532

IEEE TRANSACTIONS ON COMPUTERS, MAY 1973

Correspondence

The Parallel Evaluation of Arithmetic Expressions
Without Division

RICHARD BRENT, DAVID KUCK, anp KIYOSHI MARUYAMA

Abstract—As computers become capable of executing more arith-
metic operations simultaneously, the question of compiling for such
machines becomes more important.

In this correspondence we consider arbitrary arithmetic expressions
of n distinct variables with operations restricted to addition, subtrac-
tion, and multiplication. We first construct a scheme whereby any such
expression can be evaluated in at most 3 logon + O(1) steps if suffi-
ciently many processors are available, We then improve this result and
reduce 3 logzn to 2.465 logyn. Finally, we deduce some results that
apply when a fixed number of processors are available.

Index Terms—Arithmetic expression evaluation, number of proces-
sors, parallel computation, processing time upper bound, simultanecus
operations, tree-height reduction.

1. INTRODUCTION

Many computers now exist that are capable of executing more than
one arithmetic operation simultaneously. As parallel and pipeline arith-
metic units continue to be developed, the question of how quickly arith-
metic expressions can be evaluated becomes more interesting. For ex-
ample, the sum of 2" numbers can obviously be formed in k steps usinE
2°7! processors. On the other hand a palin?minal of degree 2
written in the form of Horner’s rule requires 2 *1 steps if evaluated in
its given form. Thus it may be useful to have good algorithms for trans-
forming given arithmetic expressions into forms in which they may be
more quickly evaluated.

The problem of evaluating an arithmetic expression using as many in-
dependent processors as necessary has been studied by a number of
people. Baer and Bovet [1] gave a comprehensive algorithm that takes
advantage of the associativity and commutativity of arithmetic opera-
tions. Muraoka [6] studied the use of distributivity as well and this is
also discussed in [3]. It was conjectured in [6] that an arithmetic ex-
pression of 2% variables whose operations are + and # can be evaluated
in at most 2% steps. It was proved in [6] that such an expression with
d levels of parenthesis nesting can be evaluated in at most 1 + 2d + k
steps. Brent (2] has shown that arithmetic expressions of the form ag +
xy(ay +xq(ay +- -+ xpa,) "), where n < 27, can be evaluated in & +
/8K + 3 steps. 1t has been shown by Maruyama [4] and by Munro and
Paterson [5] that polynomials of degree n can be evaluated in & +
\/Z_k + 0(1) stcps.1

In this correspondence we study the problem of evaluating arithmetic
expressions using sufficiently many independent processors, each of
which is capable of performing an addition or multiplication on each
step. First we show that an arithmetic expression of 2" variables with
operations + and = can be evaluated in at most 3k — 4 steps (k > 2).
Our proof is given in the form of a constructive procedure for trans-
forming a given expression into a form that satisfies this upper bound.

Manuscript received July 13, 1972; revised October 30, 1972. This
work was supported in part by N3F Grant GJ-27446, AT(11-1)-2118
and in part by the IBM T. J. Watson Research Center. .

R. Brent is with the Computer Centre, Australian National University,
Canberra, Australia.

D. Kuck is with the Department of Computer Science, University of
Illinois, Urbana, IIl. 61801.

K. Maruyama was with the Department of Computer Science, Uni-
versity of Illinois, Urbana, Ill. 61801. He is now with the IBM T. J.
Watson Research Center, Yorktown Heights, N.Y.

'We use the standard notation for the order of magnitude of a func-
tion: f(n} = 0(g(n)) if there is a constant r > 0 such that limsup

G(n)jg(m) =r. n—e

ace f +

STEP

STEP

Fig. 2. Properly cut and distributed tree.

The proof uses only the associative, commutative, and distributive laws,
so it applies for arithmetic expressions in any commutative ring (e.g.,
Boolean expressions). Also, the introduction of the (binary or unary)
subtraction operator does not significantly alter the result. However,
our proof does not hold if the division operator is allowed.

A slight modification of the argument shows that 2.465k + 0(1) steps
are sufficient (see Theorem 2). We suspect that the number 2.46 - - -
can be reduced further, but this is an open question.

The results mentioned above apply if arbitrarily many processors are
available. We also give (without proof) some results that apply under
the more realistic assumption that a fixed number p = 1 of processors is
available.

