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1.1

1. Introdustion

Ir 2 = I:-Elij:I is an m x n matrix, and B = {bjkj iz an n ¥ © matrix,
Lhen the matrix product © = AR iz the m x p matrix {':iE-:j defined by
Il
oy ® ;;l Eij'héh (L.}

for 1l <di<=<m 1<k p.

Matrix multiplicetion and its special cases coour very freguently
in mumerical aralysis. For ewample: the inner-producs of Two weohors
{the case m = p = 1), metrix times vector multiplication {the case p = 1),
back substitution when solving linesr aystems, ilterative refinement {per-
haps with several right hard sides at once), the power methoed for elgen-
rvaluas, in least sguares prablemns, and seny sore. Henee, it 15 interesting
Lo dnvestigate algorithme for matrix oultiplication, and in particuler to
gea in what circumstences it is poazible to do heiiey than the streipght-

forwmrd implementetion of the definitien [1.C1).

It 1z olear that adwmntege mey often he faken oFf special properties
of 8, B ar C, @.2. sparzetness or symetry, iF such propertics are koown
8 pricri. We shall anly consider the general case wherse no such helpfuel
properiies are known. TFor practicsl applications, we need only consider
matrices over the rationsl, real and cosplex Tields, although the definition
above makes sense for matrices over any ring. The slgorithmes described will
gll be applicable to the problem of multiplication of matrices over &n
arbitrary commutative ring, snd it will later be impertant thet, for some

of the algorithms, the ring need not even be commuiative.



1.2

If the algerithms are fo be lmplemented on a2 digital computer,
then simply counting ardtimetic operationa cen he rather misle=ading,
Per loads, stores and address computations are also importants. The
best teet iz to implement the zigorithms and see how fast they actually
run, and éren then the concluzion may depend on the DYQEranmer, campiler
ahd mochine used. Alao, from a precticsl point  of Yiew, storage re-
gquirementa and roundofT errors may be witally dmportant. Hence, after
describing several different slgoritims in Sce. 2, I shall digcouss
Lheir numerical properties in Sec. 3; and describe some axperimental
results in Sac. 4. In Sections 5 and € an attempt to find some new
algorishms 15 described, sed in Bec. 7 the resulis are summarized acd
some conclusions drawvn.  The notaticn of the definition {1.01) will be

veed in Seas. 2 te L.
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2. known Results

2.1 The Normal Method

To evaluate the innep-product ln the definition (1.01) taltes n

miltivlications and n - 1 additions. Hence, the m.p elements €., e8n

be found in mop multiplications and m{n - 1)p sdditions, and about the
5 LY

same pumber of leads, stores and address computationg.

If we count only multiplicetions then this straightforward method
fa known %o be optimel in some important specizl casez. Ifmesp =1
then we hove the case of a weotor ipner-produck, and a gimple dimenslonslity
argument shows that, in genersl, n multiplications are necessery. IT p = 1
then we have the case of matrix times vector multiplicsiicn, and mo mul-
viplications are nocessary in genersl (Winograd, ses [1]}. In the general
caze, however, less then mnp multiplications are necessary: Gtragsen's
method shows this even when m = n = p = 2. Dimenziomality srguments give
the lower bound mex {(mm, op, pm), but usually this is too low, and the

=

best possible result is not known. For more details, sec Secs. 5 and 0.

2.2 Wirnogred's Methed

Winograd [ 7] bas given 3 method based on the fellowing ldentity:

2.|n/2 /3

= + l-.l-: - -
g; aijhdk h E;_ f'E:i,E_js—i_' b:JJ:";,:; Al bﬁg—l,k]
b2 In/2)
Toog Ceavna O d-.gl b25-1,x"28, %

feaEL)
Here ] means the grestest dnteger y < x, and amslogouslly €] means

tha least ipteger ¥ > ¥ -
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2.2

If nis even, the left side of (2.21) is just C.p0 but if nis odd,

the terma, b . nust be added to give c, The point of Wnograd' s nethod

-
is that the last two sums in (2.21) can be precomputed and, once this has
been done, roughly half the usual number of nmultiplications are required

to conpute each Cpe using (2.21).

Supposing for sinplicity that n is even, let us calculate the nunber
of multiplications and additions involved in the conputation of C by

Wnograd's nethod. W shall never distinguish between additions and sub-

tractions. To conpute n'2 -
505 L %4,05-1%, 24
j=1
requires n/2 multiplications and (n/2 - 1) additions, and simlarly for
n/2
V. = 8 b.. b..
k j:l EJ-l’k EJ,k . (2.25)
Hence, to precompute x,, x5, . . . , % and y, yo,..., Yy takes (m + p)n/2

multiplications and (m + p)(n/2 - 1) additions*

G ven X, and y,» L0 conpute ¢, using (2.21) takes n/2 multiplications

k
and (3n/2 + 1) additions. Thus the conputation of the entire matrix pro-

duct C takes (mp + m+ p)n/2 multiplications and (3mp + m+ p)n/2 + Mp - m- p
additions. From Sec. 2.1, we have saved (np - m- p)n/2 nultiplications at
the expense of (np + m+ p)n/2 + 2np - m- p additions, in conparison with

the normal nethod.

Since mp -m-p =(m-1)(p-1) -1 thereis nogainat allif
m=1 or p =1 so the remarks above on the mniml nunber of multiplications

required for matrix times vector nultiplication are not contradicted.

(2.22)
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supposing for simplicity that m=n=p > 1, Winegrad's method saves
(o= 2) IEEIE multiplicationz, at the expense of | " 2 Bn - Lyn/e additions.
Hence, there iz & saving in the number of multiplicetions if n > kb (recall
that we zzsumed thet n was over, buf ift may easzily be verified thet there
iz no asaving for n = 1 or 5). If n ie large then shout t'zjl.-'"'.-'_ meltinlicetions
have been traded for additions. If a multiplication takes w times as long

as an addition, we ses that Winocgrad time _ w4+ 3 4 {][ﬁ"]]
i ¥

Hormal time 2 wkl)

50 the most we can expect is a gsin of nearly S0% if w and n are large.
Since {2.24%) neglecti= loeds, stores ete. Lhe gain will probably be rather
less than this., Typically we might have w = 2 (say real multiplication)
er W= 4 {say complex multiplicstion), giving savings of up o 17% and
0% respectd vely., In Sec. b owe shell dizcuss how large n has fo be for
any galn dn practice, apd the importent question of roundef? error will

be disousszed in See. 3.

&0

(2.24)
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2.k

2.3 Strassen's Method

Suppose there is an algorithmfor the multiplication of ny X n

matrices, for a certain fixed n, > 1, taking M nultiplications and A

additions. Suppose further that this algorithmis applicable for ma-

trices over an arbitrary ring. In particular, we are not allowed to

assunme the comutative law for nultiplication, so, for exanple, Wnograd's

met hod is excluded.

Let v(k) and w(k) be the nunber of multiplications and additions,

respectively, required to multiply ngx nlg matrices, for k=0, 1, 2. . . .

V¢ have v(0)

1 wW0) =0,

v(1) < M, w(l) < A

(2.31)

(2.32)

Now consi der n15+1 X ngﬂ matrices partitioned into ng bl ocks, each
k, k - : :
block an ny X nJ matrix. Qur matrices may be regarded as ny X n, mtrices
with elenents in the (noncommutative) ring of ng X ng matrices, so our
algorithmis applicable. Applying it will take M nmultiplications, and A
addi tions, of nk X nk matrices.
0 0

Hence v(k + 1) < Mv(k)
and Wk + 1) < Mw(k) + a2

From(2.31) and (2.32) it follows by induction on k that

v(k) <

2k
and w(k) < Ag(Mk—nO)
(M-n7)
0
R . 2 o, . .
for any k> 0 (provided that M;éno, but M < ny i's inpossible for

n, > 1 anyway).

(2.33)



2.5

How, in opder o meltinly o x n metrices for any n > 1, just iake
kw r'LDEhL]ﬂ gnd embed the n x n metrices in ng‘l x nl:}f_ matrices with the
k- -
last n(} - n rows and cclumns zero, and use the sbhove method. From {2.33),

the nucher of arithmetic operatlons required is
C[t-'.lﬂgncn] = U{nlagn:}“ﬁl B8 N+ © ., {2.3k)

For example, the normal methed with sny f, = 1 kes M= ni, LDETLGH = 7,

3
Eiving 'L'-I:n"jl cperations, which is no surprise.

From [2.34), squarse matrix multiplication can be dome in Glfnﬂ','l
operstions, where B = log M= {log M} /{1leg nG] . (It iz intereasting
¥

to note thet B iz independent of A.) Qlearly there iz & constant

E'Cl = inf [ B 1 'C"I,rns} operations suffice ) f2.38)
The noermal method, atd Winograd's method, both show thet 53:' < 3, while
the results disoussed in Seo. 2.1 show that ECI = 2. The actual value of
;—]Q is not knewn.  While it might be econsidered "intnitively cbvicus" that
E'G- = %, thiz iz falze: 8=z Streszszen [5] hes zhown,
Bg = log,Te= 2.8 . [2.38)

Btrassen's idea is to give an algorithm lor the multiplication of 2 x 2
matrices ower an arbitrary ring, with the aigorithm Involving T muliipli-
cationa (inatead of the usuel 8) srd 18 &dditions (inatead of the u=ual 4).

Futting Ny, = 2, M= T and & = 18 in the above, his result fellows.



Btrassen's algorithm is based on the following identities:

Woreyy el [P i P1y Big
% %e)  \®m fop) a1 Yoz

then {:_1 ] ‘11_ - qf:- - .;35 + qT P

“12 = U T e

b1 = Azt Ay
and Crm —q,:?-qh+q5+q5:
where thy = I{all - alE}hEE s

B = lagy agdby

9  ® fonlbyy + V)

gy, = LR

G = (e Fagd(o,y - v,

g, = lagy* oy ) (0yy + Byl s
and 4, = eyt agllvy, 4o,

Straszen in [5] gives no hint of how the identitics (2.37) were
digeorered, and they sre certsinly not immediately chbwiocus. T shall give
a "grapbical" method which mekes the ideaz cleaver, and which enables
ane to rediscovrer the identitiez (2.37) in a few minuitez if they sre not
at hand. We want the four sums of profucts

=a, b toaD (i, k=1, 2).

Cite R R

Thiz might be repregented disgrarratically thus:

b:';'l 21 1L wWhere we want The four
bEE x b iz sums of products whioh
bll - 11 . correspond $o similarly
blL P 12 laballed sguaras.

