattself, bearing
in mind that the best possible speedup is two (see Exdrdsg. 1.
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4 18 32 46 60 74 88 102 116 130 144 158
4 bc
11 bc bc
18 bc bc 22
25 bc bc bc 22
32 bc bc bc bc 22
39 bc bc bc 32 32 33
46 bc bc bc 32 32 32 22
53 bc bc bc bc 32 32 32 22
60 bc bc bc bc 32 32 32 32 22
67 bc bc bc bc 42 32 32 32 33 33
74 bc bc bc bc 42 32 32 32 32 33 33
81 bc bc bc bc 32 32 32 32 32 33 33 33
88 bc bc bc bc 32 42 42 32 32 32 33 33 33
95 bc bc bc bc 42 42 42 32 32 32 33 33 33 22
102 bc bc bc bc 42 42 42 42 32 32 32 33 33 44 33
109 bc bc bc bc bc 42 42 42 42 32 32 32 33 32 44 44
116 bc bc bc bc bc 42 42 42 42 32 32 32 32 32 44 44 44
123 bc bc bc bc bc 42 42 42 42 42 32 32 32 32 44 44 44 44
130 bc bc bc bc bc 42 42 42 42 42 42 32 32 32 44 44 44 44 44
137 bc bc bc bc bc 42 42 42 42 42 42 32 32 32 33 33 44 33 33 33
144 bc bc bc bc bc 42 42 42 42 42 42 32 32 32 32 32 33 44 33 33 33
151 bc bc bc bc bc 42 42 42 42 42 42 42 32 32 32 32 33 33 33 33 33 33
158 bc bc bc bc bc bc 42 42 42 42 42 42 32 32 32 32 32 33 33 33 33 33 33

Figure 1.1 The best algorithm to multiply two numberszoéindy words
for4 < x < y < 158: bc is schoolbook multiplication22 is Karatsuba’s
algorithm,33 is Toom3, 32 is Toom+3, 2), 44 is Toom+, and42 is Toom-

(4, 2). This graph was obtained on a Core 2, with GMP 5.0.0, and GCC 4.4.2.
Note that forz < (y + 3)/4, only the schoolbook multiplication is avail-
able; since we did not consider the algorithm that cuts the larger operand in
several pieces, this explains why is best for sayr = 32 andy = 158.

For naive multiplication, Algorithrh T1BasecaseMultiplycan be modified
to obtain a theoretical speedup of two, since only about dfalhe products
a;b; need to be computed.

Subquadratic algorithms like Karatsuba and Toom-Ceuwlay can be spe-
cialized for squaring too. In general, the threshold ol&diis larger than the
corresponding multiplication threshold. For example, oncalern64-bit com-
puter, we can expect a threshold between the naive quadq@ring and
Karatsuba’s algorithm in th80-word range, between Karatsuba and Toom—
Cook 3-way in the100-word range, between Toom—-Co8kway and Toom—
Cook4-way in the150-word range, and between Toom—Cobkvay and the
FFT in the2500-word range.

The classical approach for fast squaring is to take a fadipliohtion algo-
rithm, say Toom—Cook-way, and to replace th&- — 1 recursive products by
2r—1 recursive squarings. For example, starting from AlgorifctomCook3
we obtain five recursive squaringg, (ap + a1 + a2)?, (ap — a1 + az)?,
(ao + 2a; + 4az)?, anda3. A different approach, callegsymmetric squaring
is to allow products that are not squares in the recursive.dabr example,
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mpn_mul_n
mpn_sqr -------

08

0.6 |/

04 | E

02 1

0 I I I I I
1 10 100 1000 10000 100000 1le+06

Figure 1.2 Ratio of the squaring and multiplication time for the GNU MP
library, version 5.0.0, on a Core 2 processor, up to one million words.

the square ofiu 32 + a1 + ag IS caf* + ¢36% + 232 + 13 + ¢y, where
cy = a3, c3 = 2a1ag, c2 = ¢y + ¢4 — 8, ¢1 = 2a1a9, andey = a?, where
s = (ap — az + a1)(ap — a2 — ay). This formula performs two squarings,
and three normal products. Such asymmetric squaring feenaué not asymp-
totically optimal, but might be faster in some medium rand@e to simpler
evaluation or interpolation phases.

Figure[1.2 compares the multiplication and squaring tinté ttie GNU MP
library. It shows that whatever the word range, a good rutbwinb is to count
2/3 of the cost of a product for a squaring.

1.3.7 Multiplication by a constant

It often happens that the same multiplier is used in sevenas@cutive oper-
ations, or even for a complete calculation. If this constaattiplier is small,
i.e. less than the basg not much speedup can be obtained compared to the
usual product. We thus consider here a “large” constantiphielt

When using evaluation-interpolation algorithms, such amtsaba or Toom—
Cook (sedf1.3.2E1.3.B), we may store the evaluations for that fixedipligr
at the different points chosen.
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Special-purpose algorithms also exist. These algorithiffer drom classi-
cal multiplication algorithms because they take into aotdhevalue of the
given constant multiplier, and not only its size in bits ogiti. They also dif-
fer in the model of complexity used. For example, R. Berm&ehlgorithm
[@], which is used by several compilers to compute addeegsdata struc-
ture records, considers as basic operation — 2z + y, with a cost assumed
to be independent of the integer

For example, Bernstein’s algorithm compu2@961zx in five steps:

z:=3lx = 2Pz —=zx
o =93z = 2o+
xg:=T743x = 2319 —1
x4 = 6687 = 23154 a3
20061z = 2'ay + z4.
1.4 Division

Division is the next operation to consider after multiptioa. Optimizing di-
vision is almost as important as optimizing multiplicatigince division is
usually more expensive, thus the speedup obtained onaivigill be more
significant. On the other hand, we usually perform more mlitttions than
divisions.

One strategy is to avoid divisions when possible, or replaeesn by multi-
plications. An example is when the same divisor is used fezrse consecutive
operations; we can then precompute its inverse {8e€1).

We distinguish several kinds of divisiofull division computes both quo-
tient and remainder, while in other cases only the quotientexample, when
dividing two floating-point significands) or remainder (whultiplying two
residues modulm) is needed. We also discussact division— when the
remainder is known to be zero — and the problem of dividing bingle word.

1.4.1 Naive division

In all division algorithms, we assume that divisors are redired. We say that
B := g—l b;/3 is normalizedwhen its most significant wortl, _; satisfies
bn,—1 > (/2. This is a stricter condition (fof > 2) than simply requiring that
b,—1 be non-zero.

If B is not normalized, we can comput# = 2*A and B’ = 2*B so

that B’ is normalized, then dividel’ by B’ giving A’ = Q'B’ + R’. The
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Algorithm 1.6 BasecaseDivRem
Input: A =S"0"""q;5, B=50""b;4, B normalizedyn > 0
Output: quotient@ and remainder of A divided by B

1. if A>pg"Btheng, — 1,A+— A— B elseq,, — 0

2: for j from m — 1 downto 0 do

3 qj [(an+iB + antj—1)/bn-1] > quotient selection step
4 qj — min(q}-‘,ﬁ -1

5: A—A—-qB

6: while A < 0do

7. qj < q5 — ].

8: A— A+ 3B

9: return@ = > ' ¢;37, R = A.
(Note: in stefiBg; denotes theurrentvalue of theith word of A, which may
be modified at stefd 5 ahdl 8.)

quotient and remainder of the division dfby B are, respectively) := Q'
andR := R'/2¥; the latter division being exact.

Theorem 1.3 Algorithm BasecaseDivRentorrectly computes the quotient
and remainder of the division of by a normalizedB, in O(n(m + 1)) word
operations.

Proof. We prove that the invariamd < 371 B holds at stefp]2. This holds
trivially for j = m — 1: B being normalizedA < 25™ B initially.

First consider the casg = q;- Theng;b,—1 > anyjB+antj—1—bn—1+1,
and therefore

A—q;B< (b1 —1)3" 1 4 (Amod g7,

which ensures that the new,.; vanishes, andi, ;1 < b,_1; thus,
A < (3B after stedb. Nowd may become negative after s{gp 5, but, since
4jbn—1 < @y j B+ anyj—1, We have

A—qi’ B > (an4 ;B + anyj1)B" 77— qi(bp1 B+ BB
> —q; 3"

Therefore A — q; 3 B+237B > (2b,—1 —q;)3" =1 > 0, which proves that
the while-loop at stegd B}-8 is performed at most tv@[l#@:o'rem 4.3.1.B].
When the while-loop is entered, may increase only by’ B at a time; hence,
A < 3B at exit.
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In the caseq; # g¢j, i.e. ¢ > [, we have before the while-loop
A < 1B — (3 —1)p’B = (7B, thus, the invariant holds. If the while-
loop is entered, the same reasoning as above holds.

We conclude that when the for-loop ends< A < B holds, and, since
(327" 4;7)B + A'is invariant throughout the algorithm, the quoti€ptand
remainderR are correct.

The most expensive part is sfép 5, which casts) operations for;; B (the
multiplication by 37 is simply a word-shift); the total cost i©(n(m + 1)).
(Form = 0, we need)(n) work if A > B, and even ifA < B to compare the
inputs inthe casel = B — 1.) 0

Here is an example of algorithnBasecaseDivRemfor the inputs
A = 766970544 842443844 and B = 862664 913, with 3 = 1000, which
gives quotient) = 889071 217 and remaindeR = 778 334 723.

A qj A—q;Bp after correction

766970544 842443844 889 61437185443844 no change
61437185443844 071 187976 620 844 no change
187976620844 218 —84330190 778334723

S =N .

Algorithm BasecaseDivRensimplifies whend < 3™ B: remove steppll,
and changen into m — 1 in the return valug). However, the more general
form we give is more convenient for a computer implementatand will be
used below.

A possible variant whep; > Bis to letq; = j3; thenA — q;/3’ B at stef b
reduces to a single subtraction Bfshifted by;j 4+ 1 words. However, in this
case the while-loop will be performed at least once, whiaesponds to the
identity A — (8 —1)3’B=A— B + 3B.

If instead of havingB normalized, i.eb,, > /2, we haveb,, > 3/k, there
can be up td: iterations of the while-loop (and st€Ep 1 has to be modified).

A drawback of AlgorithmBasecaseDivRenis that the testi < 0 at line[8
is true with non-negligible probability; therefore, bréwqarediction algorithms
available on modern processors will fail, resulting in vealstycles. A work-
around is to compute a more accurate partial quotient, iardaddecrease the
proportion of corrections to almost zero (see Exeilcise)1.20

1.4.2 Divisor preconditioning

Sometimes the quotient selection — gtep 3 of AlgoriBasecaseDivRem is
quite expensive compared to the total cost, especiallyrfalissizes. Indeed,
some processors do not have a machine instruction for thsiativof two
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words by one word; one way to compuggis then to precompute a one-word
approximation of the inverse of,_, and to multiply it bya, ;5 + an+j—1.

Svoboda’s algorithm makes the quotient selection triatier precondition-
ing the divisor. The main idea is thatdf,_, equals the basg in Algorithm
BasecaseDivRemthen the quotient selection is easy, since it suffices te tak
q; = an+;. (In addition,g; < 3 — 1is then always fulfilled; thus, stép 4 of
BasecaseDivRencan be avoided, ang replaced by;;.)

Algorithm 1.7 SvobodaDivision
Input: A = Zg+"’_1 a;3¢, B = Zg’_l b;# normalized A < g™ B,m > 1
Output: quotient@ and remainder of A divided by B
k< ["/B]
B' — kB ="+ 4+ 307 b B
: for j from m — 1 downto 1 do
qj < Gn+j > current value ofi, 4 ;
Ae—A—q;p 1B
if A< 0then
qG—q—1
A A4 pi—1p
Q=Yg R = A
- (g0, R) + (R’ div B, R' mod B) > usingBasecaseDivRem
: return@ = kQ' + qo, R.

© o N O kN R

=
= o

With the example offl.4.1, Svoboda’s algorithm would give = 1160,
B’ = 1000691299 080:

j A 4 A—q;B 3 after correction
2 766970544 842443844 766 441009747 163 844 no change
1 441009747163 844 441 —295115730436 705575568 644

We thus get)’ = 766440 and R’ = 705575 568 644. The final division of
step 10 givesk’ = 817B + 778334723, and we get) = 1160 - 766 440 +
817 = 889071217, andR = 778 334 723, as indL.41.

Svoboda’s algorithm is especially interesting when only thmainder is
needed, since then we can avoid the “deconditioniQg= kQ’ + qo. Note
that when only the quotient is needed, divididg = kA by B’ = kB is
another way to compute it.
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1.4.3 Divide and conquer division

The base-case division @f[.4.1 determines the quotient word by word. A
natural idea is to try getting several words at a time, fonapie replacing the
guotient selection step in AlgorithBBasecaseDivRenby

g — {anﬂ-@ + anyj18% 4 anyj 28+ an+j—3J
/ bnflﬂ + bp—2 .

Sinceg; has then two words, fast multiplication algorithn§&.@) might speed
up the computation of; B at stef b of AlgorithnBasecaseDivRem

More generally, the most significant half of the quotient vy &2, of
¢ = m — k words — mainly depends on tifemost significant words of the
dividend and divisor. Once a good approximatiorgtpis known, fast multi-
plication algorithms can be used to compute the partial ietead — Q, B3".
The second idea of the divide and conquer algorilR@cursiveDivRemis to
compute the corresponding remainder together with thégbguiotient; in
such a way, we only have to subtract the produaefby the low part of the
divisor, before computing the low part of the quotient.

Algorithm 1.8 RecursiveDivRem

Input: A =S"0"""q;6", B=0""b;4, B normalizedy > m
Output: quotient@ and remainder of A divided by B
. if m < 2 then returnBasecaseDivRerf, B)
.k« |m/2], By «+ Bdiv g%, By «+ B mod *

. (Q1, Ry) « RecursiveDivRen(A div %%, By)

: A" — Ry 3% + (Amod 3°%) — Q1 Bo5*

s while A’ <0doQ; «— Q, —1,A" — A"+ 3*B

: (Qo, Ro) «— RecursiveDivRem(A’ div 8%, By)

: A" — RoB* + (A’ mod %) — Qo By

: while A” <0doQp «— Qo —1,A” — A"+ B
creturn@ == Q1% 4+ Qo, R := A”.

© 0 N O U A WN P

In Algorithm RecursiveDivRem we may replace the condition < 2 at
stepl bym < T for any integefl’ > 2. In practice,I" is usually in the range
50 to 200.

We cannot required < g™ B at input, since this condition may not be
satisfied in the recursive calls. Consider for examyple: 5517, B = 56 with
(8 = 10: the first recursive call will dividés5 by 5, which yields a two-digit
quotientl1. EvenA < ™ Bis not recursively fulfilled, as this example shows.
The weakest possible input condition is that theost significant words oft
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do not exceed those @3, i.e. A < ™(B + 1). In that case, the quotient is
bounded by3™ + | (8™ — 1)/B], which yieldsg™ + 1 in the casex = m
(compare Exercide 1.119). See also Exellcisel1.22.

Theorem 1.4 AlgorithmRecursiveDivRemis correct, and useD (n+m, n)
operations, wherd(n + m,n) = 2D(n,n — m/2) + 2M(m/2) + O(n). In
particular, D(n) := D(2n,n) satisfiesD(n) = 2D(n/2)+2M (n/2)+O(n),
which givesD(n) ~ M(n)/(2¢~t — 1) for M(n) ~ n®, a > 1.

Proof. We first check the assumption for the recursive cdllsis normalized
since it has the same most significant word tian

After step[B, we havel = (Q;B; + R;)5% + (A mod SBay); thus, after
sted#,4’ = A — Q, 3% B, which still holds after stefg] 5. After stép 6, we have
A" = (QoB1 + Ro)B3* + (A’ mod 3¥), and, after stepl74” = A’ — Qo B,
which still holds after stef 8. At stép 9, we hade= QB + R.

A div 3%* hasm +n — 2k words, andB; hasn — k words; thusp < Q; <
2™~ Fand0 < Ry < By < " k. At steg3,—-2p"+* < A’ < B*¥B. Since
B is normalized, the while-loop at stEp 5 is performed at mast fimes (this
can happen only when = m). At step[®, we hav® < A’ < *B,; thus,
A’ div g* has at most words.

It follows 0 < Qo < 24% and0 < Ry < B; < 3" *. Hence, at step
[@, —23%¢ < A" < B, and, after at most four iterations at sfdp 8, we have
0< A" < B. O

Theoreni 1K give® (n) ~ 2M (n) for Karatsuba multiplication, anB (n) ~
2.63M (n) for Toom—Cook3-way; in the FFT range, see Exercise 1.23.

The same idea as in Exerclse_1.20 applies: to decrease thaljlity that
the estimated quotient9; and @), are too large, use one extra word of the
truncated dividend and divisors in the recursive callRézursiveDivRem

A graphical view of AlgorithmRecursiveDivRemin the casen = n is
given in Figurd_LB, which represents the multiplicat@n B: we first com-
pute the lower left corner i (n/2) (sted8), second the lower right corner in
M (n/2) (sted?), third the upper left corner in(n/2) (sted®), and finally the
upper right corner i/ (n/2) (stedT).

Unbalanced division

The conditionn > m in Algorithm RecursiveDivRemmeans that the divi-
dendA is at most twice as large as the diviser When A is more than twice

as large a3 (m > n with the notation above), a possible strategy (see Ex-
ercise 1.2U) computes words of the quotient at a time. This reduces to the
base-case algorithm, replacigdy 5.
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M(g)
M(n/4)
M(g)
M(n/2)
M(%)
M(n/4)
M(%)
quotient@
M(g)
M(n/4)
M(g)
M(n/2)
M(2)
M(n/4)
M(%)
divisor B

Figure 1.3 Divide and conquer division: a graphical view
(most significant parts at the lower left corner).

Algorithm 1.9 UnbalancedDivision
Input: A= 30" a3, B=34""b;8, Bnormalizedn > n
Output: quotient and remaindeR of A divided by B
Q<0
while m > n do
(¢,7) < RecursiveDivRem A div g™~ ", B) > 2n by n division
Q—QF"+q
A—rgm " 4+ Amod gm "
m<«—m-—n
(¢,r) < RecursiveDivRen( 4, B)
return@ := Q8™ +¢q, R :=r.

Figure[T.# compares unbalanced multiplication and divisioGNU MP.
As expected, multiplyinge words byn — = words takes the same time as
multiplying n — x words byn words. However, there is no symmetry for the
division, since dividing: words byz words forz < n/2 is more expensive,
at least for the version of GMP that we used, than dividingords byn — x
words.
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Figure 1.4 Time inl0~° seconds for the multiplication (lower curve) of
words by1000 — x words and for the division (upper curve) t600 words
by x words, with GMP 5.0.0 on a Core 2 running at 2.83GHz.

1.4.4 Newton’s method

Newton’s iteration gives the division algorithm with besymptotic complex-
ity. One basic component of Newton’s iteration is the corapah of an ap-
proximate inverse. We refer here to Chapler 4. ptalic version of Newton’s
method, also called Hensel lifting, is usedjii4.5 for exact division.

1.4.5 Exact division

A division is exactwhen the remainder is zero. This happens, for example,
when normalizing a fraction/b: we divide bothu andb by their greatest com-
mon divisor, and both divisions are exact. If the remainderkhown
a priori to be zero, this information is useful to speed up the contjmuta
of the quotient.

Two strategies are possible:

e use MSB (most significant bits first) division algorithmsthaut computing
the lower part of the remainder. Here, we have to take car@wfiding
errors, in order to guarantee the correctness of the finaltyes
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e use LSB (least significant bits first) algorithms. If the dqent is known to
be less tha™, computinga/b mod 5™ will reveal it.

Subquadratic algorithms can use both strategies. We 8eszteast significant
bit algorithm using Hensel lifting, which can be viewed gs-adic version of
Newton’s method.

Algorithm ExactDivision uses the Karp—Markstein trick: lines[1-4 compute
1/B mod p/21, while the two last lines incorporate the dividend to obtain
A/B mod 3". Note that theniddle produc(§3.3.2) can be used in linE$ 4 and
[@, to speed up the computationlof- BC' andA — BQ), respectively.

Algorithm 1.10 ExactDivision
Input: A=30"a;6, B=50""b;
Output: quotientQ = A/B mod 3"
Require: ged(bg, 8) =1

1: C'«— 1/by mod

2: for i from [lgn] — 1 downto 1 do

3 k — [n/2%]

4 C «— C+C(1—-BC)mod *

5

6

. Q «— AC mod (*
:Q — Q+ C(A— BQ) mod g™

A further gain can be obtained by using both strategies sanabusly: com-
pute the most significant/2 bits of the quotient using the MSB strategy, and
the least significant /2 bits using the LSB strategy. Since a division of size
is replaced by two divisions of size/2, this gives a speedup of up to two for
quadratic algorithms (see Exercise 1.27).

