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Abstract. Let fy(x) be a function of one variable with a simple zero at 7, An
iteration scheme is said to be locally convergent if, for some initial approximations
Xy, ..., ¥ near 7, and all functions f which are sufficiently close (in a certain sense)
to fo, the scheme generates a sequence {x,} which lies near 7, and converges to a
zero 7 of f. The order of convergence of the scheme is the infimum of the order of
convergence of {#,} for all such functions f. We study iteration schemes which are
locally convergent and use only evaluations of 7, f/, ..., ¥l at #,, ..., x,_, to deter-
mine x,, and we show that no such scheme has order greater than d + 2. This bound is
the best possible, for it is attained by certain schemes based on polynomial inter-
polation.

I. Introduction

Many “iterative”’ methods are known for the numerical solution of the problem
of finding a zero 7 of a function f(x) of a single real variable. The iterative process
generates a sequence {x,} of approximations to », where x, is determined by the
values of f and possibly of some of its derivatives at previous members of the
sequence. (The term ““iterative’’ is widely and loosely used; the preceding descrip-
tion seems to cover its use in our subject.) If the process starts at points which are
close enough to 7, then the sequence {x,} should converge to ». The various
methods differ in the amount of information used, the particular way the informa-
tion is used to generate the next approximation, and consequently the rate at
which the sequence {x,} converges to r. The secant method and Newton’s method
are examples of iterative methods which are much used in practice. Traub’s
book [1] describes a wide variety of such processes, all fitting the general outline:
Given the points x,_,, ..., %;_,, as well as the values of the function and its first 4
derivatives at these points, construct the minimal degree interpolating polynomial
fitting these data, and choose x, as a root of this polynomial (or as its value at
zero, if it is a polynomial in the dependent variable). The secant method and
Newton’s method are in this class of iteration methods.

An iterative method does not, however, have to use the root of such a poly-
nomial. For example, the iteration defined by

¥ — Fh—1) (Fp—z +F(%—1)?%) —F (o) (Fa—1 +F(#—1)%)
B F(#F—1) —F(#_2) ’
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which differs slightly from the secant method, is not of this class. It is, of course,
trivially true that every iterative method can be said to yield x,,, as a root of
the polynomial which interpolates the data and has a root at the point %, ,, but
this is not the minimum degree interpolating polynomial.

Newton’s method is defined by the formula

f(%r_1)

xk=xk_1 — f,(xk T)".

Let ¢, denote |x, —7|. If feC?, f' (r) == 0, and ¢, is sufficiently small, then hm X, =7
and

Ck+1 '
k-—)oo ek Zf’

Hence, we say that the order of convergence of Newton’s method is 2 (provided
f'(r)+=0and f(r) %0
For the secant method, given by

Xp = Xp—1 _f(xk—l) f(;;k—_l)l :;?;kz—") ’

one can show under the same hypotheses that lim % 1
k—>c0 €16, 2

consequently that hm 1 =C, where 1 = (1 +75) and C = (

k—oo 653
We see that the statement about the rate of convergence of the secant method
can take at least two forms: that e,/(e,_,¢,_) converges to a finite, nonzero limit,
or the same for ¢,/ef_,. The reason why the second statement is usually preferred
in the literature is that it yields an easy comparison with other iteration methods.
Since § (14/5) < 2, we see that Newton’s method converges faster than the secant
method. (This does not imply that Newton’s method is more efficient than the
secant method, for Newton’s method requires the calculation of both f and f at
each step, while only one new value of f is required at one step of the secant
method.)
Some methods give a sequence {x,} which converges rapidly to 7, but ¢,/e}_,
does not converge to a finite, nonzero limit for any value of 4. Hence, it is not
satisfactory for our purposes to define the order to be the number A such that

0< lim exlen_1 < 0. (1.1)
Instead, we define the upper and lower orders of convergence of {x,} to be
A = lim sup (—loge,)Y* (1.2)
k—00
and
A= lim inf (—loge,)'/* (1.3)
k—o00

respectively. If 1 =21 we say that the order of comvergence is A. It is easy to see
that if (1.1) holds then the order of convergence is 4, so our definition gives the
usual order if it exists.

With different functions and/or starting approximations, the same iterative
method may generate sequences with different orders of convergence. For
example, Newton’s method may give a sequence with order greater than two if
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f"’(r) =0. Hence, we say that the order of a method is the infimum of the orders
of convergence of the sequences that it generates when applied to a certain class
of functions with a certain class of starting approximations (this will be made
precise in Section 4). Similarly for the upper and lower orders of a method.