Bz P11 %o Pan

ra
L]

—




o
*

A product {aE + h-E} might bhe represented azs:

1 Eegplibyy by

by {the zigns of the
B terms are not

= represented in the

disgrem

by — gram)
=]

iz

%20 "1 Pz i

liow eonsider the representaticons of the seven products Qe -o- 2

of {2.37). For examplie,

' I anpd g

Tt ia immedistely cbvicus from the dlagrams thet we cen combine g, and q)

linearly to give terma invelving the products 3111'-‘12, Elebl,_ﬁ:ﬂ, snd =, .h'.._:,?

|
ook

It iz econceiveble thet for a suitable confbinatlion the a term will

=]
11 22

drop out and lemve o If the reader now draws the representationz of

iz’

Qs G cee s g and sees how they combine sccording to  (2.57) 4o glve

Cipr tee o1 oo he will see that one could reconstruct the identities
{2.27) from the essily remembered graphical represenfations, apart from
ambiguitiezs in zign. A little thought end juggling of signs will then give

a set of ldentities equivelent to Btrassen's {theve may be a trivisl

perrutetion of the suffices).

It iz ipteresting to experiment with other graphical representations

-

and convinoe opesell that it is impossible To multiply 2 ¥ 2 metrices in

lese than seven multiplicstions. Winograd [2] cleims to heve proved this.

WO
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In Sec.

rectangul ar nmatrices,

L we shall

discuss how to inplenent Strassen's nethod for

and how to avoid any wasteful "bordering" wth

zeros. The question of roundoff errors will be discussed in Sec. 3.

10
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3.1

3. Error Analyvsis

The most important case in practice is that of real metrices and
limited=precision floating-point computetion. I shell use Wilkinzon's
notetion [6], =nd azsume all arithmetic operstiona s=re dome in t-digit
rounded binﬁry'arithmeti:*, except that some operations may be especlally
noted to be dene in double-precision {2t-digit). Wilkinson's assumptions
conpcerning the methed of rounding or truncating will be made. Bome of
these assumptions, e.g. Dinary arithmetic, do not hold for the IBM ,'jnﬁl.'.l_.
end this will be dizcussed later. For =implicity, all matricez will be

gasumed to be sguare (n x n).

It will he convenient fio use the norm

lxll,, = mex x| 3.01
e gen M 700

(note that HKEHM E.HKHH-HIHE is generally false). This norm will usually
be written just as |:|}'l'|’I . The results obtained mey be expressed in terms of
more susl metrix norm2 by wsing the attainable bounds
[Pl = Tl = el (3.02)

=

where g stands fer 1, 2, = , ar Z.

Wilkinson [6] defines numbers t. and t. which are slightly less then t.

1
. . -t
Wherever t] or tE appear theve is the implicit assumpilcon that n.2 < 0.1,

which is no restriction in practicol oases.

# The anslysis is similar with any base g > 2, and in most coses the same
beounds will hold with 27° replacad by %E—J'-T’ . Fora diseussicn of Wino-
prad's method, and some further applications of (2.21)}, with base g = 2,
see [12] .

11



5.1 The Formal Methad

Wilkinson [6] shows that if

¢ o= fIn.BE) = A1+ E [5.11)
then el < 2 MYondfalg el (5.12)
He notes that ir lisell; <= [lafip- 117l then the relative

error in O mey be high. Om ihe other hand, if the inner-products are

gecwmilated in double-precisilon,
-t -2t

. e , In o
then lEll, = 2 asll, + =2 "all, Bl (5.13)

end hence the relative error in 0 will be low unless there iz 5o muach

cencellation thet llalt_.[I5|l t
-.E i E -

=

sl

To get & bound in terms of the nmorm !_|‘||,.], eonsider a typical temm

in the preduct <. Such a ferm will be an inner-product

4]
fl{z xiyi:l = $ x.¥, t e saY.
1 -

If the zum iz accumulated in the natural order, we have

-t
le] = = l.in.[xll.[:.rll + E.|I2|.13"_2_1 + [n—l”‘,.|:»:.j|.|;,,r_f
+ e t E.ixni.Lynl} ' (3.1k)
U (w® + 3n - 2
s |e|l <2 . = mex|x | .maxjy, | ) (2.1%)

he the Xy are elemepnts of A, the :"'j elementz of H, (%.15) and the

definition (3%.01) give

-t fn:?-i- An - 2
lEll, <2 = =——=

iy !ll'ﬁ'llir_{’lllﬂlil'_p_{ \ {j‘]'é}
{3.12) and {5.16) are of the =eme form

el =2 = ta).fiall- 51, (3.27)
and a bound of thisz form, with some reascnable f{n), iz the best we can

expect for any single-precisicn methed.

1z



3.5

For double-precision accumilstion of inmer-products, the beund

corresponding to (3.13) is
t | 3 2 _HE
] -t - I
liElly < 2" sl + § - (2% + 3n - 2) .2 il NEll, - (3.18)

Apadn, unless there iz excepticnal cancellation, the relative error in

C Will he lew.

.2 'H'in-:JEE-i‘E Method

First congider & simple inner-product

p=fiy - (£+1)) A
nge
vhare ¥ om fL[ ixgj_l * Héjj{xﬁj * ':"rE,j-l'\]:I '
o y (5.71)
£ = f1{ é xzj—lej:l »
nie 4
and TI =] ﬂ': !Ejfgj_l} E]

computed by Winogred's method (n even).

A sluple example illusgtrates what can happen when limited-precision
arithmetic is used. Suppose we are using Y-decimal floating arithmetic, n = &,

— = . r . - = -
:{.,L = IE = la':.-ﬂ':'r +jp Jr-L = FE = 1-{:'{:{:'1 -+

Then £ = 1.000"+6

and T = 1.000"-6 (both exactly correct),

but ¥o= 100044 [inatead of the exaot
1000002000001 +6] ,

ao P o= 0.000 instead of 2,000 . The diffieculty is in

forming flfxgj_'l + :,'Ej} ete. when the elements of x mey differ widely in
magnitude from the elements of y . This conclusion will alsze follow from

the rigorousz error analysis balow.

13



Let 5 = max ]xi1 and b = mex ]311 2

nfa
i = . T E eto,
and le £ g xEJ-—leJ :
Trom [3.15) with n replaced by n/2 we get

=1 o -
legl < 2 Lafin® + 60 - 808,

and similerly -t, -

legl 2 St + 6n - B8

I flix+¥) =x+ y+ € (xany =, ¥ any y,)

ity
then |yl 2 2700 1x] + J])
< 2™t (4 + b)
Thus T (o) {xey)) = (14 b+ w + e J{x" +y" 4 g))
=l{x+ ¥)(x" + ')+ F’j BAY,
whers [eujg ™% ana le, |s|eal = 2 V(a + 1) .

By expanding (3.25) i% fellows that

[531 < 2 > 3.8 #b)°,

where 'I:5 iz defin=d hy

{20 in prectice -I:3 =t
-t

e 3
Hence ]e?| <2 “.(3nfEh.(a + v)° 4
-t » o -t

2 “.fn" + 2n - /8 {esw) (5.2 Y,
In all praciical cases

-t 4 =ty 3
{3nf2 + 3.2 “((n" + &n - 8)/8)).2 < {3nf2).2 .
and with thls agsumption we get

e, b 22 Lof(a + 1in - 8)/8).(a + ).

1k

(3.23)

{=.25}

(3.27)



From {3%.23) &nd (3.27), the error € in p 15 bounded by

=1 " - -
le] <2 * E:{r_‘ ¢ bn - 8)/B)a 4 0)° 4 {(n° + Ba - 8)/B)(a% + 1Y)

+|?'§"I]||+|§l+|"'lﬂ
(terms of erder E'Eb have beeh heglected, btut They may be desli with =s

anove [zee [12]}]).

Lz

Now |y - € -1 <nav+of2™), [g] 2Ba 4 Jeg], ] <20 + o]

rald

=

2 2 \
erd & + b < (a+ D),

-t

o |e| =<2 (a+ B2,

2
I n 412n -8
L] T d
By considering (3.29) with n replaced by n - 1 and & term added for
the error in comprting snd adding X Vo it may be shown that (5.29)

holds whether n is even or odd, and bounds the error in computing an

Loner-praduct by Winograd®s method. From {%.23) we obtain the bound

-t o e |
e <2 LB EAER =S )+ (B)®

for matrix multiplication by Winograd's methed. (4 slightly stronger

reault than (%.29) cesn be obteined if a = b, =zee [12].)

suppoze  [la]] /B = . {Assuming k # 0 or =}
Then

Chall + [BID® = (x + 2 + 1/ Yall. |2l
which shows thet (3.210) will be much worae than {%.16)
when ¥ is wvery small or very lavge, and this is werified

by the example above.
Bealing

Ignoring the cazes |'iﬁ.|'l =0 and |:|E|| =0y it is always pessible to

2Mal

find an integer A such that 12 < =
= 2|

T = 2. Henece = practical
|

17
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(3.29)

(3.210)



g 2
scheme would be to compute Al =nd [|B|| (in ©(n™) operstiens), find 3, .
and then apply Wnograd's methed to Elﬁ and E'AH rether them to A

and B. If this is done, then since

mEx [k + 2+ LJfk) = /2,
1/l

we get, in place of (3.210), the bound
o
lEl < 2 .65 + 120 - 8).Jall 8] |

Which iz of the form (3.17) and iz not much worse than {3.16).

This shows that Winograd's method is Ffeaaible provided some form of
sealing is used to moke |[[all ~||8ll . without sceling, the results may
eazily lose sall significance. This does not seen Lo have been menticred
by snyone reccmmending the use of Winograd's method: ec.Z. Dlindly fol-

lowing the procedure recommended in [2) could ilead to digaster,

A more sophisticated form of sealing could be used, but it iz im-
portant to keep the time for sealing to a minimum, or Winograd's method
beecmes slower than the normol method. The extrs time taken by scaling

will be copsidered in Ssp. L,

If it iz ecasy to accumalate inher-products in double-precision then
this may ag well be done. The error bound will £ti1l be like (#.211)

et . =
though, uvnless the terms ai,Ej-l + bEj,k and ai,Ej + b?i-l,k af {2.21)

are computed in double-preciszion. Then we get a bound

[ - E
gl =2 .

—

R P |
agl| + 2 SegEe(n® 4 d2n - 8). )l ]l5)

provided that the terms *, and y,  of (2.22), (2.23) are wept in
double-precision, and sssumlng scaling as sbove. (35.212) is very similar

te (3.18) end the zame remarks apply.

