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SOME EFFICIENT ALGORITHMS FOR SOLVING SYSTEMS OF
NONLINEAR EQUATIONS*

RICHARD P. BRENTY}

Abstract. We compare the Ostrowski efficiency of some methods for solving systems of nonlinear
equations without explicitly using derivatives. The methods considered include the discrete Newton
method, Shamanskii’s method, the two-point secant method, and Brown’s methods. We introduce a
class of secant methods and a class of methods related to Brown’s methods, but using orthogonal
rather than stabilized elementary transformations. The idea of these methods is to avoid finding a new
approximation to the Jacobian matrix of the system at each step, and thus increase the efficiency. Local
convergence theorems are proved, and the efficiencies of the methods are calculated. Numerical results
are given, and some possible extensions are mentioned.

1. Introduction. We are interested in comparing iterative processes for ap-
proximating a solution x* of a system f(x) = 0 of nonlinear equations. If x,, x;, - - -
is a convergent sequence of vectors with limit x* € R", then the order of convergence
p is defined by
(1) p = lim inf (~log x, — x*|)'".

1— 00

It does not matter which of the usual vector norms is used in (1). Other definitions
of order may be given (see Ortega and Rheinboldt (1970, Chap. 9), Voigt (1971),
and Brent (1972b, § 3.2)), but (1) is adequate for our purposes. We only consider
processes for which p > 1, and in this case p is the same as the R-order of Ortega
and Rheinboldt (1970).

If w; is the amount of work required to compute x; from x;_; and other
results which may have been saved from previous iterations, then the efficiency E
of the process is defined by

E 3
2 E — lim inf [1°&¢ loig Ix; — x*))
iz Zj: W
In particular, if there exists w = lim;_ , w; > 0, then E = (log p)/w is the logarithm
of the “efficiency index” of Ostrowski (1960, § 3.11). The w; may be measured in
any appropriate units: we mainly use function evaluations, i.e., evaluations of f.

Consider iterative methods M and M’ with orders p, p’ and efficiencies E, E'.
For simplicity, suppose that the w; are bounded and the lower limits in (1) and (2)
may be replaced by limits. Our justification for the term “‘efficiency” is that method
M requires E'/E times as much work as method M’ to reduce ||x; — x*| to a very
small positive tolerance. Thus, if factors such as the domains of convergence, ease
of implementation, and storage space required are comparable, the method with
the higher efficiency is to be preferred, and this is not always the method with the
higher order. (As a trivial illustration, consider taking every second iterate of M
as an iterate of M’, so X; = x,; and w; = w,;_; + w,;. Then p’ = p? > p, but
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E' = E.) Various authors have studied the efficiency of algorithms for finding zeros
of functions of one variable, e.g., Traub (1964), (1971), Feldstein and Firestone
(1969). Apart from the work of Shamanskii (1967), which is summarized in § 2, we
do not know of other studies of the efficiency (as distinct from order) of algorithms
for functions of several variables.

In §3 we describe a class {Si/k =1,2,---} of “Newton-like” methods
(Dennis (1968)) for solving systems of nonlinear equations. S, is the “two-point
secant” method of Ortega and Rheinboldt (1970, §§ 7.2 and 11.2), Korganoff
(1961), Robinson (1966), Schmidt (1966), and Voigt (1971). The idea of methods
S,,8; etc. is to use the same approximation to the Jacobian of the system for
several Newton steps in an attempt to increase the efficiency.

In § 4 we describe an interesting class {T;|k = 1,2, - - -} of methods based on
orthogonal triangularization of an approximation to the Jacobian. T; is similar
to Brown’s method (Brown and Conte (1967)), the main difference being our use
of orthogonal transformations instead of elementary stabilized transformations
(Wilkinson (1965, § 3.47)). T,, Ty etc. use the same approximate factorization of
the Jacobian for several Newton steps, in much the same way as the methods
suggested by Brown (1968) (we call these Brown’s modified methods to avoid
confusion with his earlier method).

Local convergence theorems, proved in §5, show that method S, gives
convergence with order at least pg(k) = 3(k + /k* + 4), and T, gives convergence
with order at least p(k) = k + 1, under fairly weak conditions on f. Using these
results, we choose k (depending on n) to give methods of optimal efficiency.

In § 6 we compare the efficiencies of several methods, including the discrete
Newton method, Brown’s methods, and the methods S, and T;. In computing the
efficiencies of the various methods we count only function evaluations and ignore
overhead. Since the methods considered may be implemented with an overhead
of O(n) operations per evaluation of each component f{(x,, -- -, x,) of f(x), this
approximation is reasonable if the Jacobian J of f is dense. Our conclusions may
be invalid if J is sparse and the components f; are easy to evaluate.

