Numer. Math. 16, 145—156 (1970)
© by Springer-Verlag 1970

Error Analysis of Algorithms for Matrix Multiplication
and Triangular Decomposition using Winograd’s Identity

R. P. BRENT

Received December 3, 1969

Summary. The number of multiplications required for matrix multiplication, for
the triangular decomposition of a matrix with partial pivoting, and for the Cholesky
decomposition of a positive definite symmetric matrix, can be roughly halved if
Winograd’s identity is used to compute the inner products involved. Floating-point
error bounds for these algorithms are shown to be comparable to those for the normal
methods provided that care is taken with scaling.

1. Introduction

Winograd [8] has given an algorithm for matrix multiplication which involves
only about half as many multiplications as the normal method, although about
50% more additions are required. The algorithm is based on the following identity
for the inner product of two n-vectors, # even:

(1.1) leiyi =.;1(x2i~1 +¥2i) (%2 + Yeio1) —(E+7),
where
n/2
& =.§1x2i—1 Yo,
and

#n/2

U :g:lyh’-lyzi'

(1.1) holds in any commutative ring, but we shall restrict our attention to the
real and complex fields and their limited-precision floating-point approximations.

For matrix multiplication, C =AB say, a number § is computed for each
row of A, a number 7 for each column of B, and then (1.1) is used to compute
the inner products giving C. If 4 and B are # by » matrices, » even, the com-
putation involves §#® +#2 multiplications and 3#3/2 +2# (n —1) additions, com-
pared to the usual #3 and #® —#n? respectively (we shall never distinguish between
additions and subtractions). Hence we can expect a saving of up to 50% in the
computation time, for moderate and large matrices, if a multiplication takes
considerably longer than an addition. This is borne out in practice: for some
experiments with real and complex matrices on an IBM 360/67 computer, and
comparisons with other methods, see [1].

In the next section we shall give a floating-point error analysis of Winograd’s
algorithm for matrix multiplication. The analysis shows that Winograd’s identity



146 R. P. Brent:

(1.1) is practically useful for floating-point computation if, and only if, care is
taken with scaling. We shall then describe numerically satisfactory algorithms
for the L U decomposition of a square matrix with partial pivoting, and for the
Cholesky decomposition of a real positive definite symmetric matrix, using (1.1).
In all these algorithms the use of (1.1) roughly halves the number of multiplica-
tions required, compared to the number required with the usual algorithms.

2. Rounding-Error Analysis of Winograd’s Algorithm

Consider using #-digit rounded floating-point arithmetic to base f=2. We
assume, following Wilkinson [6], that

(2.1) fl{x Xy)=(x X y) (1+¢&)
and

filxty)=x(1+e) £ y(1+ &),
lﬁil _S_%ﬂl*{

If § and ¢ are suitably chosen these assumptions should be valid for any reason-
able computer, and they should also hold for complex arithmetic if ¢ is reduced
slightly.

where

To find the inner product Z x;v; by “Winograd’s method” for even n =2,
we compute

(2-2) w=f—0),

where

n/2
0 =ﬂ(Z (%251 Y2i) (s +Y2ia ))

=113 naiaml).

1=1

and

n=1F (i§y25~1y2¢)-
n—1

If » is odd, the term fI(x,y,) is added to the partial inner product Z X Vi

computed by (2.2) with » replaced by # —1. When w is computed in thls way
we write

w =ﬂW1§1xiyi-

A simple example shows what can happen: take n =2, f =10, t =4, x, =
%p =1.000;0 + 2, y; =2y =1.000;p —2. Then &=1.000,0+4 and 7 =1.000,, —4
are both exactly correct, { =1.000;5 +4 and 6 =1.000,y +4 have small relative
errors, but w =0.000 instead of 2.000. The difficulty lies in forming fl(%,;_; + ¥s,)
and fl(%y;+y,;_,) when |x| and |y| have widely different magnitudes. In the
next section we shall describe how this difficulty can be overcome, but first we
derive some rigorous ‘‘worst case’’ error bounds.



