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General comments

1.

3.

Not intended to compete with the books by Traub, Ostrowski,
Householder, or Ortega & Rheinboldt, but to be complementary.
In order to keep the hbook self-contained, some overlap with
Traub and Ostrowski is unavoidable in Chs, 1-3,

Intended to be suitable for graduate textbook and reference,
A considerable number of problems are included. These are
intended both to illustrite and extend the ideas of the text.
To avoid cluttering the text, each chapter concludes with
notes (historical and technical) and references. The size
is expected to be 300-400 pages.

The book is intended to be useful to someone who needs to
solve nonlinear equations. Thus, numerical examnles and
well-tested Fortran programs are included.

Much material which is new or only available in technical
journals is included (e.g. parts of Chs., 3, 4 & 10, and
most of Chs., 5, 6, & and 12-14).

As of Jan, '75, drafts of Chs. 1 & 2 are written, and

Chs. 5, 6, & and parts of 10, 12 & 14 will be based on
papers which are already written. An annotated bibliograrhy
of ab?ut 00 papers has been prepared (this may be pruned
later).
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1. Introduction

These notes describe some practical methods for the
numerical solution of nonlinear equations and systems of
equations. The emphasis is on methods which are efficient,
reliable, and convenient to use on a digital computer.

Nonlinear equations often arise when physical problems
are subjected to mathematical analysis, A relatively simple
gxample is the problem of determining the level at which a
light sphere floats in a liquid. Archimedes (287-212BC)
reduced this problem to the solution of a cublc equation
which he was able to solve graphically. A more complex
example is the solution of boundary-value problems by
"shooting® or "multiple shooting™ methods, which lead to
systems of nonlinear equations. These and several other
examples are described in more detall in Section 10.

It might be thought that finding an accurate approximation
to a root of a single nonlinear equation

f{x) = 0O (1.1)
on a modern digital computer is a trivial problem. However,
this is not true if the function f is difficult to evaluate.
For example, problems arise in which f is an integral of the
form

f(x) = \/[.. ~/r g(x, Uis ees s tk]dtl...dtk, (1.2}
or in which the evaluation of f{x) involves solving a
system of differential equations, evaluating a determinant,
or minimizing a function of several varlables. Also, it may

be necessary to solve equations of the form (1l.1l) thousands
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or even millions of times in the course of solving some
more difficult problem, Thus, there 1s a real need for
highly reliable and efficient methods for solving single
algebralc or transcendental squations,

A system of n equations in n unknowns, say

flfxl‘ LI T x ] = 0’

. n
’ (1.3)
fn{xl. e ] Kn] - D’
may be written as
Lix) = 9 (1.4)

where f, x and O are n-dimensional vectors. Using this
notation, (1.1) and (1l.4) are formally identical, but systems
of equations actually present many more practical and
theoretical difficulties than a single equation. Thus, we
deal with methods for a single equation in Part 1 (Chapters
1 - 6) and defer consideration of systems until Part 2
(Chapters 7 - 11).

Several important topics are omitted from these notes,
We do not discuss methods which are designed specifically for
polynomial equations, except very briefly in Section 6,6, For
such methods we recommend the excellent book by Householder
(?D]}and the references given there. The methods which we
consider require only that f(x), and sometimes certain of its
derivatives, can be evaluated numerically for any given argument
x in a certain domain. Thus, ocur methods apply equally well to

polynomial and transcendental equations, but do not take
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advantage of the special properties of polynomials. We assume
that the reader is familiar with some direct numerical methods
for solving systems of linear equations (see Forsythe & Moler
(67) or Stewart (73a)). The methods of Part 2 are
intended for nonlinear systems of moderate size with a dense
Jacobian matrix. Thus, we deal only briefly {in Section 11.6)
with linearly convergent methods which are suited to mildly
nonlinear systems with a large, sparse, Jacocbian matrix.
These methods are discussed in Rheinboldt (74) and the
references given there.