It is shown that methods S, and T, are more efficient than the discrete Newton
method or Brown’s (unmodified) method, provided k is suitably chosen. This
conclusion is supported by some numerical results given in § 7. Finally, in § 8,
we mention how the idea of maximizing efficiency can also be applied to classes
of methods for minimizing functions and finding eigenvalues.

2. An illustration: Shamanskii’s method. Before becoming too involved in
technical details, we consider a simple example. For k = 1, let N, be the Newton-
like method for which x;., ; is generated from x; in the following way :

1. For a sufficiently small step size h; (of order [f(x;)||), compute the matrix
J; whose jth column is J.e; = (f(x; + hie;) — f(x;))/h; forj = 1,2, ---, n. (Heree; is
the jth column of the identity matrix.)

2. Perform k “Newton iterations” with the approximate Jacobian J; (assumed
nonsingular), ie., define x;, , = y; x, wherey; o = x;,andy; ; = yij—1 — Ji 'f(yi;j-1)
forj=1,2---,k

Traub (1964, § 11.3) and Shamanskii (1967) have shown that, under certain
conditions, method N, gives a sequence which converges to a zero of f with order
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at least k + 1. If the h; are chosen sufficiently small, conditions similar to those
given in Ortega and Rheinboldt (1970, § 10.1.7) ensure that the order is exactly
k + 1. Each iteration after the first requires n + k evaluations of f, so, neglecting
computations other than evaluations of f, the efficiency of the method is

log (k + 1)

E(Ng = n+k

In particular, the usual discrete Newton method (N,) requires n + 1 evaluations
of f per iteration, and has efficiency E(N,) = log 2/(n + 1).

If E(N,) attains its maximum value (over positive integers k) of E,(n) at
k = ky(n), then the optimal method from the class {N;, N,, ---} is N, . Note
that the optimal value of k depends on n. In Table 1 we give ky(n) and Ey(n)/E(N,)
for various values of n.

The table shows that, for all n = 1, the method N, is more efficient than
the usual discrete Newton method N,. For n = 1 the difference is only slight, as
pointed out by Ostrowski (1960, Appendix G), but the difference is appreciable
if n > 1. For example, if n = 100 and a very accurate solution is required, then
N, uses about 3.9 times more function evaluations than N;,. In practice the
difference is not so marked, because very high accuracy is seldom required, but
the optimal method may be expected to use less function evaluations than N,
does.

TABLE 1
The efficiency of Shamanskii’s optimal

method N, compared with that of the
usual discrete Newton method N ,

n kn(n) E(n)/E(N,)
1 2 1.06
2 3 1.20
3 3 1.33
4 4 1.45
5 5 1.55
10 7 1.94
20 11 243
50 22 3.20
100 37 3.87
1000 225 6.39

3. A class of secant methods. Suppose that £ = 1 and x,, X are distinct
approximations to a zero x* of the system f(x) = 0 of n nonlinear equations in n
unknowns. We shall describe an algorithm S, which, under certain conditions on
f and the initial approximations x, and xg, generates a sequence (x;) with limit x*,
If x; and x; have been generated, then x;,; and x},, are found in the following
way: Iff(x;) = 0, then x;, ; = X},; = X;; otherwise:

1. Find an orthogonal matrix Q; such that

(3) X; = X; + hQe,,

where h; = ||x; — x;|. (We always use the Euclidean vector norm, and the induced
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matrix norm, unless otherwise specified.) For example, Q; may be found as an
elementary Hermitian, i.e., a matrix of the form +(I — 2uu!), where |u;] =1
(see Householder (1964), Parlett (1971), and Wilkinson (1965)).

2. Find the matrix 4; whose jth column is 4,¢; = (f(x; + h,Q.e;) — f(x;))/h; for
j=1,---, n. Note that an evaluation of f can be saved, by using (3), when j = 1
and f(x}) is known.

3. Perform k Newton iterations with the approximate Jacobian J; = 4,0/,
ie., lety; , = x; and compute

Yij=VYij-1 —Ji lf(yi,j—l) forj=1,---,k

4. LetX;; =Yy and X;y g = Yip— 1.

The method S, requires n + k — 1 evaluations of f for each iteration after
the first. S, is the two-point secant method, and reduces to the usual secant method
if n = 1. The idea of method S, for k > 1 is to perform several Newton iterations
(each requiring only one evaluation of f) for every new approximation to the
Jacobian, in an attempt to increase the efficiency of the method. The idea is not
original, but our determination of the optimal value of k from the results of § 5
appears to be new.

4. A class of methods based on orthogonal triangularization. In this section
we describe a class { T;|k = 1} of methods which depend on the sequential evalua-
tion of individual components f(x) of f(x) at certain points x. Some compo-
nents are evaluated more often than others, so, for purposes of comparison
with methods which evaluate all components equally often (such as the methods
N, and S,), we assume that n component evaluations are equivalent to one
function evaluation. This assumption may be unfair to the methods T, if some
components are easier to evaluate than others, for then it can be arranged that
the “easy” components are evaluated more often than the “difficult” components.
On the other hand, it may be easier to evaluate f(x) at one point x than to evaluate
fi(x), .-+, f(x,) at distinct points x,, ---, x,. Thus, for particular systems of
equations our comparison may be biased either way, and the reader should bear
this in mind.

