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1. INTRODUCTION

We consider the general unconstrained minimization problem: given & fumction
f:8"+R, find an approxisste local minfmum of f. In many préctical prablems it
ctly, so methods

fs difficult ar impossible to Find partial derivatives of f d4i
. Several such

which do not make explicit use of derivatives of f are desir
methods have been proposed: the most successful ones appear to be
(1) Stewart's modification of the variable metric method {Davidan (6],
Fletcher and Powell [E], Stewart [24]},
{11} FRosenbrock's method as medified by Davies, Swann [25] and Campey and

(i11) a methad proposed by Powell [20].

Qur aim is to describe a method related to Powell's but avaiding some of the
difficulties of Fowell's method, Humerical results suggested that our method fs
mare efficient tham Powell's or Rosenbrock's, and comparable to Steéwart's

{see §5 and §6).

This is a summary of Section 7.3, 7.4 and 7.7 from the author's forthcaming
book, Algorithme for Mimimization Without Depivatives, to be published by
Prentice=Hall, Inec. dn 1972,
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In §2 we give a brief description of Powell's basic algorithm and Powell's

criterion for accepting mew search directions. Then, in %3, we outline the 1dea

S are mentioned in 54, Finally,

of our algorithm. Some important deta
numerical results are given in §%, a comparisen with sther methods §5 made, and

same conclusions are drawn,

7. POWELL'S ALGORITHM

In this section we briefly describe Powell's algorithm for minimizatian
without derivatives. The algorithe is described more fully by Powell [20], and
4 small error §s pointed aut by Zamgwill [27]. MNumerical results are given by
Bax [2], Fletcher [7] and Kowalik and Oshopne [14). A modification, suitable

for use on a parallel computer, i5 described by Chazan and Miranker [4].

We say that an algarithm is quadratically convergent if it Finds the minimum
of & positive definite quadratic functisn inm a finite nusber of function
evaluations when eéxact arithmetic 5 used. Powell's method s a modification af
& method proposed by Smith [23]. Beth methods ensure quadratic convergence by
uting some properties of cenfugate dircctions (see Bremt [3]). (Vecters v and
voare said te be conjugate With respect to the symmetric matrix A iF mqhm = 0.]

An fmportant property af conjugate directions 13 that the minimum af & positive

definite quadratic fumction fix) = mﬂhm - Nmﬂm * ¢ may be found by performing

Tinear searches (i.e., one-dimensional minimizations) in = 1% arly independant

directions which are pairwise conjugate with respect to A,

Powell's basic algarithm

Let x be the initial approximation te the minimum, and let Uyee-vou, be the

columns of the fdentity matri One iteration of the Basic algariths consists

of the follewing steps:

1. For d=1,...,n, compute b, to minimize ﬂhME.H + mmcn+. and defipe

. = 3 * .
X mul_ _mm__._
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2. For f=1,...,n-1, replace u, by Yiey-

3. Replace v, by u: " K-

1. Compute £ to minimize mnm- + mm:u. and replace x,oby x o+ By .

Fer & general {nom-quadratic) function, the iteration is repeated until some
stopping criterdon s satfsfied, If f is quadratic and l<ksn, them it may be

shown that Yyofagreeel, ArE pairwise conjugate after & iterations {Brent [3],

Powell [20]F. (Steps I to 3 of the first iteration may be omitted: see Brent
[3].} After m iterations, the minimum of & guadratic function is reached

provided v ,...,u are Tinearly independent, which is true §f B, F 0 at each

iteratian.

