A CLASS OF OPTIMAL-ORDER ZERO-FINDING METHODS USING DERIVATIVE EVALUATIONS

Richard P. Brent

Computer Centre, Australian National University, Canberra, A.C.T. 2600, Australia

INTRODUCTION

It is often necessary to find an approximation to a simple zero ζ of a function f, using evaluations of f and f'. In this paper we consider some methods which are efficient if f' is easier to evaluate than f. Examples of such functions are given in Sections 5 and 6.

The methods considered are stationary, multipoint, iterative methods, "without memory" in the sense of Traub [64]. Thus, it is sufficient to describe how a new approximation (x_1) is obtained from an old approximation (x_0) to ζ . Since we are interested in the order of convergence of different methods, we assume that f is sufficiently smooth near ζ , and that x_0 is sufficiently close to ζ . Our main result is:

Theorem 1.1

There exist methods, of order 2ν , which use one evaluation of f and ν evaluations of f' for each iteration.

By a result of Meersman and Wozniakowski, the order 2v is the highest possible for a wide class of methods using the same information (i.e., the same number of evaluations of f and f' per iteration): see Meersman [75]. The "obvious"

OPTIMAL ZERO-FINDING METHODS USING DERIVATIVES

orthogonal and "almost orthogonal" polynomials. points. These points are determined by some properties of interpolatory methods have order $\, extstyle
olimits$ $\, extstyle
olimi$ may be obtained by evaluating f' at the correct

der 2ν

memory (Brent, Winograd and Wolfe [73]). Thus, our methods cheaper than f. are only likely to be useful for small ν or if f' is much mal order is 2^{\vee} for methods without memory (Kung and Traub [73,74], Wozniakowski [75a,b]), and 2^{V+1} for methods with tion evaluation and ν derivative evaluations, then the opti-If v + 1 evaluations of f are used, instead of one func-

Special Cases

improves on a fifth-order method of Jarratt [70]. [69]) are well known. Our sixth-order method (with v=3) (Newton's method) and v = 2 (a fourth-order method of Jarratt Our methods for $v \ge 3$ appear to be new. The cases v = 1

Generalizations

possible. One result is: Generalizations to methods using higher derivatives are

Theorem 1.2

and have order of convergence m + 2n + 1. ation of $f, f', ..., f^{(m)}$, followed by n evaluations of $f^{(k)}$ there exist methods which, for each iteration, use one evalu-For m > 0, $n \ge 0$, and k satisfying $m + 1 \ge k > 0$,

Other possible generalizations are mentioned in Section 7 proofs here, and adopt an informal style of presentation Since proof of Theorem 1.2 is given in Brent [75], we omit methods of Theorem 1.2 (take k = m = 1, and v = n + 1). The methods described here are special cases of the

MOTIVATION

good approximation to the simple zero ζ of f, $f_0 = f(x_0)$, and two of f', per iteration. Let \mathbf{x}_0 be a sufficiently and $f_0^1 = f^1(x_0)$. Suppose we evaluate $f^1(\widetilde{x}_0)$, where We first consider methods using one evaluation of f,

$$\tilde{x}_0 = x_0 - \alpha f_0/f_0$$
,

polynomial such that and α is a nonzero parameter. Let $\mathbb{Q}(x)$ be the quadratic

$$Q(x_0) = f_0$$
,
 $Q'(x_0) = f_0'$,

and

$$Q'(\widetilde{x}_0) = f'(\widetilde{x}_0)$$
,

and let \mathbf{x}_1 be the zero of $\mathbb{Q}(\mathbf{x})$ closest to \mathbf{x}_0 . Jarratt [69] essentially proved:

Theorem 2.1

$$x_1 - \zeta = 0(|x_0 - \zeta|^p)$$

as $x_0 \rightarrow \zeta$, where

$$\rho = \begin{cases} 3 & \text{if } \alpha \neq 2/3, \\ 4 & \text{if } \alpha = 2/3. \end{cases}$$

method. The proof of Theorem 2.1 uses the following lemma: Thus, we choose $\alpha = 2/3$ to obtain a fourth-order

If
$$P(x) = a + bx + cx^2 + dx^3$$
 satisfies

$$P(0) = P'(0) = P'(2/3) = 0$$

then P(1) = 0.