Method T, is similar to Brown’s method (Brown and Conte (1967), Brown
and Dennis (1972), and Brown (1969)). Brown’s method reduces an approximate
Jacobian of f to triangular form, using stabilized elementary transformations (i.c.,
Gaussian elimination with partial pivoting), whereas T, uses orthogonal trans-
formations (either plane rotations or elementary Hermitians: see Givens (1958),
Householder (1964), and Wilkinson (1965)). The use of orthogonal transformations
gives greater numerical stability and simplifies the local convergence proof of § 5,
but approximately doubles the overhead.

For k > 1, method T, is the same as T;, except that each factorization of an
approximate Jacobian is used k times before a new approximate Jacobian is
factored. Brown (1968) independently suggested a similar modification of his
method. In§ 5 we show how to choose k to maximize the efficiency of these methods.

Suppose that, after the ith iteration, we have an approximation x; to x*,
an orthogonal matrix Q;, and a positive step size h;. (Initially x, and h, are given,
and Q, = I.) Method T, generates x;,,, Q;+, and h;,, in the following way.
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(A geometric interpretation is given after the formal description.)
L LetQ;, = Q;andy,;, o = X
2. Forj=1,---,ndosteps 3to 5.
3. Compute

0

1
;= . ff(yi,j,o + hiQi,jej _fj(yi,j,o)

1

FWiso + hQuien) — f{¥is0)

4. Find an orthogonal matrix P, ;, of the form
|
p (ﬂr_llx_u_—_n_i_o__)
L= -
0 | Pi,j
such that P,-T,ja,-,j =s;e;, where s;; = *|a;;||. (For example, Pi,j may be an

elementary Hermitian, or a product of n — j plane rotations.)
5. Compute Qij+1= Qi,jPi,j and Yij+1,0 = Yijo — Si,_jlfj(yi,j.O)Qi,j+ 1€j-
6. Form=1,---,k — 1dostep 7.
7. Lety; 1m = Yin+1.m—1 and, forj=1,--- n compute

-1
Yij+1,m = Yijm — Sij fj(yl',j,m)Qi,H 1€j-
8. LetX;11 = Yint1h—15Qiv1 = Qins+1,and

h _ _Sf1lf1(xi+1) if fi(x;i44) # 0,
i sufficiently small otherwise.

(We must ensure that h;,; # 0. In practice this is not difficult: if the stopping
criterion is ||x; — X;4 ]| <t for some positive tolerance ¢, then we may take
hivy = tif |s; fi(xie ) < )

To make the formal description more comprehensible, we now give a geo-
metric interpretation. If x; is an approximation to a zero of f, take y; ; o = X;
and evaluate f; aty; , , and a sufficient number (n) of nearby points to obtain a
linear approximation to f; . If the conditions of Theorem 2 (§ 5) are satisfied, this
linear approximation vanishes on a flat (i.., a translated linear subspace) V; of
dimension n — 1. Let y, , , be the point in ¥ closest in Euclidean distance to
Yi1,0- (In Brown’s method y,, o — ¥; 0, must also be parallel to a coordinate
vector.) Now evaluate f, aty; , o and a sufficient number (n — 1) of nearby points in
V, to obtain a linear approximation to f, on V;. This linear approximation vanishes
on a flat V, of dimension n — 2. Let y; 3 o be the point in V, closest to y; , o, etc.

For method T; (or Brown’s unmodified method) the next approximation to a
Z€r0 1S X; 4| = Y;n+1,0- FOor method T, (k = 2) an “iterative refinement” process is
used to improve the approximation y; ; ; = ¥;,+1,0- First fi(y;,1) is evaluated,
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and a new linear approximation to f; is found from the value f(y;, ;) and the
previously computed approximation to the gradient of f;. The new linear approxi-
mation to f; vanishes on a flat V' parallel to V;. Let y; , ; be the point in V'
closest in Euclidean distance to y; ; ; (and such that the displacement is along a
coordinate vector for Brown’s modified method). Evaluate f,(y; , ;) to find a flat
, parallel to V, and a point y; ; ; in V5, etc. After finding y; ., ¢, take y;; »
= Yin+1,1 and repeat the refinement process. Thus, approximations y; . o,
Yim+ 1,15 * "> Yim+ 16— 1 are generated, and finally X;, 1 = ¥4 14-1-
It is instructive to consider the case when f(x) = J(x — x*) is linear. After j
iterations of steps 3 to 5 we have an orthogonal matrix Q; ;. , and a vectory; ;. o

such that fi(y; j+1,00 = - - = f{¥ij+1,0 = 0,and JQ, ;. is a matrix of the form
Si1 0 ‘e o --- 0
X S;o v 0
x x S 0
X . X
x ... x

where elements marked x are not determined. Thus, after n iterations of steps 3 to
5 we have a zero y; 1 o of f and a factorization

