
10 CONTINUE

Q(I) = l •

IF (NDD.EQ.0) GO TO 50
CI ffi I.

DO 2 0 I=I,NDD

Q (I + I) = C I * * I / F A C T (I + I)
C I = C I + 1 .

2 0 C O N T I N U E

IF (NDP.GT.N) GO TO 86

FV = FLOAT(NDP) - FND
OMA, X ffi IDINT(FV) ÷ l

DO 40 IfNDP, NDD

SUM = 0.

FT = END

K = I

FU = FV

DO 36 J=I*JMAX

SUM = SUM + FT**(J-2)/FACT(J)*FU**K/
• FACT(K+I)

FT = FT +].
FU ffi FU - I •

K = R - I
3 0 C O N T I N U E

Q (I + I) = O (I + l) - 2.*FED*SUM

JMAX = JMAX + I

FV = FV + I .
4 ~ C O N T I N U E

IF (NDD.EQ.N) G O TO 80

50 DO 70 I=NDDP, N

SUM = Z.

SIGN = I •
FT = 2 . * F N D

DO 6 6 JfI,NDT

FT = FT - I.

K = I - d +]
SIR4 = SUM + S I G N * F T * * j / F A C T (J + I)*Q(K)

SIGN = -SIGN

66 CONTINUE

Q (I + I) = SLIM
70 CONTINUE

86 PKS2 = Q(N+I)*FACT(N+I)/FN**N
RETURN

9Z PKS2 = 2-*D -],

RETURN

106 PKS2 = 6.

RETURN

END

SUBROUTINE PRFAC

DOUBLE PRECISION PF(4,40)

DIMENSION DXA (4)

COMMON DX* DXA, PF, d

DATA I / 1 /

DO 10 O=l,4

IF (DXA(J).EQ.DX) RETURN

1 0 C O N T I N U E

d = I
I = I + 1
I F (I . E Q . 5) I = 1

DXA(J) = DX

PF(J,I) = I.

DO 20 K=2,38
PF(J,K) ffi (PF(J,K-I)*DX)/FLOAT(K-I)

2 0 CONTINUE

RETURN
END

FUNCTION CEIL(X)

IF (X.GE.0.) GO TO 10

I = -X

CEIL = -I

RETURN

10 I = X + .99999999
C E I L = I
RETURN

END

FUNCTION PKS(N, EPS)

C CALCULATE THE CUMULATIVE DISTRIBUTION 0F THE

C ROLMOGOROV-~IRNOV STATISTIC USING THE FORMULAS 0F
C JOHN POMERANZ. EXACT VALUES OF THE TWO-SIDED

C ROLMCGOROV- SMIRNOV C~IULATIVE DISTRIBUTION FOR

C FINITE SAMPLE SIZE. TECHNICAL REPORT NUMBER 88,

C COMPUTER SCIENCES DEPARTMenT, PURDUE UNIVERSITY,

C FEBRUARY 1973.

DOUBLE PRECISION PF(4,40)s U(4Z), V(a0)

DOUBLE PRECISION SUM

DIMENSION DXA(4)

COMMON DX, DXA, PF, L

DATA MNP /401
F N = N

RN = I./FN

K = EPS*FN + .00000001
FK = K

IF (ABS(FK-EPS*FN).GT..000ZZZZI) GO TO I Z
K = H - I

FK = K

10 CONTINUE

704

DEL = EPS - FK*RN

XUP = RN - DEL
XL0 ffi DEL

IF (ABS(XUP-XL0).LT..000~0001) XUP ffi XL0

XPREV = 0.

DO 20 I=],MNP

U (1) = 0.

20 CONTINUE
U(K+I) ffi I •

IMIN = -K

30 X = AMIN] (XUPsXL0)
I F (X . G T . . 9 9 9 9 9 9) X ffi I .

DX = X - XPREV
JMIN = CEIL((X-EPS)*FN-.00000001)

IF (ABS (FLOAT (JMI N)- (X- EPS)*FN) .LT. • 00000001)

• JMIN = JMIN +]

JMAX = (X+EPS)*FN + *000000{~1
IF (ABS(FLOAT(JMAX)-(X÷EPS)*FN) .LT..0000000|)

• JMAX = JMAX - I

JMAX = JMAX - JMIN +]

C A L L P R F A C

DO 60 J=I,MNP

SUM = 0.