The problem of linear dependence

r more iterations of

Zangwill [27] pointed out that 9, may vanish for one
the basic algorithm, even if § i% quadratic. This results in the directions
Uyeee-at Becoming linearly dependent, and from then on the search for & minfmum
1s restricted to a proper subspace of R". Even though it is unlikely that B8
will vanish ecxactly, Powell discowered that the directions Uyeeeoau often
became nearly linearly dependent. Thui, he suggested that the new direction
LI should be uied, and one of the old Wyeeseally discarded, only if this did

In * %
not decrease the value of _anﬂ*<ra....wxu_, where v, = ﬂmmrmmu. u,

P

i%l,.0.0%, and A is an approximetion to the Hessian matrix of F.  ([Powell
estimates munmm during a Timear search in the direction u;o b With this
modification the algarithm is quite successful, at Teast if n is small (see Bax
[2] and Fletcher [7]), but the desirable property of quadratic convergence is
Tost, for it can easily happen that 2 complete set of conjugate directiams fs

never built wp,

In the next section we describe 2 different way of avaiding the problem of
Tinear dependence of the search directions. The numerical results given in §5

suggest that ocur methed of ensuring independence 15 preferable to Powell's,
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bangwill [27) proposed & simpler way of ensuring independence, but the numerical

caperiments of Rhead [21)] show that Powell®s method 1s preferable to Tangwill's,

3. RESTARTING WITH PRINCIPAL VECTORS

The simplest way to aveid linear dependence of the seareh dircctions with
Pawell's basic algorithm, and retain guadratic convergence if B, P D, 15 ta
reset the search directions to the columns of the identity matrin after BVEFY =
{or m+l) fterations of the hasic algirithm. A similar restarting device s
suggested by Fletcher and Reeves [9] for the confugate gradient method, and
some Farm of restarting §5 in fact necessary to emsure superlinear convergence
{Crowder and Wolfe [5]}. For other methods restarting may slow down convergence,
at Teast for approximately guadratic functions, because infaormation built up

about the functions 13 periodically thrown away.

Instead of resetting U » Hmu_..,.mau to the identity matrix, we could equally
well reset U to any orthogenal matrix 0. To avoid discarding wseful information
about f, we choose Q $o that Uyween sy remain conjugate 1f f i35 quadratic.

--e9, are computed on the assumption that f §% guadratie,

Frincipal wvectors 1,

and U is reset tg Q = [g,+--.59,]. The motivatien for this procedure may be
sumnarized thus:

ew search

%) [f the quadratic approximation to f is good, then the
directions are conjugate with respect te & matrix which is ¢lose
to the Hessian of f &t the minimum, so subsequent iterations giwe
fast convergence.

(11} Regardless of the validity of the quadratic approximatien to f.
the neéw search directions are arthogonal, se the search for a

inimum can never become restricted to a subspace.

The extra computation invelved

Finding the principal axes does not reguire any extra function evaluations,
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but it does invalve finding an orthegonal set of eigenvectors for a symmetric

matrix of order w. This requires about Ge' multiplications, and a similar

nunber of additions, 1f done &5 suggested in §4. Since the principal sxes are
found only once for every m° linear minimization, and & linear minimization
requires about 2.25 function evaluations {Brent (3]}, the extrs computation is
Tess than 3n multiplications per function evaluation. The evaluation of a
nentrivial function of » varfables is likely te require considerably more than

Ir multiplications, so the averhead caused by our madification is mot excessive.
Alsa, 1t may be worth paying a little for the principal axis reduction, for the
extra information about f is often of interest {Brent [3], Welder and Head [17]1.
rincipal vectors

Finding the

Suppose the fx) = mﬂrm = qum #c 15 a positive definite quadratic functian,
although A, b and ¢ may not be known explicitly, [f a iterations of Powell's

basic algorithm are performed, and at each iteratfon & # 0. then we obtain »
T
AD = D,

Tinearly independent conjugate directions u peaeall By conjugacy,
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where U = ﬁm...,.,m:_ and D s a diagonal matrix with positive diagonal elements
d,. The d, may be estimated, without any extra function evaluations, from the
quadratic term in the parabola which was fitted to perform the most recent
1inear search in the direction .

