
On the Precision Attainable with Various

Floating-Point Number Systems∗

Richard P. Brent†

Abstract

For scientific computations on a digital computer the set of real numbers is usu-
ally approximated by a finite set F of “floating-point” numbers. We compare the
numerical accuracy possible with different choices of F having approximately the
same range and requiring the same word length. In particular, we compare different
choices of base (or radix) in the usual floating-point systems. The emphasis is on
the choice of F , not on the details of the number representation or the arithmetic,
but both rounded and truncated arithmetic are considered. Theoretical results are
given, and some simulations of typical floating point-computations (forming sums,
solving systems of linear equations, finding eigenvalues) are described. If the leading
fraction bit of a normalized base 2 number is not stored explicitly (saving a bit), and
the criterion is to minimise the mean square roundoff error, then base 2 is best. If
unnormalized numbers are allowed, so the first bit must be stored explicitly, then
base 4 (or sometimes base 8) is the best of the usual systems.

Index Terms: Base, floating-point arithmetic, radix, representation error, rms error,
rounding error, simulation.

1 Introduction

A real number x is usually approximated in a digital computer by an element fl(x) of a finite
set F of “floating-point” numbers. We regard the elements of F as exactly representable real
numbers, and take fl(x) as the floating-point number closest to x. The definition of “closest”,
rules for breaking ties, and the possibility of truncating instead of rounding are discussed later.

We restrict our attention to binary computers in which floating-point numbers are repre-
sented in a word (or multiple word) of fixed length w bits, using some convenient (possibly
redundant) code. Usually F is a set of numbers of the form

s
t∑

i=1

diβ
e−i (1.1)

where β = 2k > 1 is the base (or radix), t > 0 is the number of digits, s = ±1 is a sign, e is an
exponent in some fixed range

m < e ≤ M , (1.2)
∗Appeared as Report TR RC 3751, IBM Research (February 1972); and in IEEE Transactions on Computers,

C-22 (June 1973), 601–607 (manuscript received May 15, 1972; revised May 31, 1972). Retyped (with corrections)
in LATEX by Frances Page, July 2000.

†Former address: Mathematical Sciences Department, IBM T.J. Watson Research Center, Yorktown Heights,
N.Y. 10598. Current address: Oxford University Computing Laboratory, Oxford OX1 3QD, UK.
Copyright c© 1973, IEEE; 1972–2000, Richard P. Brent. rpb017 typeset using LATEX.

and each di is a β-ary digit 0, 1, . . . , β − 1 . Other possible floating-point number systems (i.e,
choices of F) are mentioned in Section 3.

Since the coding of the exponent e and the signed fraction (s; d1, . . . , dt) must fit into w
bits, there is a tradeoff between precision and range. (A discussion of precision and range
requirements for general scientific computing may be found in Cody [7, 8].) We do not consider
this tradeoff; instead we suppose that the range and word length is prescribed, and we study
the dependence of the precision on the base β.

With higher bases less bits are needed for the exponent, so more are available for the fraction
(see Section 2 for details). However, more leading fraction bits may be zero, so the best choice
of base is not immediately obvious. Our aim is to compare the attainable precision of systems
with different bases. Theoretical results are given in Sections 4 and 5, and some simulations are
described in Sections 6 and 7. The conclusions are summarised in Section 7.

Since we are interested in the precision attainable with different number systems, we assume
that the arithmetic is the best possible. In other words, if x, y ∈ F , and † is an arithmetic
operation, we asume that x † y is found to sufficient accuracy to give the correct (rounded)
result fl(x † y). Ensuring this may be too expensive in practice, but our conclusions should be
valid provided several guard units are used when computing fl(x †y). The reduction in precision
caused by using only a small number of guard digits is discussed by Kuki and Cody [18].

2 The Usual Systems

A floating-point number of the form (1.1) may be written as

s
u∑

j=1

bj2ke−j (2.1)

where bk(i−1)+1 · · · bki is the binary form of the 2k-ary digit di, and u = kt is the number of bits
required to code di, . . . , dt. We use (2.1) in preference to (1.1), and do not insist that t must be
an integer. The details of the coding of the exponent e and the signed fraction (s; b1, . . . , bu) in
a w-bit word do not concern us.

