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1. INTRODUCTION

It is often necessary to find an approximation to a
simple zero § of a function £ , using evaluations of f and
f' . In this paper we consider some methods which are
efficient if f' is easier to evaluate than f . Examples of

such functions are given in Sections 5 and 6.

The methods considered are stationary, multipoint, iter-
ative methods, "without memory" in the sense of Traub [64].
Thus, it is sufficient to describe how a new approximation
AMHU is obtained from an old approximation onu to T .
Since we are interested in the order of convergence of differ-
ent methods, we assume that f is sufficiently smooth near
£ , and that X, is sufficiently close to & . Our main
result is:

Theorem 1.1

There exist methods, of order 2v , which use one evalu-

ation of f and Vv evaluations of f' for each iteration.

By a result of Meersman and Wozniakowski, the order 2v
is the highest possible for a wide class of methods using the
same information (i.e., the same number of evaluations of f

and f' per iteration): see Meersman [75]. The "obvious"
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interpolatory methods have order Vv + 1 , but the optimal or-
der 2v may be obtained by evaluating £f' at the correct
points. These points are determined by some properties of

orthogonal and "almost orthogonal" polynomials.

If v + 1 evaluations of f are used, instead of one func-
tion evaluation and v derivative evaluations, then the opti-
mal order is 2° for methods without memory (Kung and Traub
(73,741, Wozniakowski [75a,b1), and 2”7
memory (Brent, Winograd and Wolfe [73]). Thus, our methods

for methods with

are only likely to be useful for small v or if £' is much

cheaper than f,

Special Cases

Our methods for v = 3 appear to be new. The cases v =1
(Newton's method) and v = 2 (a8 fourth-order method of Jarratt
[69]) are well known. Our sixth-order method (with v = 3)

improves on a fifth-order method of Jarratt [70].

Generalizations

Generalizations to methods using higher derivatives are

possible. One result is:
Theorem 1.2

For m> 0, n*¥0, and k satisfying m+ 1 > k > 0,
there exist methods which, for each iteration, use one evalu-
ation of mum......mﬁau. followed by n evaluations of mﬁwu.

and have order of convergence m + 2n + 1 .

The methods described here are special cases of the
methods of Theorem 1.2 (take k=m=1, and v =n + 1) .
Since proof of Theorem 1.2 is given in Brent [75], we omit
proofs here, and adopt an informal style of presentation.

Other possible generalizations are mentioned in Section 7.
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2.  MOTIVATION

We first consider methods using one evaluation of f ,
and two of f' , per iteration. Let X, be a sufficiently
good approximation to the simple zero § of f , mo = mHMOU“
and fj = £'(xy) . Suppose we evaluate m.mWOU , where

= - 1
Xg = X Qmo\ma ,

and o is a nonzero parameter. Let Q(x) be the quadratic

0

polynomial such that
Qlxy) = £,
Q' (xy) = £}

and - -

QG = £1Gy
and let Xy be the zero of Q(x) closest to Xy - Jarratt
[69] essentially proved:

Theorem 2.1
|9

X - ;= Oﬁ_uno

3 if o # 2/3,
4 if o= 2/3 .
Thus, we choose ¢ = 2/3 to obtain a fourth-order
method. The proof of Theorem 2.1 uses the following lemma:

Lemma 2.1

2 3

If P(x) = a + bx + ex” + dx° satisfies

P(0) = P'(0) = P'(2/3) = 0 ,
then P(1) =0 .

Applying Lemma 2.1, we may show that (for a = 2/3)

£(xg) - Qxy) = 08" ,
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where
Xy = %o - £5/%

is the approximation given by Newton's method, and

§ = _mo\mm_

]
x
1
ol

Now
0s%) ,

e
1
»
n

and

£1(x) - Q'(x) = 0(6%)

for x near Mz , S0

[£(x) ] = [£(x) - Qx|
€ JEx) - x|+ [£1®) - Q' (@

xy -l

for some £ between x,. and Xq . Thus

N
l£tx) | = 08"y + 0(8%6%) = 0(sh |

and
Y = odxy - glh .

x; - &= 0(|£x)]) = 0(8
3. A SIXTH-ORDER METHOD

To obtain a sixth-order method using one more derivative

evaluation than the fourth-order method described above, we

need distinct, nonzero parameters, O and Oy s such that
P(0) = P'(0) = P'(a,) = P'(ay) =0
implies P(1) = 0 , for all fifth-degree polynomials
P(x) =a + bx + ... + mxw .

