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I. INTRODUCTION

Suppose that an iterative method M generates successive
approximations x 1Byaees to a solution M* of the system

0
f(x)=0 (1.1)
of n nonlinear equations in n unknowns, If w, is the amount of
work required to compute % from Y (and other results saved

from previous iterations), then we say that the efficiency of M
(for the given f, % etc, ) is

Yie 1

if the limit exists. If a method M' produces successive approxi-
mations x| with work ST then we say that M' has efficiency at
least E :p:.mv holds for some w, and x, satisfying w <w.

; 1 -1 1 1
and [[xj-x*] ] || 5,-5%].

Qur aim is to compare the efficiencies of certain methods
with the best possible, so we consider only methods with positive
efficiency, For technical reasons, we assume that

0<lim inf w_ =< 1lim sup w. < co. (1.3)
i—=00 i7"l i
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(Usually w, is constant for sufficiently large i,) We assume
that £ has continuous partial derivatives of all orders and that
the Jacobian matrix of { at x* is nonsingular. We say that the

efficiency of M (independent of a particular choice of Pmo ete. )
is E if E is the supremum of numbers E' such that M has ef-

ficiency at least E' for all functions f (as above)and sufficiently
good starting values,

The order of a method (for given f, X, etc,) is
lo X, - x¥
_UHHHE N__imn—...—!*&

, (1. 4)
i~ log ||x - ¥*|

if the limit exists. The definitions of a method with order at
least p, and with order p independent of a particular f, %, etc.,
are apparent,

The definition (1. 2) has the following nice properties.

1. E is independent of the particular vector norm used (and
similarly for p).

2. If p and Suml.»mm__oiw exist, then E= lege is the logarithm
of the "efficiency index'" of Ostrowski ﬁ.omcw-. It follows
from Gentleman (1971a) that any ""reasonable! measure of

computational efficiency is a monotonic function of E,

3, If methods M, M' have efficiencies E, £' and require W{e), W'(e)
units of work to find an % such that _ Tmu uwn*_ | <e, then

lim Hm.ﬂ = E' (1.5)
e—~0t W(e) E

Thus, M requires E'/ E times as much work as M' to
reduce | | % |u*_ _ to a small positive tolerance.

Except for a brief comment in Section 5, we restrict our at=
tention to methods which depend on the sequential evaluation of
f(x) at certain points x, and the unit of computational work is
one such evaluation. Thus, we neglect the possibility of evalua-~
ting derivatives of f except by finite differences, and any over-
head, i.e., work other than function evaluations, is ignored

(except in Section 4).
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2, MULTIVARIATE POLYNOMIAL INTERPOLATION METHODS

Suppose that mz1, nz 1, Znﬁs+ ﬂ%u (nt m)!
m mln!

, and initial

distinct approximations Mo. 1 are given, The inverse

N-1
olynomial int lati th
pelyn al interpolation method HH.D n generates uZ. u2+ 17

in the following way. Suppose that, "for some iz N, approxima-

tions Eyreve ¥ have been generated, Then
L
% = . , (2.1)
@)
(1) (n) : R
where a'7',..,, a are the constant terms in the multivariate
polynomials

HUH.QV SR 6 D cﬁ:v«w A

1=k=n k
(i)
. =z “kpy ek Vit Yk (2.2)
1<k <...<k =n m m
1 m
which satisfy
wuauu:
= . 2.3
%, (2.3)
Hu:Emv:

for i-N < p<i. (Solving the linear equations which give x, re-
quires of order N2 operations if a rank-one updating anmoa is
used. )

Let

ep= = -5, . (2.4)

™

It is shown in Section 6 that, if £pr e SN ATC sufficiently

small, then
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m
< 1} (2.5)
HM..‘ ‘_qn—c max ?TH. e mwnﬁ:hu. uuw
where ¢ is a constant (depending on D. and A,
by N determinant (depending on nx Yoeves 5
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is a certain N
: of order

unity.

For the moment assume that

1
i 2.6
_,wmmomn_cn_wow_b.:n Essv ( )
where p n is the (unique) positive real root of
3!
ntj
m 03D
Z p =1. (2.7)
j=0 ™.

