THE PARALLEL EVALUATION OF ARITHMETIC EXPRESSIONS IN
LOGARITHMIC TIME

Richard P. Brent,

Computer Centre,

Australian National University,
Canberra, A.C.T. 2600, Australia.

1. INTRODUCTION

This paper gives a survey of some results on
the time required to evaluate arithmetic expressions
with several processors computing simultaneously.
Proofs are omitted if they have appeared elsewhere,
but the proofs of several new results are included.

Our fundamental assumption is that several pro-
cessors which can independently perform the basic
arithmetic operations (addition, subtraction, multi-
plication, and sometimes division) in unit time are
available. The time required for accessing data,
storing results, and communicating between process-
ors 1is ignored. (For many plausible machine organ-
izations, considering this overhead would increase
our upper bounds by a small constant factor.)

We consider well-formed arithmetic expressions
with distinct atoms (or indeterminates), i.e.
expressions E such that one of the following holds:
1. E = X for some atom X. i

2. E = (L)8(R) for © = "+", "-w, wk" op w/v ang
well-formed expressions L and R which depend on
disjoint sets of atoms; or

3, E=6(L) for 6 = "+" or "-" and a well-formed
expression L .

Redundant pairs of parentheses may be inserted or
removed at will, If values in a field (or ring if
division is excluded) are assigned to the atoms,
then the values of the expressions may be found in
the usual way. The context should make clear
whether E(x , ... , Xn] denotes an expression with

atoms X , ... X, or the value of an expression

83

RICHARD P. BRENT

for certain values XKiv voe s xn of its atoms.

In Sections 2 to 5 we assume that all express-
ions have distinct atoms, so expressions like

a + x(b + x(c + x))

and

100
x

are excluded. This restriction is not serious, for
our results give upper bounds on the time required
to evaluate the more general expressions

a + xI{b + xztc + xa]}
and

H X «..X
1

1 2 00

respectively.

Similarly, in Sections 2 to 5, expressions in-
volving constants are not allowed. Thus, the
results do not apply to expressions like

a+ 1/(b + 1/(c + 1/4)) ,
though they do apply to
a + ulf(b + uzf{c + usfd}} .

These restrictions are relaxed in Section 6, where
we give some results for common special classes of
expressions, such as polynomials, continued fract-
ions, etc.

Expressions containing the subtraction operat-
ion can easily be transformed into equivalent ex-
pressions with addition, multiplication, division
and (at most) some unary subtractions acting on
atoms, e.q.

a-(b+c/(d-e) - f£f) =

a+ ((-b) + ¢/((-d) + e) + £) .

854

PARALLEL EVALUATION OF EXPRESSIONS

Since the unary subtractions may be performed (in
parallel) at the start of the evaluation of an ex-
pression, there is no real loss of generality in re-
stricting our attention to expressions containing
the operations of addition ("+"), multiplication
("*"), and division ("/") only.

In Section 2 we consider arithmetic expressions
with n distinct atoms, any level of parenthesis
nesting, and operations "+" and "*", Corollary 2.1
shows that such expressions may be evaluated in time
4log,n using n-1 processors. 1In Section 3 this

result is extended to expressions which contain the
operation "/". Corollary 3.1 shows that such ex-
pressions may be evaluated in time 4log n with
3(n-1) processors.

In Section U4 we deduce some results on the time
required to evaluate expressions with n distinct
atoms if a fixed number p > 1 of processors is
available. From Theorems 4.1 and 4.2, expressions
without division can be evaluated in time 4log,n+

2(n-1)/p , and expressions with division can be
evaluated in time ulogzn + 10(n-1)/p . These

results are within constant factors of the best
possible.

The results of Sections 2 to 4 hold for exact
arithmetic over any commutative field (or ring if
division is excluded). 1In Section 5 we show that
the algorithm of Section 2 for evaluating express-
ions without division is numerically stable (in a
backward sense) if approximate arithmetic over the
real field is used instead of exact arithmetic. It
is an open question whether the same applies to the
algorithm of Section 3 for evaluating expressions
including the division operation.

2. EXPRESSIONS WITHOUT DIVISION
In this section we consider expressions with n
distinct atoms and operations of addition ("+") and

multiplication ("*") over a commutative ring. First
we need some definitions and a simple lemma.