In discussing orders of convergence we assume that the initial approximations
are sufficiently good to ensure convergence to a zero. For Newton’s method, it is
easily verified that if x, is in an interval J (which includes 7) such that 0< 4
=f'(%) <24 for all x(if f (r)>0) or 0>4 = (x)>24 for all x(if f (r) <0),
then the method converges. (This condition emphasizes the ““local”’ character of
the method.) The same condition is also sufficient to guarantee the convergence
of the secant method. The condition described above is not often stated in the
literature. It is, nevertheless, useful to give quantitative description to statements
like ““if x, is sufficiently close to »”’.

Both the secant method and Newton’s method may be called ‘‘stationary”’
iterative methods. The same function is used to determine x, in every step of the
iteration. Even though “stationary” iterative methods are the ones most often
discussed, we need not restrict ourselves to such methods. As an example of a
“nonstationary’’ method, let B, (k¢ =2) be the minimal degree polynomial sat-
isfying B, (f(x;)) =x, for i =1, 2, ..., k, and define x,,, =B, (0). (We show below
that the order of this method is as great as that of any other iterative method
which does not require derivatives.)

The question of the order of convergence of iterative schemes based on
minimal-degree interpolating polynomials has been thoroughly discussed in the
literature [1-5]; some of it is briefly reviewed in the next section. The question
this paper addresses is: Do such schemes make the best possible use of the
information obtained ? More precisely, what is the highest order of convergence
attainable by any local iteration scheme?

Our answer is that if a local iteration scheme uses only the values of f
and its derivatives through the d-th (evaluated at arbitrarily many previous
values of the independent variable), then the order of convergence of the scheme
is no higher than 4 4+ 2. We thus answer affirmatively a conjecture of Traub
[1, p. 124] inspired by an examination of polynomial iteration schemes. Since
the order 4 + 2 is asymptotically attained by stationary polynomial schemes, and
is attained by nonstationary polynomial schemes, we may say that the polynomial
schemes are optimal.

Section 3 gives an imprecise outline of the derivation of the above result.
Section 4 is devoted to the precise definition of the concepts our treatment
requires, and Sections 5—6 are devoted to the proof of the result. Some possible
extensions are mentioned in Section 7.

-

I1. Order of Convergence of Polynomial Schemes

The essence of all the iterative methods that we are studying is the replacement,
at each step, of a function f by a function g which agrees with { in a specified way.
We therefore require a ‘“‘remainder’”’ formula for the error incurred when one
function is interpolated by another. The most useful for us is the following, due
to Cauchy:

23
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Let f,geC" f¥1(x;) =g (x;) forall £ =0,1,..., 5;—1 and =1, ..., m, where
7 =>b,+ --- +b,. Let I be the smallest interval containing {x;}. For any x there
is §, in the smallest interval containing 7 and x, such that

16) —e(n) =5y =@ TT (e —2)". (2.1
j=

The formula (2.1) leads to the derivation of the order of convergence for

polynomial interpolation schemes with fixed m, as we can outline here. For

simplicity, let all b; =d +1, so that n =m(d 4-1). We assume that »>1 (ie.,

either m>1 or d>0). If g, is the interpolating polynomial agreeing with f at

Xp—1s +++» Xy—py through the d-th derivative, then g, has degree » —1, so (2.1)
becomes

1 m
H(%) —&u (%) = -1 ™€) 111 (% — %, ;)L (2.2)
7=
Letting 7 be the root sought and ¢, =|r — x;|, we have
e s
lgx ()| =7 1™ ©)] ﬂl' ertl. (23)
1=

Since g, (%) =0, |g ()|=eslgr(n)| for suitable 7. Assume that f'(»)4=0 and
" (r) &= 0. Estimation of |g; ()| and |/™ (£)| reduces (2.3) to

e, =(C +6;) ]171 e,‘f_'*_'}, (2.4)
or
log ¢, =log (C + ;) + (4 +1) Z1 loge,_, (2.5)
1=

where C =|f")(r) [ (n!] (r))| and 8,—0. The “difference equation” (2.5) is treated
by standard means (noting that log ¢, —— oo so that the term log (C 4 ,) becomes
unimportant), and we find that its solution has the property

lim 2% _j (2.6)

where A is the root of maximum modulus (which is unique and real) of the equation

m—1

A" =(d +1) .Zo A, (2.7)
j=

From (2.6), the order of the method is 4. It is, of course, 2 for Newton’s method
(m=1,d=1); and }(1+]5) for the secant method (m =2,d=0). As m—>oo,
the order tends to 4 + 2, which thus constitutes the best order approachable by
polynomial interpolation using 4 derivatives. Moreover, the obvious extension
of the nonstationary method mentioned in Section 1 has order exactly 4 42 on
analytic functions with simple zeros.