Error Analysis of Triangular Decomposition using Winograd’s Identity 147

For brevity let @ =max |x;|, b =max |y,|, and with an obvious notation write

n/2
ee=&— D Xy, 1%; etc.
i=1

We shall assume that

(2-3) n-3f =1

and let

(2.4) b=t —" fgl; .

t, is chosen in this way to guarantee the useful inequality
(2.5) Bt =14 n

In practice (2.3) will usually be satisfied very easily, and the distinction between ¢
and ¢, may be ignored. The main results of this section may now be summarized
in the following Lemma:

Lemma. The error in the computed inner product s= Z x; y;, for n=1,
is bounded by

(2-6) len| S 2B Tab(n? +3n)

if s is computed in the usual way, by

(2.7) |ew| < &8 (a + b)? (n? +16n)

if s is computed by Winograd’s method as described above, and by
(2.8) lew| = §B Habn*+17n)

if s is computed by Winograd’s method and a =b.
To prove (2.6), we have (see, for example, [6])

(2.9) ey =2 X; Y&,
1

where, writing y for £ ',
(2.10) e = (1 +9)" —
and

le;| S (1 +p)"T2i—1 for 2ZiZm.
Thus
(2.11) |sN|gab[z‘((1+y)k—1)+(1+y)"—
For 2<%k <%+ 2 we have

kR—2 3

(2.12) (1 — 3 '}/) =5

by assumption (2.3), and

(2.13) (149t —1sky + 20 e (s 227,



148 R. P. Brent:

so from (2.11), (2.12) and (2.13) we have

(2.14) | ey] gyab("2+32"_2>(1+ ).

Now (2.6) follows from (2.5) and (2.14).

To prove (2.7), we first suppose # is even, say #» =2m, and proceed as in the
proof of (2.6). By (2.3),

(2.15) my <1,

so the right side of (2.12) may be replaced by & for 2<% <m 2, and in place
of (2.14) we get

(2.16) o] < Byar(me+3m —2) (14252,

and similarly

(2.17) |&] < By B0m +3m —2) (14 252,
Now
(2.18) |ee| < ya2m?

1s clear if m =1, and follows from (2.15) and (2.16) if m > 1. Also

(2.19) |&] S a?m + g,
SO
(2.20) GEs azm(1 + i”siz)’

and using this and the corresponding bound for # gives

(2.21) |&] + |n| g(a2+b2)m(1+~6—’57—‘1).
Since = fl(&+m), we have
(2.22) e = el + &) + (€] +1nl)-

Collecting our results (2.16), (2.17), (2.21) and (2.22) gives

@2) el Sp@ 48 |m(1+ 5]+ ponr+3m—2) (14222,

but m < 3 (m?+3m —2) for m =1, so

(2.24) o] < 3y (@2 +8) m2 + 5m —2) (14 257,
In a similar fashion we may show that

(2.25) | es| < 3y (a+b)2(m2+7m—2) (1+-7~”61’1).

Now

lew| = | eo| + || +v(60] + L)),

SO

(2-20) |ew| = (leo] + | 2| +my[(a+b)*+a*+b2]) (1 +).



Error Analysis of Triangular Decomposition using Winograd’s Identity 149

The inequality a2 + 5% < (a + b)? and (2.24) to (2.26) give
(2.27) |ew| Sy (a+b)2(m2+8m —2) (1+3my),

and (2.7) now follows from (2.5) and (2.27). If a =56 we can derive the slightly
stronger result (2.8) in the same way. Finally, if # is odd, say » =2m 1, the

n—1
right side of (2.27) bounds the error in forming the partial inner product '21 X Yir

and it is easy to show that (2.7) holds after the addition of the term fl(x,y,).
(If n =1 then (2.7) is trivial.) (2.8) also holds if # is odd, by a similar argument.

(2.7) shows that Winograd’s method is very bad numerically if a/b is either
large or small compared to unity, just as the example above led us to expect,
for then (a +56)2>ab. By comparison, the bound (2.6) shows that the ratio a/b
1s of no consequence if the normal method of forming inner products is used.

3. The Necessity for Scaling

Ignoring the simple cases 4 =0 and 6 =0, there is an integer A such that
p~t < p*alb< B If we replace x by f*x, computed without rounding errors,
and then use Winograd’s identity (1.1) as above, multiplying the final result
by 7% (2.7) shows that the error g in the computed inner-product satisfies

(3-1) lew| = 2+ B+ 574 f1hab(n® +16m)/8.

