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Abstract

This talk outlines how very large, sparse linear
systems arise in the solution of problems of
interest in computational number theory and
public-key cryptography, such as the integer
factorization and discrete logarithm problems.
The linear systems are over finite fields, often
the field GF(2) of two elements. We describe
some algorithms for solving large sparse linear
systems over GF(2), and compare them with
algorithms for the real field. In particular, some
”iterative” algorithms which are well-known to
numerical analysts, such as the conjugate
gradient and Lanczos algorithms, can be
adapted to work over GF(2), but there are
significant differences between algorithms for
the real field and for GF(2).
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Finite Fields

In computational number theory and
cryptographic applications, we often have to
work over finite fields. A finite field F is a finite
set with operations “+” and “×” which satisfy
the usual associative, commutative and
distributive laws:

(x + y) + z = x + (y + z), (xy)z = x(yz),

x + y = y + x, xy = yx, x(y + z) = xy + xz .

Here, as usual, we have written x × y as xy.

(F, +) is an abelian group with zero element 0.
(F\{0},×) is a (nonempty) abelian group with
identity 1.

We write x + x as 2x, x + x + x as 3x,
x × x as x2, x × x × x as x3, etc.
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Characterisation of Finite Fields

If F is finite field, then #F is a prime power.

Conversely, for any prime power q = pk, there is
a finite field with q elements, often written
GF(q), and this is unique up to isomorphism.
(“G” is for Galois.)

p is called the characteristic of the finite field,
and

px = 0

holds for all x ∈ F .

The familiar infinite fields Q, R and C are said
to have characteristic zero.
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Fields of Prime Order

The most important finite fields in applications
are those whose order is a prime (GF(p)) or a
power of two (GF(2k)). For simplicity, we only
consider the case F = GF(p), where p is a
prime. A representation of F is the integers
modulo p. In other words, GF(p) ≡ Z/pZ.

Note: The ring Z/qZ is not a field if q = pk,
k > 1, because it contains “zero-divisors”
(p × pk−1 = 0).

p-th powers

For all x ∈ F = GF(p), we have

xp = x .

This is just Fermat’s little theorem translated
into the language of finite fields.
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GF(2)

The simplest finite field is GF(2), the set of two
elements {0, 1} with addition and multiplication
mod 2.

Equivalently, GF(2) can be regarded as the set
{F,T} of truth values F (false) and T (true)
with operations ⊕ (“exclusive or”) and
∧ (“conjunction”).

We can perform linear algebra efficiently on
vectors over GF(2) by packing 32 or 64
elements per word and using word-length ⊕ and
∧ operations.
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Differences between GF(p) and R

We can perform linear algebra with vectors and
matrices over F , and some familiar concepts
such as rank, null-space are meaningful. If your
intuition about fields comes from knowledge of
the real field R, then it is important to note the
following facts about finite fields F = GF(p).

• We can represent elements of F exactly
and perform arithmetic operations exactly.
There is no problem with rounding error.

• We can not define a norm which satisfies
the triangle inequality (because px = 0).

• We can not define a useful total ordering
”>”. For example, we might try to define
x > 0 if x = y2 6= 0 for some y ∈ F .
However, in GF(3) this gives
1 > 0 > −1 = 1 + 1. In GF(5) we have
−1 = 22 so −1 > 0. Thus, this definition
is not useful.
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More Differences

• It is hard to discuss questions of
convergence (except in terms of subspaces,
e.g. for Krylov subspace methods, or
without considering extension fields,
p-adic numbers, . . .). We restrict our
attention to algorithms which (usually)
give the exact answer in a finite number of
steps.

• Nonzero vectors can be self-orthogonal,
i.e. yT y = 0, y 6= 0. For example, if
F = GF(2), consider any vector y with an
even number of nonzero elements.
Self-orthogonal vectors cause technical
difficulties when we try to apply some
well-known algorithms (Gram-Schmidt
orthogonalisation, the Lanczos algorithm,
etc).

• We can not define a positive definite

matrix in the usual way.
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Sparse Systems over Finite Fields

Very large, sparse linear systems over finite
fields arise in cryptanalysis, when we are trying
to “crack” encrypted messages or forge digital
signatures. Even if you don’t want to do this,
you need to know how difficult it is in order to
know how secure your encryption/digital
signature scheme is.

Large, sparse linear systems over finite fields
also arise in other applications, e.g. factorisation
of polynomials.
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Public Key Cryptography

The RSA (Rivest-Shamir-Adleman) algorithm
for public-key cryptography depends for its
security on the difficulty of the integer

factorisation problem – given an integer N
which is a product of (say) two large primes p
and q, find p and q. (The inverse problem,
finding N when p and q are given, is easy.)