In practice inverse polynomial interpolation methods may be preferable to
direct methods, for the need to solve a polynomial equation at each iteration is
eliminated. However, the orders of convergence of the corresponding direct and
inverse methods are the same (see Brent [5] and Traub [1]).
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II1. Qutline of the Method

Recall that we are dealing with iteration schemes which permit use of all
previous data. We suppose the quantities f*}(x,) for all <%, =0, ..., 5;—1
available at the %-th step. For simplicity, suppose here that all b; =d +1.

The error formula (2.1) becomes, with #» = (k —1) (d +-1),

1) —g(8) =iy U~ @) [T (=", (3.1)

where f and g agree through the d-th derivative at %,, ..., x,_,. This formula
indicates that there is an ineradicable uncertainty in extrapolating f to ¥ which

is proportional to J] (x — #,;)**, quite independent of the nature of extrapola-
i<k

tion; the given data simply do not determine f much better than that. It therefore

hardly seems likely that any iteration scheme could predict the root of f consistently

better than could a polynomial scheme.
The above formula may suggest the quantity

|2 —7| 1((k—1)(d+1))
Tk,r=( Hlx._.yld-i-l) ’ (3.2)
<’

where 7 is the root of f, as a measure of the success of a particular iteration scheme
which predicts x; as a root. The discussion of Section 6 shows that if T} , can be
shown to be bounded away from zero, then indeed the order of convergence cannot
exceed d +2. The bulk of our work below consists in showing that, given any
iteration scheme which actually converges for a sensible class of functions, we can
construct a function f for which the sequence 7, , obtained in using the scheme
on f will be bounded away from zero.

In the next section we set forth the precise definitions we require, and show
that our requirements are met by standard iteration schemes. We then choose an
arbitrary scheme (from the class that has been defined), a function f,, and a set
%, ..., %, of starting values for which the scheme is known to converge.

Applying the scheme to f, the next approximation x,,, is obtained. We
perturb f, to a new function f,,, which agrees (through the 4-th derivative) with
fo on x,, ..., x,. The agreement ensures that the scheme yields the same point
%, applied to f, or to f,,,, but the perturbation can be made in such a way that
|41 (%;41)] is not too small. Applied to f,,, the scheme gives a new approximation
%s,9. We continue the process by choosing f,, , to agree (through the d-th deriv-
ative) with f,,, at %, ..., #,,¢ in such a way that |f,,,(#,,)| is not too small,
and so on.

A sequence of functions is thus generated, and the sequence has as limit a
function f, satisfying the conditions of the scheme, with a root r to which the
sequence {x,} converges, but in such a way that 7, , remains bounded away
from zero.

The program above is carried out in Section 5, and the conclusions for the
overall rate convergence are drawn in Section 6.
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IV. Iteration Schemes and Convergence

This section is devoted largely to definitions of the concepts we are dealing
with. We have not found them in the literature framed with sufficient precision
for our purposes, although we are sure that anyone studying iteration schemes at
the level of generality we are aiming at would be led to quite similar formulations.

Definition 1. An iteration scheme is a sequence {¢,: £>s}, where ¢, is a
function of 3] (b;+1) real variables [written ¢, (%,_y, Y0y, ..., ¥P237Y,

=1
Ky ver, y{bl"f’)], not necessarily defined everywhere, and b,, b,, ... are positive
integers.

Given an iteration scheme, a sufficiently differentiable real function f, and
“starting-values” #,, ..., x,, the associated dteration sequence is defined recursively
b

¢ Y =fE(x) for 0=i<d;, 1=<7<k,
and
%, =¢; (...as above...) for k>s.

If x, is not defined, the iteration sequence terminates at x,_,.

