
ALGORITHMS FOR MATRIX MULT~~WATION

BY

R. P. BRENT

STAN-CS-70-157
MARCH 1970

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

/
/

W

ALGORITHMS FOR MATRIX MULTIPLICATION

BY

R. P. Brent

March 1970

Reproduction in whole or in part is permitted

for any purpose of the United States Government.

The preparation of this manuscript was supported in part by the Office
of Naval Research (NR 044 211), the Na.tional Science Foundation (GJ 798),
and the Atomic Energy Commission (Stanford PA #18).

Contents

1/ Introduction

2/ Known results

3/ Error analysis

4/ Implementation

5/ Strassen-like methods

6/ Search for new methods

7/ Conclusion

8/ References

9/ Appendix: ALGOLW procedures

ii

2.2

i

t
t

L
t

e
Ic

1
i

i

i

i.

i

If n is even, the left side of (2.21) is just cik, but if n is odd,

the term a.inbnk must be added to give c
ik* The point of Winograd's method

is that the last two sums in (2.21) can be precomputed and, once this has

been done, roughly half the usual number of multiplications are required

to compute each cik using (2.21).

Supposing for simplicity that n is even, let us calculate the number

of multiplications and additions involved in the computation of C by

Winograd's method. We shall never distinguish between additions and sub-

tractions. To compute n/2 -
X. =

1 c "i,Zj-l"i,2j
j=l

requires n/2 multiplications and (n/2 - 1) additions, and similarly for

42
yk = c b

j=l 2j-l,kb2j,k .

Hence, to precompute x1, x2, . . . , xm and yl, y2,... , yp takes (m + p)n/2

multiplica.tions and (m + p)(n/2 - 1) additions*

(2.22)

(2.23)

Given xi and yk, to compute cik using (2.21) takes n/2 multiplications

and (3n/2 + 1) additions. Thus the computation of the entire matrix pro-

duct C takes (mp + m + p)n/2 multiplications and (3mp + m + p)n/2 + mp - m - p

additions. From Sec. 2.1, we have saved (mp - m - p)n/2 multiplications at

the expense of (mp + m + p)n/2 + 2mp - m - p additions, in comparison with

the normal method.

Since mp - m - p = (m - l)(p - 1) - 1, there is no gain at a.11 if

m = lorp= 1, so the remarks above on the minimal number of multiplications

required for matrix times vector multiplication are not contradicted.

4

2.4

2.3 Strassen's Method

Suppose there is an algorithm for the multiplication of no x no

matrices, for a certain fixed no > 1, taking M multiplications and A

additions. Suppose further that this algorithm is applicable for ma-

trices over an arbitrary ring. In particular, we are not allowed to

assume the commutative law for multiplication, so, for example, Winograd's

method is excluded.

Let v(k) and w(k) be the number of multiplications and additions,

respectively, required to multiply nk x ni matrices, for k = 0, 1, 2

We have v(0) = 1, w(0) = 0,

~(1) 5 M, w(l) < A.
>

(2.31)

k+lNow consider no x nrl matrices partitioned into n: blocks, each

block an nk x n: matrix. Our matrices may be regarded as no x no matrices

with elements in the (noncommuta,tive) ring of n: x nk
0 matrices, so our

algorithm is applicable. Applying it will take M multiplications, and A

additions, of nk kx n
0 0

matrices.

Hence v(k + 1) 5 M.v(k)

and 2kw(k + 1) G M.w(k) + A.no .-

From (2.31) and (2.32) it follows by induction on k that

v(k) <, Mk

and w(k)<l (Mk - no'")
- (M-n:)

for any k:b 0- (provided that M f n:, but M < n: is impossible for_

no > 1 anyway).

6

>

(2.32)

>

(2.33)

2.8

1
t

i

i
c

In Sec. 4 we shall discuss how to implement Strassen's method for

rectangular matrices, and how to avoid any wasteful "bordering" with

zeros. The question of roundoff errors will be discussed in Sec. 3.