The representation (2.1) is said to be normalised if at least one of b1, . . . , bk is nonzero.
From (2.1) and the bound (1.2) on e, the largest and smallest floating-point numbers having a
normalised representation are

fmax = 2kM (1− 2−u) (2.2)

and
fmin = 2km , (2.3)

respectively. If the range R of the system is defined to be log2(fmax/fmin) then, negelecting the
term 2−u in (2.2)

k(M −m) = R . (2.4)

Thus, for systems with the same range, k(M −m) is invatiant.
Goldberg [10], McKeeman [21], and others have observed that with base 2 the leading fraction

bit b1 can be implicit, provided only normalized representations of nonzero numbers are allowed
and a special exponent is reserved for zero. Define

p =

{
2, if this “implicit-first-bit” idea is used

1, otherwise
(2.5)

so u− log2 p bits are required to code the fraction (b1, . . . , bu) . One bit is required for the sign,
and at least dlog2(M −m)e for the exponent. Thus

u− log2 p + 1 + dlog2(M −m)e ≤ w . (2.6)

2

For a sensible design, equality will hold in (2.6), and M −m will be a power of two (or one less
if the exponent is coded in one’s complement or a special exponent is reserved for zero, but such
minor differences are unimportant). Thus (2.4) gives

2−ukp = 21−wR . (2.7)

The right side depends only on the word length and the range, so (2.7) gives a useful relation
between the fraction length u and the base β = 2k .

Many different sustems of the class described here have actually been used. They include,
with various word lengths, ranges and rounding (or truncating) rules:

β = 2, p = 2 (e.g., PDP 11-45);
β = 2, p = 1 (e.g., CDC 6400);
β = 4 (e.g., Illiac II);
β = 8 (e.g., Burroughs 5500); and
β = 16 (e.g., IBM 360).

In some machines, bases other than β are used in the arithmetic unit. For example, in the
ILLIAC III (Atkins [2]) multiplication and division are performed with base 256, but numbers are
stored with base 16.

3 Other Systems

Morris [22] suggests using “tapered” systems in which the division of bits between the exponent
and the fraction depends on the exponent. The idea is to have a longer fraction for the (commonly
occurring) numbers with exponents close to zero than for numbers with large exponents. We do
not consider these interesting systems here.

Brown and Richman [5] assume that floating-point numbers are represented in a computer
word with two sign bits and a fixed number of q-state devices, for some fixed q ≥ 2, and they
compare bases of the form qk . Although the results of Sections 4 and 5 can be generalized easily
to cover their assumptions, we restrict ourselves to q = 2, for this is the only case of practical
importance.

Finally, we describe a “logarithmic” system that is interesting for theoretical reasons (see
Section 4), although it is impractical (because of the difficulty of performing floating-point
additions). Let a and b be positive integers which, together with the word length w , characterize
the system. The floating-point numbers are zero and all nonzero real numbers x such that
a · log2 |x|+ b is one of the integers 1, 2, . . . , 2w−1 − 1. If

λ(x) =

{
0, if x = 0

sign(x)(a · log2 |x|+ b), if x 6= 0
(3.1)

then the floating-point number x may be represented in a computer word by a convenient code
for the integer λ(x). Since

x(λ) =

{
0, if λ = 0

sign(λ) · 2(λ−b)/a, if λ 6= 0
(3.2)

the largest and smallest positive floating-point numbers are

fmax = 2(2w−1−1−b)/a (3.3)

and
fmin = 2(1−b)/a , (3.4)

3

respectively, and the range log2(fmax/fmin) is

R =
2w−1 − 2

a
. (3.5)

For example, taking a = 2w−10 and b = 2w−2 gives fmax ' 2256, fmin ' 2−256, and r ' 512.
If x and y are positive floating-point numbers with fmin ≤ xy ≤ fmax then, from (3.1)

λ(xy) = λ(x) + λ(y)− b . (3.6)

Thus, floating-point multiplication and division are easy to perform in a logarithmic system,
and do not introduce any rounding errors. Unfortunately, there does not seem to be any easy
way to perform floating-point addition.