IF (j.GT.JMAX) GO TO 50

I = I

40 IP = d - I +] + JMIN - IMIN

SUM = SUM + U(1)*PF(L, IP)

I = I ÷ I
I F ((IMIN÷I).LE.(JMIN+J)) GO TO 46

50 V(j) = SUM

60 CONTINUE

DO 76 I=I,MNP

U (1) = V (1)
70 CONTINUE

I M I N ffi JMIN

XPREV = X

IF (X.EQ.XUP) XUP = XUP + RN

I F (X.EQ.XLO) XL0 = XL0 + RN

IF (X.LT.I.) GO TO 30

DO 86 I = I * N

U(R+]) = U(K+I)*FLOAT(1)

80 CONTINUE

PKS = U(N+])
RETURN

END

Algorithm 488

A Gaussian Pseudo-Random
Number Generator [G5]
R i c h a r d P. Brent [Recd . 9 N o v . 1973, a n d 19 D e c . 1 9 7 3]
C o m p u t e r Centre , A u s t r a l i a n N a t i o n a l U n i v e r s i t y ,
Canberra , A u s t r a l i a

Key Words and Phrases: random numbers, pseudo-random num-
bers, Gaussian distribution, normal distribution

CR Categories: 5.39, 5.5
Language: Fortran

Description
Introduction. Successive calls to the Fortran function GRAND

return independent, normally distributed pseudo-random numbers
with zero mean and unk standard deviation. It is assumed that a
Fortran function R A N D is available to generate pseudo-random
numbers which are independent and uniformly distributed on
[0, 1). Thus, GRAND may be regarded as a function which converts
uniformly distributed numbers to normally distributed numbers.

Outline o f the method. GRAND is based on the following algo-
rithm (Algorithm A) for sampling from a distribution with density
functionf(x) = K exp (- G (x)) on [a, b), where

0 < G(x) _< 1 (1)

on [a, b), and the function G(x) is easy to compute:

Step 1. If the first call, then take a sample u from the uniform dis-
tribution on [0, 1); otherwise u has been saved from a previous
call.

Step 2. Set x ~ a -I" (b - u)u and uo (--- G(x).
Step 3. Take independent samples ut, u~, . . . from the uniform

distribution on [0, 1) until, for some k _> 1, uk_l < uk.

Communications December 1974
of Volume 17
the ACM Number 12

Step 4. Set u ~-- (uk - Uk-1)/(1 -- Uk-a).
Step 5. If k is even go to Step 2, otherwise return x.

The reason why Algorithm A is correct is explained in Ahrens
and Dieter [2], Forsythe [4], and Von Neumann [6]. The only
point which needs explanation here is that, at Step 4, we can form
a new uniform variate u from uk_~ and u~, thus avoiding an extra
call to the unifoi'm random number generator. This is permissible
since at Step 4 it is clear (from Step 3) that (uk -- Uk-x)/(1 --
Uk--t) is distributed uniformly and independent of x and k. (The
fact that it is dependent on uk is irrelevant.)

Let a~ be defined by (2/7r)~ f~*~iexp (- ½t2)dt = 2 -~ for
i = 0, 1, To sample from the positive normal distribution
(Algorithm B), we may choose i > 1 with probability 2 -~ (easily
done by inspecting the leading bits in a uniformly distributed
number) and then use Algorithm A to generate a sample from

, - a l l) . [ai_l al), with G(x) = ½(x 2 It is easy to verify that
condition (1) is satisfied, in fact

aL,) ½(aS -- < log (2). (2)

Finally, to sample from the normal distribution (Algorithm
C), we generate a sample from the positive normal distribution
and then attach a random sign.

Comments on the method. The algorithm is exact, apart from
the inevitable effect of computing with floating-point numbers
with a finite word-length. Thus, the method is preferable to meth-
ods which depend on the central limit theorem or use approxima-
tions to the inverse distribution function.