J = LQiy+

of the Jacobian J, where Q, , . ; is orthogonal, and L is lower triangular with diago-
nalelementss; {, - - -, s;,,. Note that the strict lower triangle of L is not determined,
so the method does not reduce to any of the usual methods for solving linear equa-
tions (but is related to Householder’s triangularization). '

The idea of the “iterative refinement” phase of methods T,, T; etc. may be
seen by supposing that f is linear but y; ,. { o is perturbed slightly from a zero of f.
Step 7 retrieves the zero with only one evaluation of each component of f, by
making use of the factorization J = LQ], . ; and the known diagonal elements of L.

Our choice of h; , ; at step 8 ensures that the methods T, and S, , , (§ 3) generate
sequences with the same order of convergence if n = 1. More precisely, suppose

that n = 1 and T, produces a sequence x{', x{T, - - - with associated Q, and h;, and
S, +1 produces sequences x5, x®, - .. and x{, X}, - - -. If the initial conditions are
such that

4) x(isi = ng) + hQey,

x; = x{1

for i = 0, then (4) holds for all i > 0.
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A complete iteration requires n + k + 1 — j evaluations of the component
fi,forj =1, -, n. Thus, an iteration requires n(n + 2k + 1) component evalua-
tions, or 4(n + 2k + 1) equivalent function evaluations, counting n component
evaluations as one function evaluation. In§ 5 we determine the order of convergence
and use this to find the optimal value of k.

If the method T, is implemented in an efficient way, using elementary
Hermitians for the matrices P, j» then the overhead is about n(n + k) multiplica-
tions per iteration. For simplicity, we assume that a component evaluation requires
considerably more than n multiplications, so the overhead is negligible. This is
often true in practical problems when, for example, the evaluation of f{(x) may
involve the solution of a system of differential equations. If the components f;
are easy to evaluate, then the overhead must be taken into account in comparing
different methods. Note that, to avoid excessive overhead in computing the last
n + 1 — jcolumns of Q; ; at step 3, it is best to compute the matrix Q; ; explicitly,
instead of keeping it as a product of elementary Hermitians. Thus, the storage
required is n? + O(n) floating-point words. (If k = 1, then this may be reduced to
in* + O(n) words, at the expense of slightly increasing the overhead, by using
products of plane rotations instead of elementary Hermitians at step 4.)

5. Local convergence theorems. In this section we give local convergence
theorems for the algorithms described in §§ 3 and 4. Since our object is to deduce
the relative efficiency of the different algorithms from results on their orders of
convergence, we are willing to assume the existence of a solution x*. Convergence
theorems without this assumption are also possible, in the style of Brown and
Dennis (1968), Dennis (1967), (1968), Kantorovich and Akilov (1964), and Ortega
and Rheinboldt (1970, § 12.6).

THEOREM 1. Supposethate > 0,n > 1,S = {xe R"|||x — x*|| < 3¢},f:S— R"
is Fréchet differentiable, f(x*) = 0, the Jacobian J(x) = (0f;/0x;) satisfies the
Lipschitz condition ||J(x) — J(y)|| £ M||x — y| forall x,ye S, and

(5) ce <1,
where
6) ¢ =M™ G + 2¢/n).

If xo # Xg, X0 — X*|| <&, [xg — x*| <&, and k = 1, then the algorithm S, of
§ 3 is well-defined, generates a sequence (x;), and x; — x* with order at least pg(k)
= (k + /k* + 4))2.

THEOREM 2. Suppose that k, n, ¢, S, f, and x* are as in Theorem 1, J(x*) non-
singular, hy < &, and |x, — x*|| < & If ¢ is sufficiently small, then the algorithm T,
of § 4 generates a sequence (X;), and x; — x* with order at least p(k) = k + 1. (This
result is not sharp if n = 1, when the order is at least pg(k + 1) > k + 1: see our
comment about the choice of h;, | in §4.)

Theorems 1 and 2 give lower bounds pg(k) and p4(k) on the orders of con-
vergence of the algorithms S, and T,, and in practice the orders are usually equal
to these lower bounds. (Perhaps results similar to those of Voigt (1971) could be
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established.) Thus, the efficiency of algorithm S, is

log ps(k)
ES) =——"—=
(5 n+k-1
and the efficiency of T, for n > 1 is
_ 2log pr(k)
E(T")_n+2k+1'

We may choose k to maximize E(S,) or E(T;). In § 6 we compare the efficiencies of
various algorithms, including S, and T, with the optimal choice of k. The remainder
of this section is devoted to a proof of Theorems 1 and 2,and may be omitted without

loss of continuity.
LeEMMA 1 (Ortega and Rheinboldt (1970, Thm. 3.2.12)). With the assumptions of

Theorem 1,
M 2
[f(y) — f(x) — Jx)(y — x)|| < Sy —x|* forallx,yes.

