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§1. INTRODUCTIOM

In the numerical approximation or prediction of a physical sitwation, errors
may arise in the following ways:

1. There may be errors or oversimplifications inm the formulation of the
mathematical modal.

2. To make a computatianal solution possible the model may have to be
discretized. For example, integrals may be approximated by finite sums, and
infinite serfes may be approximated by finite serfes. Thus truncatien errors may
be intraduced.

3. There may be errors in the date. Such errors are uswally unavoidable
if the data are obtained from physical measurements or preliminary camputations.

4. Founding errors may occur during the computation.

Although model and truncation errors are extremely important, they are
highly dependent on the problem, so we shall not discuss them here. 1In §2 we

study the effect of errors in the data,
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¥ith numerically unstable methods rounding errors may be amplified by
"catastraphic cancellation™ [f3}. Mith numerically stable methods this cannot
occur, but many small errors may accumulate {£4), The amount of accumulation
depen<s on the number system wsed, and different number systems are compared in

%5,
We can only attempt a brief introduction to the subject of computational
srrors here. For furthér material, the reader is referred to Bremt [1], Forsythe

[2], Wilkinson (31, amd the bibliographies given there,

§2, THE CONDITION OF A PROBLEH

Without attempting to be precise, we say that a problem is {il-conditioned
if small perturbatfons in the data cause large perturbations in the answer.
Otherwise the problem is well-conditionad. There are several reasons for trying
to avaoid i1l-conditioned problems:

1. [11-conditioning is often a symptom of asking the wrong questions or
formulating the problem incorrectly (see belaw).

2. If the data have moderately small errors, the answer may be completely
wWrang.

3. Ewven if the data are exact and a stable method is used, rounding errors
in the computation may have an effect which {5 equivalent to perturbing the data

s1ightly and then using exact arithmetic. Thus, the computed answer may be wrong

Tg illustrate point 1, consider the system of simultaneous differential
equations

difdt = fBx ,

which has solutions of the form

where 1 satisfies the polyncomial equation

detfi]l - R} = ,
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It 15 not desirable to compute the coefficients of this polynomial explicitly
and then selve for A, for the problem of determining 3 from the coefficients of
the characteristic polynomial may be much worse conditioned than the original
problem of determining E:L} {or of determining » from B). This is shown by the

following example of Wilkinsan [3, p.41], which also illustrates point 3 above.

Let B be the diagomnal matrix with diagonal elements 1, 2, 3, ..., 20. Thus

A satisfies the polynomial equatianm

F'{-Jl]' =0,
where
20
plx) = 1 {x - 1)
1=
%? i
E it aj: L1

Even if the coefficlents a'j are computed exactly, rounding errors in finding a
zerg of p by the customiary methods will have the same effect as perturbing the aj

s1ightly. For simplicity, suppose that only a,, is perturbed. Let

qlx) = pix} - E-zles

be the polynomial obtained by making a small perturbation {-27%%) in 3, ,-
Wilkinson [3, p.43] gives the zeros of g. The small ones are close ta those af
p, but the large ones are not at all close. For example, the Zeros 18 and 19 of

p become 19.50244 = 1.940331.

§3. CATASTROPHIC CANCELLATION

We say that a numerical method for selving a problem is atable if it gives
the exact solution to a slightly perturbed problem. A symptom of am unstable
method is subtraction of two nearly egqual numbers which have been contaminated
with rounding errors. The subtraction removes the significamt digits, Teaving

anly rounding errors! C.H. Lehmer termed this catasérephic cancellation., HNote
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that the subtraction need not introduce any more rounding errors; it merely

amplifies the effect of previous rounding errors.