The definition above seems to cover what is usually meant by an iteration
scheme. It could generalized further: for example, b, could be a (positive integer-
valued) function of the same variables as x,; the theorems below still hold with
this generalization. Actually, most iterative procedures that people use are what
we would call stationary. All the functions ¢, are the same, with

Gul--) =1 M0 - 982, Hps, s 9L,

for some fixed m, d, and a function ¢ of (d +2)m variables. (We do not require
this specialization for our results.) The “‘one-point iteration function with memory”’
of Traub [1, p. 8] seems to be a stationary iteration scheme, while his ‘“ multipoint
iteration function with memory” falls under our general definition of iteration
scheme.

Any discussion of the convergence of the iteration sequence generated by a
given scheme requires some conditions on the behavior of the function to which
it is applied near the zero of the function. We conceive of associating with any
scheme quantities relating to the conditions under which it is to be applied, and
call the result a Jocal iterative scheme.

If a and e are positive numbers, let S (s, ¢) be the interval (@ —e, a +¢), and
H (a, e) the set of functions representable in S(a, ) by a convergent Taylor series
expansion about 4. (Our theorems also apply to iterative methods for finding
zeros of analytic functions of a complex variable if S (4, ¢) is the open disc of radius
e about a.)

Definition 2. A local iteration scheme is an iteration scheme J such that there
exist 7,€ R (the set of real numbers), o >0, and f,€H (r,, o) with the following
properties:

1. fo(re) =0=Efo(ro).
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2. For arbitrary e>0, there exist >0 and starting points z#,, ..., %, in
S(ry, €) such that, for any A€H (r,, p) with

2 A o) @lit < 6, (4.1)
=0

J applied to f=f, 44 gives an infinite sequence {x,} which is well-defined and
lies in S (7,, ¢).

If x,, ..., x, and f are as above, we say that they fif the scheme.

Definition 2 imposes very weak restrictions on an iteration scheme, and all
practically useful iteration schemes are in fact local iteration schemes. For
example, to show that Newton’s method is a local iteration scheme, it is sufficient
to take 7,=0, 0=1, fo(x) =%, e<1, d=¢/4, and x, =¢/2. Then, for any A
satisfying the conditions of Definition 2, we have

n(0)| <5
and

¥ (@) <5 forall xeS(o,5),

so the Newton iteration converges to the (unique) zero of f=f,+% in S (0, —2—)

More generally, the fact that all the direct polynomial interpolation schemes
mentioned above (including the nonstationary schemes) are local iteration
schemes follows from Lemma 1.

Lemma 1. Let 7y€R, 9>>0, >0, fo€H (1o, 0), fo(ro) =0 fo(7,). There is a
”

positive number § such that, if 4,>0,...,b,>0, B= 2 b;>1, %, ..., x,, are
f=1
any distinct points in S (7,, ¢), #€H (,, o) satisfies (4.1), f=f,+4, and g is the

minimal-degree polynomial such that
&M (%)) =" (x))

for 1=0,1,...,b;—1and § =1, ..., m, then g has a unique zero in S (r,, ¢).
Proof. Let
¢ =fo (7o)
and
S 718 | L2/
4= |7 (r0)| <57~ (42)
We may suppose ¢ to be so small that
- e<< Q/'l 6: (4‘3)
cg?
¢< 3304 (4.4)
and, for all xeS (7, ¢),
11—t (5)fc] <3 (4.5)

Take any ¢ satisfying

ce

0<—- (4.6)
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It is sufficient to show that

lg(ro)| < %
and, for all x€S (7, ¢),
[1—g (%)/c|< 3.

(4.7)

(4.8)

Suppose that £ =0 and x€S (4, ¢). From the Taylor series for /¥ (x) about 7,,

lf[k](x /k'l SZ kﬂ’] "o)' e

lﬂ’] (70) |,

A

2
< |11 ("o
2

ll/\

2 (o/4)*

IA

(4/0)"4
Since f,(7,) =0, (4.1) gives

[f(ro)| =R (re) | < &
Also, from (2.1) with » = B,

£ —g b | = | T5 1|
for some £€S(r,, €). Thus, from (4.1 2) and (4.13),
|g(ro) | =6+ (4¢/0)® 4

Since B =2, (4.7) follows from (4.3), (4.4), (4.6) and (4.15).

From (4.10) with f replaced by 4,

|hr I__Zlh (’o 211 -1
X (']
| o g2y
éZd/g.