16
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A5 Slregsen's Method

Assuming & hound =] < 27%. £(n) . |lall. |5l

for n xn matriges, it is possible to deduce o zinmilsr expression for
Zn ¥ En matrices, i the multiplication of these matrices iz reduced to
the multiplication ond sddition of nxn matrices uzing Stresgents
identities (2.37). This gives 1(21) in terms of #(n), and as (5.31)
ig certainly true when n = 1 {with £{1) = 1), we can find fn) for n
an integral power of 2. If the "berdering” methed is used for genersl

n then the zeros will have ne effect on the error, so the hound for the

nedy power of fwo may he used.

To express £{2n) in terms of f£in), let &, B, ond C be 2n % on
FAaLTices {&e'ﬁ.ating slightly from our usual nntat.im::l, and regard A, B,
and C as 2 x 2 matrices with n xn blocks. Congider forming € =
£1(A.B) using the Ldentlties (2.37). Terms of order 2727 will he
tgnored, for although they may be dealt with by replacing t by  l=wt

g5 we replaced t by t and t_';'. in Gec. 3.2, this complicatas the

1 e
srgument, and the results are nob significontly different. TFor brevity

lat, o = il"'-”:q.! L ”E”;{ -

The error in computing 9 of (237} will be denoted by Eui" go for

) — o f . ..
exampyle 1‘:LI,'{.5..L.L rlﬁ}hgg} (aqy aa._12]I1:r92+F:“1 [ where 192 8o

g —
b, and By &re nxn matrices). Similarly, the error in computing
- = 5 L u i 143
o of [2.37} will be denoted by Ei,j' Thus
111 Bz
TELG EE

17
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Si nce q = fl((all - 312)'b where the n x n matrix

22) 1
multiplication is done by Strassen's method with the error bound (3.31),

and the matrix addition is done in the usual way, we have
Im gyl <27 (a2 )l + llay o). Mool
so |lEsll < 27" 2ab.(n + f()) |
and sinilarly for qu, Eqﬁ’ and th . For i =5, 6and 7
we get the bound
el < 27" Lab.(2n+ f(N))
in the sane way.

Now it follows from(2.37), neglecting terns in 2'2t, t hat

ey oll < Egall + llm gyl + 275Cllagll + ligy )
but

2nab  for i =1, 2, 3, L
lla,ll < | .
Ynav for i =5, &6, 7 ,

so from (3.33), (3.35) and (3.36) we obtain

1] < g_t.hab.(2n + f(n)),

and clearly the same bound holds for E, - Simlarly we have
2, < Il + m gl + Im gl + (el +

2™ Glayll + 3llagh + 2llag)l + llaslD

(assuming 94> 935 s and % are added in this order),

t

so |lE,qll < 277.ab.(¥kn + 12f(n))

and simlarly for Eqpe

From (3.37) and (3.39) we see that
Il < 27 (ukn + 128(n)) . |jall.[|B]

so (3.31) will hold if f satisfies f(1) = 1 and f(en) =k4kn + 12f(n) .

1R
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(3.33)

(3.34)

(3.35)

} (3.36)

(3.37)

(3.38)

(3.39)

(3.310)

(3.311)



By induction om k, it follows from (5.311) that

f[Ekj - é{E‘T.}_Ek = EE.E'k"} . (3.312)
so #(2%) < %dek = Eﬁt.f Kylogle (3.313)
Henoe, for general n, taking k such that n < Ek = 2n o,
we have el < E't.EﬁnE.HA” 12
}Eﬁ-m}
whers ::mlugE 12 = 3. 58

(3.314) gives a bound for the error in matrix sultiplication by
Strassen's method, ss described in Sec. 2.3. The bound is of the form
(5.17}, slthough the function 5J4-n5'55 inereases raother more repidly
than we would like. On the other hand, all the arror estimestes obtained
here are rather pessimistic, for the individusl rounding errors are un-
likely to be correlated in the worast poeeible way. If our bound is
2 "#(n)||a].|[B]| then the actusl error is probebly sbout 2”0 [E(n) ||all. ]

{see Bec. L4.6).

The analysis sbove agsumes that a "pure” form of Stressen's method
iz wsed. In practice it turns out that Strassen’s identities will be
applied until the matrices to be multiplied &re of order - 100 or less,
and then the normal mthﬂd.will be used (see Sec. 4.3). Supposing we
have matrices of order Ek.nn, and apply Strassen's identities k times,
miltiplying the matrices of order n, by the normal methed. Then (3.311)
holds with
f(ng) = (a5 + 3n, - 2)/2 (frem3.16) ,
g0, ABEUmMing my 2 6 5 we have
#(2"n.) < 16%5C . (3.315)
-t.lrk..HE

Thug, for n x n matrices, the bound becomes [E] < 2 Jall sl . (3.316)

13
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Since k will be very small in practice, the bound (3.316) i s not
too bad. Comparing it with (3.16), it appears that we may |lose up to
two bits of accuracy, conpared to that of the normal nethod, each tine

Strassen's identities are applied recursively.

In using Strassen's method there does not seemto be nuch point in
doing some of the arithmetic in double-precision, unless it can all be done
in doubl e-precision, when the above bounds hold with t replaced by 2t
(and a factor of 3/2 with WIkinson's assunptions about the nethod of

rounding or truncating).

It is interesting to note that with Strassen's method there is no
point in scaling the matrices so that |ja|l~[B||. This is because, unlike
Wnograd's identity, Strassen's identities never involve the addition of

an elenent of Ato an elenent of B.

3.4 Complex Arithmetic

The above analysis is based on the assunptions that fi(x +y) =
x(1 + el) + y(1 + 62) and fi(xy) = xy(1 + 65) wher e |ei| < e’t,
i =1, 2, 3%. These assunptions will be valid for conplex arithmetic too,
provided that t is decreased by a small anount (2 or 3) depending on how
the arithmetic is done. Hence, with this small change in t, the above
bounds will hold for conplex matrix nultiplication. Simlar remarks
apply to real arithnmetic done on a decimal or hexadeci mal machine (e.g.

the I BM 360). A curious anomaly which appeared when Wnograd's method

was being tested on an I BM 360/67 conputer is described in Sec. k4.6,

* A stronger assunption about addition, used in Section 3.2, was not
real |y necessary (see [12]).

20
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L. Inplementation

In order to conpare the normal, Wnograd' s and Strassen's nethods
in practice, they were all inplenented in ALGOLW[10] on an |BM 360/67
computer. Doubtless all three nethods would run faster if coded in,
say, FORTRAN-H or assenbly |anguage, but their relative speeds woul d
probably be about the same. Wiile it would be easy enough to code
the normal method and Wnograd' s method in FORTRAN or assenbly |anguage,
for Strassen's nethod it is very convenient to have a |anguage which
allows recursive procedure calls. The sinplest way to code Strassen's
method in a language |ike FORTRAN would be to limt the depth of re-
cursion and duplicate any subroutines which would naturally be called
recursively. The three methods were tested on both real and conpl ex

matrices, wth results which will be sumarized bel ow

Al three nethods were coded in the formof a pure procedure,
with calling sequence
name (A, B, C M N P)
to formC:= AB, where Ais an Mx Nmatrix (dinensioned (1 :: M
1 ::N), Bis NxP, and Cis Mx P. Calls such as name (A A
A N N N are valid, and correct results should be returned for any

M Nand P> 1, provided enough tenporary storage is available.

At first the procedures were coded so that the"inner loops"involved
references to doubly-subscripted array elenents. In ALGOLW such re-
ferences take considerably |onger than references to singly-subscripted
array elements [Il], and it was found that all the procedures could be
speeded up Dy passing cross-sections of two-dinensional arrays as para-

meters to procedures which then operated on them as one-dinensional

21
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arrays. (This is not allowed in ALGOL-60.) For exanple, instead of:

For | 1 until Mdo

for J := 1 until N do A(l,J) := B(I,J);

We use:

For | 1 until Mdo assign (A(l,*),B(l,*),N;
where we have defined
Procedure assign (real array A, B(¥); integer value N);
for J := 1 until Ndo A(J) :=B(J);
The second formw |l execute faster provided N> 10 . As this device
speeded up the normal nethod rather more than Strassen's nethod, it is

clear that a conparison of the three nethods depends on the |anguage

and the progranm ng techniques used to inplement them

The inplenmention of each nmethod will now be described in nore detail.
The procedure for the real and conplex cases are very simlar, and |ist-

ings for the real case are given in the Appendi x.

4.1 The Normal Method

(Procedure MATMULT, see Appendix, |ines 288-311.) There are no

particular difficulties in the inplenentation of this nethod. Because

of the possibility that Cis the sane as Aor Bin the call, the product

is fornmed in a tenporary array Q and then transferred to C  Thus M.P

words of tenporary storage are used. |nner-products are accumulated in

doubl e-precision, for in ALGOLWthis is very nearly as fast as accumu-

lation in single-precision. Hence the error bounds (3.13) and (3.18)

are applicable (with the alteration noted in Sec. 3.4), and in nmost cases each

¢ will be the correctly rounded result, although this can not be guaranteed.
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4.2 Wnoarad's Method

(Procedure W NOGRAD, see Appendix, lines 219-285.) Again the
implenentation is fairly straight-forward. The matrices A and B
are scaled as described in Sec. 3.2, and the scaled matrices are
stored temporarily in arrays D and E.  Strictly speaking, scaling
shoul d be done to the nearest power of 16 rather than 2, for scaling
by powers of 2 could introduce roundoff errors on the 360, and these
errors have not been taken into account in the error analysis (Sec. 3.2).

Taki ng account of these errors gives the error bound

-t
el <2 ke all. 31 (4.21)

where Kis a small constant, instead of (3.211). |In the conplex case,
|R(x) | + |I{x) | rather then |x| was used to save time. This increases

the error bound by a factor of at nost 1.15 .

The inner-products X, and Yy of (2.22), (2.23) are conputed and
stored in the arrays X and Y. As stated above, it is not significantly
harder to conpute and save the X, and Vi I n doubl e-precision, so this

i s done.

Inall, (n+2)(m+p) words of tenporary storage are used, which
is about twice as nuch as for the normal nethod if m=n =p. The suns

b and (a.