10

3.8

Since ql = fl((all - a12).b22) , where the n x n matrix

multiplication is done by Strassen's method with the error bound (3.31),

and the matrix addition is done in the usual way, we have

I/EgJl L 2% + f(n) I(Ily1ll + lb, ,I!) l llb,,ll 9L

so llEqlll L 2 -t.2ab.(n + f(n)) , (3.33)

and similarly for E
@' Ec13y

and E
cd+ l

For i = 5, 6 and 7

we get the bound

I
i- llEqlll. < 2%ab.(2n+ f(n))- (3.34)

in the same way.i

Now it follows from (2.37), neglecting terms in 2
-2t

, that
i

IIEJI 5 llEqlll + llEqJl + 2-Y 11~111 + llclJ) , (3.35)

L but
2nab for i = 1, 2, 3, 4

II qi II 5 (
4nab for i = 5, 6, 7 ,

so from (3-33), (3.35) and (3.36) we obtain

>
(3.36)

lIE1211 -k2%ab.(2n + f(n)) ,

and clearly the sa.me bound holds for E2s
Similarly we have

IIEIJl 5 llEqJl + lIE(Jl -+ IlEg I+ llEs:// +

(3*37)

2-tmlll + 3lls3 II + 4s /l +5 11s 107 (3.38)i

(ass~ing qly q3, q5
and q7 are added in this order),

so llEllil 5 2?ab.(&n + 12f(n)) , (3439)

and similarly for E22.

From (3.37) and (3.39) we see that

II IIE < =I-?- (44n + 12fb-d) •\lA\\.ll~\l , (3.310)

so (3.31) will hold if f satisfies f(1) = 1 and f(2n) =44n + 12f(n) .

(3.311)
18

3.10

i

i.

i
1 .i-

L
i

Since k will be very small in practice, the bound (3.316) is not

too bad. Comparing it with (3.16), it appears that we may lose up to

two bits of accuracy, compared to that of the normal method, each time

Strassen's identities are applied recursively.

In using Strassen's method there does not seem to be much point in

doing some of the arithmetic in double-precision, unless it can all be done

in double-precision, when the above bounds hold with t replaced by 2t

(and a factor of 3/2 with Wilkinson's assumptions about the method of

rounding or truncating).

It is interesting to note that with Strassen's method there is no

point in scaling the matrices so that ll~ll~Il~l\. This is because, unlike

Winograd's identity, Strassen's identities never involve the addition of

an element of A to an element of B.

3.4 Complex Arithmetic

The above analysis is based on the assumptions that fl(x + y) =

x(1 + el) + y(1 + e2) and fl(xy) = xy(1 + e3) where 1e.J < 2-t,-

i = 1, 2, 3*. These assumptions will be valid for complex arithmetic too,

provided that t is decreased by a small amount (2 or 3) depending on how

the arithmetic is done. Hence, with this small change in t, the above

bounds will hold for complex matrix multiplication. Similar remarks

apply to real arithmetic done on a decimal or hexadecimal machine (e.g.

the IBM 360). A curious anomaly which appeared when Winograd's method

was being tested on an IBM 360/67 computer is described in Sec. 4.6 .

* A stronger assumption about addition, used in Section 3.2, was not

really necessary (see [12]).

20

I
c

4.1

4. Implementation

i

\
i

!
L

i

In order to compare the normal, Winograd's and Strassen's methods

in practice, they were all implemented in ALGOLW [lo] on an IBM 360/67

computer. Doubtless all three methods would run faster if coded in,

say, FORTRAN-H or assembly language, but their relative speeds would

probably be about the same. While it would be easy enough to code

the normal method and Winograd's method in FORTRAN or assembly language,

for Strassen's method it is very convenient to have a language which

allows recursive procedure calls. The simplest way to code Strassen's

method in a language like FORTRAN would be to limit the depth of re-

cursion and duplicate any subroutines which would naturally be called

recursively. The three methodslwere tested on both real and complex

matrices, with results which will be summarized below.