This is of the same form as (2.6), and lacks the term (a +)? of (2.7). If we want
the matrix product C =4 B, even the crude scaling 4 < %4, B<—-l3—"B, where

2
prs ?’?j,%— < B, and then the application of Winograd’s algorithm, will give a
result AB -+ E with

(3.2) max|e;;| < (B+1)2"abn®+16n)[8,

where @ =max |a;;| and b =max |b,;|. Hence Winograd’s method with scaling
is nearly as accurate as the usual method (without accumulation of inner products
in double-precision), and the scaling takes time O (n%) compared with the total
time O (n3). On the other hand, we have already shown that, without scaling,
Winograd’s method can lead to disastrous rounding errors. The general necessity
for scaling, although fairly obvious, does not seem to have been mentioned by
other authors, e.g. Fox [2] or Winograd [8], when they advocate the use of (1.1).

4. LU Decomposition using Winograd’s Identity

Winograd [8] suggests that his matrix multiplication algorithm could be
used to solve systems of linear equations by partitioning. This idea seems im-
practical for floating-point computation, for it is not clear how any form of
pivoting could be used. As shown below, though, it is possible to use the identity
(1.1) to roughly halve the number of multiplications required for the triangular
decomposition of a matrix by Gaussian elimination, and we may easily use partial
pivoting. Because of the pivoting and a scaling device described below, we can
obtain an error bound which is satisfactory unless the growth factor g is too
large. This is a rare occurrence in practice [5, 7], and in any case g affects the

11 Numer. Math., Bd. 16



150 R. P. Brent:

error bound for ordinary Gaussian elimination with partial pivoting in the same
way. A compact form of Gaussian elimination similar to Crout’s or Doolittle’s
method is used, but inner products are evaluated using (1.1). We obtain a de-
composition P4 + E = LU, where P is a permutation matrix, L is lower triangular
with unit diagonal, U is upper triangular, and the error matrix £ would vanish
for exact computation. L and U overwrite 4 in the natural way, and the only
extra storage required is for four n-vectors p, d, £ and » to be described later.

We shall first describe the algorithm by giving an ALGOL 60 procedure for
the triangular decomposition of a real square matrix, and then give some com-
ments on the algorithm:

procedure lu (a, p, n, pmin, g);
value #; integer »; real pmin, g;
integer array p; array a;
comment
Input to procedure lu:
a: an array [1:#s, 1:n] representing a real matrix 4,
n: the order of 4.

Output from procedure Ju:
p: an integer array [1:#] representing a permutation matrix P thus:
(P)ij =11iff p[i] =7,
pman: the absolute value of the smallest pivot,
g: the largest absolute value of elements of U,
a: the input array is overwritten by the lower triangular matrix L (with
unit diagonal implicit) and the upper triangular matrix U in the natural
way. We have LU =PA +E, with a bound for the error matrix E
given in Sec. §;
begin
integer ¢, i1,12,7, k; reale, ¢, u, v;
Boolean cven; array x, y[1:n];
real procedure ip (i, k, m); value 7, k, m; integer i, &, m;

m
comment ip returns fl, D a;; a;, as defined in the text;
j=1

begin
real s; integer 7;
comment assume even = true iff m is even;
s:=0.0;
comment the following “inner loop”’ could be machine-coded for greater
efficiency. Note that only [—’;i] real multiplications and 3 [f;]
real additions are involved;
for j := 2 step 2 until m do
si=s+(als,7j—1]+alf, Rl) x(alZ,j1+alf —1, k));
1p = s — (x[¢] 4+ y [k]) + (if even then 0.0 else a [z, m] X a[m, k))
end ip;
even := true; g:= pmin = 0.0;
for i :=1 step 1 until » do



Error Analysis of Triangular Decomposition using Winograd’s Identity 151

begin x[¢] := y[¢]:= 0.0; p[¢{] ;=17 end;
for ::=1 step 1 until » do
begin

CI:

C2:

11*

tl:=1+4+1;12:=1—1; ¢:=0.0; k:=1;
comment find pivot in column ¢: the usual partial pivoting;
for j:= 1 step 1 until z do if e < abs(a[7, i]) then
begin 2 :=4; e¢:=abs(alj, 7]) end;
if 2> ¢ then
begin j: = p[k]; plk]:=p[il; plil:=17;
ti=x[R]; x[R]:=x[¢]; x[¢]:=¢;
comment we actually interchange rows ¢ and k&: whether this is the
fastest method will depend on the machine and compiler
used;
for j:=1 step 1 until » do
begint:=als,7]; a[s,7):=al(k,7]; alk,j]:=1t end
end;
t:=ali,1]; comment ¢c=abs(f);
if 2 =1 or pmin> ¢ then pmin:=e¢;
comment find row ¢ of U except for u,,;
for % := 41 step 1 until » do
ali,Rl:=ali, k] —ip (s, k, 12);
even .= 1 even; ¢.= 0.0;
comment the following scaling is explained in Sec. 5;
for j:= 1 step 1 until » do if e < abs(a[z, 7]) then
e:=abs(a[z,7]);
ifg<ectheng:=¢;
comment for base 8, we need only choose # =01f ¢ =0, u = ﬁ’l otherwise,
where 4 is an integer such that fle S<u?<fle, and this is
what we assume in Sec. 5. Here we avoid machine-dependence:
see the note following Eq. (5.16). We assume that sg7¢(0.0) =0.0
exactly;
wi=sqrt(e); x[t]:=u;
comment « is referred to as 4, in Sec. 5, while x corresponds to & and
y to 7. To save space, we save # in x[¢] and do not need an
array d{1:#n];
comment although # is a floating-point number there is no need for a
tolerance here: we only need to avoid division by zero;
if 2 <4=0.0 then
begin for j: =i step 1 until w do a[7, j]:=a[s, 7]/u;
if £ 4= 0.0 then
begin v:= u/t;
for j:=11step1 until ndo a[j,¢]:=vXalj, 7]
end
end;
if cven then



152 R. P. Brent:

begin comment every second step we update £ and #, which are needed
to compute inner products by Winograd’s method;
for j: =11 step 1 until » do
begin x[j]:= x[j] +alj, ¢] Xa[y, 12];
yil:=yll+ali,jlxXali2,1]
end
end;
comment find #,., ;, and column ¢ +1 of L;
for k2 :=11 step 1 until » do
alk,il]:=a[k, 11} —ip(k, 11, 17)
end;
comment unscale L and U. If we had chosen d;=p* above, then scaling
and unscaling could be done by exponent modification;

for i := 1 step 1 until » do if x[¢] == 0.0 then
begin u := x[1];
forj:=istep1 untitndoali,j]:=uxaliq];
forj:=i+1steptuntilndoalj,s]:=alf,i]ju
end
end /[u;

Procedure /u gives a triangular decomposition of a real matrix. For complex
matrices a straightforward transliteration is possible, though it is more economical
to replace |x 4+7y| by |x| 4+|y| (at the expense of increasing the error bound
slightly).

If the triangular decomposition of A4 is to be used to solve a system 4 x =b,
it is desirable to try to minimize the condition number of A by row equilibration
before calling procedure lu (see [5]).

With exact arithmetic the procedure /u would give a decomposition PA=LU.
If A is nonsingular then PA uniquely determines L and U, provided L is assumed
to have unit diagonal. Because of the use of Winograd’s identity (1.1), the LU
decomposition takes #73/6 4O (n?) real multiplications instead of the usual
n3[3 +0 (n?), and #3/2 4O (n?) real additions instead of #3/3 +O (n?).

Finally, if pmin, the absolute value of the smallest pivot, is zero or below
rounding-error level, then A is singular or nearly singular, but this does not
alter the relation LU = PA + E, with the bound for the error matrix E given
in the next section.

5. Error Analysis of the LU Decomposition

We shall now derive bounds for the elements ¢;; of the error matrix E defined
by LU =PA +E. As well as the assumptions of Section 2, we assume that

flx #y) = (x #y) (1+ &) = (x #)/(1+ &),

where it is any of the arithmetic operations +, —, X, /, and |¢;| <34 4"~ The
additional assumptions simplify the analysis, but are not really necessary: with-
out them the term 15# in (5.15) would have to be increased slightly.



