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On the Addition of Binary Numbers
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Abstract —An upper bound is derived for the time required to add
numbers modulo 2", using circuit elements with a limited fan-in and
unit delay, and assuming that all numbers have the usual binary encod-
ing. The upper bound is within a factor (1+z) of Winograd’s lower
bound (which holds for all encodings), where ¢~0 as n—w, and only
0(r log n) circuit elements are required.

Index Terms—Addition, binary numbers, computational complex-
ity, group multiplication, logic circuits, logical design.

[. INTRODUCTION

Winograd [3] and Spira [2] have considered the time
required to perform group multiplication, using logical
circuits consisting of elements which have a limited number
rz=2 of input lines, and which compute a logical function of
their inputs with unit delay. For a precise definition of the
mathematical model, see [3]. We consider the special case
(also considered by Ofman [1]) of addition of nonnegative
integers module 2", and we assume a 2-valued logic.
Winograd [3] has given the lower bound

o(n) = [log, (2n)] (1)
for the time t(n) required for this addition, and Spira [2] has

n) < I + 10 — -

Here [x] denotes the smallest integer y>x, and |x| denotes
the largest integer y <x.

Since the lower and upper bounds (1) and (2) differ by at
most 1, the problem might be regarded as essentially solved.
Unfortunately, though, the circuit which Spira constructs
to prove (2) is not at all practical, for it has 2" output lines
and at least 2" circuit elements. Hence, it is interesting to
impose the restriction that all numbers (both input and
output) have the usual binary representation. In this paper
we shall show that, even with this restriction, it is possible to
get within a factor (1+¢) of the lower bound (1), where
&¢—0 as n—o0, and the circuit which does this requires only
a modest number, O(n log n), of circuit elements. We shall
only consider addition, although it would be interesting to
consider the computation of other functions, for example
multiplication, under the same restrictions. For a discussion
of multiplication, see [4].

(2)

II. THE “CARRY” FUNCTION

If a,a,_, --a,a, and b,b,_, - b,b, are n-bit binary
numbers with sum (mod 2") d,d,_, ' - d,d,, all numbers
having the usual encodings,then
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di=a;®b; D¢,

where
¢o =0 (ie., false),
¢ =X A (Vi Vciy),
X;=a;Vv b
and
y, = a; A b, 1<i<n).

Here @ means the sum mod 2, and in the usual terminology
¢; is the carry from bit position i, x; is a “carry propagate™
condition, and y; is a “carry generate” condition. From this
formulation we see that the time z(n) for addition mod 2" is
bounded by

n) <th—1)+ K, (3)
where t(n) is the time required to compute
C =X AV (X g AV Vo VX AY) ) ()
and
K — {3 ifr=2
r 2 ifr>2,

Because of the inequality (3), we shall concentrate on find-
ing a good upper bound for t#(n). We never need to use the
fact that x;=0 implies y,=0 when x; and y; arise as above.
Since ¢, of (4) depends on each of x,,, - - -, x; and y,, -, y,,
a simple fan-in argument (see [3]) gives the lower bound

t(n) = [log, 2n)], (5)

and it is also easy to see that t#(n)=1 if and only if r=2n.

ITI. AN UpPER BOUND FOR #(#)

The main result of this paper is the following theorem,
which gives an upper bound for #(n) and hence, by (3),
for t(n).

Theorem I: For any integers k>1 and r>2,

(e 02) < k(k + 1)/2, (6)

Before proving Theorem 1, we need some prelim-
inary results. Lemma 1 shows how we may compute
CulXps Yoo " " 75 Xy, yy) if the inputs x,, y,,-**, x,, y, are split
into p groups.

Lemma I:1f
P
n=qu, p=1, szls
i=1
5 = Z q_p (SO = 0)1
i=1
Xi=x A A Xy 1 +1>
D= X, A AXjyy, (D, = 1, ie, true),
E; = Xs; A(ys.- Vo V{x&'f—ﬁ“l A y-‘:'—l"'l}.”)’
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and

FF=D AE;, forl <i<p,

then

an(ynV‘”v(xl‘/\yl}”')=F1V”'VF;)' (?}

Proof': If the left side of (7) is true, then there is some
J» 1=<j<n, such that y,=--- =y;,;=0, y;=1, x,= ---
=x;=1. Choose i such that s;>j>s;_,. Then D;=1 and
E,=1, so F;=1, and the right side of (7) is true. Conversely,
suppose the right side of (7) is true. Then some F; is true, so
D,=E;=1. Since E;=1, there is a j, s;=j>s;_,, such that
y;=1 and x,=--- =x;=1. Since D;=1, we also have
X,= """ =X =1, s0 the left side of (7) is true.

