
10 CONTINUE 

Q(I ) = l • 

IF (NDD.EQ.0) GO TO 50 
CI ffi I. 

DO 2 0  I=I,NDD 

Q ( I + I )  = C I * * I / F A C T ( I + I )  
C I  = C I  + 1 .  

2 0  C O N T I N U E  

IF (NDP.GT.N) GO TO 86 

FV = FLOAT(NDP) - FND 
OMA, X ffi IDINT(FV) ÷ l 

DO 40 IfNDP, NDD 

SUM = 0. 

FT = END 

K = I 

FU = FV 

DO 36 J=I*JMAX 

SUM = SUM + FT**(J-2)/FACT(J)*FU**K/ 
• FACT(K+I ) 

FT = FT + ]. 
FU ffi FU - I • 

K = R - I 
3 0  C O N T I N U E  

Q ( I + I )  = O ( I + l )  - 2.*FED*SUM 

JMAX = JMAX + I 

FV = FV + I .  
4 ~  C O N T I N U E  

IF (NDD.EQ.N) G O  TO 80 

50 DO 70 I=NDDP, N 

SUM = Z. 

SIGN = I • 
FT = 2 . * F N D  

DO 6 6  JfI,NDT 

FT = FT - I. 

K = I - d + ] 
SIR4 = SUM + S I G N * F T * * j / F A C T ( J + I  )*Q(K) 

SIGN = -SIGN 

66 CONTINUE 

Q ( I + I )  = SLIM 
70 CONTINUE 

86 PKS2 = Q(N+I )*FACT(N+I )/FN**N 
RETURN 

9Z PKS2 = 2-*D - ], 

RETURN 

106 PKS2 = 6. 

RETURN 

END 

SUBROUTINE PRFAC 

DOUBLE PRECISION PF(4,40) 

DIMENSION DXA (4) 

COMMON DX* DXA, PF, d 

DATA I / 1 /  

DO 10 O=l,4 

IF (DXA(J).EQ.DX) RETURN 

1 0  C O N T I N U E  

d = I 
I = I + 1 
I F  ( I . E Q . 5 )  I = 1 

DXA(J) = DX 

PF(J,I) = I. 

DO 20 K=2,38 
PF(J,K) ffi (PF(J,K-I)*DX)/FLOAT(K-I) 

2 0  CONTINUE 

RETURN 
END 

FUNCTION CEIL(X) 

IF (X.GE.0.) GO TO 10 

I = -X 

CEIL = -I 

RETURN 

10 I = X + .99999999 
C E I L  = I 
RETURN 

END 

FUNCTION PKS(N, EPS) 

C CALCULATE THE CUMULATIVE DISTRIBUTION 0F THE 

C ROLMOGOROV-~IRNOV STATISTIC USING THE FORMULAS 0F 
C JOHN POMERANZ. EXACT VALUES OF THE TWO-SIDED 

C ROLMCGOROV- SMIRNOV C~IULATIVE DISTRIBUTION FOR 

C FINITE SAMPLE SIZE. TECHNICAL REPORT NUMBER 88, 

C COMPUTER SCIENCES DEPARTMenT, PURDUE UNIVERSITY, 

C FEBRUARY 1973. 

DOUBLE PRECISION PF(4,40)s U(4Z), V(a0) 

DOUBLE PRECISION SUM 

DIMENSION DXA(4) 

COMMON DX, DXA, PF, L 

DATA MNP /401 
F N  = N 

RN = I./FN 

K = EPS*FN + .00000001 
FK = K 

IF (ABS(FK-EPS*FN).GT..000ZZZZI) GO TO I Z  
K = H - I 

FK = K 

10 CONTINUE 

704 

DEL = EPS - FK*RN 

XUP = RN - DEL 
XL0 ffi DEL 

IF (ABS(XUP-XL0).LT..000~0001) XUP ffi XL0 

XPREV = 0. 