Error Analysis of Triangular Decomposition using Winograd’s Identity 153

Let
5 1 ’ 0 1f di——‘_'o)
(5-1) Uij = u;;/d; otherwise,
mij=my;d;,
and
ﬂ;j= (PA)ii’

so u;;, m;; and a;; are just the elements of the matrices U’, L’ and A’ satisfying
L'U"=A"+4 E. Note that

(5.2) m;ku;jzmikukj

holds even if 4, vanishes, for then both sides of (5.2) vanish.

The ““growth factor” g=max |u;;| will be important in the analysis below
(this is the g produced by procedure /u). Strictly, the ““ growth factor " is g/max | a, ]|,
for we do not need to assume that max | a;;| =1. The analysis following is similar
to that in [5].

By definition,

min(t,7)

(5.3) “z{j-f"eij:k;l M U,
but for 2 <7 we have
i—1
(5.4) u;; =1l (a£j~fle m:kul;i)'
k=1

Now |m,,| =1 by the pivoting, and |d,| <B¥gt if scaling is done as described
in comment CI (see comments CI and CZ2 in the ALGOL procedure above), so

(5.5) |mix| < Bhgt.
Also, if d, 40 then
| 0as| = |11/
= | wn x|} a2,
so
(5.6) | urj| = pgt
by the scaling, and (5.6) also holds if d, =0, for then u;;=u, ;=0.
Hence, by (2.8) with a =b =pg%g* and » replaced by + —1, we have

i—1 i—1
(5.7) fhyzmikuéf—-zm,‘kuéf =3p*hg(i*+15: —16)[8 for =2,
k=1 r=1

but from (5.4)
i=1
(5.8) %-,-(1+8)=a£,-—ﬂme{~ku;,~,
k=1
where |¢| < $4'~". (With the weaker assumption about addition the argument

becomes more complicated here, as (5.8) may not hold.) Since |u;;| =g <38 g/4,
we have

1—1
(5.9) A — i — X miuyi| =36%hg (124151 —15)/8
k=1




154 R. P. Brent:
for 2=i =<7 <n. Now u,;=m;u,;, so from (5.2), (5.3) and (5.9),

(5.10) ;| 3B 4g (i + 155 —15)]8

for 2<i<j<n. If i=1 then u;;=a;;, so ¢;;=0 and (5.10) holds a fortiori.

In a similar fashion we can bound e,; for :>7. We have

i1
(5.11) Mij =\ | aij—flw 3 mi uh
fl k=1 otherwise
. . uii
for1=s7<1<mn, so
i—1
(5.12) myiu; (14 ¢) Zaij—ﬂwkzlmikukj;

where |¢| <. (If u;;=0 then both sides of (5.12) vanish.) Using (2.8) as
before, this gives

-1
(5-13) Ajj—MijUjj —kZJ_mik”ki =38 hg (24157 —14)/8

for1=<j<i<mn. (5.2), (5.3) and (5.13) give

(5-14) le;;| =36%7 g (1> + 157 —14)/8
for1sj<i<n.
From (5.10) and (5.14) we have the uniform bound

(5.15) leijl =3p*hg(nt+15%)/8,

1=1,7 <, for the elements of the error matrix E. Comparing (5.15) with the
bound

(5.16) eij| =B g +n)/4

for the usual Crout decomposition, we see that our bound is worse by a factor
38/2+0(1/n) as n— oco. The f in this factor may be removed if, after comment
C1, we choose d;,= fl(e?) (as is done in the ALGOL procedure above: see com-
ment CI). Multiplication and division by &, will introduce further rounding errors
now that 4, is not necessarily an integral power of 8, but these can be accounted
for by increasing the term 15# in (5.15) to 21#, i.e. with this modification we
have a bound

(5:17 Jesf] S 6 "g it +21n).

The factor 34/2 is not of great significance in practice, for both (5.15) and
(5.16) are very pessimistic bounds because of the statistical effect of cancellation
of errors.