II. EXAMPLE

In order to motivate our discussion of the problem and its solution
we now present a simple example that illustrates our method. Consider
the problem of evaluating the expression

E=alb+c(d+e(f+gh))

which requires seven operations and seven time steps as presented, as-
suming multiplication and addition each tauke one time step. By per-
forming some “redundant’ operations, we may speed up the evaluation
process. Fig. 1 shows that by performing all possible distributions, £
may be evaluated in five steps. However, by performing only selected
distributions, Fig. 2 shows that it is possible to evaluate the expression
in just four steps.

The form shown in Fig. 2 illustrates our method of tree-height reduc-
tion. In general our method proceeds to “cut in half™ a given tree by
distributing certain multiplication operations over additions. Then each
half is again cut and the procedure continues from the root to the
atoms of a tree.

Since £ has eight atoms we perform a cut between the fourth and
fifth atoms, namely, between d and ¢. Thus by distribution and associ-
ation, £ may be rewritten as

CORRESPONDENCE

E' = a(b + cd) + ace(f + gh).

For this example, just one cut is sufficient and a tree for E' is shown in
Fig. 2. It should be noted that while E required only seven operations,
£ requires nine operations for its evaluation and the fully distributed
expression of Fig. 1 requires 13 operations. Furthermore, while the
evaluation of E requires at most one processor, £ may be evaluated
using three processors and the expression of Fig. 1 requires four
Processors.

Thus the general idea of our approach is to introduce extra opera-
tions by distribution, in an attempt to form a tree that is of lower
height than any tree for the presented form of a given expression. How-
ever, we must generally refrain from performing all possible distribu-
tions, because too many redundant operations will cause the tree height
to be greater than necessary.

IT1. DEFINITIONS AND PRELIMINARY RESULTS

An atom is a single variable or constant. We denote atoms by lower-
case letters. We consider only the two standard binary arithmetic oper-
ations of addition and multiplication, denoted by + and *. Throughout
this correspondence, by an erithmetic expression we mean any well-
formed string of + and # operators and atoms. We denote arithmetic
expressions by uppercase letters and write £(1) to denote an arithmetic
expression £ of at most » distinct® atoms. To single out particular
atoms in an arithmetic expression we include them in the argument list.
Thus E(n-1, g) refers to an expression of at most 1 atoms, one of which
is g. To denote the exact number of atoms in any expression £ we
write | E|.

It is well known that a well-formed arithmetic expression has one or
more parse trees. We denote a tree for the expression E as Tg, and arbi-
trary trees as Ty, T, etc. We also let |Tg| represent the number of
atoms in the tree Tg. We say that two trees T;and 'I} are joined by an
operator 8 if the root nodes of 7; and 7} are both atfached to a new root
node labeled with the 8. Given any tree T we define its subtrees as
follows. Two subtrees of Ty, Tyy, and Ty, are joined at the root of T}.
Similarly Ty, and Ty, may contain subtrees, each of which is also re-
garded as a subtree of Ty. This continues until finally all the atoms of
T} are reached, and they also are regarded as subtrees of Tj.

Lemma 1: Using only the distributive, associative, and commutative
properties of + and *, any arithmetic expression E(n,g) can be rewritten
in the form £'(2n,£) = A(n)+g + B(n).

Proof. Consider any parse tree T for E. Without loss of general-
ity, let g be joined to subtree T; of Tg by operator @ as shown in Fig.
3. Assume that the subtree consisting of g, 6, and T} is joined to sub-
tree T by 87 and so on, with the root operator of Tg being denoted by
8, as shown in Fig. 3. Let the expression associated with T} be denoted
byE,l<i<r

By distribution we form A(n) = IE;, where /= {i 11 </ < rand §; =
¢}‘ Since there are at most » atoms in E(n) (excluding g), A can have
no more than # atoms.

To find B(n), let k be the smallest index of a + operator in Fig. 3, i.e.,
O =+and 6; = forj=k-1,k—-2,"-+,1. B canbe found by delet-
ing from Tg the subtree corresponding to Eg—y * Ey_p =" =g * By if
% > 1 or by simply deleting g if k = 1. The expression corresponding
to the remaining tree is B. This is arithmetically equivalent to setting
£=0in E. Since £ has at most 7 atoms (excluding g), B has at most n
atoms.