DO 20 I=],MNP 

U ( 1 )  = 0. 

20 CONTINUE 
U(K+I ) ffi I • 

IMIN = -K 

30 X = AMIN] (XUPsXL0) 
I F  ( X . G T . . 9 9 9 9 9 9 )  X ffi I .  

DX = X - XPREV 
JMIN = CEIL((X-EPS)*FN-.00000001) 

IF (ABS (FLOAT (JMI N)- (X- EPS)*FN) .LT. • 00000001 ) 

• JMIN = JMIN + ] 

JMAX = (X+EPS)*FN + *000000{~1 
IF (ABS(FLOAT(JMAX)-(X÷EPS)*FN) .LT..0000000| ) 

• JMAX = JMAX - I 

JMAX = JMAX - JMIN + ] 

C A L L  P R F A C  

DO 60 J=I,MNP 

SUM = 0. 

IF (j.GT.JMAX) GO TO 50 

I = I 

40 IP = d - I + ] + JMIN - IMIN 

SUM = SUM + U(1)*PF(L, IP) 

I = I ÷ I 
I F  ((IMIN÷I).LE.(JMIN+J)) GO TO 46 

50 V(j) = SUM 

60 CONTINUE 

DO 76 I=I,MNP 

U ( 1 )  = V ( 1 )  
70 CONTINUE 

I M I N  ffi JMIN 

XPREV = X 

IF (X.EQ.XUP) XUP = XUP + RN 

I F  (X.EQ.XLO) XL0 = XL0 + RN 

IF (X.LT.I.) GO TO 30 

DO 86 I = I * N  

U(R+]) = U(K+I)*FLOAT(1) 

80 CONTINUE 

PKS = U(N+] ) 
RETURN 

END 
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A Gaussian Pseudo-Random 
Number Generator [G5] 
R i c h a r d  P. Brent  [Recd .  9 N o v .  1973, a n d  19 D e c . 1 9 7 3 ]  
C o m p u t e r  Centre ,  A u s t r a l i a n  N a t i o n a l  U n i v e r s i t y ,  
Canberra ,  A u s t r a l i a  

Key Words and Phrases: random numbers, pseudo-random num- 
bers, Gaussian distribution, normal distribution 

CR Categories: 5.39, 5.5 
Language: Fortran 

Description 
Introduction. Successive calls to the Fortran function GRAND 

return independent, normally distributed pseudo-random numbers 
with zero mean and unk standard deviation. It is assumed that a 
Fortran function R A N D  is available to generate pseudo-random 
numbers which are independent and uniformly distributed on 
[0, 1). Thus, GRAND may be regarded as a function which converts 
uniformly distributed numbers to normally distributed numbers. 

Outline o f  the method. GRAND is based on the following algo- 
rithm (Algorithm A) for sampling from a distribution with density 
functionf(x) = K exp ( - G ( x ) )  on [a, b), where 

0 < G(x) _< 1 (1) 

on [a, b), and the function G(x) is easy to compute: 

Step 1. If the first call, then take a sample u from the uniform dis- 
tribution on [0, 1); otherwise u has been saved from a previous 
call. 

Step 2. Set x ~ a -I" (b - u)u and uo (--- G(x). 
Step 3. Take independent samples ut, u~, . . .  from the uniform 

distribution on [0, 1) until, for some k _> 1, uk_l < uk. 
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Step 4. Set u ~-- (uk - Uk-1)/(1 -- Uk-a). 
Step 5. If k is even go to Step 2, otherwise return x. 

The reason why Algorithm A is correct is explained in Ahrens 
and Dieter [2], Forsythe [4], and Von Neumann [6]. The only 
point which needs explanation here is that, at Step 4, we can form 
a new uniform variate u from uk_~ and u~, thus avoiding an extra 
call to the unifoi'm random number generator. This is permissible 
since at Step 4 it is clear (from Step 3) that (uk -- Uk-x)/(1 -- 
Uk--t) is distributed uniformly and independent of x and k. (The 
fact that it is dependent on uk is irrelevant.) 