Applying Lemma 2.1, we may show that (for $\alpha = 2/3$)

$$f(x_N) - Q(x_N) = O(\delta^4)$$
,

$$x_N = x_0 - f_0/f_0$$

is the approximation given by Newton's method, and

$$\delta = |f_0/f_0^*| = |x_N - x_0|$$
.

$$x_N - x_1 = 0(\delta^2)$$
,

for x near x_N , so

$$f'(x) - Q'(x) = O(\delta^2)$$

$$|f(x_1)| = |f(x_1) - Q(x_1)|$$

 $\leq |f(x_N) - Q(x_N)| + |f'(\xi) - Q'(\xi)| \cdot |x_N - x_1|$

for some ξ between x_N and x_1 . Thus $\left|f(x_1)\right|=0(\delta^4)+0(\delta^2 \cdot \delta^2)=0(\delta^4) \ ,$

$$\{(\mathbf{x}_1) \mid = 0(\delta^4) + 0(\delta^2 \cdot \delta^2) = 0(\delta^4),$$

$$x_1 - \zeta = 0(|f(x_1)|) = 0(\delta^4) = 0(|x_0 - \zeta|^4)$$
.

3. A SIXTH-ORDER METHOD

evaluation than the fourth-order method described above, we need distinct, nonzero parameters, $\, \, \alpha_{1} \, \, \,$ and $\, \, \alpha_{2} \,$, such that To obtain a sixth-order method using one more derivative

$$P(0) = P'(0) = P'(\alpha_1) = P'(\alpha_2) = 0$$

implies P(1) = 0, for all fifth-degree polynomials

$$P(x) = a + bx + \dots + fx^{5}$$

Thus, we want the conditions

$$2\alpha_1 c + \dots + 5\alpha_1^4 f = 0$$

$$2\alpha_2c + \dots + 5\alpha_2^4f = 0$$

to imply

$$c + ... + f = 0$$
.

OPTIMAL ZERO-FINDING METHODS USING DERIVATIVES

Equivalently, we want
$$\begin{bmatrix} 2\alpha_1 & 3\alpha_1^2 & 4\alpha_1^3 & 5\alpha_1^4 \\ 2\alpha_2 & 3\alpha_2^2 & 4\alpha_2^3 & 5\alpha_2^4 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} = 2 ,$$
 i.e., for some w_1 and w_2 ,
$$u_1\alpha_1^i + w_2\alpha_2^i = 1/(i+2)$$

rank
$$\begin{bmatrix} 1 & \alpha_1 & \alpha_1^2 & \alpha_1^3 \\ 1 & \alpha_2 & \alpha_2^2 & \alpha_2^3 \\ 1/2 & 1/3 & 1/4 & 1/5 \end{bmatrix} = 2$$

(1)
$$w_1 \alpha_1^1 + w_2 \alpha_2^1 = 1/(i+2)$$

Since $1/(i+2)=\int_0^1 x^{i}\cdot x dx$, we see from (3.1) that α_1 and α_2 should be chosen as the zeros of the Jacobi polynomial, $G_2(2, 2, x)=x^2-6x/5+3/10$, which is orthogonal to lower degree polynomials, with respect to the weight func-

Let $y_i=x_0-\alpha_if_0/f_0'$, $x_N=x_0-f_0/f_0'$, $\delta=\left|f_0/f_0'\right|$, and let Q(x) be the cubic polynomial such that

$$Q(x_0) = f_0$$
, $Q'(x_0) = f'_0$,

$$Q'(y_i) = f'(y_i)$$

$$x) - Q(x) = 0(\delta^4)$$

 $f(x) - Q(x) = 0(6^4)$ for x between x_0 and x_N , but

$$f(x_N) - Q(x_N) = O(\delta^6)$$
,

because of our choice of α_1 and α_2 as zeros of $G_2(2,2,x)$.