4 The Worst Case Relative-Error Criterion

One measure of the precision of a floating-point number system is the worst relative error ε
made in approximating a real number x (not too large or small) by fl(x), i.e.,

ε = sup
fmin≤|x|≤fmax

∣∣∣∣∣x− fl(x)
x

∣∣∣∣∣ . (4.1)

The “worst case relative-error” criterion is simply to choose a number system (with the pre-
scribed R and w) to minimise ε .

For the logarithmic systems described in Section 3, we see from (3.2) that

ε = 21/(2a) − 1 =
log 2
2a

. (4.2)

(Here and later we neglect terms of order a−2 or 2−2u, and logarithms are natural unless otherwise
indicated.) If

ε0 = R2−w log 2 (4.3)

then (3.5) and (4.2) give
ε = ε0 . (4.4)

Now consider any floating-point number system with range R and word length w . If ε is
defined by (4.1), then

ε ≥ ε0 . (4.5)

(In a logarithmic system, the logarithms of positive floating-point numbers are uniformly spaced
and all bit patterns are used.) Thus we use logarithmic systems as a standard of comparison for
other, more practical, systems.

Wilkinson [28] shows that
ε = 2k−u−1 (4.6)

for the number systems of Section 2. From (2.7), (4.3) and (4.6)

ε

ε0
=

2k

kp log 2
= f1(k, p) (4.7)

which shows how much ε exceeds the best possible value ε0 for a number system with the same
R and w . Table 1 gives f1(k, p) for k = 1, 2, . . . , 8 .

4

TABLE 1
THEORETICAL WORST CASE AND RMS ERRORS*

k p β = 2k f1(k, p) f2(k, p)

1 2 2 1.44 1.06
1 1 2 2.89 2.12
2 1 4 2.89 1.68
3 1 8 3.85 1.87
4 1 16 5.77 2.45
5 1 32 9.23 3.51
6 1 64 15.4 5.34
7 1 128 26.4 8.47
8 1 256 46.2 13.9

* See (4.7) and (5.8) for definitions of f1 and f2 .

The table shows that the implicit-first-bit base 2 systems are the best of those described in
Section 2, and close to the best possible, on the worst case criterion. Of the explicit-first-bit
systems, base 2 and base 4 are equally good. This may be explained as follows. Changing from
base 2 to base 4 frees a bit from the exponent for the fraction. If the first 4-ary digit d1 is 2 or 3,
the first fraction bit b1 is 1, and the extra fraction bit may increase the precision. However, if d1

is 1 then b1 is 0, and the bit gained is wasted. (According to Richman [24], Goldberg observed
this independently.) If fl(x) is defined by truncation rather than rounding then ε is doubled, but
the comparison between different bases is not changed.

5 The RMS Relative-Error Criterion

Consider forming the product of nonzero floating-point numbers x0, . . . , xn (in one of the usual
systems) by n floating-point multiplications, i.e., define p0 = x0 and pi = fl(pi−1xi) for i =
1, . . . , n . If δi = (pi−1xi − pi)/(pi−1xi) is the relative error made in forming the ith product,
then the relative error in the final result is

∆ =
x0 · · ·xn − pn

x0 · · ·xn
= 1−

n∏
i=1

(1− δi)

=
n∑

i=1

δi + higher order terms . (5.1)

Thus
|∆| ≤ nε (5.2)

where ε is defined by (4.1), and we have neglected a term of order n2ε2 . Many other bounds on
the rounding errors in algebraic processes are also of the form f(n)ε (see Wilkinson [28], [29]),
which is a good reason for choosing a floating-point number system according to the worst case
criterion of Section 4. However, the bound (5.2) is rather pessimistic, for the individual rounding
errors δi in (5.1) usually tend to cancel rather than to reinforce each other. (We are assuming
an unbiased rounding rule as described in Section 6. With truncation or biased rounding the
bound (5.2) may be realistic.)

If the δi were independent random variables, distributed with mean 0 and variance σ2
i , then

∆ would be distributed with mean 0 and variance Σn
i=1σ

2
i . Thus a reasonable probabilistic

measure of the precision of a floating-point number system is the root-mean-square (rms) value
δrms of δ = (x−fl(x))/x , where x is distributed like the nonzero results of arithmetic operations
performed during a typical floating-point computation.