1.4.6 Only quotient or remainder wanted

When both the quotient and remainder of a division are neeitlésl,best
to compute them simultaneously. This may seem to be a trate@tement;
nevertheless, some high-level languages provide Hothand mod, but no
single instruction to compute both quotient and remainder.

Once the quotient is known, the remainder can be recoverea sigpgle
multiplication asA — @ B; on the other hand, when the remainder is known,
the quotient can be recovered by an exact divisiopas R)/B (1.4.35).

However, it often happens that only one of the quotient oraiedker is
needed. For example, the division of two floating-point nemslyeduces to the
quotient of their significands (see Chayter 3). Conversedymultiplication of
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two numbers moduldV reduces to the remainder of their product after divi-
sion by N (see Chaptdr]2). In such cases, we may wonder if faster tlgusi
exist.

For a dividend on words and a divisor of words, a significant speedup —
up to a factor of two for quadratic algorithms — can be obtdindien only
the quotient is needed, since we do not need to update the lwards of the
current remainder (stép 5 of AlgorithBasecaseDivRemn

It seems difficult to get a similar speedup when only the reiwhei is re-
quired. One possibility is to use Svoboda’s algorithm, Ibig tequires some
precomputation, so is only useful when several divisiorsgarformed with
the same divisor. The idea is the following: precompute atipial B; of B,
having 3n/2 words, then/2 most significant words being”/2. Then re-
ducing A mod B; requires a single:/2 x n multiplication. OnceA is re-
duced toA; of 3n/2 words by Svoboda’s algorithm with cogh/ (n/2), use
RecursiveDivRemon A; and B, which costsD(n/2) + M (n/2). The to-
tal cost is thu3M (n/2) + D(n/2), instead of2M (n/2) + 2D(n/2) for a
full division with RecursiveDivRem This gives5M (n)/3 for Karatsuba and
2.04M (n) for Toom—Cook3-way, instead oM (n) and2.63M (n), respec-
tively. A similar algorithm is described if2.4.2 (Subquadratic Montgomery
Reduction) with further optimizations.

1.4.7 Division by a single word

We assume here that we want to divide a multiple precisionbmuinby a
one-word integek. As for multiplication by a one-word integer, this is an
important special case. It arises for example in Toom—Coakiptication,
where we have to perform an exact divisiondb@I.3:3). We could of course
use a classical division algorithmfI.4.3). Whengcd(c, 3) = 1, Algorithm
DivideByWord might be used to compute a modular division

A+0p" = cQ,

where the “carry’d will be zero when the division is exact.

Theorem 1.5 The output of AlgDivideByWord satisfiesA + 56" = cQ.

Proof. We show that after step0 < i < n, we haved;+b3"t! = cQ;, where
A; = Z;’:O aiﬁi anin = Z;:O qlﬁl Fori = 0, thisisag + bﬁ = ¢qo,
which is just lind¥; sincgy = ag/c mod (3, goc—ay is divisible by3. Assume
now thatA;_; 4+ b3* = cQ;_1 holds forl < i < n. We haven; —b+'3 = z,
sox + V'3 = cq;, thusA; + (b + b3 = A; 1 + B(a; +VB+V'B) =
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Qi1 — b3+ B (x+b—bE+UE+b"B) =cQi_1+ B (x+b"p) = cQ;.

d
Algorithm 1.11 DivideByWord
Input: A =S"0""a;8,0<c< B ged(c,f) =1
Output: @Q = 23_1 ¢;3* and0 < b < csuch thatd + b3" = cQ
1: d+ 1/cmod 3 > might be precomputed

2260

3: for i from 0ton — 1 do
4 if b < a; then (x,b") — (a; — b,0)
5 else(x,b') «— (a; —b+3,1)
6: ¢; <+ dx mod (3

7V (ge—2)/8

8 bt +b"

o: return> 0" ¢;3%, b,

REMARK: at stefi ¥, sincé < z < 3, b” can also be obtained &g;¢/3].

Algorithm DivideByWord is just a special case of Hensel's division, which
is the topic of the next section; it can easily be extendedvide by integers
of a few words.

1.4.8 Hensel's division

Classical division involves cancelling the most significpart of the dividend
by a multiple of the divisor, while Hensel's division cans#te least significant
part (Figurd_1b). Given a dividend of 2n words and a divisoB3 of n words,

| A | A |

| B || B |

| Qz || Qo'B |

| R | R |

Figure 1.5 Classical/MSB division (left) vs Hensel/LSB division (right).

the classical or MSB (most significant bit) division commugequotient) and
aremaindel? such thatA = Q B+ R, while Hensel's or LSB (least significant
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bit) division computes a LSB-quotie’ and a LSB-remaindeR’ such that
A= Q'B+ R'"™. While MSB division requires the most significant bit Bf
to be set, LSB division requireB to be relatively prime to the word bagk
i.e. B to be odd forg a power of two.

The LSB-quotient is uniquely defined b§’ = A/B mod 3", with
0 < @ < @™ This in turn uniquely defines the LSB-remaindBf =
(A—Q@Q'B)p~ ", with—B < R < ™.

Most MSB-division variants (naive, with preconditioningdjyide and con-
quer, Newton’s iteration) have their LSB-counterpart. Egample, LSB pre-
conditioning involves using a multipléB of the divisor such thatkB =
1 mod 3, and Newton’s iteration is called Hensel lifting in the LS&se. The
exact division algorithm described at the end§@f4.3 uses both MSB- and
LSB-division simultaneously. One important differencehat LSB-division
does not need any correction step, since the carries go dirdaion opposite
to the cancelled bits.

When only the remainder is wanted, Hensel’s division is Ugualown as
Montgomery reduction (s€f2.4.2).

1.5 Roots

1.5.1 Square root

The “paper and pencil” method once taught at school to ex$igeare roots is
very similar to “paper and pencil” division. It decomposesiategerm of the
form s2 + r, taking two digits ofm at a time, and finding one digit of for
each two digits ofn. It is based on the following idea. th = s% + r is the
current decomposition, then taking two more digits of tiggiarent, we have a
decomposition of the form00m + ' = 10052 + 1007 47" with 0 < 7’ < 100.
Since(10s + t)? = 100s% + 20st + 2, a good approximation to the next digit
t can be found by dividing0r by 2s.

Algorithm SqrtRem generalizes this idea to a powgf of the internal base
close tom!/4: we obtain a divide and conquer algorithm, which is in fact an
error-free variant of Newton's method (cf. Chagter 4):
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Algorithm 1.12 SqrtRem
Input: m =a,_ 18" '+ - +aB+aowitha,_ 1 #0
Output: (s,7) such that? < m = s? +r < (s + 1)?
Require: a base-case routirgasecaseSqrtRem

0 [(n—1)/4]

if £ = 0 then returnBasecaseSqrtRerfm)

write m = as 3¢ + a2 8% + a1 8¢ + ag With 0 < as, a1, ag < 8¢

(s',r") — SqrtRem(as [ + as)

(q,u) «— DivRem(r'3* + ay, 25")

s—s'B+q

re—uB’ +ao - ¢

if » < 0then

r—r+2s—1, s+ s—1
return(s, r).

Theorem 1.6 Algorithm SqgrtRem correctly returns the integer square root
s and remainderr of the inputm, and has complexity?(2n) ~ R(n) +
D(n) + S(n), where D(n) and S(n) are the complexities of the division
with remainder and squaring respectively. This giv&®) ~ n? /2 with naive
multiplication, R(n) ~ 4K (n)/3 with Karatsuba’s multiplication, assuming
S(n) ~2M(n)/3.

As an example, assume AlgorithBgrtRem is called onm = 123456 789
with 3 = 10. We haven = 9, ¢ = 2, a3 = 123, ao = 45, a; = 67, and
ap = 89. The recursive call forns 3¢ + ay = 12345 yields s’ = 111 and
r’ = 24. TheDivRem call yieldsq = 11 andu = 25, which givess = 11111
andr = 2468.

Another nice way to compute the integer square root of argérter, i.e.
|m!/2], is Algorithm Sqrtint, which is an all-integer version of Newton’s
method §4.2).

Still with input 123 456 789, we successively get= 61 728 395, 30 864 198,
15432100, 7716053, 3858034, 1929032, 964547, 482337, 241296,
120903, 60962, 31493, 17706, 12339, 11172, 11111, 11111. Convergence
is slow because the initial value ofassigned at lingl 1 is much too large. How-
ever, any initial value greater than or equalta'/? | works (see the proof of
Algorithm RootInt below): starting froms = 12 000, we gets = 11 144, then
s =11111. See Exercise 1.28.
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Algorithm 1.13 Sqrtint

Input: an integerm > 1

Output: s = [m!'/?]
S m > any valueu > |m'/? | works
: repeat

1

2

3 S u

4 t—s+|m/s]
5 u— [t/2]
6: until uw > s

7: returns.

1.5.2 kth root

The idea of AlgorithnSqrtRem for the integer square root can be generalized
to any power: if the current decompositiorvis = m/* + m/” gk=1 + m’”,
first compute ath root of m/, saym’ = s* + r, then dividers 4+ m" by
ks*~1 to get an approximation of the next root digjitand correct it if needed.
Unfortunately, the computation of the remainder, whichdsyefor the square
root, involvesO (k) terms for thekth root, and this method may be slower than
Newton's method with floating-point arithmeti§4.2.3).

Similarly, Algorithm Sqrtint can be generalized to thgh root (see Algo-
rithm Rootint).

Algorithm 1.14 RootInt

Input: integersm > 1, andk > 2

Output: s = |m'/*¥|
Cu—m > any valueu > |m'/* | works
. repeat

1
2
3 S—u

4 t e (k—1)s+ |m/s*1]
5 u«— [t/k]

6: until uw > s

7: returns.

Theorem 1.7 AlgorithmRootInt terminates and returngm!/*|.

Proof. As long asu < s in step[®, the sequence efvalues is decreasing;
thus, it suffices to consider what happens when s. First it is easy so see that
u > simpliesm > s*, because > ks and thereforék —1)s+m/s* =1 > ks.
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Consider now the functioffi(t) := [(k—1)t+m/t*~1]/k fort > 0; its deriva-
tive is negative fort < m!/* and positive fort > m!/*; thus,
f(t) > f(m'*) = m'/* This proves that > |m!'/*|. Together with
s < m!/*, this proves that = |m'/*| at the end of the algorithm. 0

Note that any initial value greater than or equalto'/* | works at stejyl1.
Incidentally, we have proved the correctness of Algorit&artint, which is
just the special case = 2 of Algorithm RootInt.

1.5.3 Exact root

When akth root is known to be exact, there is of course no need to ctenpu
exactly the final remainder in “exact root” algorithms, whgaves some com-
putation time. However, we have to check that the remairglsufficiently
small that the computed root is correct.

When a root is known to be exact, we may also try to compute iitiistg
from the least significant bits, as for exact division. Indieié s* = m, then
s* = m mod ¢ for any integer’. However, in the case of exact division, the
equationa = ¢b mod ¢ has only one solutio as soon a$ is relatively
prime to3. Here, the equatios” = m mod ¢ may have several solutions,
so the lifting process is not unique. For exampté, = 1 mod 23 has four
solutionsl, 3,5, 7.

Suppose we hawe = m mod 3¢, and we want to lift tg3*!. This implies
(s + )% = m + m/B* mod B+, where0d < t,m’ < 3. Thus

m7$k

3t
This equation has a unique solutiorwhen k is relatively prime tog. For
example, we can extract cube roots in this wayda power of two. Wherk

is relatively prime tg3, we can also compute the root simultaneously from the
most significant and least significant ends, as for exacsidivi

kt=m'+

mod S.

Unknown exponent

Assume now that we want to check if a given integelis an exact power,
without knowing the corresponding exponent. For exampdees primality
testing or factorization algorithms fail when given an eéxamwer, so this has
to be checked first. AlgorithrisPower detects exact powers, and returns the
largest corresponding exponent (oif the input is not an exact power).

To quickly detect noristh powers at stelp 2, we may use modular algorithms
whenk is relatively prime to the base (see above).
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Algorithm 1.15 IsPower

Input: a positive integern

Output: k > 2 whenm is an exackth power,1 otherwise
1: for k from |lgm| downto 2 do
2: if m is akth powerthen returnk

3: returnl.

REMARK: in Algorithm IsPower, we can limit the search to prime exponents
k, but then the algorithm does not necessarily return thegrexponent, and
we might have to call it again. For example, taking= 117649, the modified
algorithm first returns because 17649 = 493, and when called again with
m = 49, it returns2.

1.6 Greatest common divisor

Many algorithms for computing gcds may be found in the liteér@. We can
distinguish between the following (non-exclusive) types:

e Left-to-right (MSB) versus right-to-left (LSB) algorithenin the former the
actions depend on the most significant bits, while in thestatie actions
depend on the least significant bits.

¢ Naive algorithms: thes® (n?) algorithms consider one word of each operand
at atime, trying to guess from them the first quotients — wentiuthis class
algorithms considering double-size words, namely Lehsn&gorithm and
Sorenson’s:-ary reduction in the left-to-right and right-to-left casespec-
tively; algorithms not in this class consider a number ofagothat depends
on the input sizen, and are often subquadratic.

e Subtraction-only algorithms: these algorithms tradesioris for subtrac-
tions, at the cost of more iterations.

e Plain versus extended algorithms: the former just computegcd of the
inputs, while the latter express the gcd as a linear comibimaf the inputs.

1.6.1 Naive GCD

For completeness, we mention Euclid’s algorithm for findihg gcd of two
non-negative integers, v.

Euclid’s algorithm is discussed in many textbooks, and wexdbrecom-
mend it in its simplest form, except for testing purposedekd, it is usually a
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slow way to compute a gcd. However, Euclid’s algorithm ddesasthe con-
nection between gcds and continued fractions./If has a regular continued
fraction of the form

y N 1 1 1
uv=qyg+ ——— -+,
0 G+ g2+ g3+

then the quotients,, ¢, . . . are precisely the quotientsdiv v of the divisions
performed in Euclid’s algorithm. For more on continued fiaes, seef4.8.

Algorithm 1.16 EuclidGced
Input: u, v nonnegative integers (not both zero)
Output: ged(u,v)
while v £ 0 do
(u,v) «— (v,u mod v)

returnu.

Double-Digit Ged. A first improvement comes from Lehmer’s observation:
the first few quotients in Euclid’s algorithm usually can ketedmined from
the most significant words of the inputs. This avoids exp@ndivisions that
give small quotients most of the time (SMIM,S.SD. Consider for exam-
ple a = 427419669081 andb = 321110693 270 with 3-digit words. The
first quotients aré, 3,48, ... Now, if we consider the most significant words,
namely 427 and 321, we get the quotients, 3,35, ... If we stop after the
first two quotients, we see that we can replace the initialispya — b and
—3a + 4b, which gives106 308 975811 and2 183 765 837.

Lehmer’s algorithm determines cofactors from the mostifigant words
of the input integers. Those cofactors usually have sizg balf a word. The
DoubleDigitGed algorithm — which should be called “double-word” — uses
thetwo most significant words instead, which gives cofactois v, w of one
full-word each, such thajcd(a, b) = ged(ta+ub, va+wb). This is optimal for
the computation of the four produdts, ub, va, wb. With the above example,
if we consider427 419 and321 110, we find that the first five quotients agree,
so we can replace, b by —148a + 197b and441a — 587b, i.e.695 550 202 and
97115 231.

The subroutineHalfBezout takes as input tw@-word integers, performs
Euclid’s algorithm until the smallest remainder fits in onerd; and returns
the corresponding matrix, u; v, w).

Binary Ged. A better algorithm than Euclid’s, though also 6f(n?) com-
plexity, is thebinary algorithm. It differs from Euclid’s algorithm in two ways:
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Algorithm 1.17 DoubleDigitGed
|npUt: a = an,lﬁ”ﬂ + -+ ag, b= bmflﬂmil + -+ b()
Output: ged(a, b)
if b = 0 thenreturna
if m < 2 thenreturnBasecaseGcegh, b)
if a < born > m thenreturnDoubleDigitGed(b, ¢ mod b)
(t, u,v, w) — HaIfBezout(an,lﬁ + ap—2, bnflﬁ + bn,Q)
returnDoubleDigitGed(|ta + ubl, |[va + wb)).

it consider least significant bits first, and it avoids dieiss, except for divi-
sions by two (which can be implemented as shifts on a binamypeder). See
Algorithm BinaryGcd. Note that the first three “while” loops can be omitted
if the inputsa andb are odd.

Algorithm 1.18 BinaryGced
Input: a,b >0
Output: ged(a, b)
t—1
while ¢ mod 2 = b mod 2 = 0do
(t,a,b) «— (2t,a/2,b/2)
while ¢ mod 2 = 0 do
a<—a/2
while b mod 2 = 0 do
b b/2 > now a andb are both odd
while a # b do
(a,b) < (Ja — b], min(a, b))
a — a/2"(@ > v(a) is the2-valuation ofa

returnta.

Sorenson’sk-ary reduction
The binary algorithm is based on the fact that &ndb are both odd, thea—b
is even, and we can remove a factor of two sigeé(a, b) is odd. Sorenson’s
k-ary reduction is a generalization of that idea: giveandb odd, we try to
find small integers:, v such that.a — vb is divisible by a large power of two.

Theorem 1.8 [@] If a,b > 0, m > 1 with ged(a,m) = ged(b,m) = 1,
there existu, v, 0 < |ul,v < y/m such thatua = vb mod m.
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Algorithm ReducedRatModfinds such a paifu, v). It is a simple variation of
the extended Euclidean algorithm; indeed,dhare quotients in the continued
fraction expansion of/m.

Algorithm 1.19 ReducedRatMod

Input: a,b > 0, m > 1with gcd(a,m) = ged(b,m) =1
Output: (u,v) suchthat) < |u|,v < v/m andua = vb mod m
¢ — a/bmod m

(ur,01) < (0,m)

(ug,v2) — (1,¢)

: while vy > y/m do

q « |v1/v2]

(w1, u2) — (uz,ur — qua)

(v1,02) < (v2,v1 — qua)

return(us, va).
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Whenm is a prime power, the inversiaryb mod m at stef L of Algorithm
ReducedRatModcan be performed efficiently using Hensel liftir2(3).

Given two integers:, b of sayn words, AlgorithmReducedRatModwith
m = (3% returns two integers, v such thatb — ua is a multiple of 3. Since
u, v have at most one word eaatt,= (vb—ua)/3? has at most — 1 words —
plus possibly one bit — therefore with = b mod «’ we obtainged(a,b) =
ged(a’, V'), where bothe’ andb’ have about one word less tharx(a, b). This
gives an LSB variant of the double-digit (MSB) algorithm.

1.6.2 Extended GCD

Algorithm ExtendedGcdsolves theextendedgreatest common divisor prob-
lem: given two integers andb, it computes their gcg, and also two integers
u andv (calledBézout coefficientsr sometimegofactorsor multipliers) such
thatg = ua + vb.

If ag andby are the input numbers, aadb the current values, the following
invariants hold at the start of each iteration of the whilgd@and after the while
loop: a = uag + vby, andb = wagy + xby. (See Exercise_1.80 for a bound on
the cofacton:.)

An important special case is modular inversion (see Ch&jtegiven an
integern, we want to computé/a mod n for a relatively prime ton. We then
simply run AlgorithmExtendedGcdwith inputa andb = n; this yieldsu and
v with ua +vn = 1, and thusl /a = u mod n. Sincev is not needed here, we
can simply avoid computing andz, by removing steps] 2 ahdl 7.



1.6 Greatest common divisor 33

Algorithm 1.20 ExtendedGcd

Input: positive integers andb

Output: integers(g, u, v) such thay = ged(a,b) = ua + vb
1: (u,w) « (1,0)
2: (v,2) « (0,1)

3: while b # 0 do

4 (¢,7) < DivRem(a, b)
5 (a,b) « (b,r)

6: (u, w) «— (w,u — quw)
7 (v,2) « (z,v — qx)
8: return(a, u,v).

It may also be worthwhile to compute onlyin the general case, as the
cofactorv can be recovered from = (g — wa)/b, this division being exact
(seefl.4.5).