T

Let ¥ = UB and H = &7'. Since U is nonsingular and U AU = [, we have

Woewn™u" oo™ The mateix v i3 easily computed fram U fn ' multiplications

T

and » square roots, but the computation of V¥ is more expensive, and can be

avoided: see 84,

Our aim is to find the principal axes of the quadratic function fF, f.e, to
find an orthogonal matrix 0 such that nﬂra = &, Whare A = n‘buﬂymu. Thus, the
columns of  are just eigenvectors of A, with corresponding eigenvalues

p_..,.,wx. and we may assumeé that i o 3h .

4. USE OF THE SIMGULAR VALUE DECOMPOSITION TO FIND § AND &

The obvious way to find  and A i to compute M = th explicitly, and then
find § and A such that Q'HQ = ™' by finding the eigensystem of H. If the
condition number hofa, s large, then rounding errors may lead to disastrous
errars in the computed small eigenvalues of H, and fn the n¢11nwwnun‘=u
elgenvectors, even 1f they are well-determined by ¥. Thus, it may be necessary
te compute H, and find its efgensystem, using double-precision arithmetic. This

T

difficulty can be avoided 1f, instead of forming H = V¥, we work directly with

V. and thui aveid squaring the condition Aumber of the praoblem.

Suppose that we find the singular value decomposition [SVD) of ¥, f.e. find
orthogonal matrices § and R such that 4-1: = [, where [ = diag{e.] 5 2 non-
negative disgonal mateix (Golub and Kaham [11]). Then #”' = glHg «
Aaq¢wvﬁn4¢qu = 7%, sa § is the desired matrix of efgenvectors of A, and the

eigenvalues A, are given by 3, = um.u. Hote that the matrix R is not requir

and it is not necessary to compute ¢¢ﬂ,

Since it is desirable that the computed matrix § should be close to
orthogonal, we suggest that § and | should be found by the method of Golub and
Refnsch [12]. This fnvelves reducing ¥ to bidfagonal form by Householder

transformations {Householder [13], Parlett [18]), and then computing the S¥D of

the bidiagonal matrix by a variant of the QR algorithm {Francis [10],
Kublanovskaya [15]).

Brent [3] compares the computation fnvolved in finding 0 and A via
{i)  the SVD of ¥ as described abave, and
(ii) finding H and its eigensystem, using Householder's reduction tao
tridiagonal ferm and then the QR algerithm {Bowdler, Martin, Refnsch
and Wilkinson [1], Householder [13], Martin, Reinsch and Wilkinson
[16], Wilkinson [26]}.
The first method is only about twenty percent slower than the (numerically



20 21

age fTor only a few {61) Sinqular {Powell [19]}
flad = (x 4105 0% » 5 -a )7 + (x,-20,)" + 100k -x )", starting from

inferior) second methed. Both methods require tomporary st

n-yectors, apart from the matrix ¥V which i overwritten by (.
13, -1, 0, uvq. This function is difficult to minimize, and convergence

Automatic scalin appears to be only linear, because the Hessian matriz at the minimum

{m = mu is doubly singular, It is interesting to note that the cutput

Powell's algorithm has the desirable property of being independent of scale from our program would strongly suggest this singularity if we did not

changes for the independent varfables (except for the stopping critericn]). With know it in advapce: after 219 function evaluations, with mnmq » T.ETx1DCY,

our algorithm, scaling has the effect of replacing the matria V by s7'y, where 3 the computed cigenvalues L. were 101.4, 9.99%, 0.0037%0, and 0.001014.

is a positive diagonal matriz. If 5 is chosen so that the rows of 5 'V are of {The exact efgenvalues of the Hessian at the minimum are 101, 10, 0 and 0.}

equal length {Wilkinson [26]}, then our algorithm, 1ike Powell's, is independent fiii) Chebyguad

of scale changes, For further details, see Brent [3]. fix) is defined by the ALGOL procedure of Fletcher [7]. Gince the

have mot corrected a small error

minimization problem is still walid, w

§. HNUMERICAL RESULTS AND COMPARISON WITH OTHER METHODS in this procedure, which does not compute exactly what Fletcher intended.)

rison with our ather test functions, this function is fairly

By com
The algorithm outlined above has been tested an IEM 360 and POP 10 computers easy to minimize, Initially we take x; = £/(r¢l} for i=l.....%.
with machine precision 16 '* and 27°% respectively. For a description of the {iv) Hatson (Kewalik and Osborne [14])

linear search routine, stepping criterion, other important detafls of the ) . :
1Hmu LI (x,-x]-1}

implementation, and am ALGOL program, see Brent [3].