85

RICHARD P. BRENT

Definitions

If x 1is a real number then [x | denotes the

integer such that x <[x| < x + 1.

If E is an arithmetic expression then |E|
denotes the number of atoms (relabelled if necessary
to become distinct) in E . If T is a parse tree
for E , then |T| = |E| is the number of terminal

nodes of T . If |T| > 1 we write T = LR,
where L and R are the maximal proper subtrees of
T . A subexpression of E 1is the expression corr-
esponding to a subtree (not necessarily proper) of a
parse tree for E .

Lemma 2.1 (Brent [73])

If 1T <mgn and T 1is a binary tree with
|T| = n , then there is a subtree X, =L R, of T

such that [X | 3 m, |L | <m, and [R/| <m.

Also, if x 1is one of the terminal nodes of T ,
there is a subtree X, = L2“R2 of T such that

|X,| > m and either

-

1. x is a terminal node of L, and |[L,| < m,
or
2. x is a terminal node of R, and |R,| <m .

2

Theorem 2.1

Let E be an arithmetic expression with n
distinct atoms and operations "+" and "*" over a
commutative ring with identity. Suppose P(n) = n-1

processors capable of performing "+" and "*" in unit
time are available. Let

n+2 1f n<3 ,
< : |
[4log, (n=-1)"] if n34 ,

Q,(n) = 2(n-1) ,

and

Q, (n) max (0, 2(n-2)) .

Then E can be evaluated in time k-3 with at most

86

PARALLEL EVALUATION OF EXPRESSIONS

Q,(n) operations. Also, if x 1is any atom of E ,

then E = Ax + B , where A and B are expressions
which do not involve x and which can be evaluated
simultaneously in time k with at most Q, (n) oper-

ations. (Here A may be identically 1 and B
may be identically 0 .)

Proof

The definition of k gives k>n+2 for ng<7 .
We can evaluate E with one processor in n-1
steps, and A and B with two processors in n-2
steps and 2(n-2) operations (n>2) . (A "step"
is one unit of time.) Hence, the result holds for
n<7 , so we may assume that n = N>8 (so kz212) .
As inductive hypothesis we assume that the result
holds for n<N .

Applying Lemma 2.1 with m = [(7n+5)/127| to a
parse tree for E , we see that there is a subex-

pression X, of E such that X, = LIEIRl (where

31 is "+" or "*") , |x1] > (In+5)/12 ,

L | < (7n+5)/12 , and [R,| < (7n+5)/12 . Let E,

be the expression formed by replacing X, by an
atom in E . From the definition of k ,

n g Ekf" + 1,
and it is easy to verify that 5/12 < E_EXH ;, SO

-

|E;| =n+ 1 - |K1[< 5(n=1)/12 + 1
< 2(k=s)/n g

Thus
M4og, (B, - D] € k-5 ,
so the inductive hypothesis (applied to E) gives
E=AX +B ,
where A and B~ can be evaluated in time k-5

with P(|E, |) processors and Q,(|E,|) operations.

87

RICHARD P, BRENT

Since Tr',,f“12<2_3”"’L+ , we have

(k=3)/w

EL1| < (7Tn+5)/12 < 2 1,

and similarly for |R,| . Thus, by the inductive
hypothesis, L~ and "R, can be evaluated in
(k-3)-3 = k-6 steps with P{|L1|} + P{|R1|} pro-
cessors and Q1{|L1|] + QI{IR1|] operations .
Thus, X, ~can be evaluated in k-5 steps, and E

in k-3 steps. The number of processors required
is at most

1+ P(|E) + P(|L) + P(|R |} = n-1 .
If X # E , the number of operations required is at
most 3+ Q2{|El|} + 0o (Jln,) + 0o, (|r,)
=2n - 3 < 2(n-1) .

If X =E then E = LIBIRI can be evaluated with
at most

1T+ ([L)+ Q1{|R1|] =2n - 3 < 2(n-1)
operations. Thus, E can be evaluated in k-3
steps with P(n) processors and Qlin} operations,
so the first half of the proof is complete.

Let x be an atom of E . Applying the second
half of Lemma 2.1 with m = [(n+1)/2] to a parse

tree for E , we see that there is a subexpression

X, of E such that X, 6 = L,6R, , |x21 > (n+1)/2,

and either x is an atom of L, and |L2l < n/2 ,
or x is an atom of R, and |R2| < n/2 . Without
loss of generality we may assume that x is an atom
of L, .