All known algorithms for subquadratic gcd rely on an extehdgcd
subroutine, which is called recursively, so we discuss thbgsadratic
extended gcd in the next section.

1.6.3 Half binary GCD, divide and conquer GCD

Designing a subquadratic integer gcd algorithm that is lotthematically
correct and efficient in practice is a challenging problem.

A first remark is that, starting from-bit inputs, there aré®(n) terms in the
remainder sequeneg = a,r; = b, ...,r;41 = r;_1 mod r;, ..., and the size
of r; decreases linearly with Thus, computing all the partial remaindess
leads to a quadratic cost, and a fast algorithm should atsd t

However, the partial quotients = r;_; div r; are usually small; the main
idea is thus to compute them without computing the partiaaiaders. This
can be seen as a generalization of ErmubleDigitGed algorithm: instead of
considering a fixed bas, adjust it so that the inputs have four “big words”.
The cofactor-matrix returned by th¢alfBezout subroutine will then reduce
the input size to aboutn/4. A second call with the remaining two most
significant “big words” of the new remainders will reduceithgize to half
the input size. See Exercise 1.31.

The same method applies in the LSB case, and is in fact siniplamn
into a correct algorithm. In this case, the termsform abinary remainder
sequencewhich corresponds to the iteration of tBaaryDivide algorithm,
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with starting values, b. The integel; is thebinary quotientof « andb, andr
is thebinary remainder

Algorithm 1.21 BinaryDivide
Input: a,b € Zwithv(b) —v(a) =35 >0
Output: |¢| < 27 andr = a + ¢277b such that(b) < v(r)
b — 277
q «— —a/b' mod 279+!
if ¢ > 2/ thenq « ¢q — 27!
returng,r = a + q2~7b.

This right-to-left division defines a right-to-left remaier sequence, = «,
a; = b, ..., wherea;1; = BinaryRemainder (a;_1,a;), andv(a;+1) <
v(a;). It can be shown that this sequence eventually reachgs= 0 for some
indexi. Assumingv(a) = 0, thenged(a, b) is the odd part ofi;. Indeed, in
Algorithm BinaryDivide, if some odd prime divides botlhhandb, it certainly
divides2~7b, which is an integer, and thus it dividest ¢2~7b. Conversely, if
some odd prime divides bothandr, it divides als®2~7b, and thus it divides
a = r—q277b; this shows that no spurious factor appears, unlike in sdives o
gcd algorithms.

EXAMPLE: leta = a9 = 935 andb = a; = 714, sov(b) = v(a) + 1.

Algorithm BinaryDivide computes’ = 357, ¢ = 1, andas = a + ¢277b =

1292. The next step givess = 1360, thenay = 1632, a5 = 2176,

ag = 0. Since2176 = 27 - 17, we conclude that the gcd 685 and 714 is

17. Note that the binary remainder sequence might containtiwegarms and
terms larger tham, b. For example, starting from = 19 andb = 2, we get
19,2, 20, —8, 16, 0.

An asymptotically fast GCD algorithm with complexiy(M (n) logn) can
be constructed with AlgorithralalfBinaryGced .

Theorem 1.9 Givena,b € Z with v(a) = 0 andrv(b) > 0, and an integer
k > 0, AlgorithmHalfBinaryGced returns an integef < j < k and a matrix
R such that, ifc = 22 (Rl)la + Rl}gb) andd = 2_2j(R271a + R272b):

1. candd are integers with/(¢) = 0 andv(d) > 0;
2. ¢* = 2icandd* = 27d are two consecutive terms from the binary remain-
der sequence aof, b with v(c*) < k < v(d*).

Proof. We prove the theorem by induction énIf £ = 0, the algorithm re-
turnsj = 0 and the identity matrix, thus we have= a andd = b, and the
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Algorithm 1.22 HalfBinaryGced

Input: a,b € Z with 0 = v(a) < v(b), a non-negative integér

Output: an integerj and a2 x 2 matrix R satisfying Theorerf 119
1: if v(b) > k then

1 0
return
u O’(O 1)

sk — |_k;/2J

a1 — amod 22M1+1 b phmod 22k1+1

: j1, R — HalfBinaryGed (aq, b1, k1)

pal = 272 (Rija+ Rigb), b 2% (Ry1a + Rob)
: Jo = v(b')

2 if jo 4+ j1 > kthen

returnj;, R

10: ¢, < BinaryDivide (a’, b’)

11 kg Kk — (jo + j1)

12: ag < b/ /290 mod 22k2F1, by /290 mod 2%F2H1
13: j2, S « HalfBinaryGed (az, ba, ko)

0 20
14: returnjy + jo + jo, S % X R.
q

N
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statement is true. Now suppoke> 0, and assume that the theorem is true up
tok — 1.

The first recursive call usds < k, sincek; = |k/2] < k. After stelb, by
induction,a’1 =221 (R171a1 +R172b1) andb’l =272 (R271a1 —|—R272b1) are
integers withv(a}) = 0 < (b)), and27ta}, 271} are two consecutive terms
from the binary remainder sequenceugf b;. Lemma 7 of] says that the
quotients of the remainder sequence:df coincide with those ofi;, b; up to
271q’ and2/1b’. This proves tha2’ta’, 2711’ are two consecutive terms of the
remainder sequence afb. Sincea anda; differ by a multiple of22*1+1, o/
anda) differ by a multiple of22*1+1-2i1 > 2 sincej; < k; by induction. It
follows thatv(a’) = 0. Similarly, b’ andd] differ by a multiple of2, and thus
Jjo=v() >0.

The second recursive call usks < k, since by inductiorj; > 0 and we
just showedj, > 0. It easily follows thatj; + jo + j2 > 0, and thusj > 0. If
we exit at stefl9, we have= j; < k; < k. Otherwisej = j; + jo + jo =
k — ko + jo < k by induction.

If jo +j1 > k, we haver(271b') = jo + j1 > k, we exit the algorithm, and
the statement holds. Now assume+ j; < k. We compute an extra term
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of the remainder sequence frarh) &', which, up to multiplication by’ , is an
extra term of the remainder sequencedf. Sincer = a’ + ¢277°b, we have

v _ 9—io 0 270 a’ .
r 200 ¢ v

The new terms of the remainder sequenceéaiz® andr /27, adjusted so that
v(b'/27°) = 0. The same argument as above holds for the second recursive
call, which stops when the-valuation of the sequence starting fram, by
exceedss; this corresponds to Zxvaluation larger thany + j; + ko = k for

thea, b remainder sequence. 0

Given twon-bit integersa andb, andk = n/2, HalfBinaryGed yields two
consecutive elements, d* of their binary remainder sequence with bit-size
aboutn/2 (for their odd part).

EXAMPLE: leta = 1889826 700 059 andb = 421 872 857 844, with k£ = 20.
The first recursive call witly; = 1243931, by = 1372916, k; = 10 gives

j1 = 8andR = ( oo ) which corresponds ta’ = 11952871 683

andd’ = 10027328112, with jo = 4. The binary division yields the new
termr = 8819331648, and we haveiy, = 8, as = 52775, by = 50468.
The second recursive call givgs= 8 and.S = ( oy > which finally

i - ; 1444544 1086512 i
gives;j = 20 and the matnx( 319084 1023711 ) which corresponds to the

remainder termsg = 2899749 - 27, rg = 992790 - 27. With the samex, b
values, but witht = 41, which corresponds to the bit-size of we get as
final values of the algorithm,5s = 3 - 24! andr,s = 0, which proves that
ged(a, b) = 3.

Let H(n) be the complexity oHalfBinaryGed for inputs ofn bits and
k = n/2; a; andb, have~n/2 bits, the coefficients oR have~n /4 bits, and
a’, ' have~3n/4 bits. The remainders,, b2 have~n/2 bits, the coefficients
of S have~n/4 bits, and the final values d have~n/2 bits. The main costs
are the matrix—vector product at s{€p 6, and the final matratrix product.
We obtainH (n) ~ 2H(n/2) + 4M(n/4,n) + TM(n/4), assuming we use
Strassen’s algorithm to multiply twdx 2 matrices with7 scalar products, i.e.
H(n) ~ 2H(n/2) + 17M (n/4), assuming that we compute eabh(n/4,n)
product with a single FFT transform of widfin/4, which gives cost about
M(5n/8) ~ 0.625M (n) in the FFT range. Thud{ (n) = O(M (n)logn).

For the plain gcd, we callalfBinaryGed with &k = n, and instead of com-
puting the final matrix product, we multiply—2/2S by (v',r) — the compo-
nents have-n/2 bits — to obtain the finad, d values. The first recursive call
has a,,b; of size n with k; =~ n/2, and corresponds td{(n); the
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matrix R andd’, b’ haven /2 bits, andks ~ n /2, and thus the second recursive
call corresponds to a plain gcd of sizg¢2. The costG(n) satisfiesG(n) =
H(n)+G(n/2)+4M(n/2,n)+4M(n/2) ~ H(n)+G(n/2)+10M (n/2).
Thus,G(n) = O(M(n)logn).

An application of the half-gcg@er sein the MSB case is theational recon-
structionproblem. Assume we want to compute a rationa}, wherep andg
are known to be bounded by some constaihtstead of computing with ratio-
nals, we may perform all computations modulo some integer c>. Hence,
we will end up withp/q = m mod n, and the problem is now to find the un-
known p and ¢ from the known integefm. To do this, we start an extended
gcd fromm andn, and we stop as soon as the currerndu values — as in
ExtendedGcd— are smaller than: since we have = um + wvn, this gives
m = a/u mod n. This is exactly what is called a half-gcd; a subquadratic
version in the LSB case is given above.

1.7 Base conversion

Since computers usually work with binary numbers, and hupnafer decimal
representations, input/output base conversions are deé&da typical com-
putation, there are only a few conversions, compared todta humber of
operations, so optimizing conversions is less importaa thptimizing other
aspects of the computation. However, when working with hugabers, naive
conversion algorithms may slow down the whole computation.

In this section, we consider that numbers are representedhaily in base
(6 — usually a power of — and externally in basB — say a power of ten. When
both bases areommensurablé.e. both are powers of a common integer, such
asf = 8 and B = 16, conversions of:-digit numbers can be performed
in O(n) operations. We assume here tltaand B are not commensurable.
We might think that only one algorithm is needed, since irgnd output are
symmetric by exchanging basgsaind B. Unfortunately, this is not true, since
computations are done only in basé¢see Exercisg 1.87).

1.7.1 Quadratic algorithms

Algorithms Integerinput and IntegerOutput, respectively, read and write
n-word integers, both with a complexity 6f(n?).
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Algorithm 1.23 Integerinput
Input: astringS = s,,_1 ... 8150 of digits in baseB
Output: the valueA in baseg of the integer represented I8y
A—0
for ¢ from m — 1 downto 0 do
A« BA+ val(s;) > val(s;) is the value of; in bases

returnA.

Algorithm 1.24 IntegerOutput
Input: A = ngl a;5* >0
Output: a stringS of characters, representingjin baseB
m <« 0
while A # 0 do
$m — char(A mod B) 1 s,,: character corresponding tbmod B
A«— Adiv B
m+«—m+1
returnS = s,,_1...5150.

1.7.2 Subquadratic algorithms

Fast conversion routines are obtained using a “divide amdjwex” strategy.
Given two stringss andt, we lets || ¢ denote the concatenation oandt. For
integer input, if the given string decomposesSas- Sy; || Si., whereS), has
k digits in baseB, then

Input(S, B) = Input(Sy;, B) B* 4 Input(S,, B),

whereInput(S, B) is the value obtained when reading the strifign the
external base3. Algorithm Fastintegerinput shows one way to implement
this: if the outputA hasn words, AlgorithmFastintegerinput has complexity
O(M (n)logn), more precisely~ M (n/4)1gn for n a power of two in the
FFT range (see Exercibe 1134).

For integer output, a similar algorithm can be designedacepg multipli-
cations by divisions. Namely, it = A,; B¥ + Ay, then

Output(A, B) = Output(Api, B) || Output (4., B),

whereOutput(A, B) is the string resulting from writing the integer in the
external base3, and it is assumed th&utput(A,,, B) has exactlyk digits,
after possibly padding with leading zeros.

If the input A hasn words, AlgorithmFastintegerOutput has complexity



1.8 Exercises 39

Algorithm 1.25 Fastintegerinput
Input: astringS = s,,_1 ... 8150 of digits in baseB
Output: the valueA of the integer represented ISy
£« [val(sg),val(s1),...,val(sm—1)]
(b, k) — (B, m) > Invariant:¢ hask elementd, ..., {51
while £ > 1 do
if k£ eventhen ? «— [60 4+ by, by +bls, ... 0l o+ bgk-_ﬂ
elsel «— [éo + 001,05+ bls, . .. ,ék_ﬂ
(b k) — (8, Tk/2])
returntg.

Algorithm 1.26 FastintegerOutput
Input: A = zg—l a; 3
Output: a stringsS of characters, representingin baseB
if A< Bthen
returnchar(A)
else
find k such thatB?*—2 < A < B?F
(Q, R) + DivRem(A, B¥)
r « FastintegerOutput(R)
returnFastintegerOutput(Q) || 0# (") || .

O(M (n)logn), more precisely~ D(n/4)1gn for n a power of two in the
FFT range, wherd(n) is the cost of dividing &n-word integer by am-
word integer. Depending on the cost ratio between multgiin and division,
integer output may thus be from two to five times slower thdaagar input;
see however Exerci§e 1]35.

1.8 Exercises

Exercise 1.1 Extend the Kronecker—Sohhage trick mentioned at the begin-
ning of 1.3 to negative coefficients, assuming the coefficientsreties range
[=p, p)-

Exercise 1.2 (Harvey[@]) For multiplying two polynomials of degree less
than n, with non-negative integer coefficients bounded above pbythe
Kronecker—Sctinhage trick performs one integer multiplication of sizewtb
2nlg p, assuming is small compared tp. Show that it is possible to perform
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two integer multiplications of size lg p instead, and even four integer multi-
plications of sizgn/2) g p.

Exercise 1.3 Assume your processor provides an instrucfimaa (a, b, ¢, d)
returningh, ¢ such thatub + ¢ + d = h3 + ¢, where0 < a,b,c,d,l,h < 3.
Rewrite AlgorithmBasecaseMultiplyusingfmaa .

Exercise 1.4 (Harvey, Khachatrianet al.[@]) For A = Z;L:_ol ;3 and
B =Y~ b3, prove the formula

n—11—1 n_1 1 —
AB =" (ai+a;)(bi + b)) B + 2> aibif =D B a;b; A
i=1 j—=0 = par il

Deduce a new algorithm for schoolbook multiplication.

Exercise 1.5 (Hanrot) Prove that the numbék (n) of word-products (as de-
fined in the proof of Thm[_1]2) in Karatsuba's algorithm is riecreasing,
providedn, = 2. Plot the graph of< (n)/n!# 3 with a logarithmic scale fon,
for 27 < n < 2% and find experimentally where the maximum appears.

Exercise 1.6 (Ryde)Assume the basecase multiply codfgn) = an? + bn,
and that Karatsuba’s algorithm codt§n) = 3K (n/2) 4 cn. Show that divid-
ing a by two increases the Karatsuba threshajcby a factor of two, and on
the contrary decreasirigandc decreases.

Exercise 1.7 (Maeder[lﬁ], Thomé [E]) Show that an auxiliary memory
of 2n + o(n) words is enough to implement Karatsuba'’s algorithm injac
for ann-wordxn-word product. In the polynomial case, prove that an auxilia
space ofn coefficients is enough, in addition to the+ n coefficients of the
input polynomials, and th2n — 1 coefficients of the product. [You can use the
2n result words, but must not destroy ther n input words.]

Exercise 1.8 (Roch@]) If Exercise[1.Y was too easy for you, design a
Karatsuba-like algorithm using onty(log n) extra space (you are allowed to
read and write in then output words, but the +n input words are read-only).

Exercise 1.9 (Quercia, McLaughlin)Modify Algorithm KaratsubaMultiply
to use only~7n/2 additions/subtractions. [Hint: decompose eaclCgf Cy
andCs into two parts.]

Exercise 1.10Design an in-place version d&aratsubaMultiply (see Exer-
cise[1.7) that accumulates the resultin. . ., c,,_1, and returns a carry bit.
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Exercise 1.11 (Vuillemin) Design an algorithm to multiply,z2+a, x+4-ag by
bix + b using4 multiplications. Can you extend it toGax 6 product using.6
multiplications?

Exercise 1.12 (Weimerskirch, Paar)Extend the Karatsuba trick to compute
ann x n product inn(n + 1)/2 multiplications. For whichn does this win
over the classical Karatsuba algorithm?

Exercise 1.13 (Hanrot) In Algorithm OddEvenKaratsuba, if both m andn
are odd, we combine the larger patg and B, together, and the smaller parts
A; and B; together. Find a way to get instead

K(m,n) = K([m/2],[n/2]) + K([m/2], [n/2]) + K([m/2], [n/2]).

Exercise 1.14Prove that if five integer evaluation points are used for Teom
Cook3-way (f1.3:3), the division by (a multiple of) three can not be aeoid
Does this remain true if only four integer points are useatogr withoo?

Exercise 1.15 (Quercia, Harvey)In Toom-Cook3-way (J1.3.3), take as eval-
uation point2” instead of2, wherew is the number of bits per word (usually
w = 32 or 64). Which division is then needed? Similarly for the evaluatio
point2%/2,

Exercise 1.16 For an integek > 2 and multiplication of two numbers of size
kn andn, show that the trivial strategy which perforrasnultiplications, each
n x n, is not the best possible in the FFT range.

Exercise 1.17 (Karatsuba, Zuras{@]) Assuming the multiplication has
superlinear cost, show that the speedup of squaring withecego multipli-
cation can not significantly exce@d

Exercise 1.18 (Thong, Quercia) Consider two setsA = {a,b,c,...} and
U ={u,v,w,...},and a setX = {z,y,z,...} of sums of products of el-
ements ofA and U (assumed to be in some field). We can ask “what is
the least number of multiplies required to compute all eletm®f X?”. In
general, this is a difficult problem, related to the probleha@amputing tensor
rank, which is NP-complete (see for examplésthd |LT.’I.|9] and the book by
Burgisseret al. [@]). Special cases include integer/polynomial multation,
the middle product, and matrix multiplication (for matisoef fixed size). As a
specific example, can we compute= au + cw, y = av+ bw, z = bu+ cvin
fewer than six multiplies? Similarly for = au—cw, y = av—bw, z = bu—cuv.

Exercise 1.191In Algorithm BasecaseDivRen{1.4.1), prove thag* < 3-+1.
Can this bound be reached? In the case> j3, prove that the while-loop at
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stepdBEB is executed at most once. Prove that the same bol8sdboda’s
algorithm, i.e. thatd > 0 after stefy B of Algorithn8vobodaDivision(§1.4.2).

Exercise 1.20 (Granlund, Mdller) In Algorithm BasecaseDivRemestimate
the probability thatd < 0 is true at stepl6, assuming the remaindeirom the
division of a,, 1 ;8 + an4j—1 by b,—1 is uniformly distributed in0, b,,_, — 1],
A mod 3"+~ is uniformly distributed irf0, 377~ — 1], andB mod 3"~ !
is uniformly distributed irff0, 5"~ —1]. Then replace the computationgfby
a division of the three most significant words 4ty the two most significant
words of B. Prove the algorithm is still correct. What is the maximal foem
of corrections, and the probability thdt< 0?

Exercise 1.21 (Montgomer;{lﬂ]) LetO < b < B,and0 < ay,...,ap < [.
Prove thatz,(3* mod b) + - - - + a1 (3 mod b) + ag < 32, providedb < /3.
Use this fact to design an efficient algorithm dividiAg= a,,—1 87" '+ - -+ag
by 0. Does the algorithm extend to division by the least significhgits?

Exercise 1.221n Algorithm RecursiveDivRem find inputs that requirg, 2, 3
or 4 corrections in stefpl8. [Hint: considgr= 2.] Prove that whem = m and
A < f™(B + 1), at most two corrections occur.

Exercise 1.23Find the complexity of AlgorithmRecursiveDivRemin the
FFT range.

Exercise 1.24Consider the division ofl of kn words by B of n words, with
integerk > 3, and the alternate strategy that consists of extendingitend
with zeros so that it has half the size of the dividend. Shoat this is al-
ways slower than AlgorithrnbalancedDivision(assuming that division has
superlinear cost).

Exercise 1.25An important special base of division is when the divisorfis o
the formb*. For example, this is useful for an integer output routifieq).
Can a fast algorithm be designed for this case?