23,1 1,25 ¥ Pojo1,x
single-precision, and then the inner-product involving themis conputed,

(a; 2j-1 + ) of (2.21) are conputed in
)

as usual, in double-precision. If nis odd then the necessary correction
is made, and the final result f1(c) is fornmed. It is interesting to note
that if the sums (ai’gj_l + bEJ,k) and (ai’Ej +b2j-l,k) were com-

puted i n doubl e-precision, we would be using double-precision throughout,
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and the bound (5.212) would apply. Unfortunstely, the extra time taken to
do this slows the procedurs down so that it iz mever fester then the
normal method, so the sums could only be computed in single-precision,

and the beat error bound we can get is of the form of (L.21).

4.2 GBtrassen's Method

[ Procedure STHASSEN, see Appendix, lines £-216.) The method im-
plemented iz the following: First, if m, o and p are sufficiently s=sll,
normal matrix multiplication iz used (see below for the precise criteriom).
Otherwise, m is replsced by 2n/3, n by 21n/3, and p by 21p/9 .

A ie partitioned into four m/2 by n/2 matrices and B inte four n/Z by
/2 matrices, ignoring the last row and/or column if necessary. The
block 2 by 2 matrlices are multiplied using Strassen's identities (2.37),
which invelves seven recursive calls to STRASSEN to compute the =/2 by
p/2 producta Gy e Gy (actually C iz used in place of {7 to save
storage). Finally, the result is corrected if the original m, n or p
were odd. This avelds wastlng space atd time by filling up the arrays
with zercos as deseribed in Sec. 2.3 . In case C coincides with & or B,
some wvalues needed Tor the correction step have been saved in arrays 51

and S=.

Actually implementing the ldentities (2.37) iz tedious but straight-
forward. The fast, general-purpose procedure OF iz used to take advantage
of the facility, noted above, for pesaing crogs-sectlons of arrays as
rarameters to procedures. In forming ©11 and Coms the terms Qg eee G
are added before q_5 P -:|,F,. for octherwigs the error bound would be in-

creased slightly. ALl arithmetic iz done in single-precision except
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for the accumulation of imner-products when normel metrix soltiplicaticn

15 used, so the error bound {3.316) 1s spplicsble. Because of the double-
2

precision accumulatlion of lnner-products, the term ll-kn in thia bound may

be replaced by ﬁ.mknﬂ .

FProcedure IDENTITIES uses the temporary arrays T, U, Qly Q@23 - 3 B0
taking (mn + np + 5pm) /4 words. Since the procedure is called recursively,
at any one time we may need < {mn + np + Bpmjl[h'l FLTE LT 4 }

= (mn + np + Opm) /5 words of temporary storage. [4.31}
The arrays 51 and 32, and the stack space reguired for recursive proce-
dure =alls, will be negligible if m; n and p are reasonably large. The
space for the array {, uwsed when normsl matrix multiplication 1s invoked,
may be absorbed into (L.31). Hence the temporary storage used iz rough-
1y bounded by (4.31), snd if m = n = p this i= E-nE,-"'E- words, or slightly
more than that required by Winograd's methed and B/3 times that required
by the normal method. For all three methods;, the temporary storage re-

quirements can be reduced if C is not allowed to overlap & or B.

L.4 Cemparisen of the Three Methods

The three procedures described sbove were run under the same con-
ditiona (idle with "nocheck” option) for verious teat matrices A and B.
Some running timea for the cese of sguare matrices are given in Teble 1.
In =ach casze the depth of recursicn in procedure STEASSEN wme kept st

exactly ane.

23



Table 1 Running Tines (in 1/60 sec.)
m=n-=p Real case Complex case
Nor nal W nogr ad Strassen* Normal Wnograd Strassen*
20 28 3k 4o 53 53 66
30 83 88 107 167 150 187
Lo 18k 184 221 384 330 Lol
50 347 336 392 731 615 Th2
60 58k 557 636

*Strassen's nmethod with exactly one recursion. Run tines varied

slightly, but were constant to + 1%.

By counting operations it is clear that the running tinme of each
met hod should be a cubic in n, and for Strassen's nethod the coefficients
will depend on the depth of recursion. It turns out that the constant

termis negligible, and the times in Table 1 are given to + 1% by cubics

T(n) = an5 + bn2 +cn with the follow ng coefficients:
Table 2 Cubic Coefficients, T = an® + bo° + cn, in y sec.
a b c
Nor nal ko 270 2000
Real W nogr ad 37 200 9500
Strassen 36 650 8000
Nor nal 90 320 2000
Conpl ex W nogr ad 3 220 11500
Strassen* 80 790 8000

26
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Sone interesting conclusions nay be drawn from Tables 1 and 2.
Conparing the normal nethod with Wnograd' s nmethod, we see that
Wnograd's will be faster if 3700 + 200n° + 9500 < kom® + 270n° + 2000,

3

i.e. if n > 40 in the real case,and if 73n” + 220n2 + 11500 < 9On5 +

300n° + 2000, i.e. if n > 21 in the conplex case, which may be verified
by inspection of Table 1. As n + « , Wnograd's method will run in
37/40 = 92% of the normal time in the real case, and in 73/90 = 81%

of the normal tine in the conplex case. The gains are significant

for reasonably small n: e.g. for n= 100 Wnograd's nethod wll save
7% (real) or 18% (conplex). Hence, for noderately large matrices,

Wnograd's nethod |eads to significant, though not spectacul ar, savings,

and is worthwhile especially in the conplex case.

It is worth noting here that it does not pay to reduce the nulti-
plication of two conplex n by n matrices to three multiplications of
real n by n matrices (plus sone additions) by using (A + B )(C+ D) =
(E-F)+ (G - E- F)i, where E = AC, F = BD, and G = (A + B)(C + D),
for complex matrix multiplication takes |ess than three tines as long

as real mtrix multiplication (using any of the three methods).

It follows from Tabl e 2 that Strassen's method will be faster
than the normal method if n > 110 in the real case, and if n > 60 in
the conplex case. Hence procedure STRASSEN shoul d check to see if
n < ng (with ny set at 110 or 60), and if so use the normal method.

|f n>n. then Strassen's identities should be used to reduce n to n/2,

0
and the sane test applied recursively. This is what the procedure ac-
tually does, except that ny is not conpared just with n, but also with m
and p in case the matrices are rectangular. It can be seen by counting

operations that the appropriate test is if 3mnp < n (mn + np + pm) rather

0
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than if n < n.. The times given in Taeble 1 were cbtained with n, reduced

50 that Strassen’'e identities would be used exactly cnce.

By counting cperations, it csn easily be seen that the time Téﬁn]
for multiplication of n by n metrices using Strassen's methed should be

given by 3 o
En” +m + en+d ifn<n
T(n) =

o
TTEI:D.,-'rE} * a'nE-l-b'n-i- et 5.1‘.‘1131'1{:I . (4.52)

From (4.k2) it follows that, 1f
k = max(0, Lluggfn,-"'ncﬂ + 1),
then . .
"
Ts{n] = I:%:I ar® + ”l?} b+ %{{{—I} - 11131}“?
k k
(D e+ ED - Vv (.43

# (TR + %ﬂ?k - L)e*)
The ccnstante 8, b, ¢ and 4 should be those glven for the normsl method

in Tabkle 2 (4 is negligihle]. The constants a', ©' and o' determined to it

the data in Table 1 are:

Tehle Constante in (L.G2) ( i Eac. )
Real casge a' = 190 B' = 4OOO o' = 120000
Complex ceae 220 Looo 120000

The constants in Tables 2 and 3 are not very well determined by the
data {especlally c end c'}, snd are not exactly consistent. For example,
from (B.82) ard (h.k3) we should have, in Table 2, 8, = ?anfﬁ, while the

Table glves a, = 36 and oy = iz, 'The consistency lg about as good as can be

a
expected thoogh.

From {(4.42) snd ({4.43) it follows that Tsfn} = cfnlﬁgeT} as n 4=

=8
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so for sufficiently large matrices Strassen's method is arbitrarily faster
than the normal nmethod or Wnograd's nmethod. In practical cases, say for
n < 200, the normal nethod or Winograd's method appears to be faster

By the above fornulae we can estimate that Strassen's nethod will be
faster than Wnograd's only if n > 270 (real case) or n > 280 (conpl ex
case). On the other hand, these changeover points are very sensitive

to changes in programmng techniques etc., so it is conceivable that
Strassen's nethod woul d be the fastest, in sone |anguage on sone machine,
for matrices of order ~150. |n nost practical cases, Wnograd' s method
will be the fastest, except that the normal method will be faster for

sufficiently small matrices.

4.5 Paged Machines

Sone nachines (e.g. the Burroughs B5500) have a fairly small physical
menory but a large "virtual" menmory. The user's program and data is divid-
ed into "pages", some of which may be held in fast core nemory, and the
others on a device such as a disc or drum \Wen reference is made to a
page which is not in nenory, a hardware interrupt occurs, snd the required
page is read into nmenory fromthe external device (to make roomfor it, a
page may have to be saved on the device). W say that a "page fault" has
occurred. As a relatively slow external device is involved, page faults
are very tine-consumng and should be avoided as nuch as possible. (For
a discussion of the concepts of virtual nenory, paging, segmentation etc

see Randell and Kuehner [9].)

M Kellar and Cof fman [4] have considered the nunber of page faults
which will occur when certain nmatrix operations, including nultiplication,

are perfornmed on large matrices using a machine with paging |ike that
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deseribed above, They conclude that, for a slight modification of the
noreal method of matrlx sultiplication, it is beiter to store a large
matrix by submatrices, with each submatrix fltting into a smell number

of pages, than by rows or columns. Even then, the number of page faults

will increase Like n.j for suffislently large n. Simllar sarpuments would

aprly to Winograd's method, again suitebly modified.

Unlike the normal méthed or Winogmd's method, Strussen':s method
would perform well, with eventually of qz'&] page faults, even when

zimple row or colu=m storage is used. This iz because the only metrix

410

opergtiong on matrices with n = ., are ssslgrment and sddition operations,

and these cap be performed gz efficlently when row or column storage is
used a5 for sny other method of gtorage. A few modifications to the
procedure ETRASSEN in the Appendix should be made. B should be de-
creaged if necessary zo that n, by o gatrices can be multiplisd in

core {without any pege faults). Also, inner loops should imvolve opera-
tions on one row rather than on one column, if row storsge 1s used.
Thue we ehould change double loopa like
For J = 1 until N de for I := 1 until M do ...
to For I :=1 until M do for J = 1 until N do ...
This also applies to the "lmplicit™ leops when procedure OF is called:
e.g. lines 138 - 139 should be changed to
For I := 1 until M2 do
OP(T(I,*),4(T,*),A( I, *),M2,0,K2,-1);
Henee Straszen’s method might be competitive with the other metheds for

sEaller velues of n on a paged machine than on & machine without meging.