Lemma 2: Suppose 1 < m < n,and let £(n) be an arithmetic expres-
sion. If T is any parse tree for £(n) then there is a pair of subtrees T
and Tg of Tg such that Ty, and T are joined to each other

Tl < m, ITR1 < m, T+ 1Tl = m.

Proof: Let TIE") = Tg. Consider the subtrees T}{,l) and TV joined
to the root node of T(D). Without loss of generality, IT(I)I = IT(I) I
P P Q

?Throughout this correspondence we refer to expressions of a num-
ber of distinct atoms. By this we mean that each occurrence of each
atom is counted so that, for example, a +a+aanda + b + ¢ each have
three atoms.

533

Fig. 3. Parse tree Tg.

If ITF) | = m, consider the subtrees T;gz) and Téz) joined to the root

node of TSY, Continuing in this way, we eventually find subtrees
; 'y .

T_F(,'_l), T}(,'), and Té‘), such that -

T 11 1= 170 1
and
1<t i<irfiem.

Thus, we may take T = 1(,’) and Ty, = T, 1),

Theorem I: For k > 3, any arithmetic expression E(2K) may be
evaluated in 3k - 4 steps.

Proof: By inspection, the theorem is true for k = 3. As an induc-
tive hypothesis suppose that, for some k > 3, expressions with 2 atoms -
can be evaluated in 3k — 4 steps. We shall show that an expression
E(2 H) can be evaluated in 3k - 1=3(k+ 1) -4 steps.

Let T be any parse tree for E(2%+!), Find Ty, and Tg (joined by 6)
using Lemma 2 with m = 2% and n=2%"1. By the inductive hypothesis,
the expressions L and R corresponding to Ty, and Tg can be evaluated
in 3k — 4 steps, so G = L @ R can be evaluated in 3k - 3 steps.

Let Tk, be the tree formed bx replacing th}ac subtree T of Tg by an
atom g. By Lemma 2, 1G] = 27, so |l < 27 + 1, and we may write
Ey as E'l(zk, £). Applying Lemma 1, £] = A(2k) ®g+ B(Zk) for some
expressions 4 and B,s0 E =4 « G+ B.

By the inductive hypothesis, 4 and B can be evaluated in 3k - 4 steps.
Since G can be evaluated in 3% — 3 steps, 4 * G can be evaluated in
3k —2steps,and E=4 « G+8in3k -1 steps. Thus, the result fol-
lows by induction on k.

1V. IMPROVEMENT ON THEOREM 1

Let 7(n) be the number of steps required to evaluate an expression
with # distinct atoms. By inspection, 7(n) =n-1for 1 < n < 4. Also,
from Theorem 1,% 7(n) < 3llogyn) -4 forn > 5, so

_ 38Bince Theorem 1 was proved for n = 2", it can be applied to any
integer n by introducing the notation |x] which for any real x denotes
the integer such that x < [x] <x + 1.

7(1) < 3 logan + 0(1) (6]

as 1 — . In this section we show that the factor 3 in (1) can be re-
duced to logy 2 = 2.4649, where A = 1.3247 - - is the (unique) real pos-
itive root of 2> = 1 +z.

Lemma 3: Letrg=1,ry =2,7r3=3,and

Treg =1+ rp+rgs (2)

fork > 0. Then 7(rg) < k.

Proof: The proof is similar to that of Theorem 1. As an inductive
hypothesis suppose that r{rg) < 0, 7(r1) <1, ", 7(rga) <k + 2. (By
inspection, this is true for £ = 0.) We shall show that r(rp43) <k + 3.

Let E{ry44) be an arithmetic expression with parse tree Tg. Find T,
and Tpg (joined by @) from Lemma 2 withm =1+ rg and n = rg.3. Let
G = LOR, E| and g be as in the proof of Theorem 1. Since |£,]1 <1+
Tea = |Gl = rgyq —rg =1+ rgyq, £q may be written as £y (rg+q, £)-
Applying Lemma 1, Ey = A(rg4,) = £ + B{rg+,) for some expressions A
and B, so £ = 4 = G + B. By the inductive hypothesis, 4 and B can be
evaluated in k + 1 steps. Also, |L| < m -1 < rg, so L can be evaluated
in k steps, and similarly for R. Thus G can be evaluated in k + 1 steps,
and £ can be evaluated in k& + 3 steps. Hence, the result follows by in-
duction on k.