Let a~ be defined by (2/7r)~ f~*~iexp ( -  ½t2)dt = 2 -~ for 
i = 0, 1, . . . . To sample from the positive normal distribution 
(Algorithm B), we may choose i > 1 with probability 2 -~ (easily 
done by inspecting the leading bits in a uniformly distributed 
number) and then use Algorithm A to generate a sample from 

, - a l l ) .  [ai_l al), with G(x) = ½(x 2 It is easy to verify that 
condition (1) is satisfied, in fact 

aL,) ½(aS -- < log (2). (2) 

Finally, to sample from the normal distribution (Algorithm 
C), we generate a sample from the positive normal distribution 
and then attach a random sign. 

Comments on the method. The algorithm is exact, apart from 
the inevitable effect of computing with floating-point numbers 
with a finite word-length. Thus, the method is preferable to meth- 
ods which depend on the central limit theorem or use approxima- 
tions to the inverse distribution function. 

Let N be the expected number of calls to a uniform random 
number generator when Algorithm A is executed. If the expected 
value of k at Step 3 is E, and the probability that k is even is P, 
then N = E + N P, so N = E/(1 - P). From Forsythe [4, eq. 
(11)], E = (b - a)-t  f~bexp (G(x))dx and l£° 

= exp ( -G(x) )  dx, so 1 - P  b - a  

N = exp (G(x)) dx exp ( - G ( x ) )  dx. (3) 

From (3) and the choice of a~, the expected number of calls to a 
uniform random number generator when Algorithm C is executed is 

I 2 2 - -  a , - l ) )  dx ( - ½ ( x  2 dx 2 -i  exp (~(x exp - a~-0) 
i - - 1  a i - - 1  

"~ 1.37446. (4) 

This is lower than 4.03585 for the algorithm given in Forsythe [4], 
or 2.53947 for the improved version (FT) given in Ahrens and 
Dieter [2]. It is even slightly lower than 1.38009 for the algorithm 
FL4 of [2], and FL4 requires a larger table than Algorithm C. 
Thus, Algorithm C should be quite fast, and comparable to the best 
algorithms described by Ahrens and Dieter [I]. The number (4) 
could be reduced by increasing the table size (as in the algorithms 
FL~, FL~, and FLs of [2]), but this hardly seems worthwhile. 
Exact timing comparisons depend on the machine and uniform 
random number generator used. (If a very fast uniform generator 
is used, then Step 4 of Algorithm A may take longer than generat- 
ing a new uniform deviate.) 

The loss of accuracy caused by Step 4 of Algorithm A is not 
serious. We may say that log~ (1 - uk_,) - '  "bits  of accuracy" are 
lost, and in our application we have, from (2) and Step 3 of Algo- 
rithm A, log (2) > us > .. • > Uk-i, SO the number of bits lost is 
less than log2 (1 -- log (2)) -1 < 2. 

Test results. If x is normally distributed then u = 
(2r ) -~f [=  exp ( -  ½t9 dt is uniformly distributed on (0, I). 
Hence, standard tests for uniformity may be applied to the trans- 
formed variate u. Several statistical tests were performed, using a 
Univac 1108 with both single-precision (27-bit fraction) and double- 
precision (60-bit fraction). For example, we tested two-dimensional 
uniformity by taking l0 s pairs (u, u'), plotting them in the unit 
square, and performing the Chi-squared test on the observed num- 

bers failing within each of 100 by 100 smaller squares. This t e s t  

should show up any lack of independence in pairs of successive 
uniform deviates. We tested one-dimensional uniformity similarly, 
taking l0 s trials and subdividing (0, 1) into 1,000 smaller intervals. 
The values of x ~ obtained were not significant at the 5 percent level. 
It is worth noting that the method of summing 12 numbers dis- 
tributed uniformly on ( - 1 / 2 ,  1/2) failed the latter test, giving 
x~99 = 1351. (The probability of such a value being exceeded by 
chance is less than 10-11.) 