Let N be the expected number of calls to a uniform random
number generator when Algorithm A is executed. If the expected
value of k at Step 3 is E, and the probability that k is even is P,
then N = E + N P, so N = E/(1 - P). From Forsythe [4, eq.
(11)], E = (b - a)-t f~bexp (G(x))dx and l£°

= exp (-G(x)) dx, so 1 - P b - a

N = exp (G(x)) dx exp (- G (x)) dx. (3)

From (3) and the choice of a~, the expected number of calls to a
uniform random number generator when Algorithm C is executed is

I 2 2 - - a , - l)) dx (- ½ (x 2 dx 2 -i exp (~(x exp - a~-0)
i - - 1 a i - - 1

"~ 1.37446. (4)

This is lower than 4.03585 for the algorithm given in Forsythe [4],
or 2.53947 for the improved version (FT) given in Ahrens and
Dieter [2]. It is even slightly lower than 1.38009 for the algorithm
FL4 of [2], and FL4 requires a larger table than Algorithm C.
Thus, Algorithm C should be quite fast, and comparable to the best
algorithms described by Ahrens and Dieter [I]. The number (4)
could be reduced by increasing the table size (as in the algorithms
FL~, FL~, and FLs of [2]), but this hardly seems worthwhile.
Exact timing comparisons depend on the machine and uniform
random number generator used. (If a very fast uniform generator
is used, then Step 4 of Algorithm A may take longer than generat-
ing a new uniform deviate.)

The loss of accuracy caused by Step 4 of Algorithm A is not
serious. We may say that log~ (1 - uk_,) - ' "bits of accuracy" are
lost, and in our application we have, from (2) and Step 3 of Algo-
rithm A, log (2) > us > .. • > Uk-i, SO the number of bits lost is
less than log2 (1 -- log (2)) -1 < 2.

Test results. If x is normally distributed then u =
(2r) -~f [= exp (- ½t9 dt is uniformly distributed on (0, I).
Hence, standard tests for uniformity may be applied to the trans-
formed variate u. Several statistical tests were performed, using a
Univac 1108 with both single-precision (27-bit fraction) and double-
precision (60-bit fraction). For example, we tested two-dimensional
uniformity by taking l0 s pairs (u, u'), plotting them in the unit
square, and performing the Chi-squared test on the observed num-

bers failing within each of 100 by 100 smaller squares. This t e s t

should show up any lack of independence in pairs of successive
uniform deviates. We tested one-dimensional uniformity similarly,
taking l0 s trials and subdividing (0, 1) into 1,000 smaller intervals.
The values of x ~ obtained were not significant at the 5 percent level.
It is worth noting that the method of summing 12 numbers dis-
tributed uniformly on (- 1 / 2 , 1/2) failed the latter test, giving
x~99 = 1351. (The probability of such a value being exceeded by
chance is less than 10-11.)

Naturally, test results depend on the particular uniform gen-
erator RAND which is used. GRAND will not produce independent
normally distributed deviates unless RAND supplies it with inde-
pendent uniformly distributed deviatest For our tests we used an
additive uniform generator of the form u, = u,_t + u,_n7 (mod 2'9
with w = 27 or 60 (see Brent [3] and Knuth [5]), but a good linear
congruential generator should also be adequate for most applica-
tions.

Comparison with Algorithm 334. The fastest exact method
previously published in Communications is Algorithm 334 [7].
We timed function GRAND, subroutine N O R M (a Fortran transla-
tion of Algorithm 334), and function RAND (the uniform random
number generator called by GRAND and NORM). The mean
execution times obtained from 500,000 trials on a Univac 1108
were 172, 376 and 59 t~sec respectively. Since N O R M returns two
normally distributed numbers, GRAND was effectively 9 percent
faster than NORM. Based on comparisons in [2], we estimate
that the saving would be greater if both routines were coded in
assembly language, for much of the execution time of N O R M is
taken up in evaluating a square-root and logarithm which are
already coded in assembly language.