Swartz [73].) (This might be called "superconvergence": see de Boor and

A Problem

Since

$$x_N - x_1 = 0(\delta^2)$$

$$f'(x) - Q'(x) = O(\delta^3)$$

for x near $x_N^{}$, proceeding as above gives

$$|f(x_1)| = 0(\delta^6) + 0(\delta^3 \cdot \delta^2) = 0(\delta^5)$$
,

so the method is only of order five, not six

 $\tilde{x}_N = \zeta + 0(\delta^3)$ which is (in general) a better approximation to ζ than is x_N . From the above discussion, we can get a rather than \mathbf{x}_{N} . Define $\tilde{\alpha}_{1}$ by sixth-order method if we can ensure superconvergence at $\tilde{x}_{N}^{}$ After evaluating $f'(y_1)$, we can find an approximation

$$\widetilde{\alpha}_1(\widetilde{\mathbf{x}}_{\mathrm{N}} - \mathbf{x}_0) = \alpha_1(\mathbf{x}_{\mathrm{N}} - \mathbf{x}_0) \ . \label{eq:alpha_1}$$

In evaluating f' at $y_1=x_0+\widetilde{\alpha}_1(\widetilde{x}_N-x_0)$, we effectively used $\widetilde{\alpha}_1=\alpha_1+0(\delta)$ instead of α_1 , so we must perturb α_2 to compensate for the perturbation in α_1 .

From (3.1), we want $\,\widetilde{\alpha}_2^{}\,\,$ such that, for some $\,\widetilde{w}_1^{}\,\,$ and

(3.2)
$$\tilde{w}_{1}\tilde{\alpha}_{1}^{i} + \tilde{w}_{2}\tilde{\alpha}_{2}^{i} = 1/(i+2)$$

for
$$0 \le i \le 2$$
. Thus

rank
$$1 \quad \tilde{\alpha}_{1} \quad \tilde{\alpha}_{1}^{2}$$
 $= 2$, $1/2 \quad 1/3 \quad 1/4$

which gives

$$\widetilde{\alpha}_2 = (3-4\widetilde{\alpha}_1)/(4-6\widetilde{\alpha}_1) = \alpha_2+0(\delta) \ .$$

Since

$$\widetilde{\mathbf{w}}_{\mathbf{j}} = \mathbf{w}_{\mathbf{j}} + 0(\delta)$$

for j=1,2, we have

3)
$$\widetilde{w}_1 \widetilde{\alpha}_1^3 + \widetilde{w}_2 \widetilde{\alpha}_2^3 = 1/5 + 0(\delta)$$
.

order six after all. the data obtained from the f and f' evaluations, then approximation to the appropriate zero of the cubic which fits $\tilde{y}_2 = x_0 + \tilde{\alpha}_2(\tilde{x}_N - x_0)$, and let x_1 be a sufficiently good (3.2) and (3.3) are sufficient to ensure that the method has (Compare (3.1) with i = 3.) If we evaluate f' at

METHODS OF ORDER 2v

Theorem 1.1. The special cases v = 2 and v = 3 have been In this section we describe a class of methods satisfying

points y_1, \dots, y_n are determined during the iteration. nomial $G_{n}(2, 2, x)$ is the monic polynomial, of degree n , of $\mathbf{f}(\mathbf{x}_0)$, $\mathbf{f'}(\mathbf{x}_0)$, and $\mathbf{f'}(\mathbf{y}_1),\dots,\mathbf{f'}(\mathbf{y}_n)$, where the cribe a class of methods of order 2(n + 1), using evaluations denote the zeros of $G_{n}(2, 2, x)$ in any fixed order. We desrespect to the weight function x , on [0, 1]. Let $\alpha_1, \dots, \alpha_r$ which is orthogonal to all polynomials of degree n - 1 , with It is convenient to define $n = \nu - 1$. The Jacobi poly-

The Methods

- 1. Evaluate $f_0 = f(x_0)$ and $f_0' = f'(x_0)$
- If $f_0 = 0$ set $x_1 = x_0$ and stop, else set $\delta = |f_0/f_0^*|$.
- For i=1,...,n do steps 4 to 7.

approximate zero of p_i , satisfying $z_i = x_0 + 0(\delta)$ and $p_i(z_i) = 0(\delta^{i+2})$. (Any suitable method, e.g. Newton's method, may be used to find z_i .) be the polynomial, of minimal degree, agree