Naturally, test results depend on the particular uniform gen- 
erator RAND which is used. GRAND will not produce independent 
normally distributed deviates unless RAND supplies it with inde- 
pendent uniformly distributed deviatest For our tests we used an 
additive uniform generator of the form u, = u,_t + u,_n7 (mod 2'9 
with w = 27 or 60 (see Brent [3] and Knuth [5]), but a good linear 
congruential generator should also be adequate for most applica- 
tions. 

Comparison with Algorithm 334. The fastest exact method 
previously published in Communications is Algorithm 334 [7]. 
We timed function GRAND, subroutine N O R M  (a Fortran transla- 
tion of Algorithm 334), and function RAND (the uniform random 
number generator called by GRAND and NORM).  The mean 
execution times obtained from 500,000 trials on a Univac 1108 
were 172, 376 and 59 t~sec respectively. Since N O R M  returns two 
normally distributed numbers, GRAND was effectively 9 percent 
faster than NORM. Based on comparisons in [2], we estimate 
that the saving would be greater if both routines were coded in 
assembly language, for much of the execution time of N O R M  is 
taken up in evaluating a square-root and logarithm which are 
already coded in assembly language. 

GRAND requires about 1.38 uniform deviates per normal de- 
viate, and N O R M  requires 4 / r  -[- 1/2 ~-~ 1.77. Thus, we may es- 
timate that if a uniform generator taking U ~sec per call were used, 
the time per normal deviate would be (91 + 1.38U) t,sec for 
GRAND and (83 + 1.77U) t, sec for NORM. Hence, GRAND 
should be faster for U >_ 20. 
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A l g o r i t h m  

FUNCTION GRANBCN~ 
C EXCEPT 0N THE F I R S T  CALL GRAND RETURNS A 
C PSEUD0-RANDOM NLRMBER HAVING A GAUSSIAN ( I . E *  
C NORMAL) DISTRIBUTION IdITH ZER0 MEAN AND UNIT 
C STANDARD DEVIATION. THUSJ THE DENSITY IS F(X) = 
C EXR(-Z.5*X**2)/S~RT(2.Z*RI). THE FIRST CALL 
C INITIALIZES GRAND AND RETURNS ZERO. 
C THE PARAMETER N I S DUHMY. 
C GRAND GALLS A FUNCTION RAND, AND IT IS ASSUMED THAT 
C SUCCESSIVE GALLS TO RAND(Z) GIVE INDEPENDENT 
C PSEUDO- RANDOM NUMBERS DISTRIBUTED UNI~0F/dLY ON (Z, 
C I), POSSIBLY INCLUDING Z (BUT NOT ! 7. 
C THE METHOD USED ~!A$ SUGGESTED BY V0N NEUMANN, AND 
C IMPROVED BY FORSYTHE, AHRENS, DIETER /~2JD BRENT. 
C ON THE AVEPa%GE THERE ARE 1.37746 CALLS OF RAND FOR 
C EACH CALL OF GRAND. 
C WARNING - DIMENSION AND DATA STATEMENTS BELOW ARE 
C MACHINE-DEPENDENT. 
C DIMENSION OF D MUST BE AT LEAST THE NUMBER OF BITS 
C IN THE FRACTION OF A FLOATING-P01NT NUMBER. 
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C THUS, ON MOST MACHINES THE DATA STATEMENT BELOW 