5

The simulations described in Sections 6 and 7 suggest that the rms rounding error in floating-
point comuptations involving many arithmetic operations is often roughly proportional to δrms

(see also Weinstein [27]). Thus we prefer δrms to other probabilistic measures of precision such as
the expected value of |δ| (McKeeman [21]), the expected value of log2 |δ| (Kuki and Codi [18]),
and the expected error in “units in the last place” (Kahan [15]). We disregard errors in the
conversion from internal floating-point results to decimal output, for the rms value of these
errors depends on the number of decimal places rather than on the internal number system.
(For the effect of repeated conversions back and forth, see Matula [20].)

What distribution should we assume for the nonzero real numbers x that are to be approxi-
mated by floating-point numbers? Hamming [11], Knuth [17], and others argue that we should
assume that log |x| is uniformly distributed. There are two reasons why this assumption is only
an approximation. Although log |x| may be approximately uniform locally, it is certainly not
uniform on the entire interval [log fmin, log fmax] . Also, the fine structure of the distribution is
not uniform, for the numbers arising from multiplications or (more importantly) additions of
floating-point numbers are really discrete rather than continuous variables. Nevertheless, we
shall make Hamming’s assumption in this section. It is certainly a much better approximation
than assuming that x is uniformly distributed on some interval.

For the logarithmic systems, δ is uniformly distributed on [−ε0, ε0] , where ε0 is given by
(4.3). Thus δrms = δ0 , where

δ0 =
ε0√
3

=
R · log 2
2w
√

3
. (5.3)

Because the assumption that log |x| is uniform is only an approximation, there is no result
corresponding to the inequality (4.5), but the logarithmic systems still provide a convenient
standard of comparison for other, more practical, systems.

For the systems of Section 2, there is no loss of generality in assuming that x lies in [1/β, 1)
and (by our assumption) logβ x is uniformly distributed on [−1, 0) . Consider numbers y dis-
tributed uniformly on a small interval near x. The absolute error y−fl(y) is approximately uni-
form on (−2−u−1, 2−u−1) . (It is certainly not logarithmically distributed, as is assumed to derive
(18′) in Benschop and Ratz [3].) Hence α = (y − fl(y))/y is uniform on (−2−u−1/x, 2−u−1/x) ,
and has probability density function (Feller [9])

gx(α) =

{
2ux, if |α| < 2−u−1/x

0, otherwise.
(5.4)

Integrating over the interval [1/β, 1) , we see that δ is distributed with density

f(δ) =
∫ 1

x=1/β
gx(δ) d logβ x (5.5)

=


2u(1− 2−k)/(k · log 2), if |δ| < 2−u−1(

1
2|δ|

− 2u−k

)/
(k · log 2), if 2−u−1 ≤ |δ| < 2k−u−1

0, otherwise .

(5.6)

It is easy to find the expected value of δ, δ2, |δ|, log2 |δ|, etc. from (5.6). In particular, we find
that δ is distributed with standard deviation

δrms = 2−u

√
4k − 1

24k · log 2
(5.7)

and mean 0. (The mean is actually of order 2−2u , but terms of this order have been neglected.)

6

From (2.7), (5.3) and (5.6),

δrms

δ0
=

√
4k − 1

2p2(k · log 2)3
= f2(k, p) , (5.8)

and the last column of Table 1 gives f2(k, p) for k = 1, . . . , 8 . The table shows that the implicit-
first-bit base 2 systems are the best of the systems of Section 2 (and only 6 per cent worse than
the logarithmic systems) on the rms relative-error criterion. Base 4 (closely followed by base 8)
is best in the explicit-first-bit systems. The reason why base 4 is better than explicit base 2 is
apparent from the discussion at the end of Section 4: |δ| is never greater for base 4 than for
explicit base 2, and sometimes it is smaller. A similar argument shows that implicit base 2 is
better than base 4.

Because of the different ranges possible with base 4 and base 8, there are some choices of
minimal acceptable range for which base 8 is preferable to base 4, but bases higher than 8 are
always inferior to base 4 on the rms relative-error criterion.