¥ then it follows from (2.5) and (2. 6) that the order of

If X x
(The proof is similar to some

no:qmﬂmmnnn is at least P n

, 0
given in Brent (1972a).) ,?wmoﬁ there are functions and starting
Hence, I has

points such that the order is exactly p - m,n
efficiency
E =log p (2.8)
m, n m,
and AD ) is a sequence of Eamvmuambﬁ ran=-

:_.,nv.nn B no w
dom variables apw»urvﬂnma mo that ~ P(| b. | < exp(-p ")) is con-

vergent, then (2. 6) holds with vnovwg:nw onm. This mﬂmmmwnm
that, in some sense, the order of H is "nearly always' at
least p . However, the order Ew_w w_m less than p mn if

(2.6) moﬂm not hold (and the method breaks down if D =d).

and E are monotonic increasing functions of m, so

ba.ﬂ m,n

the efficiency of HE swu bounded above by

»

= (2.9)
m“oo‘ n log p oo, n’
where p is the _ﬂﬁﬁwncm_ real positive root of
o0, n
b
- )
Wo p n ) = 1. (2.10)
=0 o, n
In view of the results of Winograd and Wolfe (1971a) for

n=1, the following conjecture is highly plausible.
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Conjecture. No locally convergent method based entirely on

function evaluations has efficiency greater than E .
oo,n

It is easy to see that no method can have efficiency greater
than log 2 : apply Winograd and Wolfe's result to a system of
equations of the form

JT«,HU = 0
M (2.11)
mDAHH.__.u = 0 .
However, i
E - =282 (2.12)
oo,n n

for large n, so our conjecture is much stronger than this,

Table 1 gives E and E :\ E for various values of
w,n 1, o, n
n, Note that method HH has efficiency very close to .moo if
» e N
(2.6) holds. In fact, '
com 3
:\moo.u =0 (n ) (2.13)
as n— co,
Table 1: Various Efficiencies
E E(n)
1,n S
—
n kg(n) Eo,n E E
oo, n o, n
1 1 0.6931 0. 6942 0.6942
2 3 0.4382 0.8724 0. 6817
3 4 0. 3414 0.9440 0.7048
4 4 0.2880 0.9763 0.7161
5 5 0,2532 0.,9908 0.7227
10 8 0.1691 1. 0000 0.7285
20 12 0.1084 1. 0000 0.7417
50 23 0.0568 1. 0000 0. 7672
100 38 0.0337 1.0000 0,7874
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3. SPECIAL CASES

Some special cases of the above results are of interest, If
n=1, equation (2. 10) reduces to
Wc 1 (3.1)
=0 oo, 1 ’ )
s0 p = 2 and Hoo 1= log 2. Thus, the result of Winograd
and &uo‘_*m (1971a) shoWs that the conjecture above is true for

n=1,
If n=m=1, then (2.7) reduces to
-1 -2
DH-H + _UM.H =1, (3. 2)

s0 p, HnC+ n5)/2=1,618..., which is well known to be the
order 'of the one~dimensional secant method (see Brent (1972a)
or Ostrowski (1966a)). Rissanen (1971a) shows that, with cer-
tain restrictions, no method with the same memory can be more

efficient,

If n=1, m=z1, then (2.7) reduces to

=(j+ 1)
Mc _UBL =1, (3.3)
and p is the order of the well~-known (direct or inverse)

m-~th mwwm..mm polynomial interpolation methods: see Traub (1964a).

If nz1, m=1, then (2.7) reduces to

=1 ~(n+ 1)
+ = 3.4
Pl,n Pl,n 1, (3. 4)
and p is the order of Wolfe's secant method, provided (2, 6)
holds m_wer is much weaker than the assumption that A, is
bounded away from zero), See Wolfe (1959a), Barnes f_wmmwv

and Bittner (1959a),

If n=2 then (2.10) reduces to

bty =2 (3.5)
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© (it 1)/ 2
where pix) = T x . (3.6)
j=0
We note that
plx)= I IFNJ_;N_. (3.7)
x) = .
j=1 1~x4)"

by an identity of Gauss (see Hardy and Wright (1938a)). No
generalization of (3.7) for n>2 has been found.

4. PRACTICAL EFFICIENT METHODS

The methods I of Section 2 are impractical if N= H3+ bv
m,n n

is large, for the overhead per function evaluation is of order N2
operations. Also, their efficiency may be less than E if

(2. 6) fails to hold. We shall briefly describe a class m, n
{ mw_ k= 1} of methods which avoid these disadvantages : the op~
timal method in the class has efficiency mwﬁi close to hoo o
and the overhead per function evaluation is of order um. ’
(Since f{x) has n components f,(x), each of which is a function of

. P : 1
n variables, this is quite reasonable, )

If distinct approximations x. and x' to a zero m* of f{x) have
veen found, then m_,., y 3 i

generates approximations %41 and u.mw+ p 0
the following way: if h&wu =0 then X1 m__m.._._nmw. otherwise do

steps 1 to 4,

1. Let DM be an orthogonal matrix satisfying

1
x=x+hQe, (4.1)

5%
where wwn:umnmw:N and
mHu:.?..:SH.