Exercise 1.26 (SedoglavicDoes the Kronecker—Sohhage trick to reduce
polynomial multiplication to integer multiplicatiorfT.3) also work — in an
efficient way — for division? Assume that you want to dividesgee2n poly-
nomial A(x) by a monic degree-polynomial B(z), both polynomials having
integer coefficients bounded by

Exercise 1.27Design an algorithm that performs an exact division dhebit
integer by &n-bit integer, with a quotient din bits, using the idea mentioned
in the last paragraph &f[.4.5. Prove that your algorithm is correct.
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Exercise 1.28Improve the initial speed of convergence of Algoriti8grtint
(41.53) by using a better starting approximation at Etep Lir épproximation
should be in the interval /m]|, [2/m]].

Exercise 1.29 (Luschny)Devise a fast algorithm for computing the binomial

coefficient
n n!
Cln,k) = (k) = Kl — k)

forintegersn, k, 0 < k < n. The algorithm should use exact integer arithmetic
and compute the exact answer.

Exercise 1.30 (Shoup)Show that in AlgorithmExtendedGcd if a > b > 0,
andg = ged(a, b), then the cofacton satisfies—b/(2g) < u < b/(2g).

Exercise 1.31(a) Devise a subquadratic GCD algorithalfGed along the
lines outlined in the first three paragraphgfdf6.3 (most-significant bits first).
The input is two integera > b > 0. The output is & x 2 matrix R and
integersd’, b’ such thafa’ v']* = R[a b]'. If the inputs have size bits, then the
elements ofk should have at most/2+O(1) bits, and the outputs , b’ should
have at mos8n/4 + O(1) bits. (b) Construct a plain GCD algorithm which
callsHalfGced until the arguments are small enough to call a naive algorith
(c) Compare this approach with the useH#lfBinaryGed in {1.6.3.

Exercise 1.32 (Galbraith, Sclinhage, Steh¢) The Jacobi symbdk|b) of an
integera and a positive odd integérsatisfies(a|b) = (a mod b|b), the law
of quadratic reciprocitya|b)(bla) = (—1)(@=D(®=1/1 for ¢ odd and posi-
tive, together with(—1|b) = (—1)=Y/2 and (2/p) = (—1)**~D/8. This
looks very much like the gcd recurrenggid(a,b) = ged(a mod b,b) and
ged(a,b) = ged(b, a). Design anO(M (n)logn) algorithm to compute the
Jacobi symbol of twar-bit integers.

Exercise 1.33Show thatB and/3 are commensurable, in the sense defined in

g1.7, iff In(B)/In(B) € Q.

Exercise 1.34Find a formulaZ’(n) for the asymptotic complexity of Algo-
rithm Fastintegerinput whenn = 2* (§1.7.2). Show that, for general the
formula is within a factor of two of (n). [Hint: consider the binary expansion
of n.]

Exercise 1.35Show that the integer output routine can be made as fast fasym
totically) as the integer input routinBastintegerinput. Do timing experi-
ments with your favorite multiple-precision software. fitliuse D. Bernstein’s
scaled remainder tre21] and the middle product.]
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Exercise 1.36If the internal bas¢ and the external bage share a nontrivial
common divisor — as in the cage = 2¢ and B = 10 — show how we can
exploit this to speed up the subquadratic input and outpuitnes.

Exercise 1.37 Assume you are given twe-digit integers in base ten, but you
have implemented fast arithmetic only in base two. Can yoliiphuthe inte-
gers in timeO(M (n))?

1.9 Notes and references

“On-line” (as opposed to “off-line”) algorithms are coneréd in many books
and papers, see for example the book by Borodin and EI-Y@. [
“Relaxed” algorithms were introduced by van der Hoeven.reterences and
a discussion of the differences between “lazy”, “zealoasy “relaxed” algo-
rithms, see4].

An example of an implementation with “guard bits” to avoiceoilow prob-
lems in integer additiondL.2) is the block-wise modular arithmetic of Lenstra
and Dixon on the MasPar [87]. They uséd= 23° with 32-bit words.

The observation that polynomial multiplication reducesirtteger multi-
plication is due to both Kronecker and Scthage, which explains the name
“Kronecker—Schnhage trick”. More precisely, Kroneckéi_[_i46, pp. 9414942
(also ,§4]) reduced the irreducibility test for factorization of ftivariate
polynomials to the univariate case, and SrmhageB] reduced the univari-
ate case to the integer case. The Kroneckeréfithge trick is improved in
Harve ] (see Exercige1.2), and some nice applicatibitsare given in
Steel ].

Karatsuba'’s algorithm was first puinshedMBG}. Vertldiis known about
its averagecomplexity. What is clear is that no simple asymptotic eqeiva
can be obtained, since the rafign) /n® does not converge (see Exerdisd 1.5).

Andrei Toom @7] discovered the class of Toom—Cook aloni, and they
were discussed by Stephen Cook in his th&ls [76, pp. 51A%Ary good de-
scription of these algorithms can be found in the book by Ga#irand Pomer-
ance [[_—S_h,§9.5.1]. In particular, it describes how to generate thewatadn and
interpolation formulae symbolically. Zura@SS] consgléne4-way ands-
way variants, together with squaring. Bodrato and Zalﬁ] Ehow that the
Toom—Cook3-way interpolation scheme ¢f[.3.3 is close to optimal for the
points 0,1, —1, 2, oo; they also exhibit efficientl-way and5-way schemes.
Bodrato and Zanoni also introduced the To@ri-and Toom3.5 notations for
what we call Toom3, 2) and Toom¢4, 3), these algorithms being useful for
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unbalanced multiplication using a different number of pecThey noticed
that Toom({4, 2) only differs from Toom3-way in the evaluation phase, thus
most of the implementation can be shared.

The Sclibnhage—Strassen algorithm first appearem [199], ancsisrithed
in §2.3.3. Algorithms using floating-point complex numbers discussed in
Knuth's classicm2§4.3.3.0]. See als§3.3.1.

The odd-even scheme is described in Hanrot and Zimmen@]u, [@nd
was independently discovered by Andreas Enge. The asymeragtraring for-
mula given ind1.3.6 was invented by Chung and Hasan (see their p@er [66]
for other asymmetric formulae). Exerclsell.4 was suggestadbvid Harvey,
who independently discovered the algorithm of Khachateial. [@].

See Lekvre ] for a comparison of different algorithms for thelgem
of multiplication by an integer constant.

Svoboda'’s algorithm was introduced @211]. The exactsion algorithm
starting from least significant bits is due to Jebel@[liﬂ@belean and
Krandick invented the “bidirectional” algorithnm44]. €hKarp—Markstein
trick to speed up Newton'’s iteration (or Hensel lifting oyeadic numbers)
is described inl[137]. The “recursive division” §L.4.3 is from Burnikel and
Ziegler [61], although earlier but not-so-detailed ideas be found in Jebe-
lean ], and even earlier in Moenck and Bor0166 . Teénition of
Hensel's division used here is due to Shand and Vuille [2@ho also
point out the duality with Euclidean division.

Algorithm SgrtRem (§1.5.3) was first described in Zimmerma}ﬁ[‘Z34], and
proved correct in Bertogt al. [29]. Algorithm Sqrtint is described in Cohen
[E]; its generalization téth roots (AlgorithmRootint) is due to Keith Briggs.
The detection of exact powers is discussed in Bernsteirsttarand Pila [23]
and earlier in Bernsteirﬁh?] and Cohéﬂ[?B]. It is necesdaryexample, in
the AKS primality test of Agrawal, Kayal, and Saerb [2].

The classical (quadratic) Euclidean algorithm has beesidered by many
authors —a good reference is Knljﬂl42]. The Gauss—Kuzheiorer gives
the distribution of quotients in the regular continued fiat of almost all real
numbers, and hence is a good guide to the distribution ofieqistin the Eu-
clidean algorithm for large, random inputs. Lehmer’s araialgorithm is de-
scribed in |LT§|4]. The binary gcd is almost as old as the atas&uclidean
algorithm — Knuth @Z] has traced it back to a first-centuly 8hinese text
Chiu Chang Suan Sh(see also MikamiES]). It was rediscovered several
times in the 20th century, and it is usually attributed toirS@]. The bi-
nary gcd has been analysed by Brent @ 50], Kn|u1_h|[142],9\®], and

2 According to the Gauss—Kuz’'min theoreim [1139], the probgbif a quotienty € N* is
lg(1+1/q) —1g(1 +1/(g + 1)).
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Vallée ]. A parallel (systolic) version that runsdi{n) time usingO(n)
processors was given by Brent and Ku@ 53].
The double-digit gcd is due to Jebeleﬁlﬂ]. Thary gcd reduction is
due to Sorenso 5], and was improved and implemented it GIR by
Weber. Weber also invented AlgorithReducedRatMod [@], inspired by

previous work of Wang.

The first subquadratic gcd algorithm was published by Kr@[, but his
complexity analysis was suboptimal — he g&ve: log® nloglog n). The cor-
rect complexityO (n log® n loglog n) was given by SohnhageﬁéS]; for this
reason the algorithm is sometimes called the Knuthé8khge algorithm.

A description for the polynomial case can be found in Aho, étoft, and
UIImag], and a detailed (but incorrect) description fbe tinteger case in
Yap ]. The subquadratic binary gcd givendh6.3 is due to Stekland
Zimmermann@S]. Ndller @] compares various subquadratic algorithms,
and gives a nice algorithm without “repair steps”.

Several authors mention &/ n log” n loglogn) algorithm for the compu-
tation of the Jacobi symbol: e.g. Eikenberry and Sore@]’e{ﬁd Shallitand
SorensonO]. The earliest reference that we know is ardap8ach |[_$],
which gives the basic idea (due to Gauss [101, p. 509]). Beaé given in
the book by Bach and ShaIIE|[9, Solution of Exercise 5.5X)eve the algo-
rithm is said to be “folklore”, with the ideas going back toddanann ]
and Gauss. The existence of such an algorithm is mention&ghinhage’s
book @@7.2.3], but without details. See also Brent and Zimmerm [
and ExercisE 1.32.



2
Modular arithmetic and the FFT

In this chapter our main topic is modular arithmetic, i.e.who
to compute efficiently modulo a given integat. In most appli-
cations, the modulug/ is fixed, and special-purpose algorithms
benefit from some precomputations, depending onlyNanto
speed up arithmetic moduly.

There is an overlap between Chagter 1 and this chapter. For ex
ample, integer division and modular multiplication aresely re-
lated. In Chaptdrll we present algorithms where no (or ordyw f
precomputations with respect to the moduNisre performed. In
this chapter, we consider algorithms which benefit from sareh
computations.

Unless explicitly stated, we consider that the modwusccupies

n words in the word-basg, i.e. f"~' < N < g".

2.1 Representation

We consider in this section the different possible repriegims of residues
moduloN. As in Chapte[1l, we consider mainly dense representations.

2.1.1 Classical representation

The classical representation stores a residue (clessan integed < a < N.
Residues are thus always fully reduced, i.ecamonicalform.

Another non-redundant form consists in choosing a symmetpresenta-
tion, say—N/2 < a < N/2. This form might save some reductions in addi-
tions or subtractions (sé¢&.2). Negative numbers might be stored either with
a separate sign (sign-magnitude representation) or wittos-complement
representation.
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Since N takesn words in base3, an alternativeedundantrepresentation
choosed) < a < 3" to represent a residue class. If the underlying arithmetic
is word-based, this will yield no slowdown compared to thaaracal form.

An advantage of this representation is that, when addingrésmlues, it suf-
fices to compare their sum @ in order to decide whether the sum has to
be reduced, and the result of this comparison is simply giwethe carry bit

of the addition (see Algorithm 1.IhtegerAddition), instead of by comparing

the sum with/N. However, in the case that the sum has to be reduced, one or
more further comparisons are needed.

2.1.2 Montgomery’s form

Montgomery'’s form is another representation widely useénvkeveral mod-
ular operations have to be performed modulo the same int¥g@dditions,
subtractions, modular multiplications). It implies a sheakrhead to convert —
if needed — from the classical representation to Montgoisanyd vice-versa,
but this overhead is often more than compensated by the gpeddained in
the modular multiplication.

The main idea is to represent a residuédy o’ = aR mod N, where
R = ", and N takesn words in bases. Thus Montgomery is not concerned
with the physicalrepresentation of a residue class, but with tireaningas-
sociated to a given physical representation. (As a conseguehe different
choices mentioned above for the physical representatmalapossible.) Ad-
dition and subtraction are unchanged, but (modular) nlidépon translates
to a different, much simpler, algorithMontgomeryMul (seef2.4.2).

In most applications using Montgomery’s form, all inpute &rst converted
to Montgomery’s form, using’ = aR mod N, then all computations are per-
formed in Montgomery'’s form, and finally all outputs are certed back — if
needed — to the classical form, using= a’/R mod N. We need to assume
that(R, N) = 1, or equivalently that3, N) = 1, to ensure the existence of
1/R mod N. This is not usually a problem becauseés a power of two and
N can be assumed to be odd.

2.1.3 Residue number systems

In a residue number systefRNS), a residue: is represented by a list of
residues:; moduloN;, where the moduliV; are coprime and their product is
N. The integers; can be efficiently computed fromusing a remainder tree,
and the unique integér< a < N = N1 N, - - - is computed from the; by an
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explicit Chinese remainder theorefZ(7). The residue number system is inter-
esting since addition and multiplication can be perfornregarallel on each
small residuez;. This representation requires thit factors into convenient
moduli N, N, ..., which is not always the case (see howe{&8). Conver-
sion to/from the RNS representation coSt\/ (n) log n), see§2. 4.

2.1.4 MSB vs LSB algorithms

Many classical (most significant bits first or MSB) algorithinave gp-adic
(least significant bits first or LSB) equivalent form. Thusesal algorithms in
this chapter are just LSB-variants of algorithms discusaethaptef]l — see
Table[Z1 below.

classical (MSB) p-adic (LSB)
Euclidean division Hensel division, Montgomery reduction
Svoboda’s algorithm Montgomery—Svoboda
Euclidean gcd binary gcd
Newton’s method Hensel lifting

Table 2.1 Equivalence between LSB and MSB algorithms.

2.1.5 Link with polynomials

As in ChaptefL, a strong link exists between modular aritievend arith-
metic on polynomials. One way of implementing finite fiellswith ¢ = p™
elements is to work with polynomials i, [x], which are reduced modulo a
monic irreducible polynomiaf (z) € F,[z] of degreen. In this case, modular
reduction happens both at the coefficient levelKj) and at the polynomial
level (modulof (x)).

Some algorithms work in the rin@Z./NZ)|x], whereN is a composite in-
teger. An important case is the Stthage—Strassen multiplication algorithm,
whereN has the forn2¢ + 1.

In both domainsF,[z] and (Z/NZ)[z], the Kronecker-Sd@nhage trick
(d1.3) can be applied efficiently. Since the coefficients amkmto be bounded,
by p and N respectively, and thus have a fixed size, the segmentatiquites
efficient. If polynomials have degreé and coefficients are bounded by,
the product coefficients are boundeddy?, and we have) (M (dlog(Nd)))
operations, instead @ (M (d)M (log N)) with the classical approach. Also,
the implementation is simpler, because we only have to imptd fast
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arithmetic for large integers instead of fast arithmetibaih the polynomial
level and the coefficient level (see also Exercisek 1.2 af)d 2.

2.2 Modular addition and subtraction

The addition of two residues in classical representatiam floa done as in
Algorithm ModularAdd .

Algorithm 2.1 ModularAdd
Input: residues:;, b with0 < a,b < N
Output: ¢=a+bmod N
c—a+b
if ¢ > N then
c«—c— N.

Assuming that: andb are uniformly distributed irZ N [0, N — 1], the sub-
tractionc «— ¢ — N is performed with probabilitf1 — 1/N)/2. If we use
instead a symmetric representation[#N/2, N/2), the probability that we
need to add or subtradf drops tol /4 + O(1/N?) at the cost of an additional
test. This extra test might be expensive for smaH- say one or two words —
but should be relatively cheap ¥ is large enough, say at least ten words.

2.3 The Fourier transform

In this section, we introduce the discrete Fourier tramsf@FT). An impor-
tant application of the DFT is in computing convolutions tha Convolution
Theorem In general, the convolution of two vectors can be computsEdgu
three DFTs (for details se€2.9). Here we show how to compute the DFT ef-
ficiently (via thefast Fourier transformor FFT), and show how it can be used
to multiply two n-bit integers in timeO(nlognloglogn) (the Scldnhage—
Strassen algorithm, s¢2.3.3).

2.3.1 Theoretical setting

Let R be aring,K > 2 an integer, andv a principal K'th root of unity in
R, ie. suchthat® = 1andy "' w? = 0for 1 < i < K. TheFourier
transform(or forward (Fourier) transform of a vectora = [ag, a1, . . ., ax 1]
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of K elements fronR is the vectod = [ap, a1, . ..,ax—1] such that
K—1
a; = Z wa;. (2.1)
j=0

If we transform the vectoa twice, we get back to the initial vector, apart
from a multiplicative factor’ and a permutation of the elements of the vector.
Indeed, for) <i < K

K1 K-1 K-1 K—1 K—1
a; = E wa g wh g way = g ap g W(it07
J=0 j=0 (=0 =0 j=0

LetT = w . If i+ # 0 mod K, i.e. ifi+¢is not0 or K, the sumz LT
vanishes since is principal. Fori + ¢ € {0, K'}, we haver = 1 and the sum
equalsK. It follows that

=K Z ay = —i) mod K+
z+i€{0 K}
Thus, we have = Klag, ax—1,aK—2,...,a02,a01].

If we transform the vectoa twice, but usev~! instead ofv for the second
transform (which is then calledtzckward transforry) we get

K—1 K-1 K-1 K—1
a; = g wVa; = E w™Y E Wwha, = E ap E (£=1)g
§=0 §=0 =0 =0

The sumz

Thus, we havei = Ka,. Apart from the multiplicative factok’, the backward
transform is the inverse of the forward transform, as mighekpected from
the names.

=0 ' w(t=9i vanishes unlesé = 4, in which case it equal’.

2.3.2 The fast Fourier transform

If evaluated naively, Eqn[{2.1) requiré¥ K2) operations to compute the
Fourier transform of a vector ok elements. Thdast Fourier transformor
FFT is an efficient way to evaluate Eqh.{2.1) using oflyK log K) oper-
ations. From now on we assume tHdtis a power of two, since this is the
most common case and simplifies the description of the FFTY&8& for the
general case).
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Let us illustrate the FFT fol{ = 8. Sincew® = 1, we have reduced the
exponents modul8 in the following. We want to compute

ap = ap +ay +az +az +as +as + as + ar,

a1 = ag +way + w2a2 + w3a3 + w4a4 + w5a5 + w6a6 + w7a7,
as = ag + w2a1 + w4a2 + wﬁag + a4 + w2a5 + w4a6 + w6a7,
as = ag + w3a1 + w6a2 + was + w4a4 + w7a5 + w2a6 + w5a7,
a4y = ag + w4a1 +as + w4a3 + a4 + w4a5 + ag + w4a7,

=ag + w5a1 + w2a2 + w7a3 + w4a4 “+ was + w6a6 + w3a7,
ag = ag + w6a1 + w4a2 + w2a3 + a4 + w6a5 + w4a6 + w2a7,
ay = ag + w7a1 + wﬁag + w5a3 + w4a4 + w3a5 + w2a6 “+ wary.

We see that we can share some computations. For examplejrthe, st ay
appears in four places: iy, a2, @4, andag. Let us definezg s = ag + a4,
ais = a1+ as, aze = as + ag, az;y = az + ar, asg = ag + w'ay, a5y =
a1 +wias, aga = az +wlag, ar 3 = az +wa;. Then we have, using the fact
thatw® =1

ap = ao,4 +ai,5 + aze + as,7, ay = a4,0 +was;1 +was2 +w’ar s,
~ 2 4 6 ~ 3 6

a2 = o4 +wars +waze +w asy, a3 =aso+w’as1 +w asz2 +wars,
~ 4 4 ~ 5 2 7

a4 = Go4 +w ais +aze +w asrz, as = a4,0 +w as1 +was2 +w ars,

~ 6 4 2 ~ 7 6 5
ag = ap4 +w ais +waze t+waszr, ar =a40+w as1+w as2+w ars.