LEMMA 2. With the assumptions of Theorem 1, if A;, J;, and Q; are defined by the

algorithm Sy of § 3, x; €S, and x; + h,Qe;€S forj=1,---, n, then
I: = Jx) | < M /n/2.
Proof. Forj=1,---, nwe have, from Lemma 1,
If(x; + h;Q:e;) — f(x;) — J(x;)h Qe < Mh})2,

so, by the definition of 4;, [(4; — J(x,)Q)e;l < Mh;/2. Thus [|4; — J(x)Q;l
=M hi\/ﬁ/Z, and the result follows from the definition of J;.
LeMMA 3. With the assumptions of Theorem 1, suppose that X; # X;,

& = |Ix; — x*|,

and
g = max {||x; — x*||, [x; — x*|} S e.

Forj=0,---, k,lety, ;be defined by the algorithm S, of § 3. Then, forj =1, -, k,
7 lyij-1 — x*| S &
and
(8) Iyi; — x*I = ceillyij-1 — x*|-
Also,
©) et < (i)
and
(10) giv1 S (ce)f e

Proof. |J(x;) — J(x*)|| £ Mg;, and h; < 2¢}, so Lemma 2 gives
(11) ;= JeMIL < (1 + /m)Me.
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Thus, from (5) and the Banach lemma, J; is nonsingular and

-1 5+ 4\/';) -1
; < [ —=|J M.
(12) [J70 = (3 2 [J7 5 (x*)l

Assume for the moment that (7) holds. By (4) and the triangle inequality,
1T4y;,; — X S 1) (Y- 1 — x*) = iy DI+ 1T = &I - Dy - — x*]-
Since f(x*) = 0, Lemma 1 and (11) give

1dyi; — ¥ < G + /mMelly; ;- — x*.
Thus, from (12) and (6),
lyi; — x*| < ceilly;j-1 — x*|.

This shows that (7) implies (8), but (7) holds for j = 1 (by the definition of y; ,),
and cg; < 1,s0(7) and (8) hold forj = 1, - - -, k, by induction. Now (9) and (10) are
immediate from the definition of x;, ; and xj .

LemMMA 4. Suppose that k > 1,0 <y, < 1,0 £ 6, < 1, and, fori = 0,

(13) 0=<74; = 7:0%
and
(14) 004 S0t

Then y; — 0 with order at least (k + \/k* + 4)/2.
Proof. We may suppose that all y; > 0, for otherwise the result is trivial. Let

and U = .
1 k-1

(_103 Yi
u =
—log é;

From (13) and (14), w;,; = Uu,, so

u; = Ulu,.
Now

U= QAQ",

A= ,
0 1

Ay =3k + Jk* + 4),
Ay =k — Sk + 4),

c —S
o= 7).
N ¢

where
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¢>0,5s>0,and ¢* + s? = 1. Thus
u; 2 QA'Qu,,
giving
logy; < (c?logy, + sc -log )AL + O(A) asi— .

Since yo < 1,9y < 1,¢ > 0,s > 0,and 4; > |4,], it follows that

lim inf (—log y)"* = 4,

which is the desired result.

Proof of Theorem 1. Suppose that x; and x; are defined and distinct, with ¢;
and ¢, as in Lemma 3. If x; = x*, then the result is trivial (X;+; = X;4, = - -+ = Xx¥),
so suppose that x; # x*. By Lemma 3, ¢, < ¢, < ¢. Also, from (8) with
j=k, Xjy; # X;4, unless x;,, = x* (when the result is trivial). It follows, by
induction on i, that the algorithm is well-defined and ¢; < e forall i = 0.

Let y; = c¢; and J; = ce. From Lemmas 3 and 4, y; —» 0 with order at least
(k + /k* + 4)/2, so the proof is complete. (It can also be shown that the sequence
of function norms [[f(x;)| is eventually monotonic decreasing, and tends to 0 with
order at least (k + /k? + 4)/2.)

LEMMA 5. If U = (u; ;) is nonsingular and triangular, then |u; ;| = 1/|U Y for
i=1---,n

Proof. Let U™! = V = (v; ;). Since U and V are triangular, the (i, i)th element
of UVisuv;,; = 1, butv; | < |V], so the result follows.