L1¥



4.6 Founding Errors

The procedurez were tested using matrices with elements uniformly
distributed in {-1/2, +1/2), or with resl and imsginary parts having
thiz distribution. ||E||§ and “EHH were computed, sssuming that the normal

thod gave exact results, which 1s reasonsble considering the error
wounds  (3.13) erd (3.18). As expected, the error bounds {3.211) and
[2.316) of the form (Bl < E-t'fl:n'jl||ﬁ.|li.|!1]1|[ were too pessimistic, and the

actual |E] was more like . JE(n) ||+ lB]l : See Table b.

Table 4 I,/ (27" e(n) Ut LBl

_n_ Real Straczen Complex Strassen Complex Hinugmﬂ
A 027 .28 0.28
b 0.20 o83 0.24

(talking f(n} ={§[n2 + 12n =) for Winograd,

Wn®  for Btrassen, and t = 21)

A aurprising result ccourred with Winograd®s method in the real cese.
The aingle-precizion results sgreed exactly with those glven by the normal
method! Thia might be expected if the error bound (3.212), mather than
(%.211), were applicable. The anomaly ie spparently casuaed by the special
rature of the test matrices and the characteristica of flosting-point
srittmetic an the 360/67. As the elemsnts of A and B were uniformly
distributed in (-1/2, +1,/2), about 7/8 of them would have absolute wvalues
in {116, 1/2). Sinee the 30 is 8 hexsdesimal machine, any twe such
sumbers will be sdded exsctly. This means that at least L9/6k of the sums

{xz;j-l * :.rg__]] and {xgj + FEJ—L} of [3.21) will be formed exactly. As

Al



£

e

remarked in Sec. 3.2, this nmeans that we are effectively using at |east
doubl e-precision nost of the time. Presunably the few errors made in
conputing the above sums were not enough to affect the rounded single-
precision results, although it seens strange that all the elenments of

a 50 x 50 product should agree, even to the last bit, when conputed by
two such different nethods. In the conplex case this anonmaly disappears,
for a rounding error will usually be made in adding either the real or

the imginary parts of the above sums.
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g Ztreazen-like Methods

For 2 » 2 matrix sultiplication, both the normsl method and Btrassen's
methnod may be deseribed as follows: given the Eid and th, we form prod-

L Ay of the Torm

A o= {

-.]_P fEEi{;PEi,j}L Eﬁ}inH‘] L [5-':'1]
and then the ¢ . BTE linear combinations of the qp, i.e. there ars

constants rmnp such that T
':r*,m = E ?mpqp
p=1

Substituting (5.01) in (5.02), equating ccefficients, and using

the definition of metrix multiplicaticn, gilwes the set of eguations
T

H 0
e, {5.03)

= = &
ngl 1z K mop ni
where & is Hronecker'a delta. (The subscripts on the e . Were reversed
to incresse the symmetry of (5.03}.)}) For the multiplication of M x N

, 2
metrices by K x P matricea, [(5.03) gives (MNP) equstionz =z i, j, k,

Ly my and o renge over the integers 1

b

Ln<M, 1< Lk<HK l<Lm<eFP,
For example, in the 2 x 2 case with T = 7, we have &b equaticns in 84 un-
knowtis, and Strassen’s identities show that there iz & solution. Strassen's

zalution has the nlece property that all the o and Y pp BTE 0 or

B
ijp' "klp P
+1 . Note that, if a aolutien of {5.0%) exista, it will certainly not

be unlgue.

Streszents method applied %o 4 x ki metrices shows that the
equations (5.03) have an {integral) solution when M =3 =P =4,
T = k9 (there are W96 equations in 2352 unknowms). In general Stressen's

method showas thet there i a sclotion with T = Tk when M =« N = F = Eh



If there 15 @ real sclution with M=K = P and a certain T,

by a simpls extension of the method deseribed st the beginning of Sec,

While an integrsl or retional sclutlen is desirable, in theory a real

2ven g complex solution would suffice,

The problem leading to equation {5.0%) can be generslized in the

following way: suppose Bis seep By T

ing variables, T 4% iz 8 given three-dimensicnal array of real or complex
numbers, snd we want Lo compute Lthe K sums of products g, = a.b.
g, @ I 3 F iy L TigetiYs

(k =1, v 4 X} in &5 few multiplications as possible. Then we want

g

the least possible T end scalars f::'.t' Baer Tie

rroducts

p, = | ?u.itai?fgﬂ,th,_l y LEBET

we cat form the q 85 Linear combimations of the By s

Combining (5.04) and (5.08) and equating coeffleoients gives

i
I =
L ;48 5 %t %19k

for 1<1<I, 1€£j<J, 1<k<E,

and clearly {5.03) ia a special case of {5.08).

To sharpen the upper bound (2.38) for the constant E"j delined by

(2.35), we could lock for solutions of (5.03) withM =N =

lDH‘JT < lr:-,g:f_’,-' . For example, we would like to find golutions with N = 2,
i .
T=BorNe3 T=21orF=U4 T«ii, as{ 5.03) iz o special case of

(5.06), snd s it iz convenient to svoid triple subseripts wherever possible,

we ghall fipst consider [5.06).

¥ such that from the

a and By, ... 5 b are non-commat-

m
S

P and

{5.2)

[5.04)

(5.05)

{5.08)



In the case T = 1 it iz not difficult to show thet the minimsl T
for which & solution of (5.06) exists is the ronk of the J x K metrix
I:Ul,jb:."" pnd simiisrly if Jor K =1, If I, J and K are greater tha b
unity then there does not seem to be any such simple theorem, and
examples with I = J » K = 2 show that the minimal T may depend on

whether the ﬂit" B and ;rkt are allowed to be vational, resl, ar

gt
oomplex. This is so even il all the ”ijk are lategral. Henoe we

are led to try numerical methods for solving speclal cases of (5.06).
If these methodzs find & resl solution, then it is worthwhile to try

to find an integrel soluticn, but if ne resl solution exists there

iz no point in looking for an integral sclution.
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w.1l Lezzt Sguasrea Approach

Becsuse of the large number of equatlons { LOSE for W = L),
conventionsl numerical methods like Newton's method are impractical
for finding & solution of (5.06). The problem may be regarded as cne
of function minlmizaticon: we want to minimize the sum of zguesres of
residuals of the aet of esquations (5.06). If g and y are fixed , then

{5.06) is = aet of linear equations in the o Hence we could find a

it
lesst-squares solution of this [overdetermined) system, then fix ¥ ,
& and find & lesst aquares solutlon for 8, then for r, and repeat the
cycle. The gum of aquares of resldusls will converge to some non-
negative number, and hopefully this will be zero. Even this methed
would be impractical, except that the coefficlent of Toy
af linear eguations bappens to be independent of i. In cther words,

in the system

the matrix of coefficients has T idenmtical T x T blocks along the main
disgonal, and zeros elsewhere, s0 esch lesst-sguares problem splits up

inte 2 mumber of smaller ones.

Writing =, for o . ., we want the lesst squeres solution of Ax = b,

t & =
5 = |r . ,."_
Jhere A ‘E'jt'r]".'t}i:,k] .t ,_j:-.l_-ll]
- = 3 = . ar = I Ty -4 I, . ;
The solution ia given by = {A a1 TR b {in the real caze} . (5,12
and we hsve
T
L} = |r ] 15
and ATH = | Vopv e ) ; (5.14)
- JEREIjETE .

Gk

As noted above, (5.13) iz independent of i, but (5.18) depends on i.



5.2 Acceleration of Convergence

It is not clear how one should make a good initial guess at a
solution of (5.06), but in any case, with randony chosen a, B, and y,
the initial rate of convergence is rapid. Unfortunately the convergence
soon slows down. One possible difficulty may be illustrated by a two-
di mensi onal exanple: suppose we try to nmininize s(oB) by fixing B,
mnimzing s with respect to a, fixing o and mnimzing s with respect
to g, etc. If the contour lines of s are ellipses as illustrated in
the diagrambelow, there will be a slow 'zigzag" approach to the

m ni mum

In the case illustrated, the following algorithmwll speed up

conver gence:
1/ i := 0; Guess o, By .

. o ... Q
2/ Find § to minimze s(cti+b,Bi).
3/ Find 6 tomnimze s(a, +o%p, + o).
4L/  Find wto nminimze s 0,19 B i+l) ,

- o - B
wher e @i ooy twT,B L =Bt owh

5/ i:=1i+1.

6/ Go back to 2/ .
37

25



— r—

r

— r r

=

r—

" | —

r———

5-6
In the sinple case of a quadratic function s(a,B), this algorithm
will find the mnimumin one cycle.
The sane idea can be used in our nore general problem If s(a , B, 7)
is the sum of squares of residuals, we find 204 to mnimze s(g+ga,§,1) :
B Lo . Ko’ B
then 6™ to mnimze s(a + 8,8+ 8" ) |
t hen g7 to mnimze s(a + go‘,g + 95,7 +87)
then w to mnimze s(a',p',7') where a'= o + w” etc.
Since
S(OJ',B',')") = E z t)(Bjt + wsgt)(ykt + woy )J (5‘21)

!J!

we can express s as a sixth degree polynomial in w and then w can be

chosen to mnimze this polynomal (globally).
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E. Search for Hew Alporithms by the Leaslt Sguares Methed

A program was written to try to find a solution of (5.03) using
the Leasl-squares approach deseribed in Sec. 5. Altheough it would be
interesting to look for complex solutions, only the real case was
considered.

-
The positive definite symmetric metrix ATA iz found from {5.1%)

-

and A'b is found from {%5.14), taking advantage of the identity.

k, Lz,'rr.,n EkT;u?rn_‘T.JEniE.‘jkﬁLm = gﬂj_[-u?Liu

6.1 Caleulstion af E{E!ﬁll!

We shall use fwe or threc subseripis on the &, f end ¥ =z con-

venient. The sum of squeres of residuals of [5.06) is

. 2
a(LBa ) = 1.%_;,1: :g %5 4P 24"t 2 Tidk|
s almB,r) = i,;k LZ Iﬁi1:,EI:“|1;-""H:I'.
- Ei,;k Tk zt:uiLE'jt}'ht
¥ _ “th

i,d.k

The straightforvard evaluation of (£.11) for matrix multipliecstion with

&
M=N=F takes ~2N T aperations [ just counting multiplicetiona).