GRAND requires about 1.38 uniform deviates per normal de-
viate, and N O R M requires 4 / r -[- 1/2 ~-~ 1.77. Thus, we may es-
timate that if a uniform generator taking U ~sec per call were used,
the time per normal deviate would be (91 + 1.38U) t,sec for
GRAND and (83 + 1.77U) t, sec for NORM. Hence, GRAND
should be faster for U >_ 20.

R e f e r e n c e s
1. Ahrens, J.H., and Dieter, U. Computer methods for sampling
from the exponential and normal distributions. Comm. A C M 15,
10 (Oct. 1972), 873-882.
2. Ahrens, J.H., and Dieter, U. Pseudo-random Numbers
(preliminary version). Preprint of book to be published by
Springer, Part 2, Chs. 6-8.
3. Brent, R.P. Algorithms for Minimization Without Derivatives.
Prentice-Hall, Englewood Cliffs, N.J., 1973, pp. 163-164.
4. Forsythe, G.E. Von Neumann's comparison method for
random sampling from the normal and other distributions. Math.
Comp. 26, 120 (Oct. 1972), 817-826.
5. Knuth, D.E. The Art of Computer Programming, Vol. 2.
Addison-Wesley, Reading, Mass., 1969, pp. 26, 34, 464.
6. Von Neumann, J. Various techniques used in connection with
random digits. In Collected Works, Vol. 5, Pergamon Press, New
York, 1963, pp. 768-770.
7. Bell, J.R. Algorithm 334, Normal random deviates. Comm.
A C M 11, 7 (July 1968), 498.

A l g o r i t h m

FUNCTION GRANBCN~
C EXCEPT 0N THE F I R S T CALL GRAND RETURNS A
C PSEUD0-RANDOM NLRMBER HAVING A GAUSSIAN (I . E *
C NORMAL) DISTRIBUTION IdITH ZER0 MEAN AND UNIT
C STANDARD DEVIATION. THUSJ THE DENSITY IS F(X) =
C EXR(-Z.5*X**2)/S~RT(2.Z*RI). THE FIRST CALL
C INITIALIZES GRAND AND RETURNS ZERO.
C THE PARAMETER N I S DUHMY.
C GRAND GALLS A FUNCTION RAND, AND IT IS ASSUMED THAT
C SUCCESSIVE GALLS TO RAND(Z) GIVE INDEPENDENT
C PSEUDO- RANDOM NUMBERS DISTRIBUTED UNI~0F/dLY ON (Z,
C I), POSSIBLY INCLUDING Z (BUT NOT ! 7.
C THE METHOD USED ~!A$ SUGGESTED BY V0N NEUMANN, AND
C IMPROVED BY FORSYTHE, AHRENS, DIETER /~2JD BRENT.
C ON THE AVEPa%GE THERE ARE 1.37746 CALLS OF RAND FOR
C EACH CALL OF GRAND.
C WARNING - DIMENSION AND DATA STATEMENTS BELOW ARE
C MACHINE-DEPENDENT.
C DIMENSION OF D MUST BE AT LEAST THE NUMBER OF BITS
C IN THE FRACTION OF A FLOATING-P01NT NUMBER.

7 0 5 Communications December 1974
of Volume 17
the ACM Number 12

C THUS, ON MOST MACHINES THE DATA STATEMENT BELOW

C CAN BE TRL~CATED.
C IF THE INTEGRAL OF SQRT(2.0/PI)*EXP(-0.S*X**2) FROM

C A(1) TO INFINITY IS 2.*(-I), THEN D(1) = A(I) -

C A (I - I).
DIMENSION D(60)
DATA D(1), D(2), D(3), D(/4), D(5), D(6), D(7)~

* D(B), D(9), DflZ), D(]I), D(]2), D(13).
* D(14), D(]5), D(]6), D(IT), D(]8), D(19),

* D(20), D(21), D(22), D(23), D(24), D(25),
* D(26), D(27), D(-°8), D(29), D(3Z), D(31),
* D(32) /0.674480750,3.475859630,0.383771|64,
* Z • 32861 1323, 0 • 291 142827, Z • 263684322,
* Z.2/~2508452, Z.22556744/4,@.21163/4166,