Now the surmg 4 + a2 ¢ appears at two different places. L&ty 2.6 = ao4 +
4 4
2,6, 015,37 = @15+ a3,7,02,6,04 = G404 +W A26,03,7,1,5 = 15 +wW asx,
2 2 6
a4,0,6,2 = Q4,0 +W7a62, G5,1,7,3 = 5,1 + W73, G42,4,0 = Q4,0 + W 06,2,
ar3,51 = G5,1 + w6a773. Then we have

Ay = G042,6+ 1,537, ay = a4062 T was1,73,

ay = ag6,04+ w2a3,7,1,57 as = ag240 + w3a7,3,5,17
Gy = aouze+wlarssr, a5 = as062+wasi7s,
g = a26,04+ w6a3,7,1,5, a7 = ag240 + w7a7,3,5,1~

In summary, after a first stage where we have computed eit¢grtniediary
variablesag 4 t0 a7 3, and a second stage with eight extra intermediary vari-
ablesug 42,6 t0ar 3 5,1, we are able to compute the transformed vector in eight
extra steps. The total number of steps is ttis= 81g 8, where each step has
the forma «— b+ wc.

If we take a closer look, we can group operations in p@ira’), which have
the forma = b + w’c anda’ = b + w/**c. For example, in the first stage we
havea; s = a; + a5 andas; = a; + w'as; in the second stage we have
a4,0,6,2 = 44,0 +w2a6’2 anda6}2,4,0 = Q4,0 +w6a6’2. Sincew?* = —1, this can
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also be writter(a, a’) = (b + w’c, b — w’c), wherew ¢ needs to be computed
only once. A pair of two such operations is calleduterflyoperation.

The FFT can be performeih place Indeed, the result of the butterfly
betweeruy anday, i.€ (ag 4, a4,0) = (ao+a4, ap—aq), can overwritgao, as),
since the values afy, anda, are no longer needed.

Algorithm ForwardFFT is a recursive and in-place implementation of the
forward FFT. It uses an auxiliary functidsitrev(j, K'), which returns théit-
reversalof the integerj, considered as an integer lpf K bits. For example,
bitrev(j, 8) gives0,4,2,6,1,5,3,7forj =0,...,7.

Algorithm 2.2 ForwardFFT

Input: vectora = [ag, a1, ...,ax_1], w principal K'th root of unity, k' = 2"
Output: in-place transformed vectar, bit-reversed

1: if K =2then

2 [ag, a1] < [ap + a1, a0 — a1]

3: else

4: [ao, ag, ..., (J,K,Q] «— ForwardFFT ([a07 ag, ..., (J,K,Q], w27 K/2)

5: [al, as, ..., O,Kfl] «— ForwardFFT ([ah as, ..., aK,l], w27 K/2)

6: for j from 0to K/2 —1do

7 [a2), azji1] — [az; +wPTVOED gy gy — WPV GE/2) gy
Theorem 2.1 Given an input vectora = |[ag,aq,...,ax—1], Algorithm

ForwardFFT replaces it by its Fourier transform, in bit-reverse orden,
O(K log K) operations in the ringR.

Proof. We prove the statement by induction &1 = 2*. For K = 2, the
Fourier transform ofag, a1] is [ap + a1, ap + wa1], and the bit-reverse order
coincides with the normal order; since= —1, the statement follows. Now
assume the statement is true f@y2. Let0 < j < K/2, and writej’ :=
bitrev(j, K/2). Letb = [bo, ..., bk /2_1] be the vector obtained at step 4, and
c = [co, .-, ¢k /2—1] b€ the vector obtained at sfglp 5. By induction

K/2—-1 K/2—-1
25"
bj: g w aze, Cj E w7a2£+1
=0

Sinceb; is stored atio; andc; atas;41, we compute at stdg 7

K/2—1 K/2—1

./ 20 7
as; = bj+w’ ¢; = E w Y agptw? g W't Qopy1 = E wj ag = ajr.
— =0
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Similarly, since—wi’ = w&/2+5'

K/2—1 K/2—1

25" K/2+j' 250
asji1 = Z wi b agy + Wi/ Z w™ Caget1

=0 =0

K—-1
K/2+5)¢ ~

= w P ) =Gy
=0
where we used the fact that?’’ = w2’ +5/2) Sincebitrev(2j, K) =

bitrev(j, K/2) andbitrev(2j + 1, K') = K /2 + bitrev(j, K/2), the first part
of the theorem follows. The complexity bound follows fronetfact that the
costT'(K) satisfies the recurren@ K') < 2T(K/2) + O(K). 0

Algorithm 2.3 BackwardFFT

Input: vectora bit-reversedyw principal K'th root of unity, X' = 2*
Output: in-place transformed vectar, normal order

1: if K = 2then

2: [ao,al] — [ao +ay, a9 — al]

3: else

4: [a(), ~~~7aK/2—1] — BaCkW&rdFFT([(L(), ey aK/Q_l],wz, K/2)

5: lak /2,y ax—1] < BackwardFFT ([ak /2, e ag_1],w? K/2)

6.  for jfrom 0to K/2—1do pwl =wK=i
7: laj, ag/atj] < la; + w‘jaK/2+j,aj - w_jaK/2+j].

Theorem 2.2 Given an input vectoa = [ag, ak 2, . . .,ax—1] in bit-reverse
order, AlgorithmBackwardFFT replaces it by its backward Fourier trans-
form, in normal order, iND(K log K') operations inR.

Proof. The complexity bound follows as in the proof of TheorEm] 2.ar F
the correctness result, we again use inductionkor= 2*. For K = 2, the
backward Fourier transform = [ag + a1, a0 + w™'a;] is exactly what the
algorithm returns, since = w~' = —1 in that case. Assume noW > 4,

a power of two. The first half, saly, of the vectora corresponds to the bit-
reversed vector of the even indices, sinderev(2j, K) = bitrev(j, K/2).
Similarly, the second half, say, corresponds to the bit-reversed vector of the
odd indices, sincbitrev(2j + 1, K) = K/2 + bitrev(j, K/2). Thus, we can
apply the theorem by induction te andc. It follows thatb is the backward
transform of lengthK’/2 with w? for the even indices (in normal order), and
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similarly c is the backward transform of lengfi/2 for the odd indices

K/2—1 K/2—1
—2j5¢
bj = E w T age, ¢ E w M ag .
=0

Sinceb; is stored ina; andc; in ag /24 ;, we have

K/2—1 K/2—1
aj =bj +wlc; = § w2 oy + w I E w”™ ]a24+1

K-
E w_]eag =aj,
=0

and similarly, using-w =7 = w=5/277 andw =% = w—2(K/2+J)

K/2-1 K/2-1
—2j¢ —K/2—j —2j¢
aK)o4j = E w2 gy 4+ K270 E w a1
=0 =0
K-1
_ —(K/2+45)¢,, _
_§ w— (K/2+7) ar = ax /oy j-
£=0

2.3.3 The Sclinhage-Strassen algorithm

We now describe the Sohhage—Strassef(n lognloglogn) algorithm to
multiply two integers of: bits. The heart of the algorithm is a routine to mul-
tiply two integers modul@”™ + 1.

Theorem 2.3 Given0 < A, B < 2™ + 1, Algorithm FFTMulMod correctly
returnsA - B mod (2" + 1), and it costD(n log n log log n) bit-operations if

K = 6(y/n).

Proof. The proof is by induction on, because at stép 8 we call FFTMulMod
recursively, unless’ is sufficiently small that a simpler algorithm (classical,
Karatsuba or Toom—Cook) can be used. There is no difficulistanting the
induction.

With awb the values at stefs 1 aﬂ 2, we have= E <o a;27M and

B = Z o b;27M: thus,A - B = Zj o' ¢;27M mod (2" + 1) with

K-1 K-1
Cj = Z aébm - Z a'ebm- (22)
£,m=0 £,m=0

L+m=j L4m=K+j
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Algorithm 2.4 FFTMulMod
Input: 0 < A, B < 2" + 1, an integerk’ = 2* such that = MK
Output: C = A- B mod (2" + 1)
1: decompose A = Zf:’ol a;27M with  0<a; <2M, except that
0<ag_1<2M

2: decompose3 similarly

3: choosen’ > 2n/K + k, n’ multiple of K; let§ = 27'/K o = 62

4; for j from 0to K — 1 do

5: (aj,bj) — (#7a;,07b;) mod (2" + 1)

6: a «— ForwardFFT (a,w, K), b « ForwardFFT (b,w, K)

7: for jfrom 0to K — 1 do > call FFTMulMod

8 ¢« ajbjmod (2" +1) > recursively ifn’ is large
9: ¢ « BackwardFFT(c,w, K)

10: for j from 0to K — 1 do

11 ¢j — ¢j/(K67) mod (2% +1)
12 if¢; > (j + 1)22M then

13: Cj < Cj — (Qn, =+ ].)

[N
~

: C = ZJKZBI CijM.

We have(j + 1 — K)22M < ¢; < (j + 1)22M, since the first sum contains
j + 1 terms, the second suii — (j + 1) terms, and at least one of andb,,
is less thar2™ in the first sum.

Let o/ be the value ofu; after ste b = 67a; mod (2" + 1), and
similarly for b;. Using Theoreni 211, after stép 6 we havgcv(j,x) =

ot wha), mod (27 4 1), and similarly forb. Thus at stepl8

K-1 K—1
g 1 i1/
Chitrev(j,K) = Z way Z w™b .
£=0

m=0
After sted®, using Theorem 2.2
K

—1 K-1 K—-1
/ —1ij Ly 1 mjp/
c; w™Y E way E w™b
=0 {=0 m=0

J

K-1 K-1

K Z agh,, + K Z aybl,.

£,m=0 £,m=0
f+m=i Ltm=K+i

The first sum equalé’ Y-, _; acby,; the second i#"+ 5", aby,.
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Sinced” = —1mod (2" + 1), after stefi Il we have

K—1 K-1
’
= E agb,, — E agb,, mod (2" +1).
£,m=0 £,m=0
L4m=i L4m=K+i

The correction at stdp 13 ensures thdtes in the correct interval, as given by
Eqn. [2.2).

For the complexity analysis, assume that = O(y/n). Thus, we have
n’ = O(y/n). StepgIL anfl2 cosd(n); stepd also cost®(n) (counting the
cumulated cost for all values gf). Step[® cost®)(K log K) times the cost
of one butterfly operation mo@®" + 1), which is O(n’), thus a total of
O(Kn'log K) = O(nlogn). Step8, using the same algorithm recursively,
costs O(n'logn'loglogn’) per value ofj by the induction hypothesis,
giving a total of O(nlognloglogn). The backward FFT cost9(nlogn)
too, and the final steps coék(n), giving a total cost ofD(nlognloglogn).
The loglogn term is the depth of the recursion, each level reducintp

n' = O(y/n). .

EXAMPLE: to multiply two integers modul@2! %4¢576 + 1), we can takek =
210 = 1024, andn’ = 3072. We recursively comput&024 products modulo
(23072 4 1). Alternatively, we can take the smaller vallke = 512, with 512
recursive products modul@*%%® + 1).

REMARK 1: the “small” products at stép 8 (m@2*°™>+1) or mod(246%% + 1)

in our example) can be performed by the same algorithm appdieursively,
but at some point (determined by details of the implememit will be more
efficient to use a simpler algorithm, such as the classic&aratsuba algo-
rithm (seeJ1.3). In practice, the depth of recursion is a small constaspt-
cally 1 or 2. Thus, for practical purposes, thes logn term can be regarded
as a constant. For a theoretical way of avoiding lilelog n term, see the
comments on &rer’s algorithm in§Z.9.

REMARK 2: if we replaced by 1 in Algorithm FFTMulMod , i.e. remove
stef, replace st€pll1 by — ¢;/K mod (2" +1), and replace the condition
at ste IR by; > K -22M then we comput€’ = A- B mod (2" — 1) instead
of mod (2" + 1). This is useful in McLaughlin’s algorithnf2.4.3).

Algorithm FFTMulMod enables us to multiply two integers modys* +
1) in O(nlognloglogn) operations, for a suitableand a corresponding FFT
lengthK = 2*. Since we should hav& ~ /n and K must dividen, suitable
values ofn are the integers with the low-order half of their bits zetwre is
no shortage of such integers. To multiply two integers of asta bits, we
first choose a suitable bit size > 2n. We consider the integers as residues
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modulo (2™ + 1), then AlgorithmFFTMulMod gives their integer product.
The resulting complexity i€ (n log n log log n), sincem = O(n). In practice,
thelog log n term can be regarded as a constant; theoretically, it caepbeaed
by an extremely slowly growing function (see Remar&bove).

In this book, we sometimes implicitly assume thabit integer multiplica-
tion costs the same as three FFTs of leriygthsince this is true if an FFT-based
algorithm is used for multiplication. The constant “threzin be reduced if
some of the FFTs can be precomputed and reused many timexdgople if
some of the operands in the multiplications are fixed.

2.4 Modular multiplication

Modular multiplication means computing - B mod N, whereA and B are
residues moduldv. Of course, once the product= A- B has been computed,
it suffices to perform anodular reductionC' mod N, which itself reduces to
an integer division. The reader may ask why we did not covisrttpic in
g1.4. There are two reasons. First, the algorithms preséeiew benefit from
some precomputations involviny, and are thus specific to the case where
several reductions are performed with the same modulusnBiesome algo-
rithms avoid performing the full produet’ = A - B; one such example is
McLaughlin’s algorithm {2.4.3).

Algorithms with precomputations include Barrett's algom (§2.4.1), which
computes an approximation to the inverse of the modulus,ttiading division
for multiplication; Montgomery’s algorithm, which corqgsnds to Hensel's
division with remainder only{T.4.8), and its subquadratic variant, which is
the LSB-variant of Barrett’s algorithm; and finally McLadigts algorithm
(§2.4.3). The cost of the precomputations is not taken intowesg it is
assumed to be negligible if many modular reductions areopmed. How-
ever, we assume that the amount of precomputed data usetirmdy; i.e.
O(log N), space.

As usual, we assume that the moduNidrasn words in base?, that A and
B have at most, words, and in some cases that they are fully reduced, i.e.
0<A B<N,.

2.4.1 Barrett’s algorithm

Barrett’s algorithm is attractive when many divisions havebe made with
the same divisor; this is the case when we perform computatioodulo a
fixed integer. The idea is to precompute an approximatiorhéoiiverse of
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the divisor. Thus, an approximation to the quotient is otdiwith just one
multiplication, and the corresponding remainder after@ed multiplication.
A small number of corrections suffice to convert the appr@tions into exact
values. For the sake of simplicity, we describe Barretigpdthm in base3,
wheres might be replaced by any integer, in particut&ror 5.

Algorithm 2.5 BarrettDivRem
Input: integersA, Bwith0 < A < 32,8/2< B < f3
Output: quotient@) and remaindeR of A divided by B

. [ — |3?/B] > precomputation
1 Q — |A1T/3] whereA = A5+ Agwith0 < Ay < 3
:R—A-QB

: while R > B do
return(@, R).

o U b WwN P

Theorem 2.4 Algorithm BarrettDivRem is correct and stefy]5 is performed
at most three times.

Proof. SinceA = @B + R is invariant in the algorithm, we just need to prove
that0 < R < B at the end. We first consider the value@f R before the
while-loop. Since3/2 < B < 3, we haveg < (%?/B < 28; thus,3 <

I < 23. We haveQ < A1/ < A13/B < A/B. This ensures thaR is
non-negative. Now > 3?/B — 1, which gives

IB > 3* - B.
Similarly, @ > A1I/5 — 1 gives

pQ > Al — .

This yields3QB > A1IB — 3B > A(8* — B) — 8B = B(A — Ap) —
B(B+ Ay) > BA—48B sinceA, < < 2B andA; < 3. We conclude that
A < B(Q + 4); thus, at most three corrections are needed. 0

The bound of three corrections is tight: it is attained fo= 1980, B = 36,
(6 = 64. In this example]/ = 113, 4; = 30, Q =52, R = 108 = 3B.

The multiplications at stefp$ 2 ahd 3 may be replaced by shodtgts, more
precisely the multiplication at stép 2 by a high short prddand that at stelg 3
by a low short product (sef8.3).

Barrett's algorithm can also be used for an unbalancedidivisvhen divid-
ing (k + 1)n words byn words fork > 2, which amounts td: divisions of
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2n words by the same-word divisor. In this case, we say that the divisor is
implicitly invariant

Complexity of Barrett’s algorithm

If the multiplications at stepEl2 arld 3 are performed usinf groducts,
Barrett's algorithm cost@M (n) for a divisor of sizen. In the FFT range,
this cost might be lowered th5M (n) using the “wrap-around trick”§8.4.7);
moreover, if the forward transforms éfand B are stored, the cost decreases
to M (n), assumingV/ (n) is the cost of three FFTs.

2.4.2 Montgomery’s multiplication

Montgomery’s algorithm is very efficient for modular aritetic modulo a
fixed modulusN. The main idea is to replace a residdenod N by A’ =
AA mod N, whereA’ is the “Montgomery form” corresponding to the residue
A, with X an integer constant such thaid(N, \) = 1. Addition and subtrac-
tion are unchanged, sincel + AB = A(A + B) mod N. The multiplication

of two residues in Montgomery form does not give exactly wivat want:
(M) (AB) # MAB) mod N. The trick is to replace the classical modular
multiplication by “Montgomery’s multiplication”

v

MontgomeryMul (A", B) mod N.

For some values ok, MontgomeryMul (4’, B’) can easily be computed, in
particular forA = 3", where N usesn words in base3. Algorithm[2.8 is
a quadratic algorithmREDC) to computeMontgomeryMul (A, B’) in this
case, and a subquadratic reductiBagtREDC) is given in Algorithn{2.7.

Another view of Montgomery’s algorithm fox = g is to consider that it
computes the remainder of Hensel's divisigh.@.8).

Algorithm 2.6 REDC (quadratic non-interleaved version). Theform the
current basg? decomposition o, i.e. they are defined by = Zﬁ"‘l ¢t .
Input: 0<C <B?,N<pB" pu+——N"1mod§g, (8,N)=1
Output: 0 < R < ™ suchthatR = C3~"™ mod N

1: for i from Oton — 1 do

2: q; <+ pc; mod f3 > quotient selection
3: C—C+ quﬂz
4: R« Cp™™ > trivial exact division

5. if R > g™ thenreturnR — N elsereturnR.
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Theorem 2.5 AlgorithmREDC is correct.

Proof. We first prove that? = C'3~" mod N: C is only modified in stepl3,
which does not chang@ mod N; thus, at stepl4 we havig = C3~" mod N,
and this remains true in the last step.

Assume that, for a giveiy we haveC = 0 mod /3° when entering stelg 2.
Sinceq; = —¢;/N mod 3, we haveC + ¢; N3 = 0 mod 3'+! at the next
step, so the next value of is 0. Thus, on exiting the for-loog, is a multiple
of ", andR is an integer at stdg 4.

Still at step(#, we have’ < %" + (B — )N(1+ B+ -+ p"71) =
B?" + N(B" — 1);thus,R < " + N andR — N < 3". 0

Compared to classical division (Algorithm 1BasecaseDivRen Mont-
gomery’s algorithm has two significant advantages: theignbselection is
performed by a multiplication modulo the word basewhich is more effi-
cient than a division by the most significant wadrgl_; of the divisor as in
BasecaseDivRemand there is no repair stepsidethe for-loop — the repair
step is at the very end.

For example, with input§’ = 766 970 544 842 443 844, N = 862664 913,
andg = 1000, Algorithm REDC precomputeg = 23; then we have, = 412,
which yieldsC — C + 412N = 766970900 260 388 000; thenq; = 924,
which yieldsC' «— C + 924N g = 767768 002 640 000 000; thengy = 720,
which yieldsC' «— C + 720N3? = 1388886 740000000 000. At step[4,
R = 1388886 740, and sinceR > 3%, REDC returnsR — N = 526221 827.

Since Montgomery'’s algorithm —i.e. Hensel's division wigmainder only —
can be viewed as an LSB variant of classical division, Svalsodivisor pre-
conditioning §1.4.2) also translates to the LSB context. More preciselfli
gorithmREDC, we want to modify the divisoN so that the quotient selection
q «— pc; mod 3 at sted R becomes trivial. The multiplirused in Svoboda
division is simply the parameterin REDC. A natural choice i = 1, which
corresponds taV = —1 mod S. This motivates the Montgomery—Svoboda
algorithm, which is as follows:

1. first computeN’ = uN, with N’ < g1, wherey = —1/N mod £3;

2. perform then — 1 first loops ofREDC, replacingu by 1, andN by N’;

3. perform a final classical loop with and N, and the last stepEl(@-5) from
REDC.

Quotient selection in the Montgomery—Svoboda algorithmpty involves
“reading” the word of weigh3? in the divisorC.