6 Simulation of Different Systems

Three classes of floating-point computations were run, using various number systems with w = 32
and R ' 512 (the same as for single-precision on the IBM 360 and many other computers). The
systems were a logarithmic system S0 with a = 222 and b = 230 (see Section 3), and the following
examples of the systems described in Section 2.

S1 : β = 2, u = 23, p = 2 (base 2 with a 23-bit fraction, the first bit implicit).
S2 : β = 4, u = 23 (base 4 with 23 bits or 111

2 digits).
S3 : β = 2, u = 22, p = 1 (base 2 with 22 bits, all explicit).
S4 : β = 16, u = 24 (base 16 with 24 bits or 6 digits).
S
′
4 : The same as S4 with truncation (towards zero) rather than rounding.

S5 : β = 256, u = 25 (base 256 with 25 bits or 31
8 digits).

The rounding rule for systems S1 to S5 is the “R*-mode” of Kuki and Cody [18]: fl(x) is
defined to be the floating-point number closest to x, and ties are broken by choosing fl(x) so
that its least significant fraction bit is one. Formally, if x is a nonzero real number with binary
expansion

x = s
∞∑

j=1

bj2ke−j (6.1)

(taking the terminating expansion if there is one, normalizing so that one of b1, . . . , bk is nonzero,
and neglecting the possibility of underflow or overflow), then

fl(x) =


s

u∑
j=1

bj2ke−j , if bu+1 = 0 or
∑∞

j=0 bu+j2−j = 3
2

s

(
u∑

j=1

bj2ke−j + 2ke−u

)
, otherwise .

(6.2)

The special case bubu+1 · · · = 11000 · · · is quite important, for it often occurs when x is the result
of a floating-point addition, and neglecting it can lead to bias in the rounding.

All the floating point number systems were simulated on an IBM 360/91 computer, with
arithmetic operations performed in double precision (β = 16, u = 56) before rounding or trun-
cating approximately. Thus, the number of guard units used was effectively infinite. The data

7

were pseudorandom double-precision numbers distributed as described in Section 7, and “exact”
results were computed using double precision throughout.

Forming sums, solving systems of linear equations, and finding the eigenvalues of symmetric
matrices were the chosen classes of floating-point computations. They appear to be fairly typical
of computations in which the effect of rounding errors may be important. Details, and the results
of the simulations, are given in Section 7. Other classes that have been considered include
solving ordinary differential equations (Henrici [12], [13], Hull and Swenson [14]), fast Fourier
transforms (Kaneko and Liu [16], Ramos [23], and Weinstein [27]), matrix iterative processes
(Benschop and Ratz [3]), solving positive-definite linear systems (Tienari [25]), and forming
products (Section 5).

7 Details and Results of the Simulations

Sums

Let m and n be positive integers. A number z was drawn from a uniform distribution on
[0, 1], then numbers x1, . . . , xn were drawn independently from a uniform distribution on [−Z,Z],
where Z = 256z is a scale factor used to avoid a bias in favour of any of the number systems
(see Kuki and Cody [18]). The approximate sums sj of fl(x1), . . . , fl(xn) were accumulated, in
the usual way, with each of the number systems Sj described in Section 6, and the errors

αj =

n∑
i=1

xi − sj

n∑
i=1

|xi|
(7.1)

were found. (The denominator is used in preference to
∑n

i=1 xi to ensure that αj is small.) The
procedure was repeated m times and the rms values βj of the αj were found. For purposes
of comparison between the systems, it is convenient to consider the normalized rms errors
γj = βj/β0 . (Recall that β0 is the rms error for the logarithmic system S0 .)

Table 2 gives γj for various choices of m and n . If the αj are considered as random variables
drawn from a distribution with mean square B2

j , then βj and γj may be regarded as estimates
of Bj and Bj/B0 , respectively. m was chosen large enough to ensure that the standard error of
the estimates γj given in Tables 2–4 is less than five units in the last decimal place.

For n = 1 we are merely estimating the rms relative error in approximating x1 by fl(x1) ,
and the results agree with the predictions of Section 5 (see the last column of Table 1). Except
for S′

4 , the effect of varying n is small, and does not affect the ranking of the systems.
It may be shown that

Bj =

{
O(n3/2) , for S′

4

O(n) , for the other systems
(7.2)

so it is not surprising that γ′4 appears to grow like n1/2 . (The same applies if truncation is
downwards instead of towards zero.) Results for sums of positive numbers are similar, although
Bj is larger by a factor of order n1/2 for all the systems.