Lemma 4: 1f ri; and A are as above, then

32 +an+2) | _ T
ry = ——————)A‘“-I-ZA KRy
2a+3 40" — 6+ S

Proof: The general solution of the linear recurrence relation (2) is
3
=2 enf -1
i=1

where the A; are the roots of 2* = | +z, and the ¢; are arbitrary con-
stants. Since rg = 1, r =2, and r, = 3, we find (using generating func-
tions) that

302 + 4, + 2
ci e —
IR‘ + 3
Suppose that Ay = A isreal. Then

Mgl = gl = A2

;\2:?\3=——;~(J\¢f\/3:_2—_i}

leal = Icsl N
el =teal = /TR
Ea 422 —6n+s

so the result follows.
Theorem 2: Forn=z2

and

7(n) < |logy (an + B)|.
where”
a = Mey = 0.5956 - -,
g = 2Mezlfe; = 0.1665 - -,
and A, ¢, and, ¢, are as in the proof of Lemma 4,
Proof: Letk = 1besuchthatry_; <n<ry. From Lemma4,

k-1

nzrp_ tlzc A = 2leql

50 k
AT an+f

‘]‘Fm’ any real x we use |x] to denote the integer such that x — 1 <
|x| = x.

IEEE TRANSACTIONS ON COMPUTERS, MAY 1973

giving
k < logy (an + §).

However, from Lemma 3

< i) <k

s0
(1) < logy (an + B).

Since 7(n) is an integer, the result follows.

V. CoNCLUSION

Theorem 1 shows that expressions with 2% atoms (k > 2) can be
evaluated in 3% — 4 steps if enough_processors are available. It is easy
to show, by induction on k, that 4 -2 processors are enough. (In the
proof of Theorem 1, the four expressions 4, B, L, and R must be eval-
uated simultaneously.) A more delicate argument shows that 0(3")
processors suffice. Thus, an expression E(n) can be evaluated in the
number of steps given by (1) using 0(n'-38 """} processors, where
1.58 - - - = logy3. Similarly, E(n) can be evaluated in the number of
steps given by Theorem 2 using O(nl"“‘ **) processors, where 1.71 -+ - =
logy ((1 +~/5)/2). This follows from an extension of Lemma 3. Itis
easy to give a bound on the time required to evaluate an expression if a
restricted number of processors are available. If Tp(n) denotes the time
required to evaluate E(n) using p processors, then

Tp(ny > |nfp] - 1+ [logyp].

One application of this work could be in the area of logic design. For
any given Boolean expression, assume that some procedure was used
to minimize the number of literals. Then the methods described here
could be used to design circuits with small overall delay.

If this work were extended to include the division operator, the re-
sults could be of interest in compiling arithmetic expressions for multi-
arithmetic unit computers.

REFERENCES

[1] 1. L. Baer and D. P. Bovet, “Compilation of arithmetic expressions
for parallel computations,” in Proc. IFIP Congr,, 1968, pp. 340~
346.

[2] R. Brent, “On the addition of binary numbers,” IEEE Trans.
Comput. (Corresp.}, vol. C-19,£p. 758-759, Aug. 1970.

[3] D.J. Kuck, Y. Muraoka, and S. Chen, “On the number of opera-
tions simultaneously executable in Fortran-like programs and
their resulting speedup,” IEEE Trans. Comput., vol. C-21, pp.
1293-1303, Dec. 1972,

[4] K. Maruyama, *Parallel methods and bounds of evaluating poly-
nomials,” Dep. Comput. Sci., Univ. Illinois, Urbana-Champaign,
Mar. 1971; also “‘On the parallel evaluation of polynomials,”
IEEE Trans. Comput., vol. C-22, pp- 2-5, Jan. 1973.

{51 I. Munro and M. Paterson, “Optimal algorithm for parallel poly-
nomial evaluation,” IBM Res. Rep. RC 3497, Aug. 1971; also in
IEEE-SWAT Proc., Oct. 1971.

{6] Y. Muraoka, “Parallelism exposure and exploitation in programs,”
Ph.D. dissertation, Dep. Comput. Sci., Univ. Illinois, Urbana-Cham-
paign, Rep. 424, Feb. 1971.