2

Let E, be the expression formed by replacing

X, by an atom in E . Thus

|[E,| =n+ 1 - [X,] ¢ (n+1)/2 ¢ plk=w)/w g,

88

PARALLEL EVALUATION OF EXPRESSIONS

so the inductive hypothesis (applied to E,) gives
E=AX +B, ,

where A, and B, can be evaluated in time k-4
with P[|E2[} processors and Q2{|E2]} operations.
Similarly,

L2 = st + BH '

where A, and B, can be evaluated in time k-4
with P(|L, |) processors and Q (|L,|) operations.
since |R,| ¢ n-1 , the inductive hypothesis also
shows that R, can be evaluated in k-3 steps with
P(|R,|) processors and Q, (|R,|) operations.

From Xz = LzEsz and the above expressions

for E and L, , we find that E = Ax + B , where

the form of A and B depends on 6, . There are
two possibilities:

Case 1: 62 = "4

A

A2A3
and

B = AZ[B3 + Rz} + B2 .

From the above, A and B can be evaluated in k
steps with

1T+ P(|E,[) + P(|L,]) + P(|R,|) =n - 1

processors. If |[E, [> 1 and |[L,[> 1 then A
and B can be evaluated with

b+ 0, (JE) + o, (L,) +Q (R,]) = 2(n-2)
operations. If |[E,| =1 (so E =X) or

2
|L,] =1 (so L, = x) or both, the forms of A

and B simplify, and it is easy to show that they
can be evaluated with 2(n-2) operations.

g9

RICHARD P. BRENT

Case 2: 6 = "*"
A= (AR)JA
272 3
and
E =

{Pssz}Ba + B2 .

As in Case 1, the inductive hypothesis shows that A
and B can be evaluated in k steps with n-1 pro-
cessors and 2(n-2) operations.

The theorem now follows by induction on N .
Since the statement of Theorem 2.1 is rather
cumbersome (though necessary so that the result may

be proved by induction), we give the immediate:

Corollary 2.1

Let E be an arithmetic expression with oper-
ations "+" and "*" over a commutative ring, Then E
can be evaluated in time U4log [E| with [E| - 1
processors.

The constant "#" of Corollary 2.1 can be reduc-
ed at the expense of increasing the number of pro-
cessors:

Theorem 2.2 (Brent, Kuck and Maruyama [73])

Let nz2 and E be as in Theorem 2.1. Then
E can be evaluated in time Zogl{un + B) 1if suffic-

iently many processors are available, where

A= 1.3247179572..,.
3

1s the real positive root of z° =1 + z ,
a < 0.596 ,
and

B < 0.167 .

Since EOQAZ = 2.4649 < 4 , the time given by
Theorem 2.2 is less than that given by Corollary 2.1,

but the number of processors required is o(nt 7t

90

PARALLEL EVALUATION OF EXPRESSIONS

instead of 0(n) . (Here 1.71... = Eoghi(1+ﬁg]f2}.}

Hence, Corollary 2.1 is more useful than Theorem 2.2
for deducing results which apply when a fixed number
of processors is available.

For earlier (and weaker) results on expressions
without division, see Baer and Bovet [68] and Mir-
anker [71].

3. EXPRESSIONS WITH DIVISION

Theorem 2.1 can be generalized to cover express-
ions with division. The result is:

Theorem 3.1 (Brent [73])

ILet E be an arithmetic expression with n
distinct atoms and operations "+", "*" and "/" over
a commutative field. Suppose that sufficiently many
processors capable of performing "+" and "*" (but
not necessarily "/") in unit time are available.

Let Plfn} = 3(n-1) , PZ{n} = max(0, 3n-8) ,

QI{nJ = 10(n-1) , QZ{n} = max(0, 10n-29) , and

n+1l 1f ng2 ,
< :)
rulongn—1} | if n23 .

Then E = F/G , where F and G are expressions
which can be evaluated simultaneously in time k-2
with Plin} processors and Qlfn} operations.