At present, N needs to be larger than 512 bits
to be considered secure, since 512-bit numbers
can be factored. 1024 bits is probably OK for a
decade or more, unless a new factoring
algorithm is found or a practical quantum
computer is built.

11

Integer Factorisation by the NFS

There are many algorithms for finding a
nontrivial factor f of a composite integer N . In
cryptographic applications N is usually chosen
to be difficult to factor. For example, in the
RSA algorithm, N = pq, where p and q are
primes with about half as many digits as N .
(Thus p and q are approximately

√
N , but not

too close to
√

N as this would make it easy to
find them!)

In such circumstances, the best available integer
factorisation algorithm is the (general) number

field sieve (NFS). Under plausible assumptions
it has expected run time

O(exp(c(lnN)1/3(ln lnN)2/3)) ,

where c ≈ 1.923 is a constant.
The number of digits in N is O(log N). A
polynomial-time algorithm would run in time
polynomial in log N , i.e. exp(O(log log N)).
Thus, NFS is not a polynomial-time algorithm,
though it is better than N ε = exp(ε log N) for
any ε > 0.
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SNFS

Because NFS is a rather complicated algorithm,
we concentrate on two simpler algorithms which
lead to similar large sparse linear systems – the
special number field sieve (SNFS) and the
(multiple polynomial) quadratic sieve (MP)QS.
SNFS works on numbers N of a special form,
e.g. N = 2512 + 1. The expected run time is as
for NFS except that the constant c is smaller
(about 1.53). Historically, SNFS came first,
then NFS was developed from it.

QS

The quadratic sieve (QS) and its variants such
as MPQS are earlier and simpler algorithms
than SNFS/NFS. MPQS has expected run time

exp

(

√

(1 + o(1)) lnN ln lnN

)

,

which is worse than NFS because of the square
root (instead of cube root) in the exponent.
Nevertheless, MPQS is faster than NFS for
numbers N up to about 110 decimal digits.
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Record Factorisations

At the time of writing (September 2005) the
published record factorisations are –

• MPQS The 129-decimal digit RSA129
challenge number by Atkins et al in 1994.
(Since NFS is more efficient on such large
numbers, it seems that no one has tried to
break this MPQS record.)

• NFS A 200-decimal digit number
(RSA-200) by Kleinjung et al in May
2005.

• SNFS A 248-decimal digit number (a
factor of 21642 + 1) by Aoki et al in April
2004.
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Quadratic Sieve Algorithms

Quadratic sieve algorithms belong to a large
class of algorithms which try to find two integers
x and y such that x 6= ±y (mod N) but

x2 = y2 (mod N) . (1)

Once such x and y are found, then
GCD (x − y, N) is a nontrivial factor of N .
One way to find x and y satisfying (1) is to find
a set of relations of the form

u2

i = v2

i wi (mod N), (2)

where the wi have all their prime factors in a
moderately small set of primes (called the
factor base). Each relation (2) gives a column in
a matrix A whose rows correspond to the
primes in the factor base.
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Linear Algebra mod 2

Once enough columns have been generated, we
can use sparse Gaussian elimination in GF(2)
to find a linear dependency (mod 2) between a
set of columns of A. Multiplying the
corresponding relations now gives an expression
of the form (1).

With probability at least 1/2, we have
x 6= ±y mod N , and a nontrivial factor of N
will be found. If x = ±y, we need to obtain a
different linear dependency and try again.
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Example of the Quadratic Sieve

Here is a small example1 of the quadratic sieve
used to factor the integer N = 1098413.

Let f(x) = x2 − N . We take a factor base

S = {2, 7, 13, 17, 19, 23} .

Generally, S will consist of small primes, but we
can exclude primes (e.g. 3, 5, 11 here) for which
N is not a quadratic residue, since we know
that they will not contribute to the solution.
We could include −1 to handle x <

√
N .

Since
√

N ≈ 1048, we consider values of x close
to 1048, and try to factor f(x) over S. For
example, trying x > 1048 we find:

1Similar to an example given by Montgomery [11, §7.6].
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QS Example continued

f(1051) = 22 · 7 · 13 · 17

f(1063) = 22 · 73 · 23

f(1077) = 22 · 7 · 133

f(1119) = 22 · 7 · 172 · 19

f(1142) = 72 · 13 · 17 · 19

f(1237) = 22 · 13 · 192 · 23

Thus, we can write down a 6 × 6 matrix A
whose rows correspond to the primes in S, and
whose entries are 1 if the relevant exponent is
odd:

A =



















0 0 0 0 0 0
1 1 1 1 0 0
1 0 1 0 1 1
1 0 0 0 1 0
0 0 0 1 1 0
0 1 0 0 0 1



















We see that the second, third and sixth columns
of A are linearly dependent, in fact Ax = 0 if

xT = [011001] .
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QS Example continued

Generally we would not expect a dependency
until the number of columns exceeded the
number of rows. Here the first row is zero and
the nullspace has dimension 2.