Although some of the results of Chaoters 7 and 10 may
be generalized to methods for solving equations in function
spaces, we restrict ourselves entirely to equations in
finite-dimensional Euclidean spaces, i.e., a finite number of
equations in & finite number of (usually real) variables.
This is because continucus problems usually have to be
discretized (i.e.,reduced to a finite-dimensional approximation)
before they can be solved numerically., Some of the possible
generalizations are given in the third edition of the classic
book by Ostrowski (73).
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2. Notation

To avoid repetition, certain notational conventions will
be followed throughout. The letters i, Jy ky my n, p, q, and r
denote integers (usually nonnegative). Other lower-case Roman
and Greek letters (a, b, ... , X, ¥, «vu , 0l , £, ...)
denote real scalars or functions (f and g are reserved for
functions)., A1l functions are real-valued and have rs?l

arguments. The n-th derivative of f is written as f( y with

(0) (1) (2)
the customary abbreviations (f =f, f =f', F

= " ete,).
Boldface letters a, b, ... denote real column vectors or
vector-valued functions. The superseript "T" denotes vector or
matrix transpose. Capital letters A, B, ... usually denote
real matrices, constants, functions, or methods, Unless the
dimensions are stated explicitly, all matrices are n by n and
vectors have dimension n. L denotes a lower triangular matrix,
U an upper triangular matrix, I the identity matrix, D & diagonal
matrix, and Q an orthogonal matrix (i.e., QTQ - QQT = I).
Elements of the vector a are denoted by a;, and elements of A
by aij (the element in the i-th row and j-th column). An
exception is made for elements of L, which are denoted by my 5o
If there is any risk of ambiguity, we write 83,3 instead of aij'
Norms of vectors and matrices are writtenm as [ja|l and JAll.
Unless otherwise specified, llall is the Euclidean norm (2-norm),
defined by
laill = {ai + ee. + aﬁ lfz, (2.1)
and [[All is the induced matrix norm. (If these definitions

are unfamiliar, the excellent book by Stewart (73a) is
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recommended.,) The columns of the identity matrix are
€13 e+ 3 By SO the j-th column of A is #Ej'

If an interval [a, b] or (a, b} is mentioned, it is
assumed that a <b, If f has n continuous derivatives on
[a, ], ve write f£€C [a, b]. If, in addition, e 4
Lipschitz continuous on [a, b], we write reLc [a, b].
(A function g is Lipschitz continuous on [a, b] if

Jsx) - gy)| < eix - vl (2.2)
for some constant ¢ and gll x, ¥y & Ea, b].}

If f is a function of one variable, and € a real number
such that

£(§) = 0, (2.3)
we say that % is a zero of f, or a root of the equation (1.1).
Similarly for zeros of wvector functions and roots of systems
of equations.

Positive constants whose values do not need to be specified
further are denoted by ¢, €5y «.. , and the same c; may denote

a different constant in different sections, The notation

f = olg) (2.4)
means that
le)] £ e lgix)l (2.5)

for all x in a neighbourhood of some point which will be
clear from the context (usually 4 or = ).

Other notation will be defined as necessary (e.g, our
notation for divided differences is defined in Section 6).
Section n means the n-th section of the current chapter,
section m.n means Section n of Chapter m, and similarly for

equation numbers,



Chapter 2: One-point methods without memory
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2.2 Newton's method
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Chapter 4: Practical considerations and programs

This is fairly well covered by Ch. 4 of
Brent (1973a), which is reproduced in the following
pages.

Additional reading

Anderson, N. & Bjorck, A., 1973, A new high order
method of regula falsi type for computing a root
of an equation, BIT 13, 253-264., CR 15#26760
Gives a modified Illinois or FPegasus method which
is usually fast, but could be much slower than
bisection,

Bus, J. C. P. & Dekker, T. J., 1974, Two efficlient
algorithms with guaranteed convergence for finding
a zero of a function, Tech. Report NW 13/74,
Stichting Mathematisch Centrum, Amsterdam.
Gives some interesting methods which can never
be much alower than bisectlion, and compares them
and several other methods numerically, Includes
Algol 60 procedures.

