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In studying the complexity of iterative processes it is usually assumed that the arith-
metic operations of addition, multiplication, and division can be performed in certain
constant times. This assumption is invalid if the precision required increases as the
computation proceeds. We give upper and lower bounds on the number of single-
precision operations required to perform various multiple-precision operations, and
deduce some interesting consequences concerning the relative efficiencies of methods
for solving nonlinear equations using variable-length multiple-precision arithmetic.

1 Introduction

Traub [28] defines analytic computational complexity to be the optimality theory of analytic or
continuous processes. Apart from some work by Schultz [24] on differential equations, most re-
cent results have concerned iterative methods for the solution of nonlinear equations or systems
of equations. See, for example, Brent [1,3,6], Brent, Winograd and Wolfe [7], Kung [14, 15],
Kung and Traub [16–17], Paterson [21], Rissanen [22], Traub [28–32] and Wozniakowski [35, 36].

The authors just cited make the (usually implicit) assumption that arithmetic is performed with
a fixed precision throughout a given computation. This is probably true for most computations
programmed in Fortran or Algol 60. Suppose, though, that we are concerned with an iterative
process for approximating an irrational number ζ (for example,

√
2, π or e) to arbitrary ac-

curacy. The iterative process should (theoretically) generate a sequence (xi) of real numbers,
such that ζ = lim

i→∞
xi, provided no rounding errors occur. On a computing machine each xi

has to be approximated by a finite-precision machine-representable number x̃i, and ζ = lim
i→∞

x̃i

can only hold if the precision increases indefinitely as i→∞. In practice, only a finite number
of members of the sequence (x̃i) will ever be generated, but if an accurate approximation to
ζ is required it may be possible to save a large amount of computational work by using vari-
able precision throughout the computation. This is likely to become easier to program as new
languages (and possibly hardware), which allow the precision of floating-point numbers to be
varied dynamically, are developed.

1First appeared in The Complexity of Computational Problem Solving (edited by R S Anderssen and R P
Brent), Univ. of Queensland Press, 1976, 126–165. Retyped with minor corrections by Frances Page at Oxford
University Computing Laboratory, 1999.
Copyright c© 1976, 1999, R. P. Brent and University of Queensland Press. rpb032 typeset using LATEX.



In Section 7 we discuss the effect of using variable precision when solving nonlinear equations.
Before doing so, we consider the complexity of the basic multiple-precision arithmetic opera-
tions. We assume that a standard floating-point number representation is used, with a binary
fraction of n bits. (Similar results apply for any fixed base, for example, 10.) We are interested
in the case where n is much greater than the wordlength of the machine, so the fraction occupies
several words. For simplicity, we assume that the exponent field has a fixed length and that
numbers remain in the allowable range, so problems of exponent overflow and underflow may
be neglected. Note that our assumptions rule out exotic number representations (for example,
logarithmic [4] or modular [33, 34] representations) in which it is possible to perform some (but
probably not all) of the basic operations faster than with the standard representation. To rule
out “table-lookup” methods, we assume that a random-access memory of bounded size and a
bounded number of sequential tape units are available. (Formally, our results apply to multitape
Turing machines.)

In Sections 2 to 6 we ignore “constant” factors, that is factors which are bounded as n → ∞.
Although the constant factors are of practical importance, they depend on the computer and
implementation as well as on details of the analysis. Certain machine-independent constants are
studied in Sections 7 and 8.

If B is a multiple-precision operation, with operands and result represented as above (that is,
“precision n” numbers), then tn(B) denotes the worst-case time required to perform B, ob-
taining the result with a relative error at most 2−nc, where c is independent of n. We assume
that the computation is performed on a serial machine whose single-precision instructions have
certain constant execution times. The following definition follows that in Hopcroft [11].

Definition 1.1 B is linearly reducible to C (written B <
= C), if there is a positive constant K

such that

tn(B) ≤ Ktn(C) (1.1)

for all sufficiently large n. B is linearly equivalent to C (written B ≡ C) if B <
= C and C <

=B.

In Section 2 we consider the complexity of multiple-precision addition and some linearly equiv-
alent operations. Then, in Section 3, we show that multiple-precision division, computation of
squares or square roots, and a few other operations are linearly equivalent