Multiplying the second, third and sixth
relations we obtain

(1063·1077·1237)2 = (23 ·72 ·132 ·19·23)2 mod N

which simplifies to

3263302 = 3916382 mod N .

Since

GCD(391638 − 326330, N) = 563

we find the factorisation

N = 563 · 1951 .

If we multiply the first, fourth and fifth
relations we obtain only the trivial

8101122 = 8101122 mod N

and this does not yield a factorisation of N .

19

Sieving

In quadratic sieve algorithms the numbers wi

are the values of one (or more) polynomials
with integer coefficients. This makes it easy to
find relations by sieving. The sieving process is
time-consuming but easily parallelised.

Similar comments apply to sieving for the
number field sieve, although the details of the
sieving process are more complicated than for
the quadratic sieve.
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The Discrete Logarithm Problem

Several cryptographic algorithms depend on the
discrete logarithm problem. The simplest form
of this problem is – given a prime p, a primitive
root g, and an integer y ∈ (1, p), find an integer
x ∈ [0, p − 2] such that

gx = y in GF(p) .

x is called the discrete logarithm of y and we
could write

x = logg y .

If p − 1 has a large prime factor q, then finding
x seems difficult – as difficult as factoring a
number of about the same size as q. The inverse
problem, finding y when x, p and g are given, is
easy.

The Diffie-Hellman key agreement protocol, the
El Gamal algorithms for public key
cryptography, and the digital signature
algorithm (DSA) all depend for their security on
the difficulty of the discrete logarithm problem.
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Diffie-Hellman

To illustrate how the discrete logarithm can be
used, we sketch the Diffie-Hellman key
agreement protocol.

Alice and Bob have agreed on a large prime p
and primitive root g (these are public).

Alice chooses a random integer x ∈ [2, p − 2]
and sends

X = gx mod p

to Bob. Meanwhile, Bob chooses an
independent random integer y ∈ [2, p − 2] and
sends

Y = gy mod p

to Alice. Both Alice and Bob can then compute
a session key

K = gxy mod p = Xy mod p = Y x mod p

but it seems difficult for an eavesdropper to
compute K without solving a discrete logarithm
problem to compute x or y.
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Elliptic Curve Cryptography

For cryptographic applications, an advantage of
the discrete logarithm problem over the integer
factorisation problem is that the former has a
natural generalisation to any a group G (more
precisely, to the cyclic subgroup <g> generated
by an element g ∈ G).

In particular, we might take G to be the group
defined by an elliptic curve over a finite field,
and g to be some point of large order in G. This
is the basis of elliptic curve cryptography (ECC).

The elliptic curve discrete logarithm problem is
thought to be more difficult than the ordinary
discrete logarithm problem (for inputs of the
same length). No sub-exponential algorithm for
the general case of the elliptic curve discrete
logarithm problem is known.
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Discrete log example

Here is a small example2 of a discrete logarithm
problem and how we might reduce it to a
problem of linear algebra.

Let p = 229, g = 6, y = 13. We want to
compute logg y. We take a factor base

S = {2, 3, 5, 7, 11} of small primes. We now
compute powers of g mod p and attempt to
factor the results using elements of S.
Discarding unsuccessful attempts, we find

g1 = 2 · 3
g2 = 22 · 32 (omit)

g3 = 23 · 33 (omit)

g7 = 2 · 72

g10 = 22 · 52

g12 = 3 · 5 · 11

g18 = 24 · 11

2Similar to an example in Menezes et al [10, §3.69].
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Discrete log example cont.

This gives a system of linear equations mod
p − 1 for logg 2, . . . , logg 11:















1 1 0 0 0
1 0 0 2 0
2 0 2 0 0
0 1 1 0 1
4 0 0 0 1





























logg 2
logg 3

logg 5
logg 7

logg 11















=















1
7
10
12
18















mod 228

Solving this linear system (how? – see below),
we find logg 2 = 21, logg 3 = 208, logg 5 = 98,
logg 7 = 107, and logg 11 = 162.

Finally, computing 13gk mod p for successive k,
we find

13g2 = 2 · 5 mod p

so logg 13 + 2 = 21 + 98 mod p − 1, so
logg 13 = 117. Note that everything except this
last step is independent of y, so can be done
once in a precomputation if we need several
different discrete logs with the same (p, g).
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Solution of the linear system

How do we solve a system of equations
mod 228 ? Note that 228 = 22 · 3 · 19 is not a
prime. If we attempt to use Gaussian
elimination, we may try to divide by a pivot
which has no inverse (e.g. any multiple of 2, 3
or 19).