C CAN BE TRL~CATED. 
C IF THE INTEGRAL OF SQRT(2.0/PI)*EXP(-0.S*X**2) FROM 

C A(1) TO INFINITY IS 2.*(-I), THEN D(1) = A(I) - 

C A ( I - I  ). 
DIMENSION D(60) 
DATA D(1), D(2), D(3), D(/4), D(5), D(6), D(7)~ 

* D(B), D(9), DflZ), D(]I), D(]2), D(13). 
* D(14), D(]5), D(]6), D(IT), D(]8), D(19), 

* D(20), D(21), D(22), D(23), D(24), D(25), 
* D(26), D(27), D(-°8), D(29), D(3Z), D(31), 
* D(32) /0.674480750,3.475859630,0.383771|64, 
* Z • 32861 1323, 0 • 291 142827, Z • 263684322, 
* Z.2/~2508452, Z.22556744/4,@.21163/4166, 

* 0 .  1 9 9 9 2 4 2 6 7 , 0 .  1 8 9 9 1 0 7 5 8 , 0 .  1 8 1 2 2 5 1 8 1 ~  
* 0.  1 7 3 6 0 1 4 0 0 , 0 .  1 6 6 8 4 1 9 0 9 ,  Z .  1 6 0 7 9 6 7 2 9 ,  
* 0.155349717,0.15040930a, 0.145902577, 
* 0. 1/41770033,0. 137963174,0. 134/441762, 

* 0. 131172150,0. 126125965,0. 125279090, 
* 0 . 1 2 2 6 1 0 8 8 3 ,  Z . 1 2 0 1 0 3 5 6 6 , 0 . 1 1 7 7 1 4 1 7 0 7 ,  
* 0 .  I 1 5 5 1 1 8 9 2 , 0 .  I 13402349 ,  Z.  I 11402720 ,  
* Z . 1 0 9 5 0 3 8 5 2 , 0 . 1 1 1 7 6 9 7 6 1 7 /  
DATA D(33), D(34)~ D(35), D(36)~ D(37), D(38), 

* D(39), D(40), D(41 ), D(42), D(43), D(44), 

* D(/45), D(46), D(47), D(48), D(49), D(S0), 
* D(51 ), D(52), D(53), D(54), D(55), D(56), 
* D(57)~ D(SZ), D(59), D(ZZ) 

* /Z.105976772,0.104334841,0.102766012, 
* Z • I 0 1 2 6 5 0 5 2 ~  Z. 099827234, 0 • 098448282, 
* 0.097124309,0.095851778,0.09462746|, 
* 0.09344~407,0.092311909,~.091215482, 
* 0.09015683S, Z.089133867,0.088141~619, 
* Z.087187293,0.~86260215, Z.085361834, 
* 0.084490706~0.083645487~0.082824924, 
* 0 . 0 8 2 0 2 7 8 a 7 ,  Z . 0 8 1 2 5 3 1 6 2 ,  O .  ~ 8 0 4 ~ 9 8 4 4 ,  
* 0 • 0 7 9 7  6 6 9 3 2 ~  0 . 0 7 9 0 5 3 5 2 7 ~  0 -  0 7 8 3 5 8 7 8 1  • 
* 0.077681899/ 

C END OF MACHINE-DEPENDENT STATF~IENTS 

C U MUST BE PRESERVED BETWEEN CALLS. 
DATA U IZ.0/ 

C INITIALIZE DISPLACEMENT A AND COUNTER I. 
A : 0.0 

I=0 
C INCREMENT COUI~TER AND DISPLACEMENT IF LEADING BIT 
C OF U IS ONE. 

10 U = U + U 
I F  ( U . L T . I . 0 )  GO TO 20 

U = U- l.Z 

I = I + 1 

A = A - D ( I )  
GO TO 10 

C FORM W UNIFORM ON O .LE. W .LT. D ( I + I )  FROM U. 
20 W = D(I+I )*U 

C FORM V = Z.5*((W-A)**2 - A**2). NOTE THAT 0 .LE. V 
C . L T .  LOG(2). 

V : W.C0.5*W-A) 
C GENERATE NEW UNIF01IM U. 