5. Compute $\alpha_{i,j} = \alpha_{i-1,j} (z_{i-1} - x_0)/(z_i - x_0)$ for $j=1,\ldots,i-1$. (Skip if i=1.)

(The existence and uniqueness of q_i may be shown constructively: see Brent [75].) Let $\alpha_{i,i}$ be an approximate zero of q_i , satisfying $\alpha_{i,i} = \alpha_i + 0(\delta)$ and $q_i(\alpha_{i,i}) = 0(\delta^{i+1})$. Let q_i be the monic polynomial, of degree n+1-i, such that $\begin{cases} P(x) & q_i(x) \begin{pmatrix} i-1 \\ II \end{pmatrix} (x-\alpha_{i,j}) x dx \\ = 0 & \text{for all polynomials} \end{cases}$ P of degree n-i.

Evaluate f'(y_i), where $y_i = x_0 + \alpha_{i,i}(z_i - x_0)$.

$$y_i = x_0 + \alpha_{i,i}(z_i - x_0)$$
.

Let p_{n+1} be as at step 4, and x_1 an approximate zero of p_{n+1} , satisfying $x_1=x_0+0(\delta)$ and $p_{n+1}(x_1)=0(\delta^{2n+3})$.

Asymptotic Error Constants

finding method is defined to be The asymptotic error constant of a stationary zero-

$$K = \lim_{x_0 \to \zeta} (x_1 - \zeta)/(x_0 - \zeta)^{\rho}$$

 K_{ν} is not known, but we have methods (of order 2ν) described above. The general form of signed.) Let K_{ij} be the asymptotic error constant of the integer for all methods considered here, we allow K to be where ρ is the order of convergence. (Since ρ is an

> $K_4 = \begin{cases} 3\phi_8 - 21\phi_2\phi_7/(1-\alpha_1) + 9[35(1-\alpha_3)-3/(1-\alpha_2)]\phi_3\phi_6 \end{cases}$ $K_2 = \phi_4/9 - \phi_2\phi_3 ,$ $\label{eq:K3} {\rm K}_3 = \phi_6/100 + (1 - 5\alpha_1)\phi_2\phi_5/10 + (3\alpha_1 - 2)\phi_3\phi_4/5 \ ,$ $-25(9-44\alpha_3+42\alpha_3^2)\phi_4\phi_5$ /3675,

where

 $\phi_{\mathbf{i}} = \frac{\mathbf{f}^{(\mathbf{i})}(\zeta)}{\mathbf{i}!\mathbf{f}!(\zeta)}.$

5. RELATED NONLINEAR RUNGE-KUTTA METHODS

The ordinary differential equation

(5.1)
$$dx/dt = g(x)$$
, $x(t_0) = x_0$,

 $x(t_0 + h)$ we need to find a zero of may be solved by quadrature and zero-finding: to find

$$f(x) = \int_{x_0}^{\infty} \frac{du}{g(u)} - h.$$

methods of Section 4 may be used to estimate $x(t_0 + h)$, then $x(t_0 + 2h)$, etc. When written in terms of g rather than f, evaluated almost as easily as g(x) . Thus, the zero-finding the methods are seen to be similar to Runge-Kutta methods. Note that $f(x_0) = -h$ is known, and f'(x) = 1/g(x) may be

Section 2 (with x_1 an exact zero of the quadratic Q(x)) For example, the fourth-order zero-finding methods of

$$g_0 = g(x_0)$$
,
 $\Delta = hg_0$,
 $g_1 = g(x_0 + 2\Delta/3)$,

OPTIMAL ZERO-FINDING METHODS USING DERIVATIVES

and

(5.2)
$$x_1 = x_0 + 2\Delta/[1 + (3g_0/g_1 - 2)^{\frac{1}{2}}]$$
.

Note that (5.1) is nonlinear in g_0 and g_1 , unlike the usual Runge-Kutta methods. (This makes it difficult to generalize our methods to systems of differential equations.) Since the zero-finding method is fourth-order, $x_1 = x(t_0 + h) + 0(h^4)$, so our nonlinear Runge-Kutta method has order three by the usual definition of order (Henrici [62]).

Similarly, any of the zero-finding methods of Section 4 have a corresponding nonlinear Runge-Kutta method. Thus, we have:

Theorem 5.1

If $\nu>0$, there is an explicit, nonlinear, Runge-Kutta method of order $2\nu-1$, using ν evaluations of g per iteration, for single differential equations of the form (5.1).