LeEMMA 6. With the assumptions of Theorem 2 and the notation of § 4, suppose
that1 < j < nh; <e |yir0— X*I <&, [Yijo — X*|| < & Thereisaconstant
¢, such that, for all sufficiently small ¢,

"yi,j+1,0 -x*| = C1||Yi,j,0 — x*
and
(15) Isi.jl 2 11T x*)).
Proof. Write J = J(x*) for brevity, keep i and j fixed, and let L = (m, ),
where

elJQ;;+1¢, fl<g<p=norj<p=gqg=n,

Mpq = {Si,p

flsp=q=/,
0 otherwise.
Suppose p < j. By Lemma 1 and the construction of a; , (step 3 of the algorithm),
|(aiT,p = eZJ(yi,p,O)Qi,p)eql < 3Mh; forg=p,p+1,---, n

Let x’ denote the (n — p + 1)-vector formed from componentsp,p + 1, -+, n
of an n-vector x. Then

Mh,)?
” [ai,p - szT(yi,p,O)ep],llz é (T) n.
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However, by step 4 and the definition of L,

(Pil:jPiT:j- 1 PiT,pai,p), = (Si,pep)/ = (LTep),'

Also, by step 5,
Qi,pPi,pPi,p+l tte Pi,j = Qi,j+17
SO
’ Mhl 2
ILT = QF i Iy p el 12 < (T) n,
Le.,

. Mh,\?
Y. [eF(L = J¥0Qss Je S ( 2 ) "

Now “yi,p,O —x*| S50
19(¥i,p,0) — Jx*)I| = Me,
and thus
L — JQ+1)7e,ll < iMhy/n + Me < 3Me./n.
Since the last n — j rows of L are the same as those of JQ; 41,1t follows that
IL = JQi 41l < $nMe.

Thus L™ < 2||J Y|, provided ¢ is so small that 3nMe||J " !|| < 1.
I,.'0
There is an orthogonal matrix H, of the form (—0~—,— H:), such that LH is
|

lower triangular. Thus, from Lemma 5,
Isi,jl = Imy;l 2 VIL™Y 2 12171,
proving (15).
By the definition of y; ;,; o (see § 4),
1¥ij+1,0 — X*| = Iyijo — xX*I + |sijj1| | f{¥i .0l
so the result follows from (15) and Lemma 1 if
¢y =1+ 2177 + |J1).

LEMMA 7. With the assumptions of Theorem 2 and the notation of § 4, suppose
that 0 < m < k, h; < ¢, and ||x; — x*|| < &. There is a constant c, such that, for all
sufficiently small e,

(16) 1Yim = X*I < Collyiam — X*| forj=1,---,n+1,
and
(17) Isi;l = LRI Xx*¥)) forj=1,---,n.

Proof. Since y; | o = Xx;, Lemma 6 with j = 1 gives

”yi,Z,O -x*| = C1“Yi,1,o - x*|
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and
Isi,al = 12117 H).

Hence, if |ly; ; o — x*| is sufficiently small, Lemma 6 with j = 2 gives

[¥i3,0 — X*I = C%"Ym,o - x*|
and
Is;,ol = L2171

Proceeding in this way, we find that (16) with m = 0 holds if ¢, = c}. Also, (17)
holds. The proof of (16) with m = 1,2, ---, k — 1 follows from (17) as in the last
part of the proof of Lemma 6. Finally, we note that from (16), (17) and the relations
Yitm = Yin+1m—1, it follows that iteration i of algorithm T, is well-defined,
provided |x; — x*|| is sufficiently small.

LeEMMA 8. With the assumptions of Lemma 7, suppose that ||y; . — X*|
< g"* 1 There is a constant c, such that, for all sufficiently small ¢,

||f(Yi,n+1,m)|| = 038m+2-

Proof. Fix jin the range 1 < j < n. From Lemma 7, there is a constant c5 such
that

|f,{Yi,j,m)| = CSSMH-
As in the proof of Lemma 6, there is a constant c such that
Is;; — ejTJ(X*)Qi,n+ lejl =< ¢e8,
so there is a constant ¢, such that
lsi; — ejT-](Yi,j,m)Qi,n+ 18] = cqe.
Hence, from (17),
|fi(yi,j,m) - ejTJ (yi,j,m)s; j fi(yi,j,m)Qi,n+ 1ej|

256,107 H(x*¥) [l

lIA

m+2
2

< cge say.

By the definition of y; j, ; ., this gives
|18 1jm) = €IV jm) Vijm — Yoo 1m)| S cee™ 2
Thus, from Lemma 1,
[fAYij+ 1.m)] = cge™t? + %M"yi,j+ tm = Yi,j,m”2-
Since [y j+1.m — Yijmll is of order &™**, this gives
|f)(yi,j+ l,m)l =< C93m+2-

Similarly, there is a constant c,, such that

|f,()’i,n+ 1m) — S ¥ijriml S cro8™* 2,
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SO

|f{Yins 1,m)] = (co + cy0)e™ 2.

