THE COMPUTATIONAL COMPLEXITY OF ITERATIVE

METHODS FOR SYSTEMS OF NONLINEAR EQUATIONS

Richard Brent

Mathematical Sciences Department IBM Thomas J. Watson Research Center Yorktown Heights, New York

I. INTRODUCTION

Suppose that an iterative method M generates successive approximations x_0, x_1, \dots to a solution x^* of the system

$$f(x) = 0 \tag{1.1}$$

of n nonlinear equations in n unknowns. If w_i is the amount of work required to compute $\tilde{\mathbf{x}}_i$ from $\tilde{\mathbf{x}}_{i-1}$ (and other results saved from previous iterations), then we say that the <u>efficiency</u> of M (for the given f_i , g_0 etc.) is

$$E = \lim_{i \to \infty} \frac{1}{w_{i+1}} \log \left(\frac{\log \left| \left| \underbrace{x_{i+1} - x^{*} \right|}{\log \left| \left| \underbrace{x_{i}}{x_{i}} - \underbrace{x^{*}}{x^{*}} \right| \right|} \right), \quad (1.2)$$

if the limit exists. If a method M' produces successive approximations x_i^l with work w_i^l , then we say that M' has efficiency at least E if (1.2) holds for some w_i^l and x_i^l satisfying $x_i^l \le w_i^l$ and $x_i^l = x_i^l = x_i^l = x_i^l$.

Our aim is to compare the efficiencies of certain methods

with the best possible, so we consider only methods with positive efficiency. For technical reasons, we assume that

$$0 < \liminf_{i \to \infty} w_i \le \limsup_{i \to \infty} w_i < \infty.$$
 (1.3)

The <u>order</u> of a method (for given f, x_0 etc.) is

$$\rho = \lim_{i \to \infty} \frac{\log ||x_{i+1} - x^*||}{\log ||x_{i-1} - x^*||},$$
 (1.4)

if the limit exists. The definitions of a method with order \underline{at} least ρ , and with order ρ independent of a particular $f_{\sigma} \not x_0$ etc., are apparent.

The definition (1, 2) has the following nice properties.

- 1. E is independent of the particular vector norm used (and similarly for $\boldsymbol{\rho}$).
- 2. If ρ and $w = \lim_{n \to \infty} w$, exist, then $E = \frac{\log \rho}{2}$ is the logarithm of the "efficiency index" of Ostrowski (1960a). It follows from Gentleman (1971a) that any "reasonable" measure of computational efficiency is a monotonic function of E.
- units of work to find an \tilde{x}_i such that $||x_i \tilde{x}^*|| < \varepsilon$, then

$$\lim_{\varepsilon \to 0+} \frac{W(\varepsilon)}{W(\varepsilon)} = \frac{E^{1}}{E}$$
 (1.5)

Thus, M requires E'/E times as much work as M' to reduce $||x_i-x^*||$ to a small positive tolerance.

Except for a brief comment in Section 5, we restrict our attention to methods which depend on the sequential evaluation of $\underline{f}(\underline{x})$ at certain points \underline{x} , and the unit of computational work is one such evaluation. Thus, we neglect the possibility of evaluating derivatives of \underline{f} except by finite differences, and any overhead, i.e., work other than function evaluations, is ignored (except in Section 4).

2. MULTIVARIATE POLYNOMIAL INTERPOLATION METHODS

ITERATIVE METHODS FOR SYSTEMS OF NONLINEAR EQUATIONS

Suppose that $m\ge 1$, $n\ge 1$, $N=\binom{n+m}{m}=\frac{(n+m)!}{m!n!}$, and initial distinct approximations x_0,\dots,x_{N-1} are given. The inverse polynomial interpolation method I generates x_N, x_{N+1},\dots in the following way. Suppose that, for some $i\ge N$, approximations x_0,\dots,x_{i-1} have been generated. Then

$$= \left(\begin{array}{c} a^{(1)} \\ \vdots \\ a^{(n)} \end{array}\right), \qquad (2.$$

where $a^{(1)}, \dots, a^{(n)}$ are the constant terms in the multivariate polynomials

$$P_{j}(y) = a^{(j)} + \sum_{1 \le k \le n} b_{k}^{(j)} y_{k} + \dots$$

$$\sum_{k_{1}, \dots, k} c_{k_{1}, \dots, k_{m}}^{(j)} y_{k} \dots y_{k}^{(2, 2)}$$

$$+ 1 \le k_{1} \le \dots \le k_{m} \le n$$

which satisfy

$$\tilde{x}_{p} = \begin{pmatrix} P_{1}(\tilde{x}_{x}) \\ \vdots \\ P_{n}(\tilde{x}_{p}) \end{pmatrix}$$
(2.3)

for i-N \leq p \leq i. (Solving the linear equations which give x_i requires of order N² operations if a rank-one updating method is used.)