For the example above, we g&t = 19841292 999; qq is the least signifi-
cantword ofC', i.e. qo = 844, s0C « C+844N' = 766 987 290 893 735 000;
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theng; = 735 andC «— C + 735N’ = 781570641 248 000 000. The last
step givesyy = 704 andC « C + 704N 3% = 1388886 740 000 000 000,
which is what we found previously.

Subquadratic Montgomery reduction
A subquadratic versioRastREDC of Algorithm REDC is obtained by taking
n = 1, and consideringd as a “giant base” (alternatively, replageby 5"
below):

Algorithm 2.7 FastREDC (subquadratic Montgomery reduction)
Input: 0<C < B2 N < B, —1/N mod f3
Output: 0 < R < @suchthatR = C/8 mod N

1: @ <« puC mod B

22 R— (C+QN)/p

3. if R > fthenreturnR — N elsereturnR.

This is exactly the2-adic counterpart of Barrett’'s subquadratic algorithm;
steps IER might be performed by a low short product and a gt product,
respectively.

When combined with Karatsuba’s multiplication, assuming froducts
of stepdIER are full products, the reduction requires twdtiptications of
sizen, i.e. six multiplications of size./2 (n denotes the size a¥, 3 being a
giant base). With some additional precomputation, the aéolu might be
performed with five multiplications of size/2, assumingn is even. This is
simply the Montgomery—Svoboda algorithm with having two big words in
base3"/2. The cost of the algorithm i8/(n,n/2) to computegy N’ (even if
N’ has in principle3n /2 words, we know\N’ = H3"/? —1 with H < 3", and
thus it suffices to multiplyyo by H), M (n/2) to computeuC mod 3"/2, and

Algorithm 2.8 MontgomerySvoboda
Input: 0<C < (%", N < 3",y —1/N mod "2, N’ = uN
Output: 0 < R < " such thatR = C/8™ mod N

1: go < C mod "/?

2 C — (C+qN')/5"/?

3: q1 — pC mod /2

4 R «— (C+q1N)/ﬁ"/2

5. if R > 8™ thenreturnR — N elsereturnR.
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againM (n,n/2) to computep N; thus, a total ob M (n/2) if eachn x (n/2)
product is realized by twén/2) x (n/2) products.

The algorithm is quite similar to the one described at theafi§d.4.8, where
the costwag M (n/2)+D(n/2) for a division of2n by n with remainder only.
The main difference here is that, thanks to Montgomery’'mifdhe last classi-
cal division D(n/2) in Svoboda’s algorithm is replaced by multiplications of
total cost2M (n/2), which is usually faster.

Algorithm MontgomerySvobodacan be extended as follows. The vallle
obtained after stefg 2 hds/2 words, i.e. an excess af/2 words. Instead of
reducing that excess WitREDC, we could reduce it using Svoboda'’s tech-
nique withy/ = —1/N mod s™/*, and N” = y/N. This would reduce the
low n/4 words fromC' at the cost of\/ (n,n/4), and a lasREDC step would
reduce the final excess ef/4, which would giveD(2n,n) = M (n,n/2) +
M(n,n/4)+M(n/4)+M (n,n/4). This “folding” process can be generalized
to D(2n,n) = M(n,n/2) + -+ + M(n,n/2%) + M(n/2%) + M(n,n/2%).

If M (n,n/2%) reduces t@* M (n/2*), this gives

D(n) = 2M (n/2)+4M (n/4)+- - -+25" M (n/28 =)+ (281 4-1) M (n/25).

Unfortunately, the resulting multiplications become mared more unbal-
anced, and we need to stdrgorecomputed multipled’’, N” | ... of N, each
requiring at least: words. Tabl€Z]2 shows that the single-folding algorithm is
the best one.

Algorithm | Karatsuba Toom-Cookway  Toom-Cookl-way

D(n) 2.00M (n) 2.63M (n) 3.10M (n)
1-folding 1.67M(n) 1.81M (n) 1.89M (n)
2-folding | 1.67M(n) 1.91M (n) 2.04M (n)
3-folding 1.74M (n) 2.06M (n) 2.25M (n)

Table 2.2 Theoretical complexity of subquadratic REDC with2- and
3-folding, for different multiplication algorithms.

Exercisd 2.6 discusses further possible improvementssidibntgomery—
Svoboda algorithm, achievin®(n) ~ 1.58M(n) in the case of Karatsuba
multiplication.

2.4.3 McLaughlin’s algorithm

McLaughlin’s algorithm assumes we can perform fast muétgilon modulo
both2™ — 1 and2™ + 1, for sufficiently many values af. This assumption is
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true for example with the Sémhage—Strassen algorithm: the original version
multiplies two numbers modul®™ + 1, but discarding the “twist” operations
before and after the Fourier transforms computes theirymoaiodulo2™ — 1.
(This has to be done at the top level only: the recursive dipgicompute
modulo2™ + 1 in both cases. See Remark 2 on page 57.)

The key idea in McLaughlin’s algorithm is to avoid the classi“multiply
and divide” method for modular multiplication. Insteadsasiing thatV is
relatively prime to2” — 1, it determinesAB /(2" — 1) mod N with convo-
lutions modulo2™ + 1, which can be performed in an efficient way using the
FFT.

Algorithm 2.9 MultMcLaughlin

Input: A, Bwith0 < A,B< N <2" u=—N"1mod (2" — 1)
Output: AB/(2" — 1) mod N

:m«— ABpmod (2" — 1)

S «— (AB+mN) mod (2" + 1)

w «— —S mod (2" 4+ 1)

if 2|w then s «— w/2 elses «— (w + 2" 4+ 1)/2

if AB+mN =smod2thent « selset «— s+2" +1

if £ < N thenreturnt elsereturnt — N.

o a M whR

Theorem 2.6 Algorithm MultMcLaughlin  computesAB/(2"™ — 1) mod N
correctly, in~ 1.5M (n) operations, assuming multiplication modud + 1
costs~ M (n/2), or the same a8 Fourier transforms of size.

Proof. Stef1 is similar to stdd 1 of AlgorithifastREDC, with 3 replaced by
2" —1. Itfollows thatAB +mN = 0 mod (2" — 1), therefore we havel B +
mN = k(2" —1) with0 < k < 2N. Sted2 computeS = —2k mod (2" +1),
then stefB gives) = 2k mod (2" + 1), ands = k mod (2" + 1) in step4.
Now, since0 < k < 2"*!, the values does not uniquely determirie whose
missing bit is determined from the least significant bit frdB +m N (stefd®).
Finally, the last step reduceés= k£ moduloN.

The cost of the algorithm is mainly that of the four multipliomnsAB mod
(2" +1), (AB)p mod (2" —1) andmN mod (2" + 1), which cosdM (n/2)
altogether. However, ifAB)u mod (2" — 1) andmN mod (2" + 1), the
operandg: and N are invariant, therefore their Fourier transforms can lee pr
computed, which savex\/ (n/2)/3 altogether. A further saving d¥/ (n/2)/3
is obtained since we perform only one backward Fourier foansin sted 2.
Accounting for the savings gives — 2/3 — 1/3)M (n/2) = 3M(n/2) ~
1.5M(n). O
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The~1.5M (n) cost of McLaughlin’s algorithm is quite surprising, sinte i
means that a modular multiplication can be performed fakgam two multi-
plications. In other words, since a modular multiplicatisrbasically a mul-
tiplication followed by a division, this means that (at leasthis case) the
“division” can be performed for half the cost of a multiplin!

2.4.4 Special moduli

For special moduliV faster algorithms may exist. The ideal caseNis=
6™ £ 1. This is precisely the kind of modulus used in the &uage—Strassen
algorithm based on the fast Fourier transform (FFT). In th& Fange, a mul-
tiplication modulos™ + 1 is used to perform the product of two integers of
at mostn /2 words, and a multiplication modul@™ + 1 costs~ M (n/2) ~
For example, in elliptic curve cryptography (ECC), we altraig/ays use a
special modulus, for example a pseudo-Mersenne prime2like— 264 — 1
or 2256 9224 4 9192 4 996 _ 1 However, in most applications the modulus
can not be chosen, and there is no reason for it to have a kfmraia
We refer to§2.9 for further information about special moduli.

2.5 Modular division and inversion

We have seen above that modular multiplication reducestémyén division,
since to computeb mod N, the classical method consists of dividimgby NV
to obtainab = gN +r, thenab = r mod N. Inthe same vein, modular division
reduces to an (extended) integer gcd. More precisely, thsial o /b mod N
is usually computed as- (1/b) mod N, thus a modular inverse is followed by
a modular multiplication. We concentrate on modular ink@Tén this section.
We have seen in Chapter 1 that computing an extended gcd énsixp,
both for small sizes, where it usually costs the same asaawveitiplications,
and for large sizes, where it cost§ M (n) logn). Therefore, modular inver-
sions should be avoided if possible; we explain at the endisfdection how
this can be done.
Algorithm[Z.I0 Modularinverse) is just AlgorithmExtendedGcd(41.6.2),
with (a,b) — (b, N) and the lines computing the cofactors/éfomitted.
Algorithm Modularinverse is the naive version of modular inversion, with
complexity O(n?) if N takes n words in base3. The subquadratic
O(M (n)log n) algorithm is based on thdalfBinaryGed algorithm {1.6.3).
When the modulusV has a special form, faster algorithms may exist. In
particular forN = p*, O(M(n)) algorithms exist, based on Hensel lifting,
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Algorithm 2.10 Modularlnverse
Input: integersh and N, b prime toN
Output: integeru = 1/b mod N
(u,w) «— (1,0),c — N
while ¢ #£ 0 do
(¢,r) < DivRem(b, ¢)
(b,¢) — (c,r)

(u, w) — (w,u — qu)

returnu.

which can be seen as theadic variant of Newton’s method4.2). To compute
1/b mod N, we use a-adic version of the iteratiofl (4.5)

zj1 = x; +2;(1 — bx;) mod pF. (2.3)

Assumez; approximated /b to “p-adic precision’, i.e. bz; =1 + ept, and
k = 2¢. Then, modul@”: bz ;1 = bxj(2 — bx;) = (1 +ep’)(1 —ep’) =
1—e2p*. Therefore;; ;1 approximates /b to double precision (in the-adic
sense).

As an example, assume we want to compute the inverse of amtadpeib
modulo232. The initial approximationr, = 1 satisfiestg = 1/b mod 2, thus
five iterations are enough. The first iteratiomis«— x+x¢(1—bzg) mod 22,
which simplifies tox; < 2 — b mod 4 sincezy = 1. Now, whether = 1
mod4 or b = 3 mod 4, we have2 — b = b mod 4; we can therefore start the
second iteration with:; = b implicit

x9 « b(2 — b?) mod 2, T3 « x9(2 — bry) mod 28,
x4 « 23(2 — bwz) mod 26, x5 « 24(2 — bxy) mod 232,

Consider for examplé = 17. The above algorithm yields, = 1, z3 = 241,
x4 = 61681 andxs = 4042322 161. Of course, any computation mod
might be computed modulg® for k£ > ¢. In particular, all the above compu-
tations might be performed moduf3?. On a32-bit computer, arithmetic on
basic integer types is usually performed mod2ilé, thus the reduction comes
for free, and we can write in the C language (usimgigned variables and
the same variable for xo, ..., x5)

X = b*(2-b *b); x *= 2-b*x; x *= 2-b*x; x *= 2-b*x;

Another way to perform modular division when the modulus aapecial
form is Hensel's division{T.4.8). For a modulud’ = 3", given two integers
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A, B, we compute) and R such that
A=QB+ Rg"™.

Therefore, we havel/B = @ mod . While Montgomery’s modular mul-
tiplication only computes the remaind&rof Hensel's division, modular divi-
sion computes the quotie; thus, Hensel’s division plays a central role in
modular arithmetic modulg™.

2.5.1 Several inversions at once

A modular inversion, which reduces to an extended gfde(2), is usually
much more expensive than a multiplication. This is true mdy in the FFT
range, where a gcd takes tin§ M (n) log n), but also for smaller numbers.
When several inversions are to be performed modulo the sambeamiAlgo-
rithm Multiplelnversion is usually faster.

Algorithm 2.11 Multiplelnversion

Input: 0 < xy,...,2p, <N

Output: y; = 1/%‘1 mod N,...,yp = 1/.13k mod N
Z1 < X1

: for i from 2to k do

zi < zi—1x; mod N

:q <« 1/zp mod N

: for i from k& downto 2 do

Yi < qzi—1 mod N

q < qx; mod N

Y1 — Q-

Theorem 2.7 AlgorithmMultiplelnversion is correct.

Proof. We havez; = x125 ... x; mod N; thus, at the beginning of stép 6 for
agiveni, g = (z1...2;)~! mod N, which givesy; = 1/x; mod N. 0

This algorithm uses only one modular inversion (§fep 4),3kd- 1) modular
multiplications. Thus, it is faster thaninversions when a modular inversion is
more than three times as expensive as a product. Higdre @nsshrecursive
variant of the algorithm, with the same number of modulartiplitations: one
for each internal node when going up the (product) tree, andfor each in-
ternal node when going down the (remainder) tree. The raeuwariant might
be performed in parallel i®(log k) operations usin@ (k/ log k) processors.
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1/($1$2!E3$4)

1/(z122) 1/(w3z4)

1/;1:1 1/.%‘2 1/1’3 1/.T4

Figure 2.1 A recursive variant of AlgorithriMultiplelnversion. First go

up the tree, buildingr;z2 mod N from z; and z» in the left branch,
xsx4 mod N in the right branch, and;zsz3z4 mod N at the root of the
tree. Then invert the root of the tree. Finally, go down the tree, multiplying
1/(z1x22324) by the stored valuesz, to getl/(xz122), and so on.

A dual case is when there are several moduli but the numbewventiis
fixed. Say we want to compute’z mod Ny, ..., 1/x mod N;. We illustrate
a possible algorithm in the cage= 4. First computeN = N; ... Ny using
a product tree like that in Figuie 2.1. For example, first cotapv; N» and
N3Ny, then multiply both to gefV = (N1 N3)(N3N4). Then computey =
1/2 mod N, and go down the tree, while reducing the residue at each frode
our example, we compute= y mod (N; N») in the left branch, them mod
N, yields1/2 mod N;. An important difference between this algorithm and
the algorithm illustrated in Figule—2.1 is that here the namsbgrow while
going up the tree. Thus, depending on the sizesarid the/V;, this algorithm
might be of theoretical interest only.

2.6 Modular exponentiation

Modular exponentiation is the most time-consuming math@alaoperation
in several cryptographic algorithms. The well-known RSAlikey cryp-
tosystem is based on the fact that computing

c=a®mod N (2.4)

is relatively easy, but recoveringfrom ¢, e and V is difficult when N has

at least two (unknown) large prime factors. The discretadibigm problem is
similar: herec, a and N are given, and we look far satisfying Eqn.[[Z]4). In
this case, the problem is difficult whe¥ has at least one large prime factor
(for example,N could be prime). The discrete logarithm problem is the basis
of the EI Gamal cryptosystem, and a closely related probéeting basis of the
Diffie—-Hellman key exchange protocol.
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When the exponent is fixed (or known to be small), an optimal sequence
of squarings and multiplications might be computed in adeaithis is related
to the classicahddition chainproblem: What is the smallest chain of additions
to reach the integer, starting froml? For example, it = 15, a possible chain
is

L,141=21+2=31+3=4,34+4="7,7+7=14,1+ 14 = 15.

The length of a chain is defined to be the number of additioesl®e to com-
pute it (the above chain has length An addition chain readily translates to a
multiplication chain

a,a-a=a%a-a>=da-a®>=a*a® a* =d",d"-a" = a'*, a0 = a'®.

A shorter chain foe = 15 is
1,1+1=2,142=3,2+3=5,5+5=10,5+ 10 = 15.

This chain is the shortest possible fo= 15, so we writes(15) = 5, where in
generalr(e) denotes the length of the shortest addition chairefdn the case
wheree is small, and an addition chain of shortest length) is known fore,
computinga® mod N may be performed ia(e) modular multiplications.

Whene is large and(a, N) = 1, thene might be reduced modulg(NV),
where¢(N) is Euler’s totient function, i.e. the number of integerdinV]
which are relatively prime tdV. This is because?™) = 1 mod N whenever
(a, N) =1 (Fermat's little theorem).

Since¢(N) is a multiplicative function, it is easy to compuéN) if we
know the prime factorization aV. For example

$(1001) = ¢(7-11-13) = (7 — 1)(11 — 1)(13 — 1) = 720,

and2009 = 569 mod 720, s01720%9 = 17569 mod 1001.

Assume now that is smaller thar(V). Since a lower bound on the length
o(e) of the addition chain foe is lg e, this yields a lower boundlg e) M (n)
for modular exponentiation, whereis the size ofN. Whene is of sizek, a
modular exponentiation cos€(kM (n)). Fork = n, the costO(nM (n)) of
modular exponentiation is much more than the cost of oparattonsidered in
ChaptefdL, withO (M (n) log n) for the more expensive ones there. The differ-
ent algorithms presented in this section save only a confetor compared
to binary exponentiatiorff2.6.1).

REMARK: whena fits in one word butV does not, the shortest addition chain
for e might not be the best way to computémod N, since in this case com-
putinga - ¢’ mod N is cheaper than computing - a/ mod N for i > 2.
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2.6.1 Binary exponentiation

A simple (and not far from optimal) algorithm for modular exgntiation is
binary (modular) exponentiatioffwo variants exist: left-to-right and right-to-
left. We give the former in AlgorithnieftToRightBinaryExp and leave the
latter as an exercise for the reader.

Algorithm 2.12 LeftToRightBinaryExp

Input: a, e, N positive integers

Output: = = a® mod N

: let(eges—q - . . e1¢0) be the binary representation @fwith e, = 1
Xr < a

. for i from ¢ — 1 downto 0 do

2z — 22 mod N

if e, = 1thenz < ax mod N.

a R wn R

Left-to-right binary exponentiation has two advantagesravght-to-left
exponentiation:

e it requires only one auxiliary variable, instead of two faetright-to-left
exponentiation: one to store successive values*afand one to store the
result;

e inthe case where is small, the multiplicationax at steg’b always involve
a small operand.

If ¢ is a random integer of + 1 bits, stefi’b will be performed on average
times, giving average co8tM (n)/2.

ExamPLE: for the exponent = 3499211612, which is
(11010000100100011011 101101011 100)s

in binary, AlgorithmLeftToRightBinaryExp performs31 squarings and5
multiplications (one for each-bit, except the most significant one).

2.6.2 Exponentiation with a larger base

Compared to binary exponentiation, ba2e exponentiation reduces the
number of multiplicationsuxz mod N (Algorithm LeftToRightBinaryExp ,
sted®). The idea is to precompute small powers ofod N:

The precomputation cost {2* — 2)M (n), and if the digitse; are random
and uniformly distributed irZ N [0,2%), then the modular multiplication at
sted® oBaseKExpis performed with probability — 2. If e hasn bits, the
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Algorithm 2.13 BaseKExp

Input: a, e, N positive integers

Output: = = a® mod N
1: precomputé[i] := a’ mod N for 1 <i < 2%
2: let (egeq_1 . . . e1eg) be the base” representation of, with e, # 0
3 x — tle]

4: for ¢ from ¢ — 1 downto 0 do

5

6

z— 2% mod N
if e; # 0thenx — t[e;]Jz mod N.

number of loops is about/k. Ignoring the squares at step 5 (their total cost
depends o/ ~ n so is independent df), the total expected cost in terms of
multiplications modulaV is

2F —2 4 n(1 —27%)/k.

Fork = 1, this formula gives:/2; for k = 2, it gives3n/8 + 2, which is faster

for n > 16; for k = 3, it gives 7n/24 + 6, which is faster than thé = 2
formula forn > 48. Whenn is large, the optimal value f satisfiesk?2* ~
n/In2. A minor disadvantage of this algorithm is its memory us&aiece
O(2*) precomputed entries have to be stored. This is not a seriolem if

we choose the optimal value bf(or a smaller value), because then the number
of precomputed entries to be stored{s).

EXAMPLE: consider the exponert= 3499 211 612. Algorithm BaseKExp
performs31 squarings independently &f we therefore count multiplications
only. Fork = 2, we havee = (3100210 123 231 130)4: Algorithm BaseKExp
performs two multiplications to precompuié anda?, and11 multiplications
for the non-zero digits of in base4 (except for the leading digit), i.e. a total
of 13. Fork = 3, we havee = (32044 335 534)s, and the algorithm performs
six multiplications to precompute?, a3, ..., a”, and nine multiplications in
sted®, i.e. atotal of5.