All three methods were coded in the form of a pure procedure,

with calling sequence

name (A, B, C, M, N, P)

to form C := A.B , where A is an M x N matrix (dimensioned (1 :: M,

1 :: N)), B is N x P, andCis MxP. Calls such as name (A, A,

A, N, N, N) are valid, and correct results should be returned for ;3ny

M, N and P > 1, provided enough temporary storage is available.

At first the procedures were coded so that the"inner 1oops"involved

references to doubly-subscripted array elements. In ALGOLW such re-

ferences take considerably longer than references to singly-subscripted

array elements [ll], and it was found that all the procedures could be

speeded up by passing cross-sections of two-dimensional arrays as para-

meters to procedures which then operated on them as one-dimensional

i
j
L 21

4.2

arrays. (This is not allowed in ALGOL-60.) For example, instead of:

,

1

1

For I := 1 until M do

for J := 1 until N do A(I,J) := B&J);

we use:

For I := 1 until M do assign (A(I,*),B(I,*),N);

where we have defined

Procedure assign (rea.1 array A, B(*); integer value N);

for J := 1 until N do A(J) := B(J);

/
c The second form will execute faster provided N > 10 . As this device

speeded up the normal method rather more than Strassen's method, it is

clear that a comparison of the three methods depends on the language

and the programming techniques used to implement them.

The implemention of each method will now be described in more detail.

The procedure for the real and complex cases are very similar, and list-

ings for the real case are given in the Appendix.

I

i

4.1 The Normal Method

(Procedure MATMULT, see Appendix, lines 288-311.) There are no

particular difficulties in the implementation of this method. Because

of the possibility that C is the same as A or B in the call, the product

is formed in a temporary array Q and then transferred to C. Thus M.P

words of temporary storage are used. Inner-products are accumulated in

double-precision, for in ALGOLW this is very nearly as fast as accumu-

lation in single-precision. Hence the error bounds (3.13) a.nd (3.18)

are applicable (with the alteration noted in Sec. 3.4), and in most cases each

Cij will be the correctly rounded result, although this can not be guaranteed.

22

4.3

4.2 Winoarad's Method

(Procedure WINOGRAD, see Appendix, lines 219-285.) Again the

implementation is fairly straight-forward. The matrices A and B

are scaled as described in Sec. 3.2, and the scaled matrices are

stored temporarily in arrays D and E. Strictly speaking, scaling

should be done to the nearest power of 16 rather than 2, for scaling

by powers of 2 could introduce roundoff errors on the 360, a.nd these

errors have not been taken into account in the error analysis (Sec. 3.2).

Taking account of these errors gives the error bound

Pll 5 2

-? 2
&I l IPI1 l PII f

where K is a small constant, instead of (&2ll). In the complex case,

pw 1 + II(X) 1 ra.ther then 1x1 was used to save time. This increases

the error bound by a factor of at most 1.15 .

The inner-products xi and yk of (2.22), (2.23) are computed and

stored in the arrays X and Y. As stated above, it is not significantly

harder to compute and save the xi and yk in double-precision, so this

is done.

In all, (n + 2)(m + p) words of temporary storage are used, which

is about twice as much as for the normal method if m = n = p. The sums

(ai,2j-l + b
2&k) a.nd (a i,2j + b2j 1 k) of (2.21) are computed in

- J

single-precision, and then the inner-product involving them is computed,

as usual, in double-precision. If n is odd then the necessary correction

is made, and the final result fl(C) is formed. It is interesting to note

that if the sums (a i,2j-1 ' b2j,k 1 and (a
i,2j

+ b
2j-1,k 1 were com-

puted in double-precision, we would be using double-precision throughout,
-

(4.21)

23

Table 1 Running Times (in l/60 sec.)

m=n=p

20

30

40

50

60

Real case

Normal Winograd Stra.ssen*

28 34 42

83 88 107

184 184 221

347 336 392

584 557 436

Comnlex case

Normal Winograd Strassen*

53 53 66

167 150 187

384 330 401

731 615 742

4.6

*Strassen's method with exactly one recursion. Run times varied

slightly, but were constant to 2 1%.