* 0 . 1 9 9 9 2 4 2 6 7 , 0 . 1 8 9 9 1 0 7 5 8 , 0 . 1 8 1 2 2 5 1 8 1 ~
* 0. 1 7 3 6 0 1 4 0 0 , 0 . 1 6 6 8 4 1 9 0 9 , Z . 1 6 0 7 9 6 7 2 9 ,
* 0.155349717,0.15040930a, 0.145902577,
* 0. 1/41770033,0. 137963174,0. 134/441762,

* 0. 131172150,0. 126125965,0. 125279090,
* 0 . 1 2 2 6 1 0 8 8 3 , Z . 1 2 0 1 0 3 5 6 6 , 0 . 1 1 7 7 1 4 1 7 0 7 ,
* 0 . I 1 5 5 1 1 8 9 2 , 0 . I 13402349 , Z. I 11402720 ,
* Z . 1 0 9 5 0 3 8 5 2 , 0 . 1 1 1 7 6 9 7 6 1 7 /
DATA D(33), D(34)~ D(35), D(36)~ D(37), D(38),

* D(39), D(40), D(41), D(42), D(43), D(44),

* D(/45), D(46), D(47), D(48), D(49), D(S0),
* D(51), D(52), D(53), D(54), D(55), D(56),
* D(57)~ D(SZ), D(59), D(ZZ)

* /Z.105976772,0.104334841,0.102766012,
* Z • I 0 1 2 6 5 0 5 2 ~ Z. 099827234, 0 • 098448282,
* 0.097124309,0.095851778,0.09462746|,
* 0.09344~407,0.092311909,~.091215482,
* 0.09015683S, Z.089133867,0.088141~619,
* Z.087187293,0.~86260215, Z.085361834,
* 0.084490706~0.083645487~0.082824924,
* 0 . 0 8 2 0 2 7 8 a 7 , Z . 0 8 1 2 5 3 1 6 2 , O . ~ 8 0 4 ~ 9 8 4 4 ,
* 0 • 0 7 9 7 6 6 9 3 2 ~ 0 . 0 7 9 0 5 3 5 2 7 ~ 0 - 0 7 8 3 5 8 7 8 1 •
* 0.077681899/

C END OF MACHINE-DEPENDENT STATF~IENTS

C U MUST BE PRESERVED BETWEEN CALLS.
DATA U IZ.0/

C INITIALIZE DISPLACEMENT A AND COUNTER I.
A : 0.0

I=0
C INCREMENT COUI~TER AND DISPLACEMENT IF LEADING BIT
C OF U IS ONE.

10 U = U + U
I F (U . L T . I . 0) GO TO 20

U = U- l.Z

I = I + 1

A = A - D (I)
GO TO 10

C FORM W UNIFORM ON O .LE. W .LT. D (I + I) FROM U.
20 W = D(I+I)*U

C FORM V = Z.5*((W-A)**2 - A**2). NOTE THAT 0 .LE. V
C . L T . LOG(2).

V : W.C0.5*W-A)
C GENERATE NEW UNIF01IM U.

30 U = RAND(Z)
C ACCEPT W AS A RANDOM SAMPLE IF V .LE. U.

IF (V.LE.U) GO TO 40
C GENERATE RANDOM V.

V = ILetND(Z)

C LOOP IF U .GT. Vo
I F (U.GT.V) GO TO 30

C REJECT ~l AND FOF~4 A NE.q UNIFOFA~ U FROM V AND U.