8

TABLE 2
RESULTS FOR SUMS

n m/1000 γ1 γ2 γ3 γ4 γ′4 γ5

1 1000 1.06 1.68 2.12 2.45 4.89 13.9
2 100 1.11 1.68 2.23 2.38 5.53 13.4
4 100 1.13 1.69 2.25 2.36 6.33 13.2
8 100 1.12 1.69 2.24 2.36 7.95 13.2

10 100 1.12 1.69 2.23 2.36 8.76 13.4
16 10 1.11 1.72 2.22 2.37 10.9 13.3
32 10 1.09 1.71 2.18 2.39 15.9 13.6
64 10 1.08 1.67 2.14 2.43 22.4 13.9

100 30 1.06 1.68 2.13 2.41 28.1 13.6

Solving Systems of Linear Equations

z1 and z2 were drawn independently from a uniform distribution on [0, 1] , giving scale factors
Z1 = 256z1 and Z2 = 256z2 . Numbers ap,q (p, q = 1, . . . , n) were drawn independently from
a uniform distribution on [−Z1, Z1] ; and x1, . . . , xn were drawn similarly from [−Z2, Z2] . For
each of the number systems Sj , let A(j) = (fl(ap,q)), A = (ap,q), x = (xp), b = (bp) = Ax, and
b(j) = (fl(bp)). The system of equations

A(j)y = b(j) (7.3)

was solved by Gaussian elimination with complete pivoting, giving the approximate solution
y(j) , and the error

αj =
‖Ay(j) − b‖2

‖A‖E ‖x‖2
(7.4)

was computed. (Here ‖A‖E =
(∑n

p=1

∑n
q=1 a2

p,q

)1/2
. From results of Wilkinson [28], [29], αj is

small even if A is rather ill conditioned.) The procedure was repeated m times, the rms values
βj of the αj were computed, and the ratios γj = βj/β0 were found. The results for various m
and n are given in Table 3.

TABLE 3
RESULTS FOR SYSTEMS OF LINEAR EQUATIONS

n m/1000 γ1 γ2 γ3 γ4 γ′4 γ5

1 100 1.30 2.06 2.61 2.99 4.92 17.0
2 100 1.30 2.01 2.59 2.90 5.33 16.3
4 10 1.27 1.97 2.56 2.80 5.63 15.7
8 4 1.23 1.89 2.45 2.65 6.1 14.9

16 1 1.18 1.82 2.35 2.60 7.1 14.4

Multiplication and division are performed exactly in a logarithmic system, so β0 is less than
would otherwise be expected, and γ1, . . . , γ5 are higher than for sums, especially for small values
of n . However, the ratios of γ1, . . . , γ5 are much the same as for sums, and the ranking of the
systems is preserved. Results for positive ap,q and/or xp are similar.

9

It is interesting that γ4 < 2γ′4 for n = 1 and 2. When n = 1 and S′
4 is used, the errors made

in forming fl(a1,1) and fl(b1) tend to cancel when fl(b1)/fl(a1,1) is computed. Presumably there
is a similar, though less marked, effect for n > 1 .

Finding Eigenvalues of Symmetric Matrices

Numbers ap,q (1 ≤ p ≤ q ≤ n) were drawn independently from a uniform distribution on
[−Z, Z] , where Z was a scale factor chosen as above. The other elements of A = (ap,q) were
defined by symmetry. For each number system Sj , the approximate eigenvalues λ

(j)
1 ≤ · · · ≤ λ

(j)
n

of A(j) = (fl(ap,q)) were computed by reducing A(j) to tridiagonal form and then using the QR
algorithm (Wilkinson [29]). We used translations of the Algol 60 procedures TRED1 (Martin
et al [19]) and TQL1 (Bowler et al [4]), except for some trivial modifications to avoid unnecessary
rounding errors when n = 2 . The stopping criterion for the QR algorithm was the same for
all number systems. (The parameters macheps and tol of the procedures were set to 10−8 and
10−60 , respectively.) The errors

αj =

(
n∑

i=1

(λi − λ(j))2
) 1

2
/

‖A‖E (7.5)

were computed. (Here λ1 ≤ · · · ≤ λn are the exact eigenvalues of A .) The procedure was
repeated m times, the rms values βj of the αj computed, and the ratios γj = βj/β0 found, as
above. The results are given in Table 4.