Thus, we want the conditions

MQHG + ...+ 50

and

n
i
o

to imply
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Equivalently, we want

2 3 4
204 mQH aQH mgm
2 3 4 _
rank NQN QO »Qm m@m =2,
L1 1 1 1 _
i.e., — . Qm Qw —
% 1 1
2 3 _
rank 1 oy , o =2,
| 1/2 /3  1/4 1/5_

i.e., for some L and w

i i )
(3.1) Wil W0 = 1/(i + 2)
for 0<igi3.

1 .
Since 1/(i + 2) = H X+ xdx , we see from (3.1) that oy

and o, should be n:Ommm as the zeros of the Jacobi poly-
nomial, mmﬁm. 2, x) = MN -~ 6x/5 + 3/10 , which is orthogonal
to lower degree polynomials, with respect to the weight func-

tion x , on [0, 1] .

- _ - _ ' = 1
Let y; = X, a £o/E0 5 Xy = X, mo\mo , & _mo\mo_.

and let Q(x) be the cubic polynomial such that
DAHOV = %O ’ D_ﬁROu = mn.v 3
and
Q' (v,) = £'(y;)

for i=1,2. Then

£(x) - Q) = 0(sYh
for x between X, and Xy s but

6
mﬁxzu - oﬁwzw =0(87) ,

because of our choice of oy and o, as zeros of owmm. 2,x).
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(This might be called "superconvergence': see de Boor and
Swartz [73].)
A Problem
Since
Xy - Xp = 0(s%
and

£00 - Q'(x) = 0(6)
for x near X , proceeding as above gives

l£x,)] = 0% + 0(5%-8%) = 0(8™ ,

so the method is only of order five, not six.

A Solution

After evaluating m.ﬁwuu , we can find an approximation
wz =7 + cﬁmmu which is (in general) a better approximation

to ¢ than is Xx From the above discussion, we can get a

N
sixth-order method if we can ensure superconvergence at mz

rather than Xy ¢ Define oy by

mewz - xou = Quﬁxz - xou .

In evaluating f' at Yy = Xy * mu C.NZ - Nou. we effectively

used mp =0y + 0(8) instead of a; , so we must perturb a,
to compensate for the perturbation in a, .

From (3.1), we want mm such that, for some W, and

Wy s
N T 1 .

(3.2) WiG * Wy, = 101 + 2)
for 0<ig<2. Thus

~ ~2

1 Oy QH
~ 2 _
rank 1 oy QN =2,
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which gives
o, = (3 - AQHu\ma - mQHu =a, + 0(s) .

2
Since
W, = w, + 0(6
L ] (8)
for j=1,2, we have
~ 3 a3
(3.3) WiGy o+ Wy, = 1/5 + 0(8) .

(Compare (3.1) with i = 3.) If we evaluate £' at

wm = Xq + mmﬁmz - X) , and let Xy be a sufficiently good
approximation to the appropriate zero of the cubic which fits
the data obtained from the f and f' evaluations, then
(3.2) and (3.3) are sufficient to ensure that the method has

order six after all.
4, METHODS OF ORDER 2v

In this section we describe a class of methods satisfying
Theorem 1.1. The special cases v =2 and v =3 have been

given above.

It is convenient to define n = v - 1 . The Jacobi poly-
nomial m:hm. 2, x) is the monic polynomial, of degree n ,
which is orthogonal to all polynomials of degree n - 1 , with
respect to the weight function x , on [0, 1]. Let S FRERFLN
denote the zeros of msﬂmu 2, x) in any fixed order. We des-
cribe a class of methods of order 2(n + 1) , using evaluations
of mnxoV , m_ﬁxou , and m_ﬁ%Hu.....m.ﬁw:u , where the

points Yyse+es¥Y, @are determined during the iteration.