Thus, the lemma follows.
LemMA 9. With assumptions of Lemma 7, there is a constant c, such that, for all

sufficiently small e,
||yi,n+l,m—X*|| §C48m+2 form=0,-~-,k— 1.

Proof. This follows easily from (16), Lemma 1 and Lemma 8, by induction

onm

Proof of Theorem 2. If |x; — x*|| and h; are of order ¢;, then, from Lemma 9,

[x;+, — x*| is of order &¥*!. From Lemmas 7 and 9, h;, , is also of order &*'.

Hence, the order of convergence is at least k + 1.

6. A comparison of the efficiencies of various methods. In this section we
compare the efficiency (as defined in § 1) of the discrete Newton method, the two-
point secant method, Brown’s methods, and the methods of §§ 3 and 4 (with the
optimal choice of k), for different values of n. In Table 2, the symbols are:

n = 2, the number of variables;
E(N,) = (log 2)/(n + 1), the efficiency of the discrete Newton method ;
E(S,) = (log[(1 + ﬁ)/Z])/n, the efficiency of the two-point secant method ;

E(T)) = (2log 2)/(n + 3), the efficiency of Brown’s method and of our orthog-
onal method T ;

Egn) = max E(S,), the efficiency of the optimal method S,, attained at
k= ksln) (see §9); |

Ef(n) = max E(T,), the efficiency of the optimal method T; (or the correspond-
i’fglmodiﬁed Brown’s method), attained at k = k(n) (see § 5).

Table 2 shows that, for n = 2, the optimal method T, and the corresponding
modified Brown’s method are the most efficient of those considered. However,
the reader should recall our comment at the beginning of § 4.

When n is large the discrete Newton method, the two-point secant method,
and Brown’s unmodified method are much less efficient than the optimal methods
T, and S, . Shamanskii’s optimal method N, is slightly less efficient than the optimal
method S,, but the difference is only appreciable when n is small (see Table 1).

For large n the following asymptotic formulas hold :

kn(n) ~ k(n) ~ ky(2n) ~ n/log (n/log n),
E(S,)/E(N}) ~ log, (1 + /5)/2) = 0.69,
E(T)/E(Ny) ~ 2,

EN(n)/E(N,) ~ E¢(n)/E(N,) ~ log, (n/log n),
E4(n)/E(N,) ~ 2log, (n/log n).
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TABLE 2
Comparison of the efficiencies of various methods

n ks(n) kx{n) E(S,)/E(N,) E(T,)/E(N,) Eg(n)/E(N,) E(n)/E(N,)
2 3 2 1.04 1.20 1.29 1.36
3 4 3 0.93 1.33 1.39 1.60
4 4 3 0.87 143 1.49 1.82
5 5 3 0.83 1.50 1.58 2.00
6 6 4 0.81 1.56 1.67 217
7 6 4 0.79 1.60 1.75 232
8 7 4 0.78 1.64 1.82 2.46
9 7 5 0.77 1.67 1.89 2.58
10 8 5 0.76 1.69 1.96 2.71
20 12 7 0.73 1.83 244 3.60
50 23 14 0.71 1.92 321 5.04
100 38 22 0.70 1.96 387 6.30
1000 226 128 0.69 2.00 6.39 11.17
10000 1572 866 0.69 2.00 9.18 16.64

In the comparison of different methods we have not mentioned some methods
based on rank-one or rank-two updating of an approximation to the Jacobian
(Broyden (1967), (1970), Dixon (1971)) or inverse Jacobian (Broyden (1965), (1970),
Dennis (1971)). It is not known whether any of these methods are appreciably more
efficient than the discrete Newton method, although numerical experience suggests
that they may be. We have also omitted a comparison with Wolfe’s secant method
(Wolfe (1959), Bittner (1959), Tornheim (1964), and Barnes (1965)), for it seems
unlikely that convergence of this method can be established without making
assumptions about a certain determinant of normalized directions (see Brent
(1972a)).

7. Some numerical results. In this section we give some numerical results to
illustrate the behavior of the methods S, and T, described above. Most of the results
are for the theoretically optimal k, but we also give some results with nonoptimal k
for purposes of comparison. All results were obtained on an IBM 360/91 computer
with 14-digit hexadecimal floating-point arithmetic.

Rosenbrock’s function. This is a well-known function of two variables, defined
by f; = 10(x, — x3) and f, = 1 — x,. (The problem originally stated by Rosen-
brock (1960) was to minimize f? + f2.) The initial guess is (— 1.2, 1.0)T. Method
T, (with hy = 0.1) reduces ||x — x*|| to 1072 in 15 function evaluations (i.e., 30
component evaluations), and S; (with k, = 10~ %) requires 8 function evaluations.
Because of the special form of the function, Brown’s method finds x* exactly (except
for the effect of rounding errors) after 10 component evaluations. Brown’s modified
methods and the methods T, (k = 2) require only 7 component evaluations to find
x* exactly. If f; and f, are interchanged, then only 5 component evaluations are
required. Thus, it may be difficult to establish exact order of convergence theorems
for Brown’s methods or the methods T,.