TABLE 4
RESULTS FOR EIGENVALUES OF SYMMETRIC MATRICES

n m/1000 γ1 γ2 γ3 γ4 γ′4 γ5

2 100 1.07 1.61 2.14 2.38 6.06 15.2
4 10 1.33 2.24 2.65 3.60 10.5 25.8
8 3 1.14 2.01 2.34 3.73 10.8 29.6

16 1 1.00 1.82 1.99 3.49 10.7 28.8

The method used for finding eigenvalues depends heavily on multiplications by matrices of

the form
(

c s
−s c

)
, where c2 + s2 = 1 . The numbers c and s are certainly not distributed

as assumed in Section 5. This, along with other observations made above, may explain the
interesting variations in the γj . Despite these variations, the ranking of the different systems is
as predicted in Section 5.

8 Conclusions

Comparing γ′4 with γ4 in Tables 2–4 shows that the rms error for truncation is usually consider-
ably more than twice as much as for rounding. However, truncation is often preferred because
the usual implementation of rounding requires an extra carry propagation. An interesting com-
promise is the “von Neumann round” (Burks et al [6], Urabe [26]), for which the result of an
arithmetic operation is truncated, and then the least significant bit is set to one. (An exception
could be made if the result is exactly representable; this would involve checking if the truncated
bits were all zero.) No extra carry propagation is required, and the rms error is twice that for
normal rounding, so considerably better than for truncation.

10

The most accurate practical systems are base 2 with the first fraction bit implicit. If the
accuracy gained by having the first bit implicit is not considered sufficient compensation for the
disadvantages entailed, then base 4 (or perhaps base 8) is the best choice.

The accuracy lost by using base 16 or higher is roughly as predicted in Section 5. High bases
may have some implementation advantages (Anderson et al [1], Atkins [2]). In practice both
factors should be considered. The number of guard digits used is also important. The use of
high bases, only one guard digit, and truncation instead of rounding is probably acceptable on
machines with a long floating-point word. However, to minimize the need for double-precision
computations, it seems wise to try to squeeze out the last drop of accuracy on a computer with
a short floating-point word (say 32–40 bits). The amount that can be squeezed out is often
significant. For example, our simulations show that using system S1 instead of S′

4 is roughly
equivalent to carrying one more decimal place.

Acknowledgement

The author wishes to thank W J Cody, the late Prof. G E Forsythe, and Prof. W Kahan for
their comments on an earlier version of this paper.

References

[1] S F Anderson, J G Earle and R E Goldschmidt, “The IBM system/360 model 91: Floating-
point execution unit”, IBM J Res Develop, vol 11, pp 34–53, January 1967.

[2] D E Atkins, “Design of arithmetic units of ILLIAC III: The use of redundancy and higher
radix methods”, IEEE Trans Comput , vol C-19, pp 720–733, August 1970.

[3] N F Benschop and H C Ratz, “A mean square estimate of the generated roundoff error
in constant matrix interative processes”, J Ass Comput Mach, vol 18, pp 48–62, January
1971.

[4] H Bowdler, R S Martin, C Reinsch and J H Wilkinson, “The QR and QL algorithms for
symmetric matrices”, Numer Math, vol 11, pp 293–306, 1968.

[5] W S Brown and P L Richman, “The choice of base”, Commun Ass Comput Mach, vol 12,
pp 560–561, October 1969.

[6] A W Burks, H H Goldstine and J von Neumann, “Preliminary discussion of the logical
design of an electronic computing instrument”, in Collected Works of John von Neumann,
vol 5. New York: Macmillan, 1963, pp 57–58. (Report prepared for the US Army, 1946.)

[7] W J Cody, “Desirable hardware characteristics for scientific computation”, Preliminary
Report to the SIGNUM Board of Directors, 1970.

[8] W J Cody, “Static and dynamic numerical characteristics of floating-point arithmetic”, this
issue [IEEE Trans Comput , vol C-22, pp 598–601, June 1973].