Hence, from (4.3) and (4.6),
(%) —fo(#)|<c/8
for all x€S{(r, ¢).

By a theorem of Ralston [6],

|f' (%) —¢'(x)|= B

B

where &’ and # are in S(7, ¢). Thus, from (4.3), (4.4) and (4.12),

(0 —g =222 (2 7 (B + 2

o? e
< 3zQAe B(B +1/2) < 8oQAe

f[B] l f[B+1] (77)

(4.9)
(4.10)

(4.11)

(4.12)

(4-13)

(4.14)

(4.15)

(4.16)

(4.17)
(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

for all x€S (7, ¢). Finally, (4.8) follows from (4.5), (4.19), and (4.22), so the proof

is complete.
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Lemma 1 shows more than is necessary to establish that direct polynomial
interpolation schemes are local iteration schemes. For example, the lemma shows
that any function fy€H (7,, ) with a simple zero at 7, may be used in Definition 2,
but Definition 2 only requires the existence of one such function.

Definition 3. A locally convergent iteration scheme is alocal iteration scheme J
such that the sequence {x,} in Definition 2 converges to a zero of f. The upper
(lower) order of convergence of J is the infimum of the upper (lower) order of
convergence of such sequences {x,}.

A slight modification of Lemma 1 shows that the direct polynomial inter-
polation schemes are locally convergent (as are the inverse polynomial interpola-
tion schemes), and their order of convergence may be found as indicated in Sec-
tion 2. However, in the next section we do not need to assume convergence: the
results apply to all local iteration schemes.

V. The Main Theorem

Theorem 1. Suppose that J is a local iteration scheme, 7, and g are as in
Definition 2, R > p, and > 0. Then there are starting points x,, ..., x;in S (7, ),
and f€H (r,, o) fitting J, such that f has a simple zero 7€S (7, ¢), J gives a sequence

{x,} using evaluations of £, f/, ..., f%*! at x, (for some b, =1), and
. 1
hkr_riglka,,g—ﬁ—. (5.1)
where
T, ,= _Ame—r] \UB (5.2)
7T | k-1 .
IT | % —7|¥
=1
and
k-1
B, = _Zlbf (5.3)
j=
for k> s.
Proof. Let f,€H (ro, 0) be as in Definition 2,
c=|fo(r0)|>0, (5.4)
Ry=(e+R)/2, (5.5)
and
A=1—Ry/R. (5.6)
We may suppose ¢ to be so small that
e < RO - Q’ (5-7)
e<Ao/2, (5.8)
and, for all x€S (r,, ¢),
_ f(®)
1= fo | <42 G9)

Let 6 and x,, ..., x, be as in Definition 2. We may suppose that f,(#;) 40
for ¢ <s (otherwise replace f, by fo 4, where A is a suitable small perturbation
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satisfying (4.1)). Choose positive 8, and K such that

0o <9, (5.10)
o< (1—A)ec, (5.11)
K <AR,c, (5.12)
and
K<(1— 9;03)60 (5.13)

(this is possible by (5.7)).
Let Ay (%) =2 (%) = --- =h,(x) =0 and, for k> s,

E—1
By (%) =hy_y (%) +5, KRgP* [] (% — xj)b'» (5.14)
=1
where 1

E—1
_Jt1 if  fr_y (%) q (%, —x,)’=0
j=
—1 otherwise

1 (%) =fo (%) + Iy (%), (5.16)

and the points «x, for 2> s will be defined below.

We first show that f, fits the scheme. The proof goes by induction on k2> s.
Suppose, as inductive hypothesis, that x,,..., x,_,€S (7, ¢); J applied to f,_;
(with starting points xy, ..., %;) gives #,, ..., x;,_;; and, for 1=7 <%, /; fits the
scheme and

, (5.15)

S

2B (re) | @it < 8. (5.17)

1=0

(Certainly all this is true for £ =s +1.)

Let x; be the %-th point in the sequence produced by J when applied to f,_,

(with starting points #;, ..., x,). Since f,_, fits the scheme, x, is defined and in

S (7o, €). By (5.14) and (5.16),

() =24 () (5.18)

for j=1,...,k—1 and ¢=0,...,b;—1. Hence, J applied to either f, or f,_,

(with the same starting points %,, ..., %) produces the same first % points x,, ..., %,.
Suppose 1<j <k and 0 <7 < B;. From (5.14),

B (ro) — B4 (o) |

!