Dekker, T. J., 1969, Finding a zero by means of
successive linear interpolation, in Constructive
Aspects of the Fundamental Theorem of Algebra
{ed. by Dejon & Henricl), Wiley, New York.
Describes a combination of bisection and linear
interpolation which is usually fast, but
occas onally very slow. 3See Bus & Dekker (74)
and Brent (73a) for improvement.

Dowell, M. & Jarratt, P., 1971, A modified regula falsi
method for computing the root of an equation,
BIT 11, 168-174. Describes the "Illinois™ method
(regula falsi except the retained f value is halved),

Dowell, M, & Jarratt, P., 1972, The "Pegasus™ method for
computing the root of an equation, BIT 12, 503-508,
Gives an improvement of the Illinois method, but
may still be very slow in exceptional cases. See
King (1973b}.



L/2

Additional reading cont,

Jarratt, P. & Nudds, D., 1965, The use of rational functions
in the iterative solution of equations on a digital
computer, Comp, J, 8, 62-65, Describes the use of
rational rather than polynomlial approximation, See
also problem l.42 and Bus & Dekker (7L).

King, R. F., 1973b, An improved Pegasus method for root
finding, BIT 13, 423-427. CR 15§26849
Improves Dowell & Jarratt (72), but convergence may
still be slow scmetimes,

Wilkea, M, V., Wheeler, D, J. & Gill, S., 1951, The preparation
of programs for an electronic digital computer, Addlson-
Wesley, Reading, Massachusetts. One of the earliest
references on the subject (the problem of guaranteeing
convergence did not arise when computations were done by
hand, because the human computers usually had some
common sense).,

Wilkinson, J. H., 1967, Two algorithms based on successive
linear interpolation, Report CS 60, Comp. Sci., Dept.,
Stanford Univ. The first algorithm has the same order
as the Pegasus method (l.4A4...) and is very similar to
it, The second algorithm is an early version of Dekker's
(see Dekker (69)).



AN ALGORITHM

WITH GUARANTEED
CONVERGENCE FOR FINDING
A ZERO OF A FUNCTION

Section 7
INTRODUCTION

Let f be a real-valued function, defined on the interval [a, b], with
fta) ft#) == 0. f need not be continuous on [a, b]: for example, [ might be a
limited-precision approximation to some continuous function (see Forsythe
{1969)). We want to find an approximation £ 1o a zero { of f, to within a given
positive tolerance 24, by evaluating f at a small number of points. OF course,
there may be no zero in [a, 4] if £ is discontinuous, so we shall be satisfied if f
takes both nonnegative and nonpositive values in i£ — 28, + 28] n [a, &)

Clearly, such a { may always be found by bisection in about log, [(5—a)/d]
steps, and this is the best that we can do for arbitrary f. In this chapter
we describe an algorithm which 1s never much slower than bisection (see
Section 3}, but which has the advantage of superhnear convergence o a
simple zero of a continuously differentiable function, if the effect of rounding
errors is negligible. This means that, in practice, convergence is often much
faster than for bisection (see Section 4). There is no contradiction here: bisec-
tion is the optimal algorithm (in a mimimax sense) for the class of all fune-
tions which change sign on [g, ], but it is not eptimal for other classes of
functions: e.g., C' functions with simple zeros, or convex functions. (See
Gross and Johnson (1959), Bellman and Dreyfus (1962), and Chernousko
(1970).)