Let

$$\epsilon_{\hat{i}} = \left| \left| \begin{array}{c} x_{\hat{i}} - \tilde{x}^* \right| \right|_2 . \tag{2.4}$$

It is shown in Section 6 that, if $\epsilon_{i-1},\dots,\,\epsilon_{i-N}$ are sufficiently small, then

 $\begin{array}{ll} \varepsilon_{i} \leq & \bigcap_{i=1}^{c} & \prod_{j=0}^{m} & \max\left\{\varepsilon_{i-1}, \ldots, \varepsilon_{i-1} \left(n + \frac{1}{2}\right)\right\}, \\ \text{where c is a constant (depending on f), and } \Delta_{i} \text{ is a certain N} \\ \text{by N determinant (depending on f(x_{i-1}), ..., f(x_{i-N})) of order} \end{array}$

For the moment assume that

$$\lim_{i \to \infty} \sup_{\infty} |\log|\Delta_i| |\frac{1}{i} < \rho_{m,n}, \qquad (2.6)$$

where $\rho_{m,n}$ is the (unique) positive real root of

If $\underline{x}_1 \rightarrow \underline{x}^*$, then it follows from (2, 5) and (2, 6) that the order of convergence is at least $\rho_{m,n}$. (The proof is similar to some given in Brent (1972a).) Also, there are functions and starting points such that the order is exactly $\rho_{m,n}$. Hence, $I_{m,n}$ has

 $E_{m,n} = \log \rho_{m,n}$

If $1 < \rho < \rho$ and (Δ_i) is a sequence of independent random variables distributed so that $\sum\limits_{i=1}^{N} P(|\Delta_i| \leq \exp(-\rho^i))$ is convergent, then (2.6) holds with probability one. This suggests that, in some sense, the order of $I_{m,n}$ is "nearly always" at least $\rho_{m,n}$. However, the order may be less than $\rho_{m,n}$ if (2.6) does not hold (and the method breaks down if $\Delta_i = 0$).

the efficiency of $I_{m,n}$ is bounded above by $\rho_{\ m,\,n}$ and $E_{\ m,\,n}$ are monotonic increasing functions of m, so

$$E_{\infty,n} = \log \rho_{\infty,n}, \qquad (2.9)$$

n=1, the following conjecture is highly plausible. In view of the results of Winograd and Wolfe (1971a) for

TERATIVE METHODS FOR SYSTEMS OF NONLINEAR EQUATIONS

function evaluations has efficiency greater than $\mathbf{E}_{\mathbf{\infty},n}$. Conjecture. No locally convergent method based entirely on

equations of the form than log 2: apply Winograd and Wolfe's result to a system of It is easy to see that no method can have efficiency greater

$$f_1(\mathbf{x}_1) = 0$$

$$f_1(\mathbf{x}_n) = 0 .$$

$$f_n(\mathbf{x}_n) = 0 .$$

$$(2.11)$$

However,

$$E_{\infty,n} \sim \frac{\log n}{n}$$
 (2.12)

for large n, so our conjecture is much stronger than this.

Table 1 gives $E_{\infty,n}$ and $E_{1,n}/E_{\infty,n}$ for various values of n. Note that method $I_{1,n}$ has efficiency very close to $E_{\infty,n}$ if (2.6) holds. In fact,

$$1 - E_{1,n} / E_{\infty,n} = O(n^{-n/3})$$
 (2.13)

as $n \rightarrow \infty$.