< () KRB (5-19)
where
(%) =B\t B —i1)

(and the left side of (5.19) vanishes for > B;). Thus

(=% P k

iZO lhﬁ‘] (1'0) IQ'/'I'! g’;o i; lhi[ﬂ (ro) —hyl:ﬂl (ro)l 91/1" (5.20)
k By . e i ; A , ,

S PIPHHICINT ~ R AL

(from (5.13)). Hence f, fits the scheme J and, by induction, this is true for all £ > 0.
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We have just shown that

Z; > Ih[*] (7o) h}‘—]l (70) ! 9‘/“ = dy, (5.22)
=0 =1
so there exists
() = lim by ) (5.23)
for all x€S(r,, e). Moreover, A€H (r,, 0) and
2 |5 (7o) | 0151 < 8. (5.24)
i=0
Let
{ (%) =fo (%) +h(x). (5.25)
From (5.24), }€H (r,, o) and { fits the scheme J. Also, for 1=<j <% and 0 =7 <b;,
9 (%) =1 (%)) (5.26)

(since bV (%) = AL, (%)) = ---).Thus, ] applied to f (with starting points x,, ..., %)
produces the sequence {x:} CS (7, €).

We shall show that f has a unique, simple zero 7€S(,, €). Since |f(ry)| =
|5 (70)| = 6 (from (5.24)), (5.11) gives

|F(ro)| = (1—A)ec. (5.27)
Also, for all x€S(7,, ¢),
[ ()| = D W () [BA BT S 2 3 (3 (1) o (5.28)
F=1 =
(since & < 2% for k=1, 2, ...). Thus, from (5.8), (5.11), and (5.24),
|7 ()| = Acf2 (5.29)
and, from (5.9) and (5.25),
‘1 AN (5.30)
o ()

From (5.27) and (5.30) it is immediate that f has a unique, simple zero 7 in S (r,, ¢).
Finally, we must establish (5.1). From (5.26) and (5.30),

| % = cl{1(f},—z}|») ‘?1 _?);,I = |t (2| (1 —A) . (5.31)

From (5.15), for all 2>s we have
k=1
|7 (%) | = K Rg lz |, — ], (5.32)
,=

Thus, for k> s,

“(1—A)KRyB 2l
1= )0 Hlxk——xl”’ (5.33)

We must show that x, <=7 for all %. If this is not so, let 2 be the minimal index
such that x, =7. From (5.33), we must have £ <s. Thus, by the definition of f,
fo(%,) =F(x,) =0 for some k2 <s, contradicting one of our assumptions. Hence

| %, —7|>0

|2 —7|=

for all k. =>1.
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We shall show that, for all 2> s,

K RyBr(1— a1 +Be 21
i —rlz == I 15y —rl” (534

Suppose, if possible, that (5.34) is false, so

KRo—Bk(i _ A)1+Bk k-1

|2, —7|< c Hlx,-——rl”' (5-35)
j=
for some 2>s. Fort1=1,2, ..., k—1.
k-1
q |%; —7|%|%; —7| S P RFI< R AcIK (5.36)
j=
(from (5.12)), so
KRyBr *1 X
Mxy—r|>— —g | —7|™. (5.37)
From (5.35) and (5.37),
| —7| <A, —7], (5-38)
S0
|2, — 5] > (1= 2) |2, —7]. (5-39)

From (5.33) and (5.39) we obtain (5.34), contradicting (5.35). Hence (5.34) must
hold. Finally, from (5.2) and (5.34),

KMA—2A) Be (1—2
T,z [ R, (3.40)
SO
limin T, , = > %. (5.41)
h—oo  PTSR,

In view of (5.6), the result follows.

VI. Highest Order of Convergence

Our results on order of convergence are direct consequences of Theorem 1.
Recall our definitions (1.2) and (1.3) of upper and lower order of convergence of
a sequence, and the definition of upper and lower convergence of a locally con-
vergent iteration scheme (Definition 3).