The reason for the scaling steps should now be apparent. Without them we
could guarantee only that |m,;| =<1 and |«,;| =g, so a factor of (14-g)? would
appear in the error bound. In fact, using (2.7) with a =1 and b =g, and proceeding



Error Analysis of Triangular Decomposition using Winograd’s Identity = 155

as above, gives the bound
(5.18) le; | S 3B 7R (14 2)2 (2 +14n),

so for any hope of success we would have to scale 4 so that max |a,;| =1, for
otherwise g could be arbitrarily large or small compared to unity.

6. Cholesky Decomposition using Winograd’s Identity

It is clear from the above discussion of the LU decomposition that, if 4 is
real positive definite and symmetric, then we can obtain a decomposition 4 =L L%
with #3/12 4O (»?) multiplications and #%/4 + 0O (n?) additions, instead of the usual
#3/6 40 (n?) of each, by using (1.1) to evaluate the inner-products involved. We
need only keep numbers &, ..., &, corresponding to the rows of L, and update
them when necessary. There is no need for pivoting, and as a;, =m?, + --+ +m?;,
all the elements m,; of L are bounded. The error analysis is similar to that in
Section 5 above and in [5], so we merely state that if LL" =4 +E, |a;;| <1,
and the square roots are computed with a relative error bounded by '~ then

(6.1) le; ;] S &2+ 15n0).

7. Concluding Remarks

We have shown above that Winograd’s identity (1.1) is useful for the floating
point computation of inner products in certain circumstances, provided care is
taken with scaling. In particular, matrix multiplication, the LU decomposition
of a square matrix, and the Cholesky decomposition of a positive definite sym-
metric matrix can be performed with about half the usual number of multi-
plications, and with nearly the usual accuracy. There is little point in accumulating
the inner products on the right side of (1.1) in double-precision unless the ad-
ditions x,,;_; +V,; and x,, + y,,_, are also done in double-precision.

Klyuyev and Kokovkin-Shcherbak [3] have shown that, in general, #3/3 multi-
plications are required to solve the » by » system 4 x =5, if we are restricted
to operations on rows and columns as a whole. Since this system can easily be
solved in O(n?) operations once the LU decomposition of A4 is known, their
theorem now appears too restrictive to have much practical significance.

Strassen [4] has shown that matrix multiplication can be performed in
O (n*8-) arithmetic operations (2.8...=log, 7). For sufficiently large #, his
algorithm must be faster than any other known method. On the other hand,
practical tests indicate that Winograd’s algorithm, even with the necessary
scaling, is faster than Strassen’s for # < 250, though the precise changeover point
will depend on the machine and compiler used (see [1]), and there is no doubt
that Winograd’s method is easier to program than Strassen’s. Finally, while a
satisfactory error bound can be given for floating-point matrix multiplication
by Strassen’s method, this is not so for his method of matrix inversion or solution
of systems of equations, for with his method no pivoting is possible.

Acknowledgement. 1 wish to thank Drs. G. Forsythe, J. Herriot and J. Wilkinson
for their helpful advice, and CSIRO (Australia) for its generous financial support.



156 Brent: Error Analysis of Triangular Decomposition using Winograd’s Identity

W

o

References

. Brent, R. P.: Algorithms for matrix multiplication. Tech. Report CS 157 (March

1970), Computer Sci. Dept., Stanford Uni.

Fox, B. L.: Accelerating L P algorithms. CACM 12, 7 (July 1969), 384 —385.
Klyuyev, V. V., Kokovkin-Shcherbak, N. I.: On the minimization of the number
of arithmetic operations for the solution of linear algebraic systems of equations.
Translation by G. I. Tee: Tech. Report CS 24 (June 1965), Computer Sci. Dept.,
Stanford Uni.

Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354 —356
(1969).

. Wilkinson, J. H.: Error analysis of direct methods of matrix inversion. JACM 8,

281 —330 (1961).

— Rounding errors in algebraic processes. London: H.M.S.0.; New Jersey: Pren-
tice-Hall 1963.

— The algebraic eigenvalue problem. Oxford: Clarendon Press 1965.

. Winograd, S.: A new algorithm for inner product. IEEE Trans. C-17 (1968),

693 —694.

R. P. Brent

Computer Science Department
Stanford University

Stanford, CA. 94305, U.S.A.