30 U = RAND(Z) 
C ACCEPT W AS A RANDOM SAMPLE IF V .LE. U. 

IF (V.LE.U) GO TO 40 
C GENERATE RANDOM V. 

V = ILetND(Z) 

C LOOP IF U .GT. Vo 
I F  (U.GT.V) GO TO 30 

C REJECT ~l AND FOF~4 A NE.q UNIFOFA~ U FROM V AND U. 

U = (V-U)/(I.Z-U) 
GO TO 20 

C FORM NEW U (TO BE USED ON N~T CALL) FROM U AND V. 
40 U = (U-V)/(I.Z-V) 

C USE FIRST BIT OF U FOR SIGN, RETUI~ NORMAL VARIATE. 
U =  U + U 
IF (U.LT.I.0) GO TO 50 
U = U - 1.0 
GRAND = W - A 
RETURN 

50 GRAND = A - W 
RETURN 
END 

Remark on Algorithm 420 [J6] 
Hidden-Line Plotting Program [Hugh Williamson, 
Comm. ACM 15 (Feb. 1972) 100-103] and Remark on 
Algorithm 420 [T.M.R. Ellis, Comm. A C M  17 (June 
1974), 324-325] 

T.M.R. Ellis [Recd. 8 July 1974] Computing Services, 
University of Sheffield, England 

There was an unfortunate printing error in my Remark on 
Algorithm 420 which made nonsense of  the whole thing. The state- 
ment which should be inserted to correct the error discussed should, 
of  course, be: 

IF(F1.EQ.F2) GO TO 1005 

and not: IF(F1.EQ.FZ) GO TO 1005 as printed. 

Remark on Algorithm 426 
Merge Sort Algorithm [M1] 
[C. Bron, Comm. A C M  15 (May 1972), 357-358] 

C. Bron [Recd. 5 Nov. 1973] 
Technological University of Twente, P.O. Box 217, 
Enschede, The Netherlands 

A remark in [3 p. 158] suggested to the author that Algorithm 
426 needs only very minor modifications in order to handle the 
sorting of records that are chained to begin with. The algorithm then 
rearranges the chain and needs no additional array to store chaining 
information. Furthermore, the assumption that we should be able 
to associate each of the integers from 1 to n with each of the n 
records to be sorted is no longer necessary [2]. 
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Remark on Algorithm 456 [H] 
Routing Problem 
[Zden~k Fencl, Comm. A C M  16 (Sept. 1973), 572] 

Gerhard Tesch [Recd. 15 Oct. 1973] VFW Vereinigte 
Flugtechnische Werke GMBH, 28 Bremen 1, Hunefeld- 
strasse 1-5, Germany and Zden~k Fencl, M.I.T., De- 
partment of Urban Studies, R. 9-643, Cambridge, Mass. 

Some confusion arose from the description of  the algorithm 
capability. It should have been stated that the generated tour must 
pass through each of the n nodes once and only once, although this 
is the base for the definition of the traveling salesman problem. This 
algorithm solves an extended traveling salesman problem in which 
the end node does not have to be the start node. Such connections 
may be sought in the design automation of  serial printed circuits as 
well as in transportation problems. The traveling salesman problem 
is discussed in [3, p. 232] and methods of solution are surveyed in [1]. 

The users who seek the shortest paths in electric networks (the 
shortest connection between the two specified nodes in a net without 
regard to the number of  nodes to be connected) are referred to 
Ford's shortest path algorithm [2, p. 69] and Dantzig's shortest path 
algorithm [3, p. 175]. There is a set of  three efficient Algol algorithms 
by J. Boothroyd [4] handling the shortest path problem as defined 
in [2, p. 69] and [3, p. 175]. These Algol algorithms can be modified 
so that even the number of nodes may be minimized or a restriction 
of  some nodes may be imposed, etc. 

Another type of shortest path algorithm is Lee's algorithm [5 
and 6]. This algorithm is applicable for the orthogonal routing of  
printed circuit boards. 
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