U = (V-U)/(I.Z-U)
GO TO 20

C FORM NEW U (TO BE USED ON N~T CALL) FROM U AND V.
40 U = (U-V)/(I.Z-V)

C USE FIRST BIT OF U FOR SIGN, RETUI~ NORMAL VARIATE.
U = U + U
IF (U.LT.I.0) GO TO 50
U = U - 1.0
GRAND = W - A
RETURN

50 GRAND = A - W
RETURN
END

Remark on Algorithm 420 [J6]
Hidden-Line Plotting Program [Hugh Williamson,
Comm. ACM 15 (Feb. 1972) 100-103] and Remark on
Algorithm 420 [T.M.R. Ellis, Comm. A C M 17 (June
1974), 324-325]

T.M.R. Ellis [Recd. 8 July 1974] Computing Services,
University of Sheffield, England

There was an unfortunate printing error in my Remark on
Algorithm 420 which made nonsense of the whole thing. The state-
ment which should be inserted to correct the error discussed should,
of course, be:

IF(F1.EQ.F2) GO TO 1005

and not: IF(F1.EQ.FZ) GO TO 1005 as printed.

Remark on Algorithm 426
Merge Sort Algorithm [M1]
[C. Bron, Comm. A C M 15 (May 1972), 357-358]

C. Bron [Recd. 5 Nov. 1973]
Technological University of Twente, P.O. Box 217,
Enschede, The Netherlands

A remark in [3 p. 158] suggested to the author that Algorithm
426 needs only very minor modifications in order to handle the
sorting of records that are chained to begin with. The algorithm then
rearranges the chain and needs no additional array to store chaining
information. Furthermore, the assumption that we should be able
to associate each of the integers from 1 to n with each of the n
records to be sorted is no longer necessary [2].

References

1. Bron, C. Algorithm 426, Merge Sort Algoriihm. Comm. ACM
15 (May 1972), 358.
2. Bron, C. An "In Situ" Merge Sort Algorithm. Tech. Note
CB 64, Technological University of Twente, Enschede. The
Netherlands.
3. Martin, W.A. Sorting. Comp. Surv. 3 (1971), 147-174.

Remark on Algorithm 456 [H]
Routing Problem
[Zden~k Fencl, Comm. A C M 16 (Sept. 1973), 572]

Gerhard Tesch [Recd. 15 Oct. 1973] VFW Vereinigte
Flugtechnische Werke GMBH, 28 Bremen 1, Hunefeld-
strasse 1-5, Germany and Zden~k Fencl, M.I.T., De-
partment of Urban Studies, R. 9-643, Cambridge, Mass.

Some confusion arose from the description of the algorithm
capability. It should have been stated that the generated tour must
pass through each of the n nodes once and only once, although this
is the base for the definition of the traveling salesman problem. This
algorithm solves an extended traveling salesman problem in which
the end node does not have to be the start node. Such connections
may be sought in the design automation of serial printed circuits as
well as in transportation problems. The traveling salesman problem
is discussed in [3, p. 232] and methods of solution are surveyed in [1].

The users who seek the shortest paths in electric networks (the
shortest connection between the two specified nodes in a net without
regard to the number of nodes to be connected) are referred to
Ford's shortest path algorithm [2, p. 69] and Dantzig's shortest path
algorithm [3, p. 175]. There is a set of three efficient Algol algorithms
by J. Boothroyd [4] handling the shortest path problem as defined
in [2, p. 69] and [3, p. 175]. These Algol algorithms can be modified
so that even the number of nodes may be minimized or a restriction
of some nodes may be imposed, etc.

Another type of shortest path algorithm is Lee's algorithm [5
and 6]. This algorithm is applicable for the orthogonal routing of
printed circuit boards.

References
1. BeUmore, M., and Nemhauser, G.L. The traveling salesman
problem: A survey. Oper. Res. 16 (1968), 538-558.
2. Berge, C. The Theory of Graphs and Its Applications.
Wiley, New York, 1962.
3. Berge, C., and Ghouila-Houri, A. Programming, Games
and Transportation Networks. Wiley, New York, 1965.
4. Boothroyd, J. Algorithms 22, 23, 24. Shortest path. Comp. J.
10 (1967), 306-308.
5. Lee, C.J. An algorithm for path connections andits applications.
IEEE Trans. Elect. Comput. EC-IO (Sept. 1961), 346-365.
6. Akers, S.B. A modification of Lee's path connection algorithm.
1EEE Trans. Elect. Comput. (Feb. 1967), 97-98.

706 Communications December 1974
of Volume 17
the ACM Number 12

