
Short Communicat ions
Programming Techniques

Comment on Brent's
Scatter Storage Algorithm
Jerome A. Feldman and James R. Low
Stanford University

Key Words and Phrases: hashing, information storage
and retrieval, scatter storage, searching, symbol table

CR Categories: 3.7, 3.73, 3.74, 4.1, 4.9

R.P. Brent in his presentation of a modification to
the linear quotient algorithm [1] shares the common
misconception that dynamic chaining requires larger
table entries because of the space required for link
fields.

With dynamic chaining we do not need to store the
entire key with each entry, but just enough information
to distinguish between entries which have the same the
initial hash (r(K) = K rood n). Thus we need to store
only abbreviated keys [2] with each table entry (a(K) =
integer part of K/n). We also need a tag bit per entry
to indicate if the entry is the head of a conflict list. We
may represent the link field by integers in the range 0
to n -- I. This has been understood since at least 1965
[3]. See [2] for the complete algorithm.

Now we will demonstrate that this does not need
significantly more space than required for the full
key used by rehashing techniques. For simplicity, let
us assume that all keys are positive and that the value
of the largest key is K. We may represent the abbre-
viated key and link in a field large enough to represent
(a (K)q-1)n -1 . The field we would need for a full
key would have to be large enough to represent a num-
ber (a(K)n q- r) where 0 < r < n -- 1. Thus, we find in
the worst case that the minimum field needed to repre-
sent the tag bit, the abbreviated key, and the link field
is only 2 bits wider than the minimum field needed to
represent a full key. Other hashes such as taking m bits
(tablesize = 2 1" m) from the key will require only
the extra tag bit.

Copyright © 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Authors' address: Computer Science Department, Stanford
University, Stanford, CA 94305.

Deletions do not cause any problem with dynamic
chaining and do not clutter up the table with "deleted"
entries which slow down searches using rehashing.
Dynamic chaining takes very little extra space, is easy
to program, and according to Brent requires on the
average less probes per search. With this knowledge,
we find ourselves wondering when rehashing should
be used instead of dynamic chaining.

Received March 1973

References
1. Brent, R.P. Reducing the retrieval time of scatter storage
techniques. Comm. ACM 16, 2 (Feb. 1973), 105-109.
2. Knuth, D.E. The Art of Computer Programming: Search#tg
and Sorting. Vol 111. Addison-Wesley, Reading, Mass., 1973,
see. 6.4, exercise 13 p. 543.
3. Feldman, J.A. Aspects of associative processing. Tech. Note
1965-13, M1T Lincoln Laboratory, Lexington, Mass., 1965.

Reply by Richard P. Brent

It is true that an abbreviated key and tag bit may be
stored in place of the full key when direct chaining is
used. However, two points should be considered.

First, in applications it often happens that the key,
and associated information, requires an integral num-
ber of words (or bytes) of storage. Also, for program-
ming convenience and execution speed the table entries
must occupy an integral number of words (or bytes).
Hence, the requirement for even one extra bit per entry
may mean a significant increase in the table size. Space
could be saved by storing the tag bits in a separate bit
table, but this would increase the time required to make
a probe.

Second, even assuming that the extra space required
for direct chaining is negligible, the expected number of
probes per retrieval is essentially the same as for our
method over a wide range of load factors (see Figure 2
of [1]). Hence, the choice of method depends mainly on
the time required to make a probe, and this depends on
the machine, language, hashing method, and the imple-
mentation of the algorithm.

The conclusion of [1] is that, in applications where
most entries are looked up several times and deletions
are rare, our method is preferable to the linear quotient
method, and at least competitive with direct chaining.
The observations of Feldman and Low do not invali-
date this conclusion.

703 Communications November 1973
of Volume 16
the ACM Number 11