By counting operations it is clear that the running time of each

method should be a cubic in n, and for Strassen's method the coefficients

will depend on the depth of recursion. It turns out that the constant

term is negligible, and the times in Table 1 are given to + l$ by cubits

e-4 3= an + bn2 + cn with the following coefficients:

Ta.ble 2

Real

Complex

3Cubic Coefficients, T = an + bn2 + cn, in p sec.

a b C

Normal _ 40 - 270 2000

Winograd 37 200 9500

Strassen* 36 650 8000

Normal 90 320 2000

Winograd 73 220 11500

Strassen* 80 790 8000

26

4.7

Some interesting conclusions may be drawn from Tables 1 and 2.

Comparing the normal method with Winograd's method, we see that

3Winograd's will be faster if 37n + 200n2 + 9500 < 40n3 + 270n2 + 2000,

i.e. 3if n >, 40 in the real case,and if 73n + 220n2 3+ 11500 < 90n +

320n2 + 2000, i.e. if n > 21 in the complex case, which may be verified,

by inspection of Table 1. As n + 03 , Winograd's method will run in

37/40 = 92% of the normal time in the real case, and in 73/90 = 81%

of the normal time in the complex case. The gains are significant

for reasonably small n: e.g. for n = 100 Winograd's method will save

TXJ (real) or 18% (complex). Hence, for moderately large matrices,

Winograd's method leads to significant, though not spectacular, savings,

and is worthwhile especially in the complex case.

It is worth noting here that it does not pa.y to reduce the multi-

plication of two complex n by n matrices to three multiplications of

real n by n matrices (plus some additions) by using (A + Bi)(C + Di) =
(4.41)

(E - F)+ (G - E - F)i, where E = AC, F = BD, a.nd G = (A + B)(C + D) , ,

for complex matrix multiplication takes less than three times as long

as real matrix multiplication (using any of the three methods).

It follows from Table 2 that Strassen's method will be faster

than the normal method if n 2 110 in the real case, and if n 2 60 in

the complex case. Hence procedure STRASSEN should check to see if

n<no (withno set at 110 or 60), and if so use the normal method.

If n3_no then Strassen's identities should be used to reduce n to n/2,

and the same test applied recursively. This is what the procedure ac-

tually does, except that no is not compared just with n, but also with m

and p in case the matrices are rectangular. It can be seen by counting

opera.tions that the appropriate test is if 3mnp < no(mn + np + pm) rather

27

so for sufficiently large matrices Strassen's method is arbitrarily faster

than the normal method or Winograd's method. In practical cases, say for

4.9

n < 200, the normal method or Winogra.d's method appears to be faster.

By the above formulae we can estimate that Strassen's method will be

faster than Winograd's only if n > 270 (real case) or n > 280 (complex

case). On the other hand, these changeover points are very sensitive

to changes in programming techniques etc., so it is conceivable that

Strassen's method would be the fastest, in some language on some machine,

for matrices of orderNl50. In most practical cases, Winograd's method

will be the fastest, except that the normal method will be faster for

sufficiently small matrices.

i 4.5 Paged Machines /

I Some machines (e.g. the Burroughs B5500) have a fairly small physical

memory but a large "virtual" memory. The user's program and data is divid-

ed into "pages", some of which may be held in fast core memory, and the

others on a device such as a disc or drum. When reference is made to a

page which is not in memory, a hardware interrupt occurs, kind the required

page is read into memory from the external device (to make room for it, a.

page may have to be saved on the device). We say that a "page fault" has

occurred. As a relatively slow external device is involved, page faults

are very time-consuming and should be avoided as much as possible. (For

a discussion of the concepts of virtual memory, paging, segmentation etc.

see Randell and Kuehner [9].)