Also, if x 1is any atom of E , then
E= (Ax + B)/(Cx + D) ,

where A , B, C and D are expressions which do
not contain x and which can be evaluated simultan-
eously in time k with P _(n) processors and

inn} operations. (Note that some of A, ... , G
may be identically 0 or 1 .)
The proof of Theorem 3.1 follows much the same

lines as that of Theorem 2.1, and is given in Brent
[73]. Corresponding to Corollary 2.1, we have:

91

RICHARD P. BRENT

Corollary 3.1

Let E be an arithmetic expression with oper-
ations "+", "*" and "/" over a commutative field.
Suppose that a sufficient number of processors is
available and at least one processor can perform a
division in unit time. Then E can be evaluated in
time U4log,|E| with 3([E| - 1) processors.

The constants "3" and "4" of Corollary 3.1 can
possibly be reduced by more refined arguments, but
no generalization of Theorem 2.2 to cover express-
ions with division is known.

4. PARALLEL EVALUATICON USING p PROCESSORS

Theorems 2.1 and 3.1 apply if O0{|E|) process-
ors are available, but in practice the number of
processors is likely to be bounded. 1In this section
we suppose that p21 processors are available, and
use the following lemma to deduce some interesting
results from Theorems 2.1 and 3.1.

Lemma 4.1 (Brent [73])

If expressions E1' e g Em can be evaluated

simultaneously in time t with g operations and
sufficiently many processors which perform arithmet-
ic operations in unit time, then Er eve s Em can

be evaluated in time t + (g-t)/p with p such
processors.
Proof

Suppose that S; operations are performed at

t
step ¢ , for 7 =1, 2, ... , t . Thus L s, =q
=1
Using p processors, we can simulate step ¢ in

rsifpj steps. Hence, E , ... , E can be eval-
nated with p processors in time

N et

t
[s;/p1 ¢ (1 - /Pt + I s./p
1

i 1=1

=t + (g-t)/p .

PARALLEL EVALUATION OF EXPRESSIONS

Theorem 4.1

Let E be an arithmetic expression with operat-
ions "+" and "*" over a commutative ring. If p
processors which can perform "+" and "*" in unit
time are available, then E can be evaluated in
time U4log,n + 2(n-1)/p , where n = [E| .

Proof
Suppose nz4 , for otherwise the result is

trivial. From Theorem 2.1 and Lemma 4.1, E can be
evaluated in time

(1 = 1/p) ([(4Zog, (n=1)"] = 3) + 2(n-1)/p
< Blog,n + 2(n=1)/p .

Similarly, from Theorem 3.1 and Lemma 4.1 we
deduce:

Theorem 4.2 (Brent [73])

Let E be an arithmetic expression with oper-
ations "+", "*" and "/" over a commutative field.
If p processors which can perform these operations
in unit time are available, then E can be evaluated
in time 4log,n + 10(n-1)/p , where n = [E| .

Since only one division 1s performed, Theorem
4.2 is easily modified if a division takes longer
than an addition or multiplication.

Theorems 4.1 and 4.2 are within a constant
factor (6 and 14 respectively) of the best

possible, for the evaluation of x + x + ... + X

1 n

requires time at least max(log,n , E:l} .

5. NUMERICAL STABILITY

We now consider evaluating expressions over the
real field using (approximate) floating-point arith-
metic. Following Wilkinson [63], we assume that the
approximate arithmetic operations satisfy

fl(a*b) = abﬁ1

93

RICHARD P. BRENT

and

fl(a + b) = ad, + bé, ,

where

-1

1 - ¢ g 5£ < (1 - g) for 7 =1, 2 and 3 ,
and €<1 1is a positive constant (the "machine pre-
cision"). We also assume that fl(a*1) = a exactly
(or that such trivial multiplications are omitted).

For our purposes it is sufficient to say that an
algorithm for evaluating the expression
E(xl, ces xn} is numerically stable if the comput-

ed value E satisfies

E = E(ulxi, e g anxn)

for some numbers o satisfying

LY -

(1 - e)¢@ @, € (1 -)¢ (n)

where ¢(n) 1is a function independent of

Xir vee xn . In other words, the computed result

E would be obtained if exact arithmetic were used
after applying "small" relative perturbations (of
order e€$(n)) to the arguments Xivo enn 4 X o

The main result of this section is that the
algorithm implied by the proof of Theorem 2.1 is
numerically stable. In fact, from Theorem 5.1, we
can take

¢(n) = 4log,n
in the above. (A similar result holds for approx-
imate arithmetic over the complex field.) First we

need two lemmas.