Lemma 2 is a simple application of Lemma 1. For sim-
plicity we state it in the case where each of the p groups has
the same size g.

Lemma 2: If
n=pg (pq=1)
and
0 ifx <1
L =
&) {[mg, x] ifx>1
then

tn) < 1+ L(p) + max (dg), Lig) + L(p — 1)) (§)

Proof: We may compute the E; of Lemma 1 in time
i(g), and simultaneously compute the X, followed by the
D,, in time L(g)+ L(p— 1) (the worst case is the computation
of D,), when each g;=q. Thus, in time max (t(g), L(q)
+ L(p— 1)) we are ready to compute the F; (in unit time), and
then Fy v - -+ v F, in time L(p).

If g=p'q’, (8) gives an upper bound for t(g) in terms of
t(g"), and this may be substituted into (8) to give another
bound for t(n), and so on. Lemma 3 is the strongest result
that we can get in this way when n is a power of r.

Lemma 3: If a and k are nonnegative integers and
T(x)=1t(r*)—x, then

T(a + kT(a) + k(k — 1)/2) < k + T(a). )

Proof: From Lemma 2 with p=r’ gq=r°, we have
H(r** )< 1+ b+max (1(r), b+c), so
T + ¢) <1 + max (T(c), b). (10)
Now (9) is trivially true if k=0, and putting
b=k+ T(a)

and

¢c=a+ kT(a) + k(k — 1)/2
in (10) gives
T(a + (k + DT(a) + k(k + 1)/2)
< 1 + max(T(a + kT(a) + k(k — 1)/2), k + T(a)),

so the result follows by induction on k.

We are now ready to prove Theorem 1. Since
T(0)=t(1)=1, Lemma 3 with a=0 gives T(k(k+1)/2)
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<k+1. Replacing k& by k—1, the theorem follows by the
definition of 7. Note that if we knew a good upper bound
for #(r*) for some positive ¢, Lemma 3 could be applied in
the same way to give a result like Theorem 1, but perhaps
stronger. In the next section, Theorem 1 is used to obtain
an upper bound for #(n), even if n is not a power of r. While
this is enough for our purposes, we could probably get
better results for a particular # by going back to Lemma 2 or
Lemma 1.

IV. CoNCLUDING REMARKS

Given n>1, we may choose k>1 such that F#*~ 12>y
> plk=DE=212 Clearly then

t(n) < k(k + 1)/2
and so, by (3),

t(n) < 3 + k(k + 1)/2. (11)
An easy corollary is the following.
Theorem 2: For any given £>0 and r>2,
on) < (1 + ¢)log, n (12)

for all sufficiently large n, even if all numbers have the usual
binary representation.

Theorem 2 shows that the lower bound (1) is almost
achievable, for sufficiently large n, even with our restriction
to binary encodings. The circuit constructed by following
the proof of Theorem 1 looks rather like a conventional mul-
tistage carry look-ahead adder, with the number of levels
of look-ahead depending on k. The number s(x) of circuit
elements required to compute ¢, with n=r**"12 in time
k(k+1)/2 can be estimated from the proof of Theorem 1. If
the X; and D; of Lemma 1 are computed in an economical
way, we find that s(n)<7n. Even if n is not of the form
rHE=DI2 we can show that s(n)=0(n), and the number of
elements required to add n-bit numbers in time satisfying
(12) is 0 (n log n). The argument is straightforward, but
rather tedious, so it is omitted.

Finally, we note that Theorem 1 does not give the best
possible upper bound for all k>1 and r=2. If k=2 and
r=3, we may compute z, =y, V(X,A),) and z,=x, A X,
Ay, both in unit time, and then ¢;=x; A (z; v z,) in unit
time, so t=2 rather than 3. The computation of t(n, r) and
7(n, r) for moderate n and r seems to be a difficult combina-
torial problem.
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