Table 1: Various Efficiencies

Ħ	k _S (n)	E 8, n	E _{1, n} E _{∞, n}	$\frac{\mathbb{E}_{S}(n)}{\mathbb{E}_{\infty, n}}$
-	1	0.6931	0.6942	0.6942
2	ω	0.4382	0.8724	0.6817
ω	4	0.3414	0.9440	0.7048
4	4	0.2880	0.9763	0.7161
₅	5	0.2532	0.9908	0.7227
10	8	0.1691	1.0000	0.7285
20	12	0.1084	1.0000	0.7417
50	23	0.0568	1.0000	0.7672
100	38	0.0337	1.0000	0.7874

3. SPECIAL CASES

n=1, equation (2.10) reduces to Some special cases of the above results are of interest. If

$$\sum_{j=0}^{\infty} {}^{-(j+1)}_{0} = 1, \qquad (3.1)$$

so ρ = 2 and E = log 2. Thus, the result of Winograd and Wolfe (1971a) shows that the conjecture above is true for

If n = m = 1, then (2.7) reduces to

$$\rho_{1,1}^{-1} + \rho_{1,1}^{-2} = 1, \tag{3.2}$$

so $\rho_{1,1} = (1+\sqrt{5})/2 = 1.618...$, which is well known to be the order of the one-dimensional secant method (see Brent (1972a) or Ostrowski (1966a)). Rissanen (1971a) shows that, with certain restrictions, no method with the same memory can be more

If n=1, $m \ge 1$, then (2.7) reduces to

$$\sum_{j=0}^{m} \rho_{m,1}^{-(j+1)} = 1, \qquad (3.3)$$

and ρ is the order of the well-known (direct or inverse) m-th degree polynomial interpolation methods: see Traub (1964a).

If $n \ge 1$, m = 1, then (2.7) reduces to

$$\rho_{1,n}^{-1} + \rho_{1,n}^{-(n+1)} = 1,$$
 (3.4)

and ρ_1 is the order of Wolfe's secant method, provided (2, 6) holds (this is much weaker than the assumption that Δ_i is and Bittner (1959a). bounded away from zero). See Wolfe (1959a), Barnes (1965a)

If n=2 then (2.10) reduces to

$$\phi \ (\rho \ _{\infty, \ 2}^{-1}) = 2,$$
(3.5)

We note that

$$\phi(x) = \int_{j=1}^{\infty} \left(\frac{1 - x^{2j}}{1 - x^{2j-1}} \right)$$
(3.7)

by an identity of Gauss (see Hardy and Wright (1938a)). No generalization of (3.7) for n > 2 has been found.

4. PRACTICAL EFFICIENT METHODS

n variables, this is quite reasonable.) timal method in the class has efficiency $E_S(n)$ close to $E_S(n)$ and the overhead per function evaluation is of order n. operations. Also, their efficiency may be less than E if (2,6) fails to hold. We shall briefly describe a class m, n (Since f(x) has n components f(x), each of which is a function of $\{S_k \mid k \ge 1\}$ of methods which avoid these disadvantages; the opis large, for the overhead per function evaluation is of order N' The methods I of Section 2 are impractical if $N = {m+n \choose n}$

If distinct approximations \underline{x}_i and \underline{x}_i' to a zero \underline{x}^* of $\underline{f}(\underline{x})$ have been found, then S_k generates approximations \underline{x}_{i+1} and \underline{x}_{i+1}' in the following way: if $\underline{f}(\underline{x}_i) = \underline{0}$ then $\underline{x}_{i+1} = \underline{x}_{i+1}' = \underline{x}_{i}'$, otherwise do steps 1 to 4.

1. Let Q be an orthogonal matrix satisfying

Let A_i be the matrix whose j-th column is

$$\mathbf{A}_{\mathbf{i}} \overset{\mathbf{e}}{\gamma} = \frac{1}{\mathbf{h}_{\mathbf{i}}} \left[\ \underline{\mathbf{f}}(\underline{\mathbf{x}}_{\mathbf{i}} + \mathbf{h}_{\mathbf{i}} \mathbf{Q}_{\mathbf{i}} \overset{\mathbf{e}}{\mathbf{e}}_{\mathbf{i}}) - \ \underline{\mathbf{f}}(\underline{\mathbf{x}}_{\mathbf{i}}) \ \right].$$

Let $x_{i,0} = x_i$ and

$$Y_{i,j} = Y_{i,j-1} - J_i^{-1} f(Y_{i,j-1})$$
 (4.3)

for j=1,...,k, where $J_i=A_iQ_i^T$.