By the result of Meersman and Wozniakowski, mentioned in Section 1, the order $2\nu-1$ in Theorem 5.1 is the best possible. Butcher [65] has shown that the order of linear Runge-Kutta methods, using ν evaluations of g per iteration, is at most ν , which is less than the order of our methods if $\nu>1$ (though the linear methods may also be used for systems of differential equations).

. SOME NUMERICAL RESULTS

In this section we give some numerical results obtained with the nonlinear Runge-Kutta methods of Section 5. Consider the differential equation (5.1) with

1)
$$g(x) = (2\pi)^{\frac{1}{2}} \exp(x^{2}/2)$$

and x(0) = 0 . Using step sizes h = 0.1 and 0.01, we estimated x(0.4) , obtaining a computed value x_h . The

error e_h was defined by

$$e_h = (2\pi)^{-\frac{1}{2}} \int_0^{\infty} \exp(-u^2/2) du - 0.4$$
.

All computations were performed on a Univac 1108 computer, with a floating-point fraction of 60 bits. The results are summarized in Table 6.1. The first three methods are derived from the zero-finding methods of Section 4 (with $\nu=2$, 3 and 4 respectively). Method RK4 is the classical fourth-order Runge-Kutta method of Kutta [01], and method RK7 is a seventh-order method of Shanks [66].

Table 6.1: Comparison of Runge-Kutta Methods

RK7	RK4	Sec. 4	Sec. 4	Sec. 4	Method
9	4	4	3	2	g evaluations per iteration
7	4	7	۲٦.	3	Order
-5.191-7	1.95'-5	3.86'-8	3.16'-6	-9.45'-6	e _{0.1}
-1.67'-13	7.90'-9	3.69'-15	-2.47'-11	1.49'-7	e _{0.01}

More extensive numerical results are given in Brent [75].

Note that the differential equation (6.1) was chosen only for illustrative purposes: there are several other ways of computing quantiles of the normal distribution. A practical application of our methods (computing quantiles of the incomplete Gamma and other distributions) is described in Brent [76].

OTHER ZERO-FINDING METHODS

In Section 1 we stated some generalizations of our methods (see Theorem 1.2). Further generalizations are described in Meersman [75]. Kacewicz [75] has considered methods which use information about an integral of f instead of a derivative of f.

"Sporadic" methods using derivatives may be derived as in

method which uses evaluations of f, f', f", and f" at Sections 2 and 3. For example, is there an eighth-order nonzero α satisfying point ${f y}_1$? Proceeding as in Sections 2 and 3 , we need a \boldsymbol{x}_0 , followed by evaluations of f', f" and f"' at some

rank
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 4 & 5\alpha & 6\alpha^2 & 7\alpha^3 \\ 12 & 20\alpha & 30\alpha^2 & 42\alpha^3 \\ 24 & 60\alpha & 120\alpha^2 & 210\alpha^3 \end{vmatrix} = 3 ,$$

which reduces to

$$(7.1) 35\alpha^3 - 84\alpha^2 + 70\alpha - 20 = 0.$$

method does exist. It is interesting to note that (7.1) is equivalent to the condition Since (7.1) has one real root, $\alpha = 0.7449...$, an eighth-order

$$\int_{0}^{1} x^{3}(x-\alpha)^{3} dx = 0 .$$

using $f(x_0)$, $f'(x_0)$, $f''(y_1)$, and $f'''(y_2)$. (These above, we need α_1 and α_2 such that could be called Abel-Gončarov methods.) As a final example, we consider sixth-order methods Proceeding as

rank
$$\begin{bmatrix} 2 & 6\alpha_1 & 12\alpha_1^2 & 20\alpha_1^3 \\ 0 & 6 & 24\alpha_2 & 60\alpha_2^2 \\ 1 & 1 & 1 & 1 \end{bmatrix} = 2$$
,

which gives

(7.2)
$$60\alpha_1^4 - 80\alpha_1^3 + 60\alpha_1^2 - 24\alpha_1 + 3 = 0$$

 $\alpha_2 = (1 - 6\alpha_1^2)/(4 - 12\alpha_1)$.