47

L/3
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Chapter 5: Methods using mainly derivative evaluations

This

5.1
5.2
543
Sk
5.5
5.6
2.7
5.8
5.9

Introduction

Two classes of methods

Some results on orthogonal polynomials
Theorems on the order of convergence
Comparison of efficliencies

Some methods of practical interest
Other possibilities

Some nonlinear Runge-Kutta methods

Numerical results

5.10 References

Chapter appeared as Y"Efficient methods for finding
zeros of functions whose derivatives are easy to
evaluate™, Tech. Report, Carnegie-Mellon University
(Dept. of Comp. Sci,), Deec, 1974. (The report
includes Fortran programs.,)
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Chapter 8: Efficient methods using function evaluations

This is covered by Brent (73b), which isa
reproduced in the following pages.
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SOME EFFICIENT ALGORITHMS FOR SOLVING SYSTEMS
NONLINEAR EQUATIONS®*

RICHARD P. BRENT?

Abstract. We compare the Ostrowski efficiency of some methods for solving systems ol nonlinear
cquations without explicitly using derivatives. The methods considered include the discrete Newton
method, Shamanskii’s method, the (wo-point secant method, and Brown's methods, We introduce
cluss of secant methods and a class of metheds related to Brown’s methods, but using orthogonal
rather than stahilized elementary transformations. The idea of these methods is o avoid finding a new
approximation 1o the Jacobian matriz of the system a1 cach step, and thus increase the efficiency. Local
convergence theorems are proved, and the efficiencies of the methods are calculated. Mumerical resulis
are prven, and some possible extensions are mentioned.

I. Introduction. We are interested in comparing iterative processes for ap-
proximating a solution x* of a system f{x) = 0 of nonlinear equations. I x,, x,, - -+
is a convergent sequence of vectors with limit x* & R, then the order of convergence
¢ is defined by

o p = lim inf(—log [Ix; — x*[))'".
—~a

It does not matter which of the usual vector norms is used in (1). Other definitions
of order may be given (see Ortega and Rheinboldt (1970, Chap. 9), Voigt (1971),
and Brent (1972b, § 3.2)), but (1} is adequate for our purposes. We only consider
processes for which p = 1, and in this case g is the same as the R-order of Ortega
and Rheinboldt (1970).

If w; is the amount ol work required to compute x; lrom x;_, and other
results which may have been saved from previous iterations, then the efficiency E
of the process is defined by
2 £ liminf |ﬂg{m]DfE ix; = x*{)

P Z}=J W
In particular, il there exists w = lim,; . w; > 0,then E = {log p)/w is the logarithm
of the “efficiency index™ of Ostrowski (1960, §3.11). The w; may be measured in
any appropriate units: we mainly use function evaluations, i.e., evaluations ofl f.

Consider iterative methods M and M" with orders p, p’ and efficiencies E, E'".
For simplicity, suppose that the w; are bounded and the lower limils in (1) and (2)
may be replaced by limits. Our justification for the term “efficiency™ is that method
M requires E'VE times as much work as method M* to reduce [|x; — x*|| to a very
small positive tolerance. Thus, il factors such as the domains of convergence, ease
of implementation, and storage space required are comparable, the method with
the higher efficiency is to be preferred, and this is not always the method with the
higher order. {As a trivial illustration, consider taking every second iterate of M
as an iterate of M’, s0 X} = x;; and w; = wy;_, + wy,. Then p" = p? > p, but

1 This author received bis Ph,D. in Computer Science in 1971 from Suanford University under the
direction of Prolessors Forsythe and G. Golub. He is now a Research Fellow in the Computer Centre
at the Australian Mational University, Canberra, Australia. Maost of the work in this paper was per-
formed while the authoer was visiling the IBM Thomas J. Watson Research Center.

aar
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Chapter 12: Complexity results for one equation

This 1s partly covered by Brent, Winograd &
Wolfe (73), which is reproduced in the following
pages,

Additional reading

Kung, H. T. & Traub, J. F., 1973a, Optimal order of
one-point and multipoint iteration, Tech. Report,
Eomg. ig;i Dept,, Carnegie-Mellon Univ, (to appear

n - L]

Kung, H. T. & Traub, J, F., 1973b, Computational complexity
of one-point and mult{puint {teratinn, in Complexity
of Real Computation {ed. by R. Karp)}, American Math.
Soc,, New York.