4. Let
$$x_{i+1} = x_{i,k}$$
 and $x_{i+1} = y_{i,k-1}$.

It is shown in Brent (1972b) that the efficiency of Sk is

$$E_S(k, n) = \frac{\log \frac{1}{2}(k + \sqrt{k^2 + 4})}{n + k - 1}$$
 (4.4)

If $k=k_{\mathbf{S}}(n)$ is chosen so that $\mathbf{E}_{\mathbf{S}}\left(k,n\right)$ attains its maximum value $\mathbf{E}_{\mathbf{S}}(n),$ then

$$k_{S}(n) \sim n/\log n$$
 (4.5)

and

$$E_{S}(n) \sim \frac{\log n}{n} \sim E_{\infty, n}$$
 (4.6)

for large n. Table 1 gives $k_S(n)$ and $E_S(n)/E$ for various values of n. If the conjecture above is true, then the optimal method S_k is close to the best possible. In fact, we have for various

$$1 - \frac{E_{S}(n)}{E_{\infty, n}} = O(\frac{1}{\log n})$$
 (4.7)

as $n \to \infty$. It is an open question whether there are practical methods with efficiency lying between $E_S(n)$ and $E_{\infty,n}$.

5. METHODS WHICH USE COMPONENT EVALUATIONS

So far we have taken one evaluation of $\underline{f}(\underline{x}) = (f(\underline{x}), \ldots, f(\underline{x}))^T$ as the unit of computational work. If, instead, the evaluation of a component $f_i(\underline{x})$ of $\underline{f}(\underline{x})$ is taken as $\frac{1}{n}$ units of work, then methods with efficiency greater than E exist (at least for $n \ge 10$). In Brent (1972b) we describe a class $\{T_k | k \ge 1\}$ of methods related to Brown's method (see Brown and Conte (1967a), Rabin (1972a)). The optimal method in this class has

ITERATIVE METHODS FOR SYSTEMS OF NONLINEAR EQUATIONS

$$E_{T}(n) = \max_{k=1, 2, ...} \frac{2 \log (k+1)}{n+2 k+1},$$
 (5.1)

and

$$E_{T}(n) \sim {}^{2}E_{\infty,n}$$
 (5.2)

is an open question. for large n. Whether significantly more efficient methods exist

6. APPENDIX

Let g be the inverse function of f, so In this appendix we sketch a proof of the inequality (2.5).

$$\widetilde{g}(\widetilde{\mathbf{f}}(\mathbf{x})) = \widetilde{\mathbf{x}}$$

for all \underline{x} sufficiently close to the simple zero \underline{x}^* of \underline{f} . Let

$$\chi^{(p)} = \underline{\mathfrak{t}}(\underline{x}_{p}) \tag{6.2}$$

and

$$\eta_{p} = \| \tilde{y}^{(p)} \|_{2}$$
 (6.3)

for $p=i-1,\ldots,\ i-N.$ By a renumbering, if necessary, there is no loss of generality in assuming that

$$\eta_{i-1} \le \eta_{i-2} \le \cdots \le \eta_{i-N}.$$
 (6.4)

Let g be the j-th component of g, and y (p) the k-th component of
$$y_i^{(p)}$$
. By equations (2,2), (2.3), (6.1) and (6.2), $g_i(y^{(p)}) = a^{(j)} + \sum_{1 \le k \le n} b_k^{(j)} y_k^{(p)} + \dots$

$$+ \sum_{i=1}^{n} c_{i,1}^{(j)} y_k^{(p)} + \dots$$

$$1 \le k_1 \le \dots \le k_m \le n$$
1 \(1 \)

for $1 \le j \le n$ and $i-N \le p \le i$.

Compare (6.5) with the Taylor series expansion

$$g_{j}(\tilde{y}) = A^{(j)} + \sum_{1 \le k \le n} B_{k}^{(j)} y_{k} + \cdots$$

$$+ \sum_{k \ge 1} C_{k 1}^{(j)}, \dots, k y_{k} \cdots y_{k}$$

$$1 \le k_{1} \le \dots \le k_{m} \le n$$

$$+ R_{j}(\tilde{y})$$

$$(6.6)$$

of g, about 0. If $\alpha(j) = \alpha(j) = A(j)$ etc., then putting $y = y^{(p)}$ in (6.6) and subtracting (6.5) gives

$$a^{(j)} + \sum_{k} \beta_{k}^{(j)} y_{k}^{(p)} + \dots + \sum_{k} y_{k_{1}, \dots, k_{m}}^{(j)} y_{k_{1}, \dots, k_{m}}^{(p)} y_{k_{1}, \dots, k_{m}}^{(p)} = R.(y^{(p)})$$