and

 \widetilde{lpha}_1 , and take α_1 = 0.5351... Choosing one of these, we may evaluate $f(x_0)$, We may then fit a quadratic to the data, compute the perturbed $\mathbf{f''}(\mathbf{x}_0)$ and $\mathbf{f'''}(\mathbf{y}_1)$, where \mathbf{y}_1 is defined as in Section 3. Fortunately, (7.2) has two real roots, $\alpha_1 = 0.2074...$

$$\widetilde{\alpha}_2 = (1 - 6\widetilde{\alpha}_1^2)/(4 - 12\widetilde{\alpha}_1)$$
 ,

exist for all positive n. using evaluations of $\mathbf{f}(\mathbf{x}_0)$, $\mathbf{f}'(\mathbf{x}_0)$, $\mathbf{f}''(\mathbf{y}_1)$, ..., $\mathbf{f}^{(n)}(\mathbf{y}_{n-1})$ can be generalized, i.e., whether real methods of order 2n, etc., as in Section 3. It is not known whether this method

ACKNOWLEDGEMENT

and J.F. Traub are gratefully acknowledged The suggestions of J.C. Butcher, R. Meersman, M.R. Osborne

REFERENCES

de Boor and Swartz [73] de Boor, C.W.R. and Swartz, B., "Collocation at Gaussian points", SIAM J. Numer. Anal. 10 (1973), 582-606.

Brent [75] methods using almost orthogonal polynomials", J. Austral. Math. Soc. (Ser. B) 1 (1975). Also available as "Efficient methods for finding zeros of functions whose derivatives are easy to evaluate" Dept. of Computer Science, Carnegie-Mellon Univ. (Dec. 1974). Brent, R.P., "Some high-order zero-finding

Brent [76] Brent, R.P. and E.M., "Efficient computation of inverse distribution functions", to appear.

Brent, Winograd and Wolfe [73] Wolfe, P., "Optimal iterative processes for root-finding", Numer. Math. 20 (1973), 327-341. Brent, R.P., Winograd, S. and

Butcher [65] 5] Butcher, J.C., "On the attainable order of Runge-Kutta methods", Math. Comp. 10 (1965), 408-417.

RICHARD P. BRENT

- Henrici [62] Henrici, P., "Discrete variable methods in ordinary differential equations", Wiley, New York, 1962.
- Jarratt [69] Jarratt, P., "Some efficient fourth-order multi-point methods for solving equations", BIT 9 (1969), 119-124.
- Jarratt [70] Jarratt, P., "A review of methods for solving nonlinear algebraic equations in one variable", in "Numerical methods for nonlinear algebraic equations", (edited by P. Rabinowitz), Gordon and Breach, New York, 1970, 1-26.
- Kacewicz [75] Kacewicz, B., "An integral-interpolatory iterative method for the solution of nonlinear scalar equations", Dept. of Computer Science, Carnegie-Mellon Univ. (Jan. 1975).
- Kung and Traub [73] Kung, H.T. and Traub, J.F., "Optimal order and efficiency for iterations with two evaluations", Dept. of Computer Science, Carnegie-Mellon Univ. (Nov. 1973). To appear in SIAM J. Num. Anal.
- Kung and Traub [74] Kung, H.T. and Traub, J.F., "Optimal order of one-point and multipoint iteration", J. ACM 21 (1974), 643-651.
- Kutta [01] Kutta, W., "Beitrag zur n\u00e4herungsweisen Integration totaler Differentialgleichungen", Z. Math. Phys. 46 (1901), 435-452.
- Meersman [75] Meersman, R., "Optimal use of information in certain iterative processes", these Proceedings.
- Shanks [66] Shanks, E.B., "Solutions of differential equations by evaluations of functions", Math. Comp. 20 (1966), 21-38.
- Traub [64] Traub, J.F., "Iterative methods for the solution of equations", Prentice-Hall, Englewood Cliffs, New Jersey (1964).
- Wozniakowski [75a] Wozniakowski, H., "Properties of maximal order methods for the solution of nonlinear equations", ZAMM 55 (1975), 268-271.

OPTIMAL ZERO-FINDING METHODS USING DERIVATIVES

Wozniakowski [75b] Wozniakowski, H., "Maximal order of multipoint iterations using n evaluations," these Proceedings.