2. Let A; be the matrix whose j-th column is

A s+ bRy 8) - fx) ]

15 p, [H5+hQe



&8 RICHARD BRENT
. et ¥, =X, d
3. L K:o ¥, an

X7, -0 “ (4.3)

for j=1,...,k, where ._..u__#.D..H. .
i
! -
4, Let x . . = ¥k and X, 1 =Y k-1°

It is shown in Brent (197 2b) that the efficiency of mx is

log (kN Ko+ 4 (4. 4)

Eglle,n) = nt k-1 .
If k=k_{n) is chosen so that E {(k,n) attains its maximum value
E_(n) mnrm: S
s\

.rm:.; ~ nflogn (4.5)

and
_ logn _

Egln) n Ewo,n (4.6)

for large n. Table 1 gives k.(n) and Nm?v\ E for various

values of n, If the noswnnﬂcwmmwwce.m is true, tieh the optimal

method mmn is close to the best possible, In fact, we have

E. (n)
- =2 = Of 1
0, n

) (4.7)

log n

as n—co. It is an open question whether there are practical
methods with efficiency lying between mm?y and MB o

5. METHODS WHICH USE COMPONENT EVALUATIONS

moH.».m.H. we have taken one evaluation of f{x) uﬂnmw:. ey
muﬁwn: as the unit of computational work, If, instead, the eval-
vation of a component f(x) of f(x) is taken as mn.»n units of work,
then methods with mmDnm_.osnw greater than E exist (at least
for n2 10). In Brent (1972b) we describe a Hess (T, |k21} of
methods related to Brown's method (see Brown and Conte
(1967a), Rabin (1972a)). The optimal method in this class has

efficiency
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m\w?: = max 2log(k+ 1)
k=1,2,... n+ 2k+l

] (5.1)

and

m.HT.; - 2E (5.2)

o, n
.mo.... large n. Whether significantly more efficient methods exist
is an open question,

6. APPENDIX

In this appendix we sketch a proof of the inequality (2. 5).
Let g be the inverse function of f, so

glf(x)) = x (6.1)

for all x sufficiently close to the simple zero x* of f, Let

m:: = mmn_ (6. 2)

and

-_3
=yl (6.3)

for p=i~1l,..., i-N. By a renumbering,if necessary, there is
no loss of generality in assuming that

n. ,=M ... =

i-15 Mi-2 (6. 4)

Mi-N°
Let .wu. Mumu the j-th component of g, and KH—UV the k-th component
of Mv . By equations (2,2), (2.3), ?.J; and (6. 2),

(p), _(j) (i) (p)
m_.:h )=a" 4+ 1 Zcen by e
G
R A RTR N O )

m

1sk <,..=k_<n 1 m
1 m

for 1sj<n and i-Nsp<i.

Compare (6. 5) with the Taylor series expansion
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+ R, (y) (6. 6)

j . (p) ;
of g about 0. If n.h:_...wﬁ . >Cv etc,, then putting y=y P} in

(6. E_ and wcv:wnf:m (6.5) glves

j v
oy Mu%_ﬁﬂwu - M<m_ . Lw_:. fﬂﬁElw (v
1700 m
1=k=n 1=k 1...mx Te (6.7)

1

for 1<j=n and i-Nsp<i. For each j, this gives a mmmﬂnﬂb of N

linear equations in the N variables n.ﬁ.: ﬁ G peser Voo nt
Solving by Cramer's rule for Qﬁ.: gives
L UM:\ D,, (6.8)

where UAH.: and UN are N by N determinants.
. (
From the assumption (6, 4) and the observation that W&M Ev

is of order 1 ot H. an inspection of the dominant terms‘in ?.m_

shows that P
K.
E _ma (6.9)
k=0 Ni~(n+ k)
k
where K, is a constant, and
]
m Fk -
D D, N n_q._r. ) .:.r. (6.10)
2 k=1 j= L+ (nf ke 1) i-j

is of order unity.

From (6. 1) and (6. 6), it is immediate that the zero x* of £

is given by

ITERATIVE METHODS FOR SYSTEMS OF NONLINEAR EQUATIONS n
A1)
Wn = ” . ﬁn...- 11 _
A (n)

Thus, from {2.1) and (6.9), we have

TEXS 'l L
FTE = n, M. , (6.12)
2 &1 k=0 Ti- (af x)
where
K M 2 w
= K. . 6.13
j=1 7j ( )

In view of the assumption (6. 4) and the fact that Xy XN
%

*, the result (2. 5) follows from

are close to the simple zero x
(6.12).
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