Kung, H. T. & Traub, J, F., 1973c, Optimal order and
efficiency for iterations with tow| evaluations,
Comp. Sci. Dept., Carnegie-Halloﬁhﬁniv.

This paper shows that the optimal order for a
method without memory which uses one evaluation of
f and one of f' (or two of f) per iteration is 2,
See also Kung & Traub (73a, b).

Rissanen, J., 1971, On optimum root-finding algorithms,
J. Math. Anal. Appl. 36, 220-225. Shows that the
secant method has optimal order amongat a class of
methods using function evaluations and having only
limited memory.

Wozniakowski, H., 1974La, Maximal stationary iterative
methods for the solution of operator equations,
SIAM J. Numer. Anal, 11, 934-949. Mainly relevant to
gystems rather than a s{nglu equation.

Wozniakowski, H., 1974b, Generalized information and
maximal order of iteration for operator equations,
Tech, Report, Comp. Sci. Dept., Carnegle-Mellon
Univ,

Hindmarsh, A, C., 1972, Optimality in a class of rootfinding
algorithms, SIAM J. Numer. Anal. 9, 205-21L, Reatricted
to composite Hermite interpolatory methods.

Traub, J, F., 1964, Iterative methods for the solution of
equations, Prentice-Hall. See esp, Thm, 5-3 for one-

point methods without memory.
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Numer, Math. 20, 327—341 (1973)
& by Springer-Verlag 1973

Optimal Iterative Processes for Root-Finding*

Richard Brent, Shmuel Winograd, and Philip Wolfe

Mathematical Sciences Department, IBM Watson Research Center,
Yorktown Heights, New York

Received August 3, 1972

Absiract. Let fy{x) be a function of one variable with a simple zero at vy, An
iteration scheme is said to be locally convergent if, for some initial approximations
%y, ..., X, near vy and all functions f which are sufficiently close (in a certain sense)
to fo. the scheme generates a sequence {x,} which lies near », and converges to a
zero ¢ of f. The order of convergence of the scheme is the infimum of the order of
convergence of {x,} for all such functions /. We study iteration schemes which are
locally convergent and use only evaluations of £, /..., /™ at x,, ..., x,_, to deter-
mine x;, and we show that no such scheme has order greater than d 4 2, This bound is
the best possible, for it is attained by certain schemes based on polynomial inter-
polation.

I. Introduction

Many "*iterative " methods are known for the numerical solution of the problem
of finding a zero r of a function #{x) of a single real variable, The iterative process
generates a sequence {x,} of approximations to , where x, is determined by the
values of f and possibly of some of its derivatives at previous members of the
sequence. (The term "iterative" is widely and loosely used; the preceding descrip-
tion seems to cover its use in our subject.) If the process starts at points which are
close enough to r, then the sequence {x,} should converge to r. The various
methods differ in the amount of information used, the particular way the informa-
tion is used to generate the next approximation, and consequently the rate at
which the sequence {x,} converges to r. The secant method and Newton's method
are examples of iterative methods which are much used in practice. Traub's
book [1] describes a wide variety of such processes, all fitting the general outline
Given the points x,_,, ..., x,_,, as well as the values of the function and its first 4
derivatives at these points, construct the minimal degree interpolating polynomial
fitting these data, and choose x, as a root of this polynomial (or as its value at
zero, if it is a polynomial in the dependent variable). The secant method and
Newton's method are in this class of iteration methods.

An iterative method does not, however, have to use the root of such a poly-
nomial. For example, the iteration defined by

£ — o) (Fas 1 (50 — f (2 a) (g + F a0 _0))
* ”xl-l.] _.ﬂ-ﬂ_l} ! )

* This work was supported (in part) by the Office of Naval Research under contract
numbers N0014-65-C-0023 and Noo14-71-C-0112.
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