The Methods

= 1=
1. Evaluate mo = mﬁxcu and mo mquou .

2. If mo =0 set X; =X

3. For i=1,...,n do steps 4 to 7.

o &nd stop, else set § = |£0/£4-
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4. Let P; be the polynomial, of minimal degree, agree-

ing with the data obtained so far. Let zs be an
approximate zero of p; , satisfying z, = x, + 0(8)
and ﬁwﬁmwu = OHap+mu . (Any suitable method, e.g.

Newton's method, may be used to find zy .)

5. Compute Qw.u = lep.u muw-H - Nou\mnw - xOU for
1,

i=l,...,i- (Skip if i =1.)

X 6. Let a9 be the monic polynomial, om.ammumm
1-
n+1-1i, such that quaééﬁm Q-Q..Lx&
1 j=1 1,]
= 0 for all polynomials P of degree n - i

{The existence and uniqueness of q; may be shown

constructively: see Brent [75].) Let o. be an

i,
approximate zero of 9 > satisfying Qw . = Qw+ 0(68)

. 1
D = o™,

(=

and nwﬁnw.
7. Evaluate m.ﬂwuu , where

Yi T Xt %y 525 - %)

8. Let p ., be as at step 4, and X, an approximate zero
of p 4 » satisfying x; = x,+ 0(8) and

(x,) =
171
oﬁmm=+wu .

ﬁ.b._..

Asymptotic Error Constants

The asymptotic error constant of a stationary zero-
finding method is defined to be
K = moﬁ (x; - 8)/(xy - O,
where p is the order of convergence. (Since p is an
integer for all methods considered here, we allow K to be
signed.) Let n¢ be the asymptotic error constant of the
methods (of order 2v) described above. The general form of

z¢ is not known, but we have

66

OPTIMAL ZERO-FINDING METHODS USING DERIVATIVES

WHHGNu

2 Gn.\mv - GNGM »

-~
n

Ky = 65/100 + (1 - 50,)6,0c/10 + (3, - 2)0:6,/5 ,
and
K, = Awﬂm - 216,6,/(1 - @) + 9I35(1 - 0.)-3/(1 - )b 9,
- 25(9 - 4da, + ampwuepemwxwmqm ,
where .
s - ED ()
i 1itE()

5.  RELATED NONLINEAR RUNGE-KUTTA METHODS
The ordinary differential equation
(5.1) dx/dt = g(x) , x(tj) = X, ,

may be solved by quadrature and zero-finding: to find
xnﬂo + h) we need to find a zero of
X

du
f = -h.
() % g
0
Note that mﬁxou = - h is known, and f'(x) = 1/g(x) may be
evaluated almost as easily as g(x) . Thus, the zero-finding

methods of Section 4 may be used to estimate xmﬁa + h) , then
xnﬁo + 2h) , etc. When written in terms of g rather than £,

the methods are seen to be similar to Runge-Kutta methods.

For example, the fourth-order zero-finding methods of

Section 2 (with X; an exact zero of the quadratic Q(x))

gives:
NO = WﬂHOu 2
A =hg, ,
g, = 8lxg + 28/3) ,
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and
1
(5.2) X = Xg + 28/11 + (3gq/g, - 274

Note that (5.1) is nonlinear in g9 and gy unlike the
usual Runge-Kutta methods. (This makes it difficult to
generalize our methods to systems of differential equations.)
Since the zero-finding method is fourth-order, X = xﬁdo + h)
+ oﬁ:bw » S0 our nonlinear Runge-Kutta method has order three

by the usual definition of order (Henrici [62]).

Similarly, any of the zero-finding methods of Section 4
have a corresponding nonlinear Runge-Kutta method. Thus, we
have:

Theorem 5.1

If v >0, there is an explicit, nonlinear, Runge-Kutta
method of order 2v - 1 , using Vv evaluations of g per

iteration, for single differential equations of the form (5.1).