The last example illustrates two facts. First, if some diditere6 and7) do
not appear in the bas¥: representation of, then we do not need to precom-
pute the corresponding powersafSecond, when a digit is even, sgy= 2,
instead of doing three squarings and multiplying:Bywe could do two squar-
ings, multiply bya, and perform a last squaring. These considerations lead to
Algorithm BaseKExpOdd

The correctness of stepH 7-9 follows from:

x2ka2md _ (x2k—n1 ad)zm )
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Algorithm 2.14 BaseKExpOdd
Input: a, e, N positive integers
Output: = = a® mod N
. precompute:? thent|[i] := a’ mod N foriodd,1 <i < 2¥
let (eqes—_1 . . . e1eg) be the base” representation of, with e, # 0
write e, = 2"d with d odd
x < t[d], < 2*" mod N
for ¢ from ¢ — 1 downto 0 do
write e; = 2"d with d odd (if e; = 0 thenm = d = 0)
22" mod N
if e; # 0thenx «— t[d]z mod N
x — 22" mod N.

© X N o R ®»DNR

On the previous example, with = 3, this algorithm performs only four
multiplications in stefp]l (to precomput€ thena?, ¢, a”), then nine multi-
plications in stepl8.

2.6.3 Sliding window and redundant representation

The “sliding window” algorithm is a straightforward genkzation of
Algorithm BaseKExpOdd Instead of cutting the exponent into fixed parts
of k bits each, the idea is to divide it into windows, where twoaadnt win-
dows might be separated by a block of zero or niplets. The decomposition
starts from the least significant bits. For example, wits 3499211612, or
in binary

1 101 00 001 001 00011 011 101 101 0 111 00.
Y N e e e

€g er €6 €5 €q €3 €2 €1 €0

Here there are nine windows (indicated &y, ..., eo above) and we perform
only eight multiplications, an improvement of one multgaition over Algo-
rithm BaseKExpOdd On average, the sliding window ba®ealgorithm leads
to aboutn/(k + 1) windows instead of./k with fixed windows.

Another improvement may be feasible when division is fdagiénd cheap)
in the underlying group. For example, if we encounter thi@mesecutive ones,
say111, in the binary representation ef we may replace some bits byl,
denoted byl, as in1001. We have thus replaced three multiplications by one
multiplication and one division, in other word$ = x® - z—!. For our running
example, this gives

e = 11010000 100 100 100 100010 010 100 100,
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which has only ten non-zero digits, apart from the leading, anstead of
15 with bits 0 and1 only. The redundant representation with bfits 1,1} is
called theBooth representatiarit is a special case of thivizienis signed-digit
redundant representatioisigned-digit representations exist in any base.

For simplicity, we have not distinguished between the cdshaltiplica-
tion and the cost of squaring (when the two operands in théiptiahtion are
known to be equal), but this distinction is significant in soapplications (e.g.
elliptic curve cryptography). Note that, when the undewygroup operation
is denoted by addition rather than multiplication, as isallyuthe case for
abelian groups (such as groups defined over elliptic curtlesh the discus-
sion above applies with “multiplication” replaced by “atidn”, “division” by
“subtraction”, and “squaring” by “doubling”.

2.7 Chinese remainder theorem

In applications where integer or rational results are etgubdt is often worth-
while to use a “residue number system” (a$lZal.3) and perform all compu-
tations modulo several small primes (or pairwise coprintegars). The final
result can then be recovered via the Chinese remainderetime(CRT). For
such applications, it is important to have fast conversarines from integer
to modular representation, and vice versa.

The integer to modular conversion problem is the followigigen an integer
x, and several pairwise coprime moduli, 1 < i < k, how do we efficiently
computer; = x mod m;, for1 < i < k? This is the remainder tree problem of
Algorithm IntegerToRNS, which is also discussed {2.5.1 and Exercide 1.B5.

Algorithm 2.15 IntegerTORNS
Input: integerz, modulimy, ma, ..., m pairwise coprimek > 1
Output: x; =z mod m; for1 <i <k
if £ <2then
returnz; = x mod mq, ...,xr = x mod my,
{ — Lk/?J
My «— myimg---myg, My mypyq---my > might be precomputed
Z1,...,x¢ < IntegerTORNS(x mod My, mq,...,my)
ZToyl,- .-, 2 < IntegerToRNS(z mod Ma, mytq, ..., my).

If all moduli m; have the same size, and if the sizef x is comparable to
that of the productnyms - - - my, the costl’(k) of Algorithm IntegerTORNS
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satisfies the recurren@®(n) = 2D(n/2) + 2T'(n/2), which yieldsT'(n) =
O(M (n)logn). Such a conversion is therefore more expensive than a filtip
cation or division, and is comparable in complexity terma tzase conversion
oragcd.

The converséCRT reconstructiorproblem is the following: given the;,
how do we efficiently reconstruct the unique integed < x < mimg - - - my,
such thatr = z; mod m;, for1 < i < k? AlgorithmRNSTolntegerperforms
that conversion, where the values at stefi ¥ might be precomputed if several
conversions are made with the same moduli, and[siep 11 enthatehe final
resultz lies in the interval0, M; M,).

Algorithm 2.16 RNSTolnteger
Input: residuest;, 0 < z; < m; for 1 < i < k, m; pairwise coprime
Output: 0 <z < myimg---my With x = 2; mod m;

1. if k= 1then

2: returnz,

30— |k/2]

4: My «— mymo---my, Mo« myyq---my  >might be precomputed
5: X, < RNSTolnteger([x1, ..., z¢], [m1, ..., my])

6: Xo «— RNSTolnteger([zs+1, ..., xk], [Met1, .-, mg])

7. computeu, v such thatuM; + vMs =1 > might be precomputed
8: A\ «— uXy mod Ms, Ay «— vX; mod M;

9: x — A\ My + A\ M>

10: if @ > MM, then

11: T «— x — M Ms.

To see that AlgorithnRNSTolnteger is correct, consider an integérl <
i < k, and show that = z; mod m;. If k = 1, itis trivial. Assumek > 2,
and without loss of generality < ¢ < /. SinceM; is a multiple ofm;, we
havez mod m; = (z mod M;) mod m;, where

z mod M1 = /\QMQ mod M1 = UXlMQ mod M1 = X1 mod Ml,

and the result follows from the induction hypothesis tRat= z; mod m;.
Like IntegerToRNS, Algorithm RNSTolnteger costsO(M (n) logn) for
M = myms - - - my, Of sizen, assuming that the; are of equal sizes.
The CRT reconstruction problem is analogous to the Lagraofygomial
interpolation problem: find a polynomial of minimal degragerpolating given
valuesz; atk pointsm.
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A “flat” variant of the explicit Chinese remainder reconstian is the
following, taking for exampld: = 3

T = Ax1 + Aax2 + Azx3,

where); = 1 mod m;, and\; = 0 mod m; for j # . In other words\; is
the reconstruction afy = 0,..., 2,1 = 0,2; = 1, 2,41 = 0,..., 2, = 0.
For example, withn; = 11, ms = 13 andms = 17, we get

x = 221x, 4+ 149625 + 7T15x3.

To reconstruct the integer correspondingito = 2, x5 = 3, x3 = 4, we
getx = 221 -2+ 1496 - 3 + 715 - 4 = 7790, which after reduction modulo
111317 = 2431 gives497.

2.8 Exercises

Exercise 2.1In §2.1.3 we considered the representation of non-negatiee int
gers using a residue number system. Show that a residue ngydgiem can
also be used to represent signed integers, provided thsofb values are not
too large. (Specifically, if relatively prime modutivy, mo, ..., my are used,
andB = mims - - - my, the integers: should satisfyz| < B/2.)

Exercise 2.2 Suppose two non-negative integar@&ndy are represented by
their residues modulo a set of relatively prime moduli, mso, ..., my as in
§2.1.3. Consider theomparison problemis z < y? Is it necessary to convert
z andy back to a standard (non-CRT) representation in order to @ngvis
question? Similarly, if a signed integeris represented as in Exercise]2.1,
consider thesign detection problenis z < 0?

Exercise 2.3 Consider the use of redundant moduli in the Chinese remainde
representation. In other words, using the notation of BzeiZ.2, consider the
case that could be reconstructed without using all the residues. Shatthis
could be useful for error detection (and possibly errorection) if arithmetic
operations are performed on unreliable hardware.

Exercise 2.4 Consider the two complexity boundS(M (dlog(Nd))) and
O(M(d)M (log N)) given at the end ofZ.1.5. Compare the bounds in three
cases: (&) < N; (b)d ~ N; (c)d > N. Assume two subcases for the mul-
tiplication algorithm: ()M (n) = O(n?); (i) M(n) = O(nlogn). (For the
sake of simplicity, ignore anlpg log factors.)
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Exercise 2.5 Show that, if a symmetric representatiorf+V/2, N/2) is used

in Algorithm ModularAdd (§2.2), then the probability that we need to add or
subtractN is 1/4 if N is even, and1 — 1/N?)/4if N is odd (assuming in
both cases that andb are uniformly distributed).

Exercise 2.6 Write down the complexity of the Montgomery—Svoboda algo-
rithm (§2.4.2, page 61) fok steps. Fok = 3, use van der Hoeven’s relaxed
Karatsuba multiplicatio4] to save ofé(n/3) product.

Exercise 2.7 Assume you have an FFT algorithm computing products modulo
2™ 4+ 1. Prove that, with some preconditioning, you can perfornvasitin with
remainder of &n-bit integer by am-bit integer as fast ak.5 multiplications

of n bits byn bits.

Exercise 2.8 Assume you know(z) mod (z"* —1) andp(x) mod (z"2—1),
wherep(z) € F[z] has degree—1, andn; > nq, andF' is afield. Up to which
value ofn can you uniquely reconstrup®? Design a corresponding algorithm.

Exercise 2.9 Consider the problem of computing the Fourier transform of a
vectora = [ag, a1, - . .,ax 1], defined in Eqn[{2]1), when the siZéis not a
power of two. For examples might be an odd prime or an odd prime power.
Can you find an algorithm to do this (K log K) operations?

Exercise 2.10Consider the problem of computing the cyclic convolution of
two K-vectors, wherel is not a power of two. (For the definition, witR'
replaced by, see§3.3.1.) Show that the cyclic convolution can be computed
using FFTs or2* points for some suitablg, or by using DFTs ork points
(see Exercise29). Which method is better?

Exercise 2.11Devise a parallel version of Algorithivlultiplelnversion as
outlined in§2.5.1. Analyse its time and space complexity. Try to minirize
number of parallel processors required while achievingrallgh time com-
plexity of O(log k).

Exercise 2.12Analyse the complexity of the algorithm outlined at the end
of .53 to computd /z mod Ny,...,1/z mod Ni, when all theN; have
sizen, andx has sizel. For which values o, ¢ is it faster than the naive
algorithm which computes all modular inverses separaf@g8umel (n) is
quasi-linear, and neglect multiplicative constants.]

Exercise 2.13Write aRightToLeftBinaryExp algorithm and compare it with
Algorithm LeftToRightBinaryExp of §2.6.1.
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Exercise 2.14Investigate heuristic algorithms for obtaining closesfutimal
addition (or multiplication) chains when the cost of a gahadditiona + b

(or multiplicationa - b) is A times the cost of duplication + a (or squaring

a - a), and\ is some fixed positive constant. (This is a reasonable madel f
modular exponentiation, because multiplicatiand N is generally more ex-
pensive than squaringiod N. It is also a reasonable model for operations in
groups defined by elliptic curves, since in this case the @daenfor addition
and duplication are usually different and have differerstsg

2.9 Notes and references

Several number-theoretic algorithms make heavy use of fapdrthmetic, in
particular integer factorization algorithms (for exampellard’s p algorithm
and the elliptic curve method).

Another important application of modular arithmetic in qauer algebra
is computing the roots of a univariate polynomial over a éirfield, which
requires efficient arithmetic ovéf,[x]. See for example the excellent book
“MCA’ by von zur Gathen and GerharmOO].

We say in§2.1.3 that residue number systems can only be used \hen
factors intoN; Vs . . .; this is not quite true, since Bernstein and Sorenson show
in [Q] how to perform modular arithmetic using a residue bemsystem.

For notes on the Kronecker—Suthage trick, se§1.9.

Barrett's algorithm is described in_[14], which also mensahe idea of
using two short products. The original description of Mamttery's REDC al-
gorithm is @]. It is now widely used in several applicatso However, only
a few authors considered using a reduction factor which tsofdhe form
(4™, among them McLaughIiO] and Mihailes64]. The Myorhery—
Svoboda algorithm §2.4.2) is also called “Montgomery tail tayloring” by
Hars @], who attributes Svoboda’s algorithm — more [m@lyi its variant
with the most significant word being — 1 instead of — to Quisquater. The
folding optimization of REDC described §2.4.2 (Subquadratic Montgomery
Reduction) is an LSB-extension of the algorithm describethe context of
Barrett’s algorithm by Hasenplaugh, Gaubatz, and GM][]Amongst the
algorithms not covered in this book, we mention the “biggannodular multi-
plication” of Kaihara and Takadj_L_;Lh4], which involves pemiing both MSB-
and LSB-division in parallel.

The description of McLaughlin’s algorithm i#2.4.3 follows Iﬂb Varia-
tion 2]; McLaughlin’s algorithm was reformulated in a potmial context by
Mihailescu ].
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Many authors have proposed FFT algorithms, or improvemeafrgsich al-
gorithms, and applications such as fast computation of @atiens. Some
references are Aho, Hopcroft, and Ullman [3]; Nussbaur@];lBorodin
and Munro [L_ab], who describe the polynomial approach; Vaan_@z] for
the linear algebra approach; and PoII@lSS} for the FHar diwite fields.
Rader[Ll_8_|7] considered the case where the number of datéspsia prime,
and WinogradﬁO] generalized Rader’s algorithm to priwers. Bluestein’s
algorithm Eﬁb] is also applicable in these cases. In Be'ms{@, §23] the
reader will find some historical remarks and several nicdieguons of the
FFT.

The Sclbnhage—Strassen algorithm first appeared |£| [199]. Regentl
Furer @] has proposed an integer multiplication algoritfat is asymptoti-
cally faster than the Sémhage—Strassen algorithniirer's algorithmalmost
achieves the conjectured best possi(e log n) running time.

Concerning special moduli, Percival consider@l%]dhse]\f =a+b,
where botha andb are highly composite; this is a generalization of the case
N = 3" £ 1. The pseudo-Mersenne primes 4.4 are recommended in
the National Institute of Standards and Technology (NIBigital Signature
Standarc{@]. See also the book by Hankerson, Menezes, and Van@ [

Algorithm Multiplelnversion — also known as “batch inversion” — is due
to Montgomery ]. The application of Barrett’s algoritHor an implicitly
invariant divisor was suggested by Granlund.

Modular exponentiation and cryptographic algorithms a&sctibed in much
detail in the book by Menezes, van Oorschot, and Vansiort @Bapter 14].
A detailed description of the best theoretical algorithmith references, can
be found in BernsteirL_[_iB]. When both the modulus and basenzegiant,
modular exponentiation witlk-bit exponent and:.-bit modulus can be per-
formed in timeO((k/log k)M (n)), after a precomputation aP(k/log k)
powers in timeO (kM (n)). Take for examplé = 2*/! in Note 14.112 and
Algorithm 14.109 of ], witht logt ~ k, where the powerabi mod N
for 0 < ¢ < t are precomputed. An algorithm of same complexity using a
DBNS (Double-Base Number System) was proposed by Dimifiaiien, and
Miller [@], however with a larger table ¢d(k?) precomputed powers.

Original papers on Booth recoding, SRT division, etc., &m@inted in the
book by Swartzlande@Z].

A quadratic algorithm for CRT reconstruction is discussedohen |E|3];
Moller gives some improvements in the case of a small numismafl moduli
known in advancdﬂ?]. AlgorithrmtegerToRNS can be found in Borodin
and Moenck@]. The explicit Chinese remainder theoremisrapplications
to modular exponentiation are discussed by Bernstein arehSon in@].



3
Floating-point arithmetic

This chapter discusses the basic operations — additiomrasdb
tion, multiplication, division, square root, conversioror arbi-
trary precision floating-point numbers, as Chapler 1 doesrfo
bitrary precision integers. More advanced functions siglela
ementary and special functions are covered in Chdpter 4 Thi
chapter largely follows the IEEE 754 standard, and extenigs i

a natural way to arbitrary precision; deviations from IEE&7
are explicitly mentioned. By default, IEEE 754 refers to 2088
revision, known as IEEE 754-2008; we write IEEE 754-1985
when we explicitly refer to the 1985 initial standard. Tapic
not discussed here include: hardware implementationsg-fixe
precision implementations, special representations.

3.1 Representation

The classical non-redundant representation of a floatoigtprumberz in
radix 3 > 1 is the following (other representations are discussefi8):

v=(-1)*m- B, (3.1)

where(—1)%, s € {0, 1}, is thesign m > 0 is thesignificand and the integer
e is theexponenof z. In addition, a positive integer defines therecisionof
x, which means that the significama contains at most significant digits in
radix (.

An important special case is = 0 representing zero. In this case, the sign
s and exponent are irrelevant and may be used to encode other information

(see for examplg3.1.3).

Form # 0, several semantics are possible; the most common ones are:
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e 371 <m < 1,thenp~! < |z| < B In this casem is an integer multiple
of f~". We say that theinit in the last placeof = is 5=, and we write
ulp(z) = ge~™. For examplexg = 3.1416 with radix 5 = 10 is encoded
by m = 0.31416 ande = 1. This is the convention that we will use in this
chapter.

e 1 <m < 3, thens® < |z| < g, andulp(z) = BT, With radix ten
the numbern: = 3.1416 is encoded byn = 3.1416 ande = 0. This is the
convention adopted in the IEEE 754 standard.

e We can also use an integer significadtt ! < m < 37, thenget"—1 <
lz| < pet™, andulp(xz) = 3. With radix ten the number = 3.1416 is
encoded byn = 31416 ande = —4.

Note that in the above three cases, there is only one possiilesentation of
a non-zero floating-point number: we havesaonicalrepresentation. In some
applications, it is useful to relax the lower bound on nomze, which in the
three cases above gives respectively m < 1,0 < m < f,and0 < m <
8", with m an integer multiple ofs=", <t1=", and1 respectively. In this
case, there is no longer a canonical representation. For@gawith an integer
significand and a precision of five digits, the numBari00 might be encoded
by (m = 31400,e = —4), (m = 03140,e = —3), or (m = 00314,¢ = —2).
This non-canonical representation has the drawback teamtbst significant
non-zero digit of the significand is not known in advance. Wihigue encoding
with a non-zero most significant digit, i.en = 31400, e = —4) here, is called
thenormalized- or simplynormal— encoding.

The significand is also sometimes called thentissaor fraction. The above
examples demonstrate that the different significand seosaobrrespond to
different positions of the decimal (or radi® point, or equivalently to different
biasesof the exponent. We assume in this chapter that both the fadind the
significand semantics are implicit for a given implememtatiand thus are not
physically encoded.

The words “base” and “radix” have similar meanings. Foritfawe reserve
“radix” for the constani3 in a floating-point representation, suchas](3.1). The
significandm and exponent might be stored in a different base, as discussed
below.

3.1.1 Radix choice

Most floating-point implementations use radix = 2 or a power of two,
because this is convenient and efficient on binary compukensa radixs,
which is not a power o2, two choices are possible:
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e Store the significand in basg or more generally in basg* for an integer
k > 1. Each digit in basg* requires[k Ig 3] bits. With such a choice, indi-
vidual digits can be accessed easily. With= 10 andk = 1, this is the “Bi-
nary Coded Decimal” or BCD encoding: each decimal digit [gesented
by four bits, with a memory loss of about 17% (sirigél0)/4 ~ 0.83). A
more compact choice is radib?, where three decimal digits are stored in
ten bits, instead of in2 bits with the BCD format. This yields a memory
loss of only 0.34% (sinci(1000)/10 =~ 0.9966).

e Store the significand in binary. This idea is used in InteliaaBy-Integer
Decimal (BID) encoding, and in one of the two decimal encgdim IEEE
754-2008. Individual digits can not be accessed directiyw® can use effi-
cient binary hardware or software to perform operationshersignificand.

A drawback of the binary encoding is that, during the addiobtwo arbitrary-
precision numbers, it is not easy to detect if the significexceeds the max-
imum values™ — 1 (when considered as an integer) and thus if rounding is
required. Eithep3” is precomputed, which is only realistic if all computations
involve the same precisiom, or it is computed on the fly, which might result
in increased complexity (see Chagdier 1 §8db5.1).