MC Kellar and Coffman [4] have considered the number of page faults

which will occur when certain matrix operations, including multiplication,

are performed on large matrices using a machine with paging like that

/ 29

4.12

remarked in Sec. 3.2, this means that we are effectively using at least

double-precision most of the time. Presumably the few errors made in

computing the above sums were not enough to affect the rounded single-

precision results, although it seems strange that all the elements of

a 50 x 50 product should agree, even to the last bit, when computed by

two such different methods. In the complex case this anomaly disappears,

for a rounding error will usually be made in adding either the real or

the imaginary parts of the above sums.

i

c

32

i

f

5.5

5.2 Acceleration of Convergence
L

I
L

c

It is not clear how one should make a good initial guess at a

solution of (5.06), but in any case, with randomly chosen 2, &, and l,

the initial rate of convergence is rapid. Unfortunately the convergence

soon slows down. One possible difficulty may be illustrated by a two-

dimensional example: suppose we try to minimize s(& by fixing B,

minimizing s with respect to a, fixing cr and minimizing s with respect

to 8, etc. If the contour lines of s are ellipses as illustrated in

the diagram below, there will be a slow 'zigzag' approach to the

minimum.
8*

a

In the case illustrated, the following algorithm will speed up

convergence:

l/ i := 0; Guess ao, 8, .

2/ Find 6a to minimize S(cxi + &Ii).

3/ Find 6 B to minimize S(cxi + P,p. + 8).'1
4/ Find w to minimize '(a-j+l9 B i+l) 9

where cy
i+l = cYi + wP,p i+l = pi + w&P .

5/ i :=i+l.
-

6/ Go back to 2/ .
37

5.6

In the simple case of a quadratic function s(a,p), this algorithm

will find the minimum in one cycle.

The same idea can be used in our more general problem. If dn: 7 Br r)

is the sum of squares of residuals, we find iac to minimize s(g+b;a&,$,

I, then 6 B to minimize ~(a: + Sa,p + 6 B- -- - ,Z) 9

1
i

then cy to minimize s(cy: + s",S + se,, + $) ,

then w to minimize s(g',k',r') where a'= cx + ~6~ etc.

Since

Sb',B',Y') = C C Gait
Ci,j,k t

I
t

we can express s as a sixth degree

chosen to minimize this polynomial

polynomial in w, and then w can be

(globally).

i
t

38

6.4

L
f
L

i
L

L

i

ie

i
i

Trying T = 1, 2, . . . 7 for 2 x 2 matrices, it was found that

inf(s) + T={:%i,-'pj

Thus the minimal sum of squares of residuals is usually integral, but

appears to be nonintegral for T = 4.

3 x 3 matrices may be multiplied in 26 multiplications by using

Strassen's method on a 2 x 2 submatrix-. It appears that there is also

a solution with T = 25: the program (taking 3 sec./iteration) reduced

s to 0.183 in 33 iterations, and s was still slowly decreasing. Knuth

has found a solution, involving 'cube roots of unity, with T = 24. How-

ever, log324 > log27, and in fact log321< log27 < log322, so a solution

with T 5 21 is necessary to improve the bound (2.36). When the program was

i
run with T = 21, s appeared to be tending

the rule inf(s(T)) + T > Tmin , which was

L

i For 4 x 4 matrices the program was run with T = 48, to try to improve

i

Ii

t

L

holds generally, this would indicate that

to 2 rather than to zero. If

observed for the 2 x 2 case,

for 3 x 3 matrices Tmin < 23 .

on Strassen's 49. Un&tu&ely, each iteration took 18 sec., and con-

vergence was slow, so lack of computer time forced a return to smaller

problems.

