AN OPTIMAL SECANT METHOD FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS

R. P. Brent

We describe an efficient algorithm for finding an approximate solution of a system of nonlinear equations. The algorithm uses function, but not derivative, evaluations.

Suppose that x_0 , x_0' are distinct approximations to a zero x^* of the system f(x) = 0 of n nonlinear equations in n unknowns. Let k be a positive integer chosen as described below. The algorithm S_k generates sequences (x_i) and (x_i') with limit x^* , provided the Jacobian of f is nonsingular at x^* , satisfies a Lipschitz condition, and the approximations x_0 and x_0' are sufficiently close to x^* . If x_i and x_i' have been generated, then x_{i+1} and x_{i+1}' are found in the following way: if $f(x_i) = 0$, then $x_{i+1} = x_i'$, otherwise

- A. The unique orthogonal matrix $Q_i = +(I 2u_i u_i^T)$ such that $x_i' = x_i + h_i Q_i e_i$ is found. Here $h_i = \|x_i x_i'\|_2$, u_i is a unit vector, and e_i $(j = 1, \ldots, n)$ is the j-th coordinate vector.
- B. The matrix A_i whose j-th column is $A_i e_j = [f(x_i + h_i Q_i e_j) f(x_i)]/h_i$ for $j = 1, \ldots, n$ is found. A function evaluation may be saved by making use of the previously computed value of $f(x_i^i)$.
- C. Let $y_{i,0} = x_i$, $J_i = A_i Q_i^T$, and compute $y_{i,j} = y_{i,j-1} J_i^{-1} f(y_{i,j-1})$ for j = 1, ..., k.
- D. Let $x_{i+1} = y_{i,k}$ and $x'_{i+1} = y_{i,k-1}$.

Continued (pg. 2 of 'An optimal secant method ...')

Method S_k requires n+k-1 evaluations of f for each iteration of steps A to D after the first, and the order of convergence is $(k + (k^2 + 4)^{1/2})/2$. Hence, k is chosen to maximize the efficiency $E(S_k)$ given by

$$E(S_k) = \frac{\log((k + (k^2 + 4)^{1/2})/2)}{n + k - 1}$$
.