[9] W Feller, An Introduction to Probability Theory and its Applications, New York: Wiley,
1950.

[10] I B Goldberg, “27 bits are not enough for 8-digit accuracy”, Commun Ass Comput Mach,
vol 10, pp 105–106, February 1967.

[11] R W Hamming, “On the distribution of numbers”, Bell Syst Tech J , vol 49, pp 1609–1625,
October 1970.

11

[12] P Henrici, Discrete Variable Methods in Ordinary Differential Equations. New York: Wiley,
1962, pp 50–54.

[13] P Henrici, “Test of probabilistic models for the propagation of roundoff errors”, Commun
Ass Comput Mach, (Letter to the Editor), vol 9, pp 409–410, June 1966.

[14] T E Hull and J R Swenson, “Tests of probabilistic models for propagation of roundoff
errors”, Commun Ass Comput Mach, vol 9, pp 108–113, February 1966.

[15] W Kahan, “What is the best base for floating-point arithmetic? Is binary best?”, Dep
Comput Sci, Univ California, Berkeley, Lecture Notes, December 1970.

[16] T Kaneko and B Liu, “Accumulation of roundoff error in fast Fourier transforms”, J Ass
Comput Mach, vol 17, pp 637–654, October 1970.

[17] D E Knuth, The Art of Computer Programming , vol 2, Reading, Mass: Addison-Wesley,
1969, pp 218–228.

[18] H Kuki and W J Cody, “A statistical study of the accuracy of floating-point number
systems”, Commun Ass Comput Mach, to be published. [Appeared in vol 16, pp 223–230,
April 1973.]

[19] R S Martin, C Reinsch and J H Wilkinson, “Householder’s tridiagonalization of a symmetric
matrix”, Numer Math, vol 11, pp 181–195, 1968.

[20] D W Matula, “ A formalization of floating-point numeric base conversion”, IEEE Trans
Comput , vol C-19, pp 681–692, August 1970.

[21] W McKeeman, “Representation error for real numbers in binary computer arithmetic”,
IEEE Trans Electron Comput . (Short Notes), vol EC-16, pp 682–683, October 1967.

[22] R Morris, “Tapered floating-point: A new floating-point representation”, IEEE Trans Com-
put . (Short Notes), vol C-20, pp 1578–1579, December 1971.

[23] G U Ramos, “Roundoff error analysis of the fast Fourier transform”, Math Comput , vol 25,
pp 757–768, October 1971.

[24] P L Richman, “Floating-point number representations: Base choice versus exponent range”,
Dep Comput Sci, Stanford Univ, Stanford, Calif, Tech Rep CS 64, 1967.

[25] M Tienari, “A statistical model of roundoff error for varying length floating-point arith-
metic”, BIT , vol 10, pp 355–365, 1970.

[26] M Urabe, “Roundoff error distribution in fixed-point multiplication and a remark about
the rounding rule”, SIAM J Numer Anal , vol 5, pp 202–210, 1968.

[27] C J Weinstein, “Roundoff noise in floating-point fast Fourier transform computation”, IEEE
Trans Audio Electroacoust , vol AU-17, pp 209–215, September 1969.

[28] J H Wilkinson, Rounding Errors in Algbraic Processes. London: HMSO, 1963.

[29] J H Wilkinson, The Algebraic Eigenvalue Problem. Oxford: Oxford, 1965.

12

Richard P. Brent (M’72) was born in Melbourne, Australia, on April 20, 1946. He received
the BSc (Hons) degree in mathematics from Monash University, Clayton, Victoria, Australia,
in 1967, and the MS and PhD degrees in computer science from Stanford University, Stanford,
Calif, in 1970 and 1971, respectively.

He is currently1 a Research Fellow in the Computer Centre, Australian National University,
Canberra, Australia, after spending a year at the IBM T. J. Watson Research Center, Yorktown
Heights, N.Y. His current research interests include computer arithmetic, numerical analysis, and
computational complexity. He is the author of Algorithms for Minimization without Derivatives.

1This was written in 1972. Since 1998 he has been Professor of Computing Science at Oxford University,
Oxford, England.

13