Theorem 2. Let J be a locally convergent iteration scheme which uses evalua-
tionsof £, f, ..., %1 at x, (for some b, =1) to generate the sequence {x,}. Then
the upper and lower orders of convergence of J are bounded above by

_ k 1/k
A <lim sup (]71 (b,-—H)) (6.1)
k—00 =
and
k 1k
A lign inf ([{ 6+ 1)) . (6.2)
—> 00 J=
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Proof. With the notation of Theorem 1, there is an f fitting J such that

.. - o . 1
lim in T2H(Be=1) liminf T, , = & . (6.3)

Also, in the proof of Theorem 1 we showed that (for a suitable f) x, is never equal
to 7, so T, ,> 0 for all £=1. Hence, there is a positive constant ¢ such that

TN ze (6.4)
for all 2 =1, so
k—1
ka—-rlch*'lI{ |x; — 7] (6.5)
’=
Let
iy =—1og (c|x, —7]). (6.6)
From (6.5),
h—1
= 3 by (6.7
7=

for all £ =1. Also, we may suppose ¢ to be sufficiently small that y; > 0. Suppose
that, for all 2 <m,

=i 11 ¢;+1) (6.8
(This is certainly true for #=1.) Then, from (6.7),
<u mll(b,l;{bﬂ) (6.9)
m=1/ j —1
=ﬂ17§1 (,g b;+1) — 1 I (b; +1))
_HI(E1(6,+1) —1)
< TT 6,+1). (6.10)
Hence, (6.8) holds for all £ <1, by induction. From (6.6) and (6.8),
—hg%—whg%c+mzf®ﬁ4y (6.11)

Since u, >0 and b; =1, the results (6.1) and (6.2) follow from (6.11).

Suppose that ] is a locally convergent iteration scheme which uses evaluations
of £,f,...,f* at x, to generate {x,}. The following observations are simple

consequences of the above results.
From (6.1), J has upper order of convergence

l<d+2. (6.12)

The polynomial interpolation schemes show that this result is the best possible.
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From (6.11), there is a positive constant 4 such that

|3, —7| = A0+ (6.13)
for all 2 =>1.
Since
X, —v Xp —7
% —7| H ||;,7711,|d+lz = _1l k=] » (6.14)

H | % — ]2+
(5.1) shows that
lim sup -+ =7] :
i SUP 1o e >0 61
However, it is possible that

h;n inf I—lfﬂ—ld—:g =0 (6.16)

(forall x,, ..., x, and f fitting J) if | x, —#| is occasionally “large”".

VII. Some Possible Extensions

While we have given here an upper bound for the order of convergence of
iteration schemes which may make use of all previous information, we believe
that a similar technique will yield bounds for the more common schemes which
use only information from a limited number of previous calues, and that these
bounds will be precisely those obtained for the polynomial methods. This subject,
which has some complications not shared by the topic of the present paper, will
be reported on in the future.

We note that a method may use only some of the values of £, f/, ..., /¥ at x,.
(For example, methods which use only f and '’ are possible.) Although Theorems 1
and 2 apply to such methods, they are probably not sharp. We do not know of any
iterative method using, say, fi%°(x;), % (x,), ..., f*9(x,), where 0=c,,
<1< +++ <64 and having upper order greater than d +-2.

Iterative methods for finding zeros of f* are of interest in optimization prob-
lems. More generally, we may consider methods for finding zeros of {9, for some
fixed ¢ =0. (For some practical methods, see Brent [2].) If condition 1 of Defini-
tion 2 is changed to f§?(ro) =0 f§**(r,), and the obvious change is made in
Definition 3, then Theorems 1 and 2 still hold (in Theorem 1, fi9 has a simple

zero 7). The proofs are similar to those given above; the main difference is that
k—1 k-1

the term [T (x — %,)¥ in (5.14) must be replaced by (¥ — x3)? [ ] (» — x,)¥. However,
7=1 j=1

these results do not appear to be the best possible for ¢ =1. If each b;=d {1

and 0=¢=d+1, then a plausible conjecture is that the upper order 1 is
bounded by

Ai(@+2—q) +V4g+[@+2—93 (7.1)

where the right side, suggested by consideration of polynomial interpolation
schemes, is the positive root of the equation

=@ +1—g)x (@ +1) 3 5~ 7.2)

k=2
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For ¢ =1, a partial result in this direction is that (7.1) holds for all locally con-
vergent schemes with the property that the order of convergence of the sequence
{#:} in Definition 2 exists (i.e., the upper and lower orders are equal).

Finally, our results apply only to methods for functions of one variable. Not
much is known about the maximal order of convergence of iterative methods for
functions of several variables, although some plausible conjectures may be made
(see Brent [5]).
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