Powell’s (1962) singular function.

fi=x1 4+ 10xy, fo= /503 — x2), f3=(xs = 2x3),
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and

Ja= \/E(xl - x4)%,

with starting point (3, —1,0, 1)T. The Jacobian of this function is singular at the
zero x* = 0,50 the theorems of § 5 are not applicable. Method S, (with h, = 10~9)
requires 72 function evaluations to reduce ||f| to 10719 (then ||x — x*|| = 6.6
x 107°), and method T, requires 66 function evaluations (||x — x*| = 5.4
x 107 ). Convergence appears to be linear for both methods.

Brown and Conte’s function.
fi= lsin (x1x,) — X2 _ ﬁ, and f, = (1 - L)(exp (2x;) —e) + 2 _ 2ex,,

2 4 2 47 i
starting from (0.6, 3.0)”, near the zero x* = (0.5, n)". Method T, (with h, = 1079)
reduces ||x — x*|| to 2.2 x 107! in 10 function evaluations, and method T,
reduces ||x — x*|| to 4.8 x 10713 in 9.5 function evaluations. According to Brown
and Conte (1967), Brown’s method reduces ||x — x*| to 2 x 10~8 in 10 function
evaluations, and the discrete Newton method is slower.

A trigonometric function, n = 5.

(18) fi=E; = ) (4;sinx; + B;;cosx;) fori=1,---,n.
j=1
The coefficients E;, A, j and B, ; are randomly generated as suggested by Fletcher
and Powell (1963), and the components of x, — x* are uniformly distributed in
[—n/10, +=/10]. In tests with two different randomly generated sets of coefficients,
method Ty (with hy, = 10™3) required 11 or 12 function evaluations to reduce
[x — x*||, to 10~%, and method S required 16 (both times). Box (1966) reported
that Powell’s method for sums of squares (Powell (1965)) required 21 or 22, and the
method of Barnes (1965) required 37 or 42.
A trigonometric function, n = 20. This example illustrates the effect of varying
the parameter k in methods S, and T,. The function is defined by equation (18)
with n = 20. The components of x, — x* are uniformly distributed in [—7/40,
+7/40]. (With a larger interval the methods sometimes converge to different zeros.)
Table 3 gives the number of equivalent function evaluations required to reduce
[x — x*| to 10~ 2 with methods S, and T (h, = 10~°), for various values of k.
The table shows that the predicted optimal values of k = 12 (for S,) and k = 7 (for
T,) are nearly best possible, and much better than k = 1. Numerical results for
n = 5 and 10 lead to similar conclusions.

8. Some extensions and analogies. The numerical results given in § 7 show
that the idea of using the same approximation to the Jacobian for a (theoretically)
optimal number of steps does give practical algorithms. We have concentrated
on algorithms with good local properties. Algorithms with better global conver-
gence properties may be obtained by modifying our algorithms appropriately : see,
for example, Brent (1972b, ¢), Broyden (1969), Davidenko (1953a, b), Deist and
Sefor (1967), Freudenstein and Roth (1963), and Kizner (1964).

An interesting unsolved problem is to determine a sharp upper bound E,,(n)
on the efficiency of all possible algorithms which converge under conditions like
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TABLE 3
Comparison of function evaluations
required by S, and T, on a trigono-
metric function of 20 variables

k Sy T
1 162 69
2 106 375
3 68 38.5
4 70 28
5 70 28
6 72 28
7 52 28
8 52 30
9 53 31

10 53 32

11 54

12 54

13 55

14 56

15 57

16 57

17 58

18 59

19 60

20 61

those of Theorem 2. By a result of Winograd and Wolfe (1971), no algorithm for
solving one nonlinear equation using only one function evaluation per step can
have order greater than two, under mild restrictions on the definition of an
algorithm. Applying this result to a system of equations with diagonal Jacobian
matrix gives E,,(n) < log 2, so

(19) E(n/E(N) =n+ 1.
On the other hand, our results for methods N, S, or T, show that
(20) E(n)/E(Ny) 2 c-logn

for some positive constant c¢. A large gap remains between the bounds (19) and
(20). For further discussion see Brent (1972a).

There is a close connection between methods for finding solutions of systems
of nonlinear equations and methods for minimizing functions of several variables.
It is theoretically possible to obtain highly efficient methods for minimizing
functions of several variables by using an approximation to the Hessian for an
optimal number of steps. The efficiency of the Rayleigh quotient and inverse
iteration method for finding eigenvalues and eigenvectors of a matrix (Ostrowski
(1957-1960), Wilkinson (1965)) may be increased in an analogous way. However,
we have not yet performed any numerical experiments to verify these predictions.
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