T (T et 1’
- - x = L]
mw.m Ji=

In Table 1 we give some representative numerical results obtafned on an IBM

360/91 computer. For various test functions described below, the table gives starting frem x = 0. This function arises when a polynomial of degree

the number of function evaluations required by our methed (B) to reduce f{x) to n-1 15 fitted mu nwwﬂnu nste a solution of the differential equation
within 10°'" of §ts minfmum value. For purpases of comparisen, we alsc give the dzfdt = 1+2z® for t ¢ [0, 1], with z{0) = 0. For n=6, Kowalik snd

number of function evaluations required by Powell's method (P}, Stewart’s method Osborne [14] report that Powell's method had only reduced flx] to

[5), and Rosenbrock's method as modified by Davies, Swann [25], and Campey (R), 2.8434 x 107" after 700 function evaluation, but min flx) = 2.28767 x 1077,
where available. The entries have been estimated by interpelation from results 56 our method is st least twice as fast as Powell's here, The Watsan
tabulated in Breat [3], Fletcher [7] and Stewart [24]. The test functions problen for «=9 is very i11-conditioned, and 1s a good test for a

are: minimization procedure, although a bad example of how to solve a

{1) Resenbrack [22] differential equation! For =e9, min flx) = 1.39976 & 107"

flx} = 1000x,-x)® + (1-x,)", starting from x = -1.Z, x, = 1.0. This is

1-known function of two variables with a parabolic walley.
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Function b _ 3 [ w 1

|

L _
fosenarock 112 m 150 181 | 144
Singqular ! HET] Lo=235 185 | »a07
Chebyguad, m=2 24 il 4 _ 2%
Chebyquad, n=d 1 74 79 139 * 52
Chebyquad, s=8 gz 522 T34 7
Aatson, ne@ 316 *>700 7 { T
Watson, n=% 1184 K ) 3

#ble 1: Function evaluations required to reduce f{x} to within
107" of its minieum value, for our method (B}, Powell's

ethad (P}, Rosenbrock's method (R} and Stewart’s

method (5],

6. COMCLUDING REMARKS

Powell [20] observes that, with his determinantal criterion for accepting mew
search directions, there §s 4 tendency for the new directions to be accepted less
often as the number of variables incresses, and the quadratic convergence

preperty is lost. Our aim was to aveld this difficulty, while using basfcally

the same method as Powell and Smith [23] to generate conjugste directions.

The numerical results susmarized fn Table 1 suggest that eur algeriths is
faster than Powell's, and comparable to Stewart's, if the criterion 1% the
number of function evaluations required te reduce 1Amu to a certain threshold.
Also, our algerithm scems to be reliable even for wery ill-conditioned problems
Tike Watson (s=9], while Stewart's breaks down because of numerical difficulties
on some functions (e.g. the Resenbrock and Singular functions: see Stewart [24]).
Howewer, we Lhould not try to conclude too much from the numerfcal results,

espectially as the results for different methods have been obtained on different
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computers and with different linear search procedures.

Since our algorithm keeps on performing linear searches in n orthagana
directions, it must converge to s local mimimum under conditions similar to
those which ensure convergence of the method of co-ardinate search [ignaring

the effect of rounding errers). It is plausible that our algarithm converges

superlinearly ff the Hessian matrix of £ {s posftive definfte at the minimum
but we do not have a proof of this. [n numerical examples convergence appears

to be superlinear while the effect of rounding errors is negligible.
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