(6.12) inatead, the lest two terma give no problems, in fact

2 2
Ons = E: {5ijﬁkLﬁmnj = M.N.P

ijk ..
i, 4,0 iy d, ¥, Lym,n

i

(&.01)

(.11}

[6.12)

{6.13)



6.2

and E o E o, B 7
e L L
i ) L % 5tPrrt Tont Pni b gl L
Lpdpkylymyn,t
= L 4P’ (6.1%)

i, hi,t
end the evalustion of (6.14) requires only ~2)°T operstions. The first

term in (6.12) is
2
L (T “u,ﬂjv;"ht] = EE%ﬂitﬁiu}{gﬂjtﬂju}{g?ﬂ%uﬂ’ (6.15)

i,d,k t t,0
ard the right side of {6.15) involves H}NETEIE operations (50% are

2.
sgved by symmetry). Since we are interested in values of T E, 5 CRO

be found frem (6.12) - {6.15) in «.-5'::?‘5,#2 operations instead of mzqa‘a
waing (6.11) . Henee it is much faster to use (6.12) - (6.15), although

this inwelves some loss of accuracy,

6.2 Quadratic Approximation

At first the coefficients of w in the sixth degree polynomial plw)
of (5.21) were calculsted uelng @ P, 7, by & and §7, and the global
minimem of p{w) was found. Evaluation of the coefficients of olw} was
rather time-consuming, and it was noticed that the minimum ususlly cccourred
for 1€ w< 2, and in thiz ronge p{w) was approximeted very well by the

quadratic fitting p(0), p(1l) and p{2).

Since p{0) = s{oB,7) is already kKnown,
and both (1) = s(ara”,prsd,2r8")
and pl2) = s{gbaf,yef,fzf] may be found by the method of Sec. 6.1,
the program was speeded up considersbly by using the quadratic appreximation,

and the rate of convergence was not noticeably diminished.
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A3 & precauticn, necessary for the first few iterstions angwey, w
was conatrained to lie in [1, 3] . Once w was chosen, E{El-wﬁa, EH».‘EE,.
I—I—wi?-.] wag computed (using previously celeulated inner-products like

E:ﬂiuaivj’ and & check made that it was less than p{l) snd p(2) .
Lftar the first few iterstiona these precautions usually turned out Lo

o s
be unnecessary. lMote thet, omce a = IE {ﬁiu + Kﬁiug{ﬂiv B xﬁi?} is
Tfound for x = 0, 1 and 2, we can find any B from

I_‘_:L.-E 2 = ) a Ly
5, E[x:r -:.F]$D+I[E-E;,r }31+[5r +,1,r‘}E:E}r where ¥ = x - 1 .

This device was alsc used to save some Time. There iz a danger of
numerical instability unless 1%{3’2 - :..r]l! < 1, i.e. unlesz 0 < x< 3 ,

which is one resscn why w was constrained to lie in [1, 3] .

If M = N = F, the number of operstions [ just counting maltiplications)
per camplete eycle ig n*[l‘;TIE']E*-T]TE,."'F.! . Since HE i N’B for the eases af
interest, this growa very rapidly with N. On the other hand, we are trying
Lo solve I{E nonlinesr equations in }I'IET unlktnowna, zo it would be surprising

if any other method could do much betiar.

f.% Summary of Results

The attempt to lower the bound {2.36) wes unswecesaful, but some
interesting negative results were cbtained. For 2 x 2 mstrices, many
selutions were found with T = 7, but s never fell below 1 for T e 5,
gtrongly indicating that Streszen’s methed gives the minimal number of
multiplications for 2 x 2 matrices [at least for resl q, P and y). With
T = 7 each iteraticn took sbout 0.2 gec. and convergence was fairly fasi,

and appesred to be linear.
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6.4

Trying T=1, 2, . . . 7for 2 x 2 mtrices, it was found that

7ifT =5, 6 or7

inf(s) + T=¢( 8 if T =1, 2 or 3

7.59 if T =4 .

Thus the mniml sum of squares of residuals is usually integral, but

]

appears to be nonintegral for T = k.

3x 3 mtrices may be nultiplied in 26 multiplications by using

Strassen's method on a 2 x 2 submatrix-. It appears that there is also

a solution with T =25: the program (taking 3 sec./iteration) reduced

s to 0.183 in 33 iterations, and s was still slowy decreasing. Knuth

has found a solution, involving 'cube roots of unity, with T = 2. How
ever, log521+ > log27, and in fact log521 < log 7 < log322, so a solution
with T < 21 is necessary to inprove the bound (2.36). Wen the program was
run with T = 21, s appeared to be tending to 2 rather than to zero. If

the rule inf(s(T)) + T > Toin whi ch was observed for the 2 x 2 case,

hol ds generally, this would indicate that for 3 x3 matrices Thin < 5

For 4 x 4 matrices the programwas run with T = 48, to try to inprove
on Strassen's 49. Unfortunately, each iteration took 18 sec., and con-
vergence was slow, so lack of conputer tine forced a return to smaller

probl ens.

- Various cases of small rectangular matrices were investigated. For
exanpl e, the programwas run with M= P =2, N= 4 and with M= P = 4,
N =2 . In these cases the smallest T for which s appeared to be tending

to zero was exactly the T to be expected by partitioning the matrices and

o
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appl yi ng Strassen's nmethod. Convergence often slowed as s approached 1,
and speeded up again once s < 1, and there was no case in which s <1
was attained, but for which s failed to tend to zero. Perhaps s(a , 8, 2)

has sone |ocal nminima or saddle points, but they all have s > 1.

To summarize the results: although nothing has been rigorously
proved, it appears likely that, to inprove on the bound (2.36), matrices
of size at least 4 x 4 nust be investigated. It is plausible that there
are no (real) nethods better than Strassen's for the 2 x 2 or 3 x 3

case, and if this is so it is unlikely that any new method coul d be of

nuch practical use, although it would certainly be of theoretical interest.

A practical method needs to have rational @, 8 and y, and to be fast for
reasonably small matrices nost of the conponents of o, 8 and y shoul d

vani sh.

k3
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7. Concl usi on

Wiile the normal nethod takes CXnB) operations to multiply n x n
matrices, Strassen's nethod shows that (Xn2'8) suffice. In practice
t hough, the normal method is faster for n < 100 . Wnograd' s net hod,
while still taking CXr1% operations, trades nultiplications for
additions and is definitely faster than the normal nmethod for noderate
and large n, with a. gain of up to about 10% for real matrices and up to
about 20% for conplex matrices. The gain would be greater for double

or multiple-precision arithnetic.

Fl oating-point error bounds can be given for Strassen's and Wnograd's
met hods, and the bounds are conparable to those for the normal nethod if
the sane precision arithmetic is used. Wth Wnograd' s nethod the necessity

for prescaling can not be enphasized too strongly (see also [12]).

Provided scaling is used, Wnograd' s nethod can be recomrended, es-
pecially in the conplex case, unless very high accuracy is essential. It
is much easier to code than Strassen's nethod. Possibly Strassen's nethod

woul d be preferable when working with large matrices on a paged machine.

Attenpts to |lower the constant 10gé]222.8.“ given by Strassen's
nmet hod were unsuccessful. A conpletely new approach seens necessary in
order to bring the upper and |ower bounds on the conputational conplexity
of matrix multiplication much closer together. For matrices of reasonable
size, though, it seems unlikely that any new nethod coul d be very nuch

faster than the known nethods on a. serial conputer

L
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aaa1
aan32
s
(1004
angs
000§
nog¥
aaon8
nogg
nglad
an11
i1z
o13
NLEEY
nnls
HiiG
TRy
UnLE
00L9
J020
Doz
aa23
111
2%
025
i 2 6
anzr
HN2e
Hngn
D
nntl
iz
UEsE
nosu
O3S
MG
T TS
LLIEY:
AL
L]
U0k
002
U0k3
00k
ooLks
0noLA
noG7
OoLE
noLa
niso
nmsl
ons2
noss
DO 5L
Of55
N05E
057
qn5a
a0s59g
naaa
a0al
o062
OnG3
0f6L
DOES
T

RERIN COMMENT:
TEST PROGMAM FOR PROCEDOURE STRASSEN, WINDGRAD & MATHULT,
FILE |5 ARFNT.TESTSTRASSEN OM SYS09;

PROCEDURE STRASSEN (RFAL ARRAY A, B, C (w, #):
INTERER VALUF M, H, P)};
REGIN COMMENT:

IF A IS5 AN M X N MATRIX, AND 8 |5 AN N X P MATRIX,
THEM THE M X P PRODUCT MATRIX A.B IS RETURNER (M C,
A MODIFIED FORM OF STRASSEN'S METHOD 15 USFD WHEM
M, N, AND P ARE SUFFICIENTLY LARGE. 1T 15 BASED ON THE
FOLLOWING IDENTITIES WHICH HOLD |N THE 2X2 CASE:

£11 = gl = Q3 = A5 + Q7F,
£12 = Q4 - QL

C21 = 12 + 03, AND
C32 = €15 + Q6 - 02 - N4, WHMERE

Nl = (A1l - Al2).R2Z,

n2 = (A21 = A22),B11,

N3 = AZZ,(Rll + B21),

N = A11,(B12 + B22),

N5 = {A11 + A22).(B22 - AILL),

A6 = (A11 + AZ1).(B11 » BI12), AND
N7 = {(A12 + A22).(BZ1 + R21)

A, R OANDSOR © MAY RE IDFNTICAL 0% OVERLAPPING [N THE
CALL TO STRASSEM. IMN THE CASE Msisp TUE INTERMENIATE
STORARE REAUIREND 15 ASOUT EH=+2/3 REAL WORNS., TiHis
COULR RF BFEAUCEN TN M+«} {OR MORF GENERALLY

(MM = NP + PHISE ) AY BUILDING UP THE PROMUCT AFTER
FACH CALL TN STRASSEN (M EVENMULT, RUT THEN C COULR
HOT OVFRLAP & OR B, AND THE PROCERMURE WOULR &F

RATHER SLOWER,

IF BMHPS (MMsMNP+PH){aND THEM WORMAL MATRIX MULTIPLICATION
15 USFR, THIS |15 BECAISE STRASSEN"S IDENTITIES SAVE
TIKE OHLY IF A MULTIPLICATION TAKES LOMGER THAN 14
ANDITIONS, WHICH IS CERTAIMLY FALSE FOR MATRICES SMALLER
THAM Ik X 1&, R A LITTLE LARGER, THE MUMBER NO

IS MACHINE ANN COMPILER=NEFEMDFMT, RUT 100 15 AROUT
OPTIHAL FOR ALGOLW ON THE S6AO/4G7 {WITH NT ARRAY BOUNGS
CHECEING).