3.1.2 Exponent range

In principle, we might consider an unbounded exponent. heowords, the
exponent might be encoded by an arbitrary-precision integer (se@feid).
This would have the great advantage that no underflow or avedbuld occur
(see below). However, in most applications, an exponeradgtin32 bits is
more than enough: this enables us to represent values upiio ldl§*¢ 456 993
for g = 2. Aresult exceeding this value most probably corresponds terror
in the algorithm or the implementation. Using arbitrarggision integers for
the exponent induces an extra overhead that slows down giienmentation in
the average case, and it usually requires more memory ® stémh number.

Thus, in practice the exponent nearly always has a limitedea,,;, <
e < emax- We say that a floating-point number rispresentabléf it can be
represented in the forr—1)° - m - 3° with epin < e < epax. The set of
representable numbers clearly depends on the significandrgies. For the
convention we use here, i.67! < m < 1, the smallest positive representable
floating-point number ige=i=—1 and the largest one j§max (1 — 37™).

Other conventions for the significand yield different exponranges. For
example, the double-precision format — calbédary64 in IEEE 754-2008 —
hasen,in = —1022, e;max = 1023 for a significand i1, 2); this corresponds to
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emin = —1021, epmax = 1024 for a significand in1/2, 1), ande,i, = —1074,
emax = 971 for an integer significand if2°?, 2°%).

3.1.3 Special values

With a bounded exponent range, if we want a complete ariticsgnet need
some special values to represent very large and very smaésiavery small
values are naturally flushed to zero, which is a special nuintie sense that
its significand ism = 0, which is not normalized. For very large values, it
is natural to introduce two special valueso and-+oco, which encode large
non-representable values. Since we have two infinities niatural to have two
zeros—0 and+-0, for examplel /(—oc0) = —0 and1/(+oc0) = +0. This is the
IEEE 754 choice. Another possibility would be to have only danfinity and
one zerd), forgetting the sign in both cases.

An additional special value ot a NumbeKNaN), which either represents
an uninitialized value, or is the result of amvalid operation like/—1 or
(4+00) — (+00). Some implementations distinguish between different &iofd
NaN, in particular IEEE 754 definessgnalingandquietNaNs.

3.1.4 Subnormal numbers

Subnormal numberare required by the IEEE 754 standard, to allow what is
called gradual underflonbetween the smallest (in absolute value) non-zero
normalized numbers and zero. We first explain what subnonualbers are;
then we will see why they are not necessary in arbitrary pieci

Assume we have an integer significand]i¥ !, 3"), wheren is the pre-
cision, and an exponent iBmin, €max). Write n = g¢min. The two smallest
positive normalized numbers are = 3" ~'n andy = ("' + 1)n. The
differencey — x equalsn, which is tiny compared ta:. In particular,y — x
can not be represented exactly as a normalized number (agp@fT! > 1)
and will be rounded to zero in “rounding to nearest” mo@&1.9). This has
the unfortunate consequence that instructions such as

if (y !I= x) then
z = 1.0/(y - x);

will produce a “division by zero” error when executidg/(y - X)

Subnormal numbers solve this problem. The idea is to relexctmdition
Bl < m for the exponent,,;,. In other words, we include all numbers
of the formm - gémin for 1 < m < A"~ in the set of valid floating-point
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numbers. We could also permit = 0, and then zero would be a subnormal
number, but we continue to regard zero as a special case.

Subnormal numbers are all positive integer multiplestgf with a multi-
plier m, 1 < m < p»!. The difference between = A" 'y and
y = ("' + 1)n is now representable, since it equalghe smallest positive
subnormal number. More generally, all floating-point nurstzge multiples of
7, likewise for their sum or difference (in other words, openas in the sub-
normal domain correspond to fixed-point arithmetic). If suen or difference
is non-zero, it has magnitude at legstand thus can not be rounded to zero.
Therefore, the “division by zero” problem mentioned aboeesinot occur
with subnormal numbers.

In the IEEE 754 double-precision format — calleidary64 in IEEE 754-
2008 — the smallest positive normal numbezid°22, and the smallest positive
subnormal number 871974, In arbitrary precision, subnormal numbers sel-
dom occur, since usually the exponent range is huge compatbd expected
exponents in a given application. Thus, the only reasomfiptémenting sub-
normal numbers in arbitrary precision is to provide an esi@mof IEEE 754
arithmetic. Of course, if the exponent range is unboundeeh there is ab-
solutely no need for subnormal numbers, because any narflzating-point
number can be normalized.

3.1.5 Encoding

The encodingof a floating-point numbex: = (—1)® - m - 3¢ is the way the
valuess, m, ande are stored in the computer. Remember that implicit, i.e.
is considered fixed for a given implementation; as a consezgjeve do not
consider herenixed radixoperations involving numbers with different radices
B andg’.

We have already seen that there are several ways to encodigtiifecand
m wheng is not a power of two, in basg¥ or in binary. For normal numbers
inradix2, i.e.2"~! < m < 2", the leading bit of the significand is necessarily
one, thus we might choose not the encode it in memory, to gaiextra bit
of precision. This is called thieplicit leading bit and it is the choice made
in the IEEE 754 formats. For example, the double-precistmmét has a sign
bit, an exponent field of1 bits, and a significand &f3 bits, with only52 bits
stored, which gives a total 6f1 stored bits:

sign | (biased) exponent significand
(1 bit) (11 bits) (52 bits, plus implicit leading bit)
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A nice consequence of this particular encoding is the fahowLetx be a
double-precision number, neither subnormado, NaN, nor the largest normal
number in absolute value. Consider thiebit encoding ofr as a64-bit integer,
with the sign bit in the most significant bit, the exponens it the next most
significant bits, and the explicit part of the significand le iow significant
bits. Adding1 to this 64-bit integer yields the next double-precision number
to =, away from zero. Indeed, if the significandis smaller thar2®® — 1, m
becomesn + 1, which is smaller tha®3. If m = 253 — 1, then the lowest
52 bits are all set, and a carry occurs between the significatdl died the
exponent field. Since the significand field becomes zero,dhesignificand is
252, taking into account the implicit leading bit. This corresps to a change
from (253 — 1) - 2¢ to 252 . 2¢*1, which is exactly the next number away from
zero. Thanks to this consequence of the encoding, an integeparison of
two words (ignoring the actual type of the operands) should the same
result as a floating-point comparison, so it is possible to sormal positive
floating-point numbers as if they were integers of the samgtke(©4-bit for
double precision).

In arbitrary precision, saving one bit is not as crucial adibiad (small)
precision, where we are constrained by the word size (ys@albr 64 bits).
Thus, in arbitrary precision, it is easier and preferablercode the whole
significand. Also, note that having an “implicit bit” is nobgsible in radix
6 > 2, since for a normal number the most significant digit mighketseveral
values, froml to 5 — 1.

When the significand occupies several words, it can be storedlinked
list, or in an array (with a separate size field). Lists ardezas extend, but
accessing arrays is usually more efficient because feweromyeraferences
are required in the inner loops and memory locality is better

The signs is most easily encoded as a separate bit field, with a nontimega
significand. This is thesign-magnitudeencoding. Other possibilities are to
have a signed significand, using either one’s complememtais tomplement,
but in the latter case a special encoding is required for, zkitois desired to
distinguish-+0 from —0. Finally, the exponent might be encoded as a signed
word (for example, typéong in the C language).

3.1.6 Precision: local, global, operation, operand

The different operands of a given operation might have wdffe precisions,
and the result of that operation might be desired with yetlaroprecision.
There are several ways to address this issue.
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e The precision, say, is attached to a given operation. In this case, operands
with a smaller precision are automatically converted t@isienn. Operands
with a larger precision might either be left unchanged, ancded to preci-
sionn. In the former case, the code implementing the operatiorn baiable
to handle operands with different precisions. In the lattse, the round-
ing mode to shorten the operands must be specified. Notehisatound-
ing mode might differ from that of the operation itself, armht operand
rounding might yield large errors. Consider for example= 1.345 and
b = 1.234567 with a precision of four digits. I is taken as exact, the exact
value ofa — b equals0.110433, which when rounded to nearest becomes
0.1104. If b is first rounded to nearest to four digits, we get 1.235, and
a — b = 0.1100 is rounded to itself.

e The precisiom is attached to each variable. Here again two cases may occur.
If the operation destination is part of the operation inpus in
sub(c, a, b) , which means: < round(a — b), then the precision of
the result operand is known, and thus the rounding precision is known
in advance. Alternatively, if no precision is given for thesult, we might
choose the maximal (or minimal) precision from the inputrapels, or use
a global variable, or request an extra precision parametehé operation,
asinc = sub(a, b, n)

Of course, these different semantics are inequivalentnaayyield different
results. In the following, we consider the case where eadable, including
the destination variable, has its own precision, and norpueding or post-
rounding occurs. In other words, the operands are considseact to their full
precision.

Rounding is considered in detail #8.1.9. Here we define what we mean by
the correct roundingof a function.

Definition 3.1 Leta, b, ... be floating-point numberg, a mathematical func-
tion, n > 1 an integer, ando a rounding mode. We say thatis the cor-
rect roundingof f(a,b,...), and we writec = o,(f(a,b,...)), if ¢ is the
floating-point number closest tf(a, b, ...) in precisionn and according to
the given rounding mode. In case several numbers are at thee ghistance
from f(a, b, ...), the rounding mode must define in a deterministic way which
one is “the closest”. When there is no ambiguity, we oménd write simply

c=o(f(a,b,...).
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3.1.7 Link to integers

Most floating-point operations reduce to arithmetic on tlgeificands, which
can be considered as integers as seen at the beginning obebimn.
Therefore, efficient arbitrary precision floating-poinitlametic requires effi-
cient underlying integer arithmetic (see Chapier 1).

Conversely, floating-point numbers might be useful for thelementation
of arbitrary precision integer arithmetic. For example, m&ght use hard-
ware floating-point numbers to represent an arbitrary preciinteger. Indeed,
since a double-precision floating-point number habits of precision, it can
represent an integer up &% — 1, and an integerd can be represented as
A=ap 1" '+ +a;8 + -+ a1+ ag, whereg = 2°3, and thea;
are stored in double-precision data types. Such an encedingopular when
most processors we2-bit, and some had relatively slow integer operations
in hardware. Now that most computers &#ebit, this encoding is obsolete.

Floating-pointexpansionsre a variant of the above. Instead of storing
and having3® implicit, the idea is to directly store;3*. Of course, this only
works for relatively smalk, i.e. whenevewr;3* does not exceed the format
range. For example, for IEEE 754 double precision, the makimteger preci-
sion is1024 bits. (Alternatively, we might represent an integer as atiplel of
the smallest positive number %7, with a corresponding maximal precision
of 2098 bits.)

Hardware floating-point numbers might also be used to imptdrthe fast
Fourier transform (FFT), using complex numbers with flogdpoint real and

imaginary part (seé3.3.1).

3.1.8 Ziv’s algorithm and error analysis

A rounding boundarys a point at which the rounding functiasriz) is discon-
tinuous.

In fixed precision, for basic arithmetic operations, it isn&times possible
to design one-pass algorithms that directly compute a cbroeinding. How-
ever, in arbitrary precision, or for elementary or speaiaidtions, the classical
method is to use Ziv’s algorithm:

1. we are given an input, a target precision, and a rounding mode;

2. compute an approximatianwith precisionm > n, and a corresponding
error bounck such thaty — f(z)| < ¢;

3. if [y — e,y + €] contains a rounding boundary, increasend go to step 2;
4. output the rounding af, according to the given rounding mode.
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The error bound at step 2 might be computed eitheepriori, i.e. fromz and

n only, ordynamicallyi.e. from the different intermediate values computed by
the algorithm. A dynamic bound will usually be tighter, butlwequire extra
computations (however, those computations might be dolniprecision).

Depending on the mathematical function to be implementednight pre-
fer an absolute or a relative error analysis. When computingladive error
bound, at least two techniques are available: we might sspifee errors in
terms of units in the last place (ulps), or we might expressntlin terms of
true relative error. It is of course possible in a given asialyo mix both kinds
of errors, but in general a constant factor — the ratlixis lost when converting
from one kind of relative error to the other kind.

Another important distinction iforward versusbackwarderror analysis.
Assume we want to compuie= f(x). Because the input is rounded, and/or
because of rounding errors during the computation, we naigtually compute
y' ~ f(«'). Forward error analysis will boung’ — y| if we have a bound on
|#' — x| and on the rounding errors that occur during the computation

Backward error analysis works in the other direction. If toenputed value
is 3/, then backward error analysis will give us a numbsuch that, fosome
2’ in the ball|2’ — | < §, we havey’ = f(2’). This means that the error is
no worsethan might have been caused by an errar ifthe input value. Note
that, if the problem is ill-conditioned, might be small even ify’ — y| is large.

In our error analyses, we assume that no overflow or underfioours,
or equivalently that the exponent range is unbounded, sirthes contrary is
explicitly stated.

3.1.9 Rounding

There are several possible definitions of rounding. For @taprobabilistic
rounding— also calledstochastic rounding— chooses at random a rounding
towards+oo or —oo for each operation. The IEEE 754 standard defines four
rounding modes: towards zerepo, —oo and to nearest (with ties broken to
even). Another useful mode is “rounding away from zero”,atiounds in the
opposite direction from zero: a positive number is roundedards+oo, and a
negative number towardsoo. If the sign of the result is known, all IEEE 754
rounding modes might be converted to either rounding toastarounding
towards zero, or rounding away from zero.

Theorem 3.2 Consider a floating-point system with radixand precisiomn.
Letu be the rounding to nearest of some reallhen the following inequalities
hold: [u — | < 3 ulp(u), [u— | < 38" "[ul, lu—az| < 35" "|z|.
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Proof. Forz = 0, necessarily, = 0, and the statement holds. Without loss of
generality, we can assumendz positive. The first inequality is the definition
of rounding to nearest, and the second one follows frdp{u) < ' "u.

(In the cases = 2, it gives |u — z| < 27 ™|ul.) For the last inequality, we
distinguish two cases: if < z, it follows from the second inequality. if < u,
then if z andu have the same exponent, I8! < = < u < 3¢ then
ulp(u) = B¢~ < B~"z. The remaining case |8°~! < z < u = 3°. Since
the floating-point number precedinyj is 5¢(1 — ~"), andz was rounded to
nearest, we have: — z| < ¢~ /2 here too. 0

In order to round according to a given rounding mode, we m@dass fol-
lows:

1. firstround as if the exponent range was unbounded, withitles rounding
mode;

2. if the rounded result is within the exponent range, retbisiresult;

3. otherwise raise the “underflow” or “overflow” exceptiomdareturn+0 or
+oo accordingly.

For example, assume radix with precision4, e, = 3, with z = 0.9234 -
103,y = 0.7656-10%. The exact sum+y equalg).99996-103. With rounding
towards zero, we obtaif.9999 - 103, which is representable, so there is no
overflow. With rounding to nearest, + y rounds t00.1000 - 10*, where the
exponend exceeds:,,.x = 3, SO we geti-co as the result, with an overflow.
In this model, overflow depends not only on the operands, lat an the
rounding mode.

The “round to nearest” mode of IEEE 754 rounds the result aff@aration
to the nearest representable number. In case the resulbpeaation is exactly
halfway between two consecutive numbers, the one with kgsificant bit
zero is chosen (for radiX). For example].10115 is rounded with a precision
of four bits to1.1104, as is1.11015. However, this rule does not readily extend
to an arbitrary radix. Consider for example radix= 3, a precision of four
digits, and the number212.111...3. Both 12123 and 12203 end in an even
digit. The natural extension is to require the whole sigaiiig to be even, when
interpreted as an integer ", 3" — 1]. In this setting,(1212.111...)3
rounds to(1212)5 = 501. (Note that3™ is an odd number here.)

Assume we want to correctly round a real number, whose biegugnsion
is2¢-0.1by...bybyy1 ..., ton bits. It is enough to know the values of=
bn11 — called theround bit— and that of thesticky bits, which is zero when
bniobnis. .. is identically zero, and one otherwise. Tablel 3.1 shows fow t
correctly round givernr, s, and the given rounding mode; rounding @o
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being converted to rounding towards zero or away from zeroomling to the
sign of the number. The entry,,” is for round to nearest in the case of a tie:
if b, = 0, it will be unchanged, but i6,, = 1, we add one (thus changirbg

to zero).

r s | towardszero  tonearest away from zefo
0 0 0 0 0
0 1 0 0 1
1 0 0 bn 1
1 1 0 1 1

Table 3.1 Rounding rules according to the round biand
the sticky bits: a “ 0” entry means truncate (round towards
zero), a “1” means round away from zero (add one to the
truncated significand).

In general, we do not have an infinite expansion, but a finigg@pmationy
of an unknown real value. For exampley might be the result of an arithmetic
operation such as division, or an approximation to the vaféetranscendental
function such asxp. The following problem arises: given the approximation
y, and a bound on the errdy — x|, is it possible to determine the correct
rounding ofz? AlgorithmRoundingPossiblereturnstrue iff it is possible.

Algorithm 3.1 RoundingPossible
Input: a floating-point numbey = 0.1ys . . . y,,, @ precisiom < m, an error
bounde = 2%, a rounding mode
Output: truewheno,,(z) can be determined fay — z| < ¢
if & < n+1thenreturnfalse
if o isto nearesthenr — 1 elser — 0
if ypo1 =randypso =--- =y =0thens — 0 elses — 1
if s = 1 thenreturntrue elsereturnfalse

Proof of correctness. Since rounding is monotonic, it is possible to determine
o(z) exactly wheno(y — 27%) = o(y + 27%), or in other words when the
interval [y — 27%, y + 27*] contains no rounding boundary (or only one as
y—2"Fory+27F).

If & < n + 1, then the interva[—2~% 27*] has width at least—", and
thus contains at least one rounding boundary in its inteaptwo rounding
boundaries, and it is not possible to round correctly. In ttase of
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directed rounding (resp. rounding to nearest}, # 0, the approximatiory is
representable (resp. the middle of two representable nignhbe precision
n, and it is clearly not possible to round correctly.sif= 1, the interval
[y — 2%,y +27F] contains at most one rounding boundary, and, if so, it is one
of the bounds; thus, it is possible to round correctly. 0

The double rounding problem

When a given real value is first rounded to precisiom and then to precision

n < m, we say that a “double rounding” occurs. The “double rouggrob-

lem” happens when this latter value differs from the directding ofz to the
smaller precisiom, assuming the same rounding mode is used in all cases, i.e.
when

on(om(x)) # on(x).

The double rounding problem does not occur for directed dowghmodes.
For these rounding modes, the rounding boundaries at therlarecisionn
refine those at the smaller precisionthus all real values that round to the
same valug at precisionn also round to the same value at precisignamely
on(y).

Consider the decimal value= 3.14251. Rounding to nearest to five digits,
we gety = 3.1425; roundingy to nearest-even to four digits, we gel42,
whereas direct rounding afwould give3.143.

With rounding to nearest mode, the double rounding problaeiy occurs
when the second rounding involves the even-rule, i.e. theeva= o,,(x) is
a rounding boundary at precisien Otherwisey has distance at least one ulp
(in precisionm) from a rounding boundary at precisianand sincey — x| is
bounded by half an ulp (in precision), all possible values far round to the
same value in precision.

Note that the double rounding problem does not occur withwalys of
breaking ties for rounding to nearest (Exer¢isé 3.2).

3.1.10 Strategies

To determine the correct rounding ¢ifz) with n bits of precision, the best
strategy is usually to first compute an approximatjdo f(x) with a working
precision ofm = n+ h bits, with i relatively small. Several strategies are pos-
sible in Ziv's algorithm §3.1.8) when this first approximatignis not accurate
enough, or too close to a rounding boundary:

e Compute the exact value gf(z), and round it to the target precision
This is possible for a basic operation, for exampler) = 22, or more
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generallyf(z,y) = = + y orz x y. Some elementary functions may yield
an exactly representable output too, for examgle25 = 1.5. An “exact
result” test after the first approximation avoids possibipecessary further
computations.

e Repeat the computation with a larger working precisioh= n + h'. As-
suming that the digits of (x) behave “randomly” and thay’(z)/f(x)| is
not too large, using’ ~ lgn is enough to guarantee that rounding is possi-
ble with probabilityl — O(1/n). If rounding is still not possible, because the
k' last digits of the approximation encofl®r 2" — 1, we can increase 