$$1 \le k \le n \qquad 1 \le k_{1} \le \dots \le k_{m} \le n \qquad (6.7)$$

for $1 \le j \le n$ and $i-N \le p < i$. For each j, this gives a system of N linear equations in the N variables $a^{(j)}, \beta_1^{(j)}, \ldots, \gamma_n^{(j)}$. Solving by Cramer's rule for $a^{(j)}$ gives

$$_{L}^{(j)} = D_{1}^{(j)}/D_{2},$$
 (6.8)

 $\alpha^{(j)} = D_1^{(j)}/D_2,$ where $D_1^{(j)}$ and D_2 are N by N determinants.

From the assumption (6.4) and the observation that $R_i(\chi^{(p)})$ is of order η^{m+1} , an inspection of the dominant terms in (6.8) shows that

$$|a^{(j)}| \le \frac{K_i}{|\Delta_i|} \prod_{k=0}^{m} \eta_{i-(n_k^+ k)},$$
 (6.9)

where K. is a constant, and

$$\Delta_{i} = D_{2} \prod_{k=1}^{m} \prod_{j=1+(n+k-1)}^{(n+k)} \eta_{i-j}$$
 (6.10)

is of order unity.

is given by From (6.1) and (6.6), it is immediate that the zero \underline{x}^* of \underline{f}

ITERATIVE METHODS FOR SYSTEMS OF NONLINEAR EQUATIONS

$$\tilde{x}^* = \begin{pmatrix} A_1^{(1)} \\ A_1^{(n)} \end{pmatrix}$$
 (6.11)
Thus, from (2.1) and (6.9), we have

$$\begin{aligned} \left\| \left\| \tilde{x}_{i} - \tilde{x}^{*} \right\|_{2} &\leq \frac{K}{\left\| \Delta_{i} \right\|} \|_{k=0}^{m} \|_{i-\left(n_{k}^{+} k\right)}, \end{aligned}$$
where
$$K = \left(\sum_{j=1}^{n} K_{j}^{2} \right)^{\frac{1}{2}}.$$
(6.12)

$$K = \begin{pmatrix} n & 2 \\ \sum_{j=1}^{2} & K_{j}^{2} \end{pmatrix}^{\frac{1}{2}}.$$
 (6.1)

are close to the simple zero \mathbf{x}^* , the result (2.5) follows from (6.12). In view of the assumption (6.4) and the fact that x_{i-1}, \dots, x_{i-N}

References

- Barnes, J. G. P., 1965a, An algorithm for solving non-linear equations based on the secant method, Comp. J. 8, 66-72.
- Bittner, L., 1959a, Eine Verallgemeinerung des Sekantenverfahrens (regula falsi) zur naherungsweisen Berechnung der Nullstellen eines nichtlinearen Gleichungssystems, Wissen. Zeit. der Technischen Hochschule Dresden, Vol. 9, 325-329.
- Brent, R. P., 1972a, Algorithms for Minimization without Derivatives, Prentice-Hall, Englewood Cliffs, New Jersey (Chapter 3).
- Brent, R. P., 1972b, On maximizing the efficiency of algorithms for solving systems of nonlinear equations, IBM Watson Research Center, Yorktown Heights, New York, RC 3725.
- Brown, K. M. and Conte, S. D., 1967a, The solution of simultaneous nonlinear equations, Proceedings 22nd National Conference of the ACM, Thompson Book Co., Washington, D. C., 111-114.
- Gentleman, M. W., 1971a, Private communication.
- Hardy, G. H. and Wright, E. M., 1938a, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, Thm. 354.
- Ostrowski, A. M., 1960a, Solution of Equations and Systems of Equations, Academic Press, New York.
- Rabin, M. O., 1972a, Solving linear equations by means of scalar products, these Proceedings, 11-20.
- Rissanen, J., 1971a, On optimum root-finding algorithms, J. Math. Anal. Appl. 36, 220-225.
- Winograd, S. and Wolfe, P., 1971a, Optimal iterative processes, IBM Watson Research Center, Yorktown Heights, New York, RC 3511.
- Wolfe, P., 1959a, The secant method for simultaneous nonlinear equations, Comm. ACM 2, 12-13.