- Various cases of small rectangular matrices were investigated. For

example, the program was run with M = P = 2, N = 4 and with M = P = 4,

N=2. In these cases the smallest T for which s appeared to be tending

to zero was exactly the T to be expected by partitioning the matrices and

42

applying Stra.ssen's method. Convergence often slowed as s approached 1,

and speeded up again once s < 1, and there was no case in which s < 1

was attained, but for which s failed to tend to zero. Perhaps s(g t k, r)

has some local minima or saddle points, but they all have s >, 1.

To summarize the results: although nothing has been rigorously

proved, it appears likely that, to improve on the bound (2.36), matrices

of size at least 4 x 4 must be investigated. It is plausible that there

are no (real) methods better than Stra,ssen's for the 2 x 2 or 3 x 3

case, and if this is so it is u.nlike1yJha-t any new method could be of

much practical use, although it would certainly be of theoretical interest.

A practical method needs to have rational 2, g and r, and to be fast for

reasonably small matrices most of the components of 2, B and z should

vanish.

43

7.1

7. Conclusion

While the normal method takes 3O(n) operations to multiply n x n

matrices, Strassen's method shows that O(n2*8) suffice. In practice,

though, the normal method is faster for n < 100 . Winograd's method,

3while still taking O(n) operations, trades multiplications for

additions and is definitely faster than the normal method for moderate

and large n, with a. gain of up to about 10% for real matrices and up to

about 20% for complex matrices. The gain would be greater for double

or multiple-precision arithmetic. -

Floating-point error bounds can be given for Strassen's and Winograd's

methods, and the bounds are comparable to those for the normal method if

the same precision arithmetic is used. With Winograd's method the necessity

for prescaling can not be emphasized too strongly (see also [12]).

Provided scaling is used, Winograd's method can be recommended, es-

pecially in the complex case, unless very high accuracy is essential. It

is much easier to code than Strassen's method. Possibly Strassen's method

would be preferable when working with large matrices on a paged machine.

Attempts to lower the constant log27 = 2.8... given by Strassen's

method were unsuccessful. A completely new approach seems necessary in

order to bring the upper and lower bounds on the computational complexity

of matrix multiplication much closer together. For matrices of reasonable

size, though, it seems unlikely that any new method could be very much

faster than the known methods on a. serial computer.

44

8.1

Acknowledgement

I would like to thank R. Floyd and J. Herriot for their helpful advice,

and CSIRO (Australia) for its generous financial support.

References

1.

2.

Floyd, R. W. Unpublished notes.

Fox, B. L. "Accelerating LP Algorithms", CACM 12, 7 (July 1969),
384 - 385.

Knuth, D. E. "The Art of Computer Programming", Vol. II,
"Seminumerical Algorithms", Addison Wesley, 1969.

4.

5.

MC Kellar, A. C. & Coffman, E. G. "Organizing Matrices and Matrix
Operations for Paged Memory Systems", CACM 12, 3 (March 1969)
153 - 165. 1

Strassen, V. "Gaussian Elimination is Not Optimal", Numer. Math. 13,
354 - 356 (1969).

6. Wilkinson, J. H. "Rounding Errors in Algebraic Processes", H.M.S.O.,
1963.

Winograd, S. "A New Algorithm for Inner-product", IEEE Trans. C-17
(1968), 693 - 694.

8.

9*

Winograd, S. Unpublished communication.

Randell, B. & Kuehner, J. "Dynamic Storage Allocation Systems",
CACM 11, 5 (WY 1968), 297 - 306.

10

11

Wirth, N. & Hoare, C. "A Contribution to the Development of ALGOL",
CACM 9, ‘6 (June 1966), 413 L 431.

. Bauer, H. & Becker, S. & Gra.ham, S. "ALGOLW Implementation",
Tech. Report No. cs98, Computer Science Department, Stanford Uni.,
WY 1968) l

12. Brent, R. P. "Error Analysis of Algorithms for Matrix Multiplication
and Triangular Decomposition Using Winograd's Identity', to appear.

45