THE TIME FOR PROCEDURE STRASSEM 15 AROUY THE SAME AS
FOR THE MORMAL METHOD FOR SMALL &, M AMND B, 30T FOR
LARGE M, W AMOD P TUE TIME MULTIPLIES BY T (BATHET
THAN 8} EACH TIME M, N AMD P ARE DOUBLED, ACCURASY
15 NOT MUCH WORSE THAN FOR MATRIX MULTIPLICATION BY
THE USUAL METHOD WITH ALL OPERATIONS DONE [H SINGLE
FRECISION.,

R ARFNT, JuLY 1969;

REAL PROCEDURE 1P{AFAL ARRAY A, A(=); INTEGET VALUE NI;

BEGIN COMMFNT:

RETURHE THE INNER PEOMUCT OF THE W-VECTARS A ANN A

LONG REAL 5;
S o= QL3
FOR | == 1 UNTIL N N0 S = 5 & A(I)#B(]);
ROUNDTOREALCS)
THD [P;

PAOCENURE OPIREAL ARRAY A, 9, C{®#): INTEGER VALUE ®1, M2, My, E);
BEGIN COMMENT:
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bo67
LOGE
0069
gato
il
a7z
Qavs
007
ag?s
D076
nn7?
noTsE
i
GnED
onEl
a2
noe3
08y
NO&s
0086
i ES
nogEs
DOEY
GOg0
0091
00492
agas3
009G
a5
TS
nog7
oOag
G009
01400
101
a1a32
0103
D10k
nins
ting
pin7
1108
0109
0114
il
n112
0113
D11k
0115
0116
0117
a11g
a114
0129
n111
nLzz
6123
D1k
012s
U126
0127
0128
a1:z9
a13a
0131
D13z

EFFECTIVELY DOES:

FOR 1 := 1 UNTIL M1 DO

ALY 1= BOI + M2) + Fulf1l + M3)

WHERE F = 0, «1 OR =1,

HOTE THAT |N ALGODLW 1-D ARRAY ACCESSES ARE MUCH
FASTER THAM Z=D ACCESSES:

IF F » 0 THEN
BEGIN IF M2 = 0 THEN
BEGIN [F M3 = 0 THEN
Eﬁg1ﬂ FOR 1 3= 1 UNTIL M1 OO AC1) 1= B{I} # ©([)
Eth FOR | = 1 UNTIL M1 0O ACTY s= B(I) + C{1 + M3)
FLSE
BERIN IF M3 o THEN
ESEEH FOR | c= 1 UNTIL M1 0O ACT) = BOI + MZ?) + C©O(1)
ELSE FOR 1
END
END
FLSE IF F ¢ 0 THEN
BESIN IF M2 = 0 THEN
BERIN IF M3 = 0 THENM
Eﬁgln FOR | == 1 UNTIL M1 DO A{I) := BL{1) = C(1}
ELSE FAOR 1
MM
ELSE
BEGIN IF M3 = § THEN
gEn1M FOR 1 := 1 UNTIL M1 DO ALY e S « M2} = CL])
NI
EhﬁE FOR | == 1 UNTIL M1 DD AC1) 3= BLI + ME) = €01 + M3}
END
ELSE
BEGIN IF M2 = 0 THEN
AEGIN FOR 1 :s 1 UNTIL MI PO ALY := BEL)
ENM
Eth FOR I = 1 UNTIL M1 DO A(1) := B{1 » M3}
FHD OP;

1 UNTIL HL DO ACI) s= B{I + M2} + C{] + M3)

1 UNTIL M1 DO AC1)Y 1= BLI) = C(1 + M3}

COMMFNT: IF ™, N, OR P SHMALL USE NORMAL MATRIX MULTIPLICATION,
THE COMSTAMT NO MENTIONED ABOVE |$ REDUCED TO 29 FOR
CHECK I MR PURPASFS:

IF {3eMsN=P) = (29« (M+8 + -H*PF = Pui}) THEH

BEGIN COMMENT: WE USE A TEMPARARY ARRAY 0 IN CAS A DR B;
REAL ARRAY 1 (1 :: M, 1 1: P): FEs oA
FOR | := 1 UNTIL M NO FOR J := 1 UNTIL P DO
Q00,0 t= ITPCACY,»), Ri=,Jd), H):
:gﬂ I s= 1 UNTIL M DO OPCCCI, %}, nll,+}, afi,«), P, 0, D, 0}

n

ELSE
BEGIN COMMFNT: USE STRASSEN'S METHOD:

PROCENURE IDENTITIES:
AEGIN COMMENT:
THE INFENTEITIES ARE PUT HERE TH AVOID SEGMENT
OVERE LOW;
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0133 ==

D1%L == REAL ARRAY T (1 :: M2, 1 :1: HZ);

0135 == REAL ARRAY U (1 1: N2, 1 :: P2):

0136 == REAL AREBAY 01, 02, N3, N, N5, 76 (1 #: M2, 1 :: PI);
0137 ==

138 -- FOR J = 1 UNTIL W2 nd

a1%e -- oF (T{w, J), A{w, J), Alw, J = MZ)}, M2, @, 0, =1):
0160 == FOR 1| := 1 UNTIL NZ N0

0141 -= ofF (U1, =), BOL « N2, =), B(), *), P2, P2, 0, 0);:
0142 -- STRASSEN (T, u, nl, ni, M2, P);

014% == FOR | := 1 UNTIL M2 00

Jlkk == oP {TCE, X, ACL & M2, #), A(D + MZ, =), N2, O, M2, =1);
BI45 == STRASSEN (T, &, 02, NI, W2, PI):

O1kE == FOR | 3= 1 UNTIL M2 DD

QlLy -- op (TC1, «3, A(1 « M2, =), ACD, =), N2, M2, O, 0);
DILE == FOR I = 1 UNTIL WZ DD

0169 == ap futr, =), BLL1, =), BEI +« W2, =), P2, 0, O, 1};

0150 -- STRASSEN (T, U, N3, M2, NI, P2);

0l51 -- FOR J := 1 UNTIL P2 DO

0152 == OF (Ufe, Ji, Bs, 4 = P2}, B{w, J « P2}, NI, 0, NI, LJ);
015% == STRASSEN (A, U, 0O&, 42, ui, P2);

15k == FOR 1| = 1 UNTIL MZ DO

0155 == oF (TO1, =), AL1, =), ACL + M2, =), N2, O, HZ, 1);
0156 =- FOR | := 1 UMTIL N2 NO

4157 == op (ufl, =3, o{1l « N2, =)}, BO1, =), ™2, PZ, 0, =1);
0158 == STRASSEN (T, U, N5, M2, N2, P2);

1159 == FOR | == 1 UMTIL M2 DD

G160 =- ap (TC1, =), A{1, =), A(1 +« M2, =), MZ, 0O, 0, 1);

PlRl -- FOR J := 1 UNTIL P2 0O

0162 == op [ule, J3, Sie, J3, AR{w, J + P2}, W2, 0O, 0, 1};

B16% == STRASSEN (T, U, N6, 12, U2, Pi);

B1GL =- EOR J := 1 UNTIL M2 DO

165 =- AP (T(s, JY, Afe, J « W2}, Al#, J & NI}, M2, 0, N2, 13;
B1EE == FOR I := 1 UNTIL W2 nD

NLET == oF (Ufl, =3, 801 +« W2, «), B{1 + NE, =}, P2, 0, PZ, 1l);
NIGE == STRASSEM (T, U, © , H2, N2, P2);

LGS --

g1y =- FOR 1 2= 1 UNTIL M2 DO FOR J = 1 UNTIL P2 NO

1171 5= BEGINH

3173 == o, g L0l d) = 0% (1,.Jd) « € (F,d) = 51,4}
01735 == £ 01, + P2Y ie ALIT,JdY = AL,

017G == 00 = m2,dy = N200,JF + Q31,.d);

0175 == Co(leM2,  eP2) 2= 0501, 0) + OB01,J) = (0201,d) + Quil,Jd)}
0176 =5 EMD

0177 =k EMD IDEWNTITIES:

0178 --

0179 -- REAL ARRAY S1(1 1: P);

o1E0 =- REAL ARRAY S2C1 :: M):

0181 == IMTERER M2, N2, P2:

oigr -- P2 1= MO 2: NE := M DIV E; P2 o= P DIV I3

N1E3 -=

gL -- COMMENT: THIS P&RT HUST BF DONE MOW IN CASE C = A OR 8;
OLES ==

0186 == [F {2=012) < ¥ THEN

0187 4= REGIN FOM J := 1 UNTIL 2B NO

n18g -- S10JF 1= [TPCALM, ), (e, J), M)

D189 =% END

01ag --

0191 -- IF (2+F2) ¢ P TUENM

0192 4= BEGIM FOR 1 := 1 NNTIL M OO

0193 == E301) = IR(A{), ), Rls, P}, M)

0194 =& BN

B188 -=-

0196 == IDENTITIES;

0197 ==

0198 =- (13 1w ZeriZ; N2 ;e ZeM2; PR o:e 2eP2;
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plon
G200
nIot
G202
B2o3
D204
n2os
G206
02n7
0208
02 09
a210
211
0212
213
21y
1215
0216
0z17
218
0219
azzo
nz21
azzs
0223
077,
0225
0226
nezy
0zzE
NZZg
nz3n
n231
N3z
N33
NZ3L
L2356
02%E
0257
0238
2239
0240
02ul
N2u2
265
O7hLii
0245
024G
0247
DZ4E
oILe
prso
0251
b5z
n2s3
D25,
b255
B2nG
0257
H25e
0259
B260
a261
762
0263
0264

COMMENT: IF I, N, DR P WAS 0ODD WE HAVE TO FIX UP THE BORDERS:

IF H2 £ N THEN
REGIN
FOR I 2= 1 UNTIL MZ N3 FOR & = 1 UNTIL PZ DO
EﬁéJd} g OO0, Jd) « A{| . N)=B(M,J]

1F M2 < M THEM
AEGIN FOR A = 1 UNTIL P2 DO C(M,J) = S1(J}
END

IF P2 £ P THEHW
REGIN FOR 1 := 1 UNTIL M DO €01,.P) = 5201
ENN
EMn
CHN STRASSEN;

PROCEDURE WIHOSRAN (RFAL ARRAY A, N0, r({+,#): |NTEGER WALUE ™, x, P}

BEGIN COMHMFNT:
IF A& 5 AN M X N MATRIX AMD B AN N X P MATRIX, THEN
THE1R PRONUCT A.R |5 RETURMED [N C. WINASAAD'S METHOND
15 USEN WITH PRESCALING TO ENSURE BOOD ACCURACY:

REAL PROCEDURFE WP{REAL ARRAY A, %(+): LONG REAL VALWE X, ¥1:
REGIN COMMENT:
RETURNS THE INNER PRODUCT 0OF THE N-VECTORS A AND R,
USING PRECOMPUTEDR X AND Y, NS5 RLNBAL;

LONG REAL 5;

5 = -(R + ¥i;

COMMENT: |E THE MEXT STATEMENT |5 REPLACED RY:

FOR I == 2 STEP 2 UNTIL 2«{N DY 2} 00

Got= 5 & (LONGCACI=13) + LONGCACII}I-{LONGCACI Y)Y + LOMGCBCI-1333.,
THEN THE CORAECTLY ROUMDED SINGLE=PRECTSION RESULT IS USUALLY
RETURNED CASSUMING PRESCALINGY}, UMFORTUHATELY THIS SLAWS DOWN
THE ALGAORITH! 50 THAT 1T IS WO LONGER FASTER THAM THF USUAL ONE;
FOR | = 2 STEP 2 UNTIL 2«(HW NIY¥ 2} OO

Soi= 5« [ACD = 1) & BOYDD«{ALI) = BC1 = 13);

1F (N REM 2} » 0 THEN 5 := 5 + A(N}sA(M};

ROUNDTOREALLS )

END WP;

LONG REAL PROCENURE XI{REAL ARRAY A{=)};
BEGRIN COMMENT:
USED T9 PRECOMPUTE THE FUMCTIOMNS OF A REAUIBFN ABY WP;

LONG REAL 5;

5 = 0L;

FOR ! := 1 STEP 2 UNTIL N = 1 N0 5 = & « AC1)wA{F 4 1);
5

FHDL XTI ;

PROCENDURE MAX (REAL ARRAY A{e«}; REAL VALUE RESULT BO);
FOR | := 1 UNTIL N DO IF BD ¢ ABSCACID) THEN BO := ARS[A(1));

PROCENURE MUL(REAL ARRAY A, RB{«); REAL WALUE M}:
FOR | := 1 UNTIL N DO A(13 1= M=RL01};

REAL AMAX, BMAX, MULT;

COMMENT: THE ARRAYS N AND £ ARE USEN A3 TEMPORARY STORAGE IM CASE
SOME 0OF A, I AND £ COINCIOE;

REAL ARRAY D1 =3 M, 1 :: M}

REAL ARRAY F{1 :: MW, 1 :: P);
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D265
0266
D267
Q2568
12649
]
axTl
ner3
0F73
D2TE
n2rs
D276
2Ty
t2TR
Q279
az2a0
0281
nr&3
0233
DIEL
b2R5
G2B6
Q287
Q2848
0z84
0xaa
0291
EF R )
n29%
T2
4295
0296
0297
0298
099
nsog
3ol
050l
HETIR]
0304
030%
0306
0n3a7
0308
0ing
0310
0311
1512
1513
a314
0514
031k
o1y
0:1%
R R R
B3I0
Q521
031l
N313
3] ]
0325
0:26
0327
0328
0318
2330

LONG REAL ARRAY X(1 :: M):
LONG REAL ARAAY ¥(1 :: P);

COMMENT: A AND B ARF SCALED RY SUITABLE POWERS OF TWD TO RIVE ROOD
:HEE::EAL FROPERTIES, AND THE SCALED MATRICES STORED IN
AMAX :e BHAX 1= 0.0:
FOR | == 1 UNTIL M D0 MAXCACI, ), AMAX):
FOR K == I UNTIL P D0 MAXCBE=,K), BMAX):
MULT = IF (AMAX > 0) AND (AMAX > 0) THMEN
EI;;TEu:Ea?Efann{HHhx} = LOG{AMAXI}/LOG{L) + 200,.5) = 2009
FOR 1 := 1 UNTIL M DO MUL{ndr, =), AC1,«), MULT):
FOR E := 1 UNTIL P NO MUL{F{*,K), R(#, K}, MULT):
COMMENT: NOW SOME CONSTANTS ARE PRECOMPUTED AND SAVED IN X AND Y:
FOR @ := 1 UNTIL M no X(E) := XI(D(0,%));
FOR K := 1 UHTIL P DO ¥(K) := X|(E(*,K}]:
COMMENT:  NOU THE INMER PRODUCTS ARE FOUND;
FOR I = 1 UNTIL M DO FOR J := 1 UNTIL P DO
COL,d) om WRIRC), #), Edw, ), X001, YO(J42)
EMD WIHOGRAD:

PROCEDURE MATHULT (NFAL ARRAY A, B, C{w,w};

INTERER WALUE M, N, B}
AEGIN COMMEMNT =
FORMS € := A,B IN THE USUAL WAY;

REAL PROCEDURE IP{RFAL ARMAY A, A{#): |NTERER VALUF Nl;
BEGIN COMMENT:
RETURNS THE INNER PRODUCT OF THE M-VECTAORS A AND B

LONG REAL 5;

5 =3 dL;

FOR 1 := 1 UNTIL M DO 5 =2 5 & A(])1=B{})};
ROUNDTOREALTS)

THD [#:

PROCEDURE ASSIGN (NFAL ARRAY A, Ri{=}; INTFRER VALUE N);
FOR 1 = 1 UMTIL W N0 ACED := B{|);

COMMENT: @ |5 USED IN CASE € COINCIDES WITH A OR 3;
REAL ARRAY 0f1 :: M, 1 :: PJ;

FOR | := 1 UNTIL M PO FOR J := 1 UNTIL P DO

1, d) o= (PCALL, =), Ale,d), N);:

FOR 1 := 1 UNTIL M NN ASSIGN (C{I,%}, 0{1,+}, P}

TN MATMULT;

INTEGER RANL, RANZ, RANZ, RANG:
INTEGER ARRAY RANS (0 :: 55):

PROCEDURE RANINIT [(INTERER WALUE R1):

AEGIN COMMEMNT+
MUST BFE CALLER WITH ANY INTEGER Rl
TO INITIALIZE PROCENURE RANDOM;

INTOWFL := NULL; TOMMENT: MASKS OFF INTEGET OVESELOW;
RAN] := 1; RAM? := 2«ARS [R1} + 1:

FOm | := O UNTIL 255 N0 RANS (1) :e RAN? 1= RANZ*E5539
FNDY RANIMIT ;

NEAL PROCENURE mAMNOM:

REGIN COMMENT:
USES Tm SIMPLF LFMMER GENERATNRS 0OF THE FORYM
KCM+1) = XOMY=A (MOD TY WITH
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O35 E
03312
2333
G354
1535
0356
15387
0358
033%
Q340
1541
Q5u2
0343
034y
a545
O3LE
T
Q348
Q349
O350
a551
0552
2353
0354
1355
0356
0357
0358
035514
a5a0
a361
0362
03635
0364
365
0366
0367
0368
05649
asva
a3vl
n3va
0373
0370
nirs
037h
nirr
N:TE
nifa
DEEQ
n3%l
(kY3
OD3E5
DERL
0385
0386
D3gT
kY1 ]
R Y3
D3%0
0351
D392
03a%
0394

Al =

A = 2exlg+d = L5539,

11=#1F (MON T1} = BLES, Tl = Zee]l3=-1 = 21971,

T2 = Z#w3] = 214TLE3EL3.

THE FERST GENERATNA JUST POINTS T0 THE TABLE 0F
ENTRIES FOR THE SECOND GENERATOR, 50 GDOD RANDOM
HUMBERS WITH A BYCLE LEMGTH AT LEAST 2.10=«12 ARE
PROMUCEN,
IDEA 15 DUE TN MACLAREN ANN MARSAGLIA, SEE
ENUTH, vOL 2, PG 30,
AREAL QUTPUT UMNIFARM
MOTE THAT INTEGER RANI,
IMTEGER ARRAY RANS (0::25%5) MUST BE DECLARED
GLOBALLY AMD RAMINIT MUST BE CALLED FOR
TMITIALIZATION;

THE

RANT := (RAN1+G&55) REM $191;
RANG 3= RAN]1 REM 25G;
RANG := RANE (RAMZ);

RANZ := MANS (RANE)

END FAMDOM;

ALGOR I THM M,

rm RAM? & (5538
RANG * O,LBESREL2ETV=-0

PROCEDURE RMANSET (BFAL ARRAY A(w, #);
FOR 1 s= 1 UNTIL 1M1 RA FOR J := 1 UNTIL N DO

AT,y 1= RANDOM =

0n,5;

COMMENT: CALLING PROSRAM:

INTERER R, M, M, P,
REANLRY 3
WHILE R 7= 0 DO
BEGRIN REAPON{M, H,
u'ﬁl TEt"RrI, :1:'_ Li]
FF

REGEN

REAL ARRAY A(1 :
REAL ARRAY B(1 :
REAL ARRAY C, 0,
RANSET (A, H, H)
RAMSET (8, 4, P)
T = TIHECL):

MATHULTC(A, &, 0O

L}

Ty REAL 5, MAX,

+
===
Ll

Fl;y TRANINITIR)
MY, o,

P, P);

M, 1 :t: N};
M, 1 :: P};
[

F rr M, 1 13

. My H, PI;

(0,1},
TANZ, RAN3, RANL AND

IMNTEGER WALUE ™, M);

NEL, 5H, MAXH;:

v
-
L]

Fi:

WRITEC" "™): WRITEL™ "}:
M, oM,

WRITE ("MATHULT TIME "™, TIME{1} = T):

T t= TIME(1];
STRASSEN (A, T,

r

F I1J r‘FI' P:;

URITE ("STRASSEN TIME™, TIMF{1)

WINGGRADCA, #, F

L

M, M, Ph:

= Ti: T = TIME(LE):

URITEC"HINDRRAD TIMEY™, TIME{1) - T);
Torm MAY 1= U or= MANY = [

FOR 1 == 1 UNTIL M nO FOR .
BEGEN DFL := ARSCCCY, ) -

IF MAX ¢ DEL THEN MAX := NEL;
5 tw 5 & DELeDFL;
DEL := ABSCN{I,d) = 5(1,d3);

IF MAXH « BEL THEN rtAXU

SW o= S o+ DEL=NEL

EHMD;
WRITEC"S ", 5 ,
WRITE("SW", SW,
READ(R)
EMD
END
END.

nax ",
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t= NEL:

s= 1 INTIL P N0
nit,J¥};

HAX )
MAXU®™, MANWD;