By the result of Meersman and Wozniakowski, mentioned in
Section 1, the order 2v - 1 in Theorem 5.1 is the best poss-
ible. Butcher [65] has shown that the order of linear Runge-
Kutta methods, using Vv evaluations of g per iteration, is
at most v , which is less than the order of our methods if
v > 1 (though the linear methods may also be used for systems

of differential equations).
6. SOME NUMERICAL RESULTS

In this section we give some numerical results obtained
with the nonlinear Runge-Kutta methods of Section 5. Consider

the differential equation (5.1) with

L 2
(6.1) g(x) =(2m)“exp(x"/2)
and x(0) = 0 . Using step sizes h = 0.1 and 0.01, we

estimated x(0.4) , obtaining a computed value X, - The
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error e, was defined by

g X
e, = (2m7* .w exp(-u’/2)du - 0.4 .
0
All computations were performed on a Univac 1108 computer,

with a floating-point fraction of 60 bits. The results are
summarized in Table 6.1. The first three methods are derived
from the zero-finding methods of Section 4 (with v = 2, 3 and
4 respectively). Method RK4 is the classical fourth-order
Runge-Kutta method of Kutta [01], and method RK7 is a seventh-
order method of Shanks [66].

Table 6.1: Comparison of Runge-Kutta Methods

Method wmw<wawwmwww Order ®0.1 .01
Sec. 4 2 3 -9.45'-6 1.49'-7
Sec. 4 3 5 3.16'-6 | -2.47'-11
Sec. 4 4 7 3.86'-8 3.69'-15
RK4 4 4 1.95'-5 7.90'-9
RK7 9 7 -5.191-7 -1.67'-13

More extensive numerical results are given in Brent [75].
Note that the differential equation (6.1) was chosen only for
illustrative purposes: there are several other ways of
computing quantiles of the normal distribution. A practical
application of our methods (computing quantiles of the incom-
plete Gamma and other distributions) is described in Brent
[76].

7. OTHER ZERO-FINDING METHODS

In Section 1 we stated some generalizations of our
methods (see Theorem 1.2). Further generalizations are des-
cribed in Meersman [75]. Kacewicz [75] has considered methods
which use information about an integral of f instead of a

derivative of f .
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"Sporadic' methods using derivatives may be derived as in
Sections 2 and 3. For example, is there an eighth-order
method which uses evaluations of £ , f£' , f , and f"'' at

X, , followed by evaluations of f' , f'' and f£'"' at some

0
point Y1 ? Proceeding as in Sections 2 and 3 , we need a

nonzero o satisfying

11 1 1 .g

4 sa 6 7ad

rank 2 3| = 3,
12 200 300 420,

24 600 1200° 21007

which reduces to

(7.1) 3505 - 8402 + 700 - 20 = O .

Since (7.1) has one real root, o = 0,7449..., an eighth-order
method does exist. It is interesting to note that (7.1) is

equivalent to the condition

1
[ P& -wiax =0 .
0

As a final example, we consider sixth-order methods
using mﬁxou R m.mxou R mzﬁwuu , and m:.m%wu . (These

could be called Abel-Gonlarov methods.) Proceeding as
above, we need oy and o, such that
2 3
2 mQH meH uoﬁu
M —
rank 0 6 Naﬂm chm =2,
1 1 1 1
which gives
4 3 2 _
(7.2) @QQH - mopu * moeu - meH +3=0
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and 2
o, = (1 - oapu\ma - Hmpuu .
Fortunately, (7.2) has two real roots, oy = 0.2074... and
o = 0.5351... Choosing one of these, we may evaluate mﬁxou,

m~HMOu and m:mwpu , Where Y1 is defined as in Section 3.
We may then fit a quadratic to the data, compute the perturbed

~

o and take

mmuﬁa-ammU\ﬁh-HmmHu.
etc., as in Section 3. It is not known whether this method
can be generalized, i.e., whether real methods of order 2n ,
using evaluations of mﬁuou , mﬂthu s m:ﬁwHu 3 e mmﬁuﬁwwluv
exist for all positive n .
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