Lemma 5.1

Let E(xl, cee g xn} be an expression with n

distinct atoms x . e X and operations "+" and
l.l r n

, -1
"#" over the real field. If 0<rg1 and rgoagr
then, for given values of x,, ... , X there are

94

PARALLEL EVALUATION OF EXPRESSIONS

. . -1
numbers Oy o satisfying rgaigr , such that

GE(}:I; LI r xn} = E(alxlf LRI r anxn}]
Proof
I1f n=1 then E=x , s0O a =« satisfies
the lemma. Hence, suppose that n = N2 . As in-

ductive hypothesis, suppose that the result holds
for n<N .

Since n32 , we have E = L6R , where 6 = "+"
or "*" and the expressions L and R depend on
disjoint subsets of {x,, ... , xn} . Since

oL + oR if 8 = "+" ,
GE(X,, ous o, X) = { }
aL*R if 6 = "E"

the result follows by induction.

Lemma 5.2

I = = *
Let E. E(xl, ces xn] A{xz, cae 2 xnj X
+ B(X,, vos o xn} be an expression with n distinct

atoms and operations "+" and "*" over the real field.
(The assumption of distinct atoms is essential here.)

=1 =1
If 0<rg1 , 0<sg1 , r<oasr , and ssfss , then

for given values of Xx , ... , X there are numbers

Yi o0 satisfying rs < Y; € lirs}"1 for 7 =2, ... ,

-

n , such that
BB(X,, +v« o xn} = B{vzxzr cee g Y_X_)

and either

1. AX,, «vv xn] is identically 1 (which we
write as A=1), or

2. aA{xz, cen g xn} = Riyzxz, e g Ynxn] .
Proof

If A=1 the result follows from Lemma 5.1, so
assume that AZ1 . If n=1 then E = X, and A=1

RICHARD P. BRENT

contrary to our assumption, so n22 . Hence, suppose
n = N32 , and as inductive hypothesis suppose that
the result holds for n<N .

Since nz2 , we have E = L6R , where 6 = "+"
or "*", and without loss of generality L depends
on x, . Thus (by Lemma 1 of Brent, Kuck and Maruy-
ama {?31 } ¥

L = Alxl + Bl

for some expressions A and B which are indep-
endent of X, . There "are two cases to consider.

Case 1: 8 = "+"

E = Alxl + B1 + R ,

so A = hl and B = B1 + R . Thus oA = ahl and

BB = BE1 + BR . Now A1;1 as AZ1 , and the atoms

of L and R are disjoint, so the result follows
from the inductive hypothesis (applied to A and
B,) and Lemma 5.1 (applied to R).

Case 2: 6 = "=*"

E = Alel <+ B1R ’
so A =AR and B = BIR . Thus oA = hl*(aR} and
BB = {BKG]BI*{uR} . The atoms of L and R are

disjoint, so the result follows from the inductive
hypothesis (applied to A ~and B, with r, s, a

and B replaced by 1, rs, 1 and B8/a respect-
ively) and Lemma 5.1 (applied to R). Thus, the
lemma follows by induction on N .

Theorem 5.1

Let n, k, E{xl, I xn} , A, B, and
X = X, be as in Theorem 2.1. If approximate float-

ing-point arithmetic with machine precision € over
the real field is used, then E, A and B can be
evaluated in the time (and with the number of pro-
cessors and operatlons] glven by Theorem 2.1 so that

the computed values E, A and B satisfy

96

PARALLEL EVALUATION OF EXPRESSIONS

E = E(0 X) eon s anxn} ’
A= A(B,X,, +ov ¢ B X)
and
B = B(B,X,s o0 s B X)) 4
where
(1 - E}k_3 ga, £ (1 -) ™* for =1, ... , n
and
(1 -)k < B, € (1 - &)X for §=2, ..., n.
Proof

The result is easily deduced from Lemmas 5.1
and 5.2 if ng7 , so suppose that n = N28 . As in-
ductive hypothesis, suppose that the result holds
for n<N .

T+ is convenient to make the convention that all
6£ below satisfy

-1
1 = € € 6£ < (1 - €) .

From the proof of Theorem 2.1,
o~ = Rl * - bl Ll
E fl(Al (LIEIRI) + Bl} '
where A, is as in the proof of Theorem 2.1, and
EI is the computed value of A, , etc. Thus
~ ~ 3~ g e
E = A1{{51L1}51{62R1}] + 6 B .

Since the atoms on which L s R, and hl (or BI]

depend are disjoint, and

etc. (see the proof of Theorem 2.1), the result for

E follows from the inductive hypothesis and Lemmas
5.1 and 5.2.

Similarly, from the proof of Theorem 2.1,

97

RICHARD P. BRENT

s {fl[ﬁzﬁa}) if B, = man r}
fl{fﬂsz}Aa} if g, = "kn
and
5 _ {fl{igfﬁa f R,) + B,) if 8, = "4 ’}
f1((A,R)B + B,) if 6, = "av

As usual, there are two cases to consider.

Case 1: 82 = "4

= 3
n

and

~ -u 3~ 3~ g

From the proof of Theorem 2.1,

|a,x, + B, < g (k=) /v g

r

so the result for A and B follows from the induc-
tive hypothesis and Lemmas 5.1 and 5.2.

Case 2: 82 = "&"

.

5o {Az{ﬁﬂRz]{ﬁghaj if Aa 21 ,}
AZ(ﬁERZJ if A

I
—

and

- - o~ L - o~
B = Az{ﬁaRzlfﬁluBa} + 6llEz y

Again, the result for A and B follows from the
inductive hypothesis and Lemmas 5.1 and 5.2, Hence,
the theorem follows by induction on N .

6. SPECIAL CLASSES OF EXPRESSIONS

Although the results of Sections 2 to U4 are
within constant factors of the best possible, it is

98

PARALLEL EVALUATION OF EXPRESSIONS

worthwhile to try to reduce the constants as much as
possible in special cases of practical importance.
In this section we briefly summarize some results
for various special classes of arithmetic express-
ions.

Dorn [62], Estrin [60], Muracka [71] and others
have considered parallel polynomial evaluation. The
sharpest results are those of Maruyama [73a] and (in-
dependently) Munro and Paterson [71], who have shown
that polynomials of degree n can be evaluated in

1
time Zlog,n + D[{Zogzn}z} if sufficiently many

processors are available. Munro and Paterson [71]
have also shown that time 2n/p + log p + 0(1) 1is

sufficient if p < n/leg,n processors are available.

By a result of Winograd [70], this is very close to
the best possible. If preconditioning is allowed
some improvement is possible (see Rabin and Winograd
[71], Belaga [61], and Motzkin [55]).

A polynomial may be written in the form
a +x(a +x(a + ... N anx}...]} . Brent

[70] has shown that the slightly more general ex-

i a + +x +'|| L
pression a + x (a, , (@, (a _, +ax)))

over any commutative ring (e.g. the ring of real
numbers or the Boolean ring) may be evaluated in

5

time log,n + D({Iogzn}) if sufficiently many

processors are available.

Kuck and Maruyama [73] have shown that contin-
ued fractions b + a /(b + azf(...{bn_l + anfhnj

...)) can be evaluated in time 2log,n + 0(1) if

sufficiently many (in fact 0(n)) processors are

available. (As in the algorithm of Section 3, the
evaluation requires only one division.) The result
also applies to "continued parenthesis" expressions
of the form auaﬂ(alﬁl{azﬁz{...{a B 'an}...]}} ,

n-1 n-i
where each Ei = "4n, "0 %" or "/". Results for
a limited number of processors may be deduced.

Various other classes of expressions, such as
expressions with a limited depth of parenthesis

9y

RICHARD P. BRENT

nesting or a limited number of division operations,
have been considered by Kuck [73], Kuck and Maruyama
[73], Kuck and Muraoka [73], Maruyama [73b], Muraoka
[71), and others. For additional references, see
the bibliography in Miranker [71]. It would be
worthwhile to combine the techniques used by various
authors to produce a good algorithm for compiling
arithmetic expressions for subseqguent execution on a
machine with p processors.

Finally we note that little attention has been
paid to the numerical stability (or instability) of
parallel numerical algorithms. Sometimes the
requirements of parallelism and stability seem to
conflict, but this is not always so, as the results
of Section 5 show. The question of stability
remains open for many of the algorithms mentioned
above., For those algorithms which are fast but
unstable, the existence of stable algorithms which
are as fast (or nearly as fast) is also unsettled.

POSTSCRIPT

The constant "4" in Theorem 2.1 and Corollary 2,1 can be
reduced to "3" at the expense of increasing the number of oper-
ations from 2(n-1) to 5(n-1)/2. The proof is similar to that
of Theorem 2,1: it may be shown by induction on n > 1 that E,
A and B can be evaluated in times SLIGgEnJ -1, 3Llagz(n-1)j
and 3L1u32{n-1)J + 1 respectively,

Our results may be extended to expressions over noncommu-
tative rings and fields., This extension is described in the
paper "The parallel evaluation of matrix expressions" (to ap-
pear) by K. Maruyama,

ACKNOWLEDGEMENT

The suggestions of David Kuck and Kiyoshi
Maruyama were very useful.

REFERENCES

Baer ?nd Bgvet [68]: Baer, J.L. and Bovet, D.P,,
"Compilation of arithmetic exXpressions for

parallel computations", Proc. IFIP Congress

Belagg £E11: Belaga, E.G., "On computing polynom-
ials in one variable with initial conditioning

100

PARALLEL EVALUATION OF EXPRESSIONS

of the coefficients", Problemi Kibernetiki 5

Brent [70]: Brent, R.P., "On the addition of
binary numbers", IEEE Trans. Comp. C-19 (1970),
758-759.

Brent [73]: Brent, R.P., "The parallel evaluation
of general arithmetic expressions", submitted
to J. ACM,

Brent, Kuck and Maruyama [73]: Brent, R.P., Kuck,
D.J. and Maruyama, K.M.,, "The parallel eval-
uation of arithmetic expressions without divis-
ion", to appear in IEEE Trans. Comp. C-22 (May
1973).

Dorn [62]: Dorn, W.S., "Generalizations of Horner's
rule for polynomial evaluation", IBM Jour. Res.
& Dev., (1962), 239-245,

Estrin [60]: Estrin, G., "Organization of computer
systems - The fixed plus variable structure
computer"”, Proc. Western Joint Computer Con-
ference (1960), 33-40,

Kuck [73]: Kuck, D.J., "Evaluating arithmetic
expressions of n atoms and k divisions in
a(log,n + 2log k) + c steps", to appear.

Kuck and Maruyama [73]: Kuck, D.J. and Maruyama, K.,
"The parallel evaluation of arithmetic express-
ions of special forms", submitted for publicat-
ion.

Kuck and Muraoka [73]: Kuck, D.J. and Muraoka, Y.,
"Bounds on the parallel evaluation of arith-
metic expressions using associativity and
commutativity", to appear.

Maruyama [73a]: Maruyama, K.M., "On the parallel
evaluation of polynomials", IEEE Trans. Comp.
c-22 (1973), 2-5.

Maruyama [73b]: Maruyama, K.M., "Upper bounds on
the time required to.evaluate arithmetic
expressions", submitted for publication.

Miranker [71]: Miranker, W.L., "A survey of
parallelism in numerical analysis", SIAM
Review 13 (1971), 524-547,

Motzkin [55]: Motzkin, T.S., "Evaluation of poly-
nomials and evaluation of rational functions",
Bull. Amer. Math. Soc. 61 (1955), 163.

101

RICHARD P. BRENT

Munro and Paterson [71): Munro, I. and Paterson, M.,
"Optimal algorithms for parallel polynomial
evaluation", Report RC 3497, IBM Research
Center, Yorktown Heights (1971).

Muraoka [71]: Muracka, Y., "Parallelism exposure
and exploitation in programs", Report U424,
Dept. of Computer Science, Univ. of Illinois at
Urbana-Champaign (1971).

Rabin and Winograd [71]: Rabin, M.0. and Winograd,
S., "Fast evaluation of polynomials by ration-

al preparation", Report RC 3645, IBM Research
Center, Yorktown Heights (1971).

Wilkinson [63]: Wilkinson, J.H., "Rounding errors
in algebraic processes", HMSO, London (1963).

Winograd [70]: Winograd, S., "On the number of
multiplications necessary to compute certain
functions", Comm. Pure and Appl. Math. 23
(1970), 165-179.

102