Better is to solve three separate systems mod 2,
mod 3 and mod 19. The solution mod 2 gives a
solution mod 22 by a Newton-like process
(Hensel lifting). We can then put the pieces
together to construct a solution mod 228 by the
Chinese Remainder theorem.
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Linear Algebra

In the MPQS and NFS/SNFS factorisation
algorithms we have to solve very large, sparse
linear systems exactly over the finite field
GF(2). More precisely, we have to find
dependencies amongst the columns of a large
matrix A. If we generate a random x0, set
b = Ax0, and solve Ax = b, then A(x − x0) = 0,
and there is a good chance that x 6= x0 if the
columns of A are dependent.

When solving discrete log problems we also get
large sparse linear systems, although the finite
fields are no longer GF(2). Instead, they are
GF(p) where p is a large prime number.
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A (small) Large Sparse Matrix

This 179 × 210 matrix arose in the factorisation
of N = (1014 + 31)(1015 + 37) by MPQS. The
matrix has 1916 nonzeros (10.7 per row). The
four colours correspond to a partitioning (found
by Mondriaan) of the matrix and corresponding
vectors (shown at the top and right) across four
processors.
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Use of Iterative Methods

To avoid problems with “fill in”, variants of
some familiar “iterative” methods can be used.
These methods (based on conjugate gradients or
Lanczos) only require matrix-vector
multiplications and inner products. Some
important points are:

• Nonzero vectors can be orthogonal to
themselves ! Montgomery showed how to
circumvent this problem by using a
variant of the block Lanczos method.

• Many more iterations are required to find
the exact solution (actually several exact
dependencies) than an approximate
solution.

• Preconditioning is useless (although other
forms of preprocessing may be useful).

• The matrix is never symmetric.

• Operations over GF(2) can be parallelised
using logical operations on words of
(typically) 32 or 64 bits.

29

Strategy for Finding Dependencies

• If row i has a single nonzero aij then row i
and column j can be eliminated.

• The time for Lanczos is O(nw), where w
is the number of nonzeros, so it pays to
perform some steps of Gaussian
elimination on columns (i.e. combine
relations) to decrease n, even at the
expense of increasing w slightly. This is
sometimes called “filtering”. After a
certain point it pays to switch to the
Lanczos algorithm.

• For efficiency (as we may need several
dependencies) and to avoid problems with
self-orthogonal vectors, we use
Montgomery’s block Lanczos algorithm.

• If the solution is to be computed on a
parallel machine, it is important to
distribute rows and columns to balance
both the communication and
computational loads on each processor
(as far as possible).
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Large NFS Factorisations

NFS was used to factor the 155-digit (512-bit)
RSA Challenge number RSA155. It was split
into the product of two 78-digit primes in
August 1999, by a team coordinated from CWI,
Amsterdam.

The record has been broken several times since
1999. Currently it stands at 200 decimal digits
(RSA200) by Kleinjung et al. After removing
duplicates there were 2.26 × 109 relations.
Filtering produced a matrix with 6.4 × 107 rows
and columns, having 1.1× 1010 non-zero entries.
This was solved by the Block-Wiedemann
method (Lanczos could also have been used).
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Some Statistics

For RSA155, the total amount of CPU time
spent on sieving was 8000 Mips-years on
assorted machines (calendar time 3.7 months).
The resulting matrix had about 6.7 × 106 rows
and weight (number of nonzeros) about
4.2 × 108 (about 62 nonzeros per row). Using
Montgomery’s block Lanczos program, it took
almost 224 CPU-hours and 2 GB of memory on
a Cray C916 to find 64 dependencies. Calendar
time for this was 9.5 days.

For RSA200, sieving took about 120,000
Mips-years (actually about 55 processor-years
on 2.2GHz Opteron processors). There were
2.26 × 109 relations and after “filtering” the
matrix had 6.4 × 107 rows and columns, and
1.1 × 1010 nonzeros. Linear dependencies were
found by the block-Wiedemann method. The
linear algebra took 3 months using a cluster of
80 Opterons connected via a Gigabit network.
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Summary – Large NFS Factorizations

In Table 1 we summarise the RSA130, RSA155
and RSA200 factorisations. Extrapolation is
dangerous because there were algorithmic
improvements over time.

Table 1: 130D to 200D Factorisations

RSA130 RSA155 RSA200

Date 4/1996 8/1999 5/2005
T 500 8000 120000
R 3.5 × 106 6.7 × 106 6.4 × 107

NZ 1.4 × 108 4.2 × 108 1.1 × 1010

NZ/R 39 62 171
LA 68 hr 224 hr 2160 hr

Here T is the total (estimated) time in
Mips-years, R is the number of rows, NZ is the
number of nonzeros, and LA is the wall-clock
time for linear algebra. The linear algebra was
done on a Cray C90 (RSA130), a Cray C916
(RSA155), and a gigabit network of eighty
Opterons (RSA200).
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