For esample, Forsythe [2, p.935] considers the computation of e” " *from the

expansion
a® < E x* ke
k=D )
using S-decimal floating-point arithmetic. We obtain
e ®+% = 1.0000 - 5.5000 + 15,125 - 27.730 + 38,129

= 41.942 + 368.446 - 30.208 + Z0.768 - ...
* 0,0026363 ,

but the carrect answer 15 0.0040868. Clearly, use of the Taylor series for

& stable method is to use

-

computing e* is not stable for all real x.
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4. ACCUHULATICH OF ERRORS

Even with stahle methods, the effect af a4 large number of rounding errors

may accumulate, This is usvally much less serious than the effect of one round-

ing error amplified by catastrophic cancellation with an unstable method, but the
accumulated errors may still be appreciable if a large number of arithmetic

sperations is performed.

For example, consider forming the product LI IR using fixed-precision

floating-point arithmetic. We shall ignore the possibility of underflow or

gverflaw. Let « ke the maximum error possible in forming one product, i.e.
e = max | fl ax: -_ab | .

where the maximum i5 taken over nonzern floating-point numbers a and b such that



the computed product fl{axb) does not overflow or underflow. (e depends on the

characteristics af the floating-point arithmetic and number representation.)

= pyo (1 - 8] say,
where

!51|$ﬂ| 1=1|1.r1“1.

then the relative error in the final result is
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Thus, neglecting terms of order nzcj, we have

| & | £ ne .

This bound i5 rather pessimistic, for the errors 6, may cancel rather tham

reinforce each other. Often |[A] is of order nkg.

§5. DIFFERENT NUMBER SYSTEMS

Suppose that we have a computer with a fixed word-length w bits and

floating-point numbers with a fixed range

R = I'm‘tzHrna:nt"rffn‘]n:I ’

where the floating-point mumbers are

-f < ... =« =f

ma min <0« rm' < e < f

m max
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Various number systems are possible. For a normal floating-point system with
base ¢ = Ek and t digits, the constraint that the numbers (exponent and fraction)

must Fit into a w-bit word gives

[see Breat [1]).

We may predict theoretically that the best choice is B = &4 {unless only
normalized numbers are used and the leading fraction bit is implicit with g = 2].
Thie hat been werified empirically by Grent [1]. The effect of different choices

of numbter system is illustrated by the following example (taken fram [1]}.

Let

“on v s | N
a; = Ligl {lf - 1$J]} ] ;F !Fﬁilz '

where A is a random n by n symmetric matrix whose efgenvalues are li and whose
eigenvalues computed (by Householder's reduction to tridiagonal form and the QR

algorithm) using number system j are l$j]. i=1, ... y n. Let g, be the RM3

]

value of g after 1000m trials.

Experimental results for several number systems are given fin Table 1 (for
further dotails see [1]). The experimental results agree fairly well with the
theoretical predictions made in [1]. We may conclude that a computer with
aptimal fleating-point hardware characteristics should have:

1. Unbiased rounded arithmetic [oftem more than twice as accurate as
truncated arithmetic, and sometimes better by a factor of order ng}.

2. Fase 7 (with the first bit of the fraction implicit) or base 4.

3. Several quard digits.

Unfortunately, for reasons of economy and speed in the arithmetic unit, few
modern computers satisfy the above three requirements. For example, the resultis
in Table 1 {and the other results of [1]) show that IBM's System/360 wastes about
gne decimal place of accuracy. Thus, double-precision computatiaons are necessary

anre often than they showld be.
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n m eefal 53fﬁl quﬂi Eﬁfﬂi EBHEI
i 100 1.60 Z2.00 2.23 .67 14.2
i 10 1.68 2.00 2.1 7.490 19.5
a 3 1.76 2.08 1.27 G.48 6.0
16 1 1.8¢2 1.99 3,449 0.7 28.8

Table 1: Comparison of different number systems‘

¥ The number systems compared are:

1. g = 2, first bit implicit, rounded arithmetic, = quard digits;

2 g a4, first bit explicit, rounded arithmetie, = guard digits;
3. g =2, first bit explicit, rounded arithmetic, = guard digits;

4 g = 16, first bit explicit, rounded arithmetic, = guard digits;
5. g = 256, first bit explicit, rounded arithmetic, = quard digits;

4. 8 = 16, first bit explicit, truncated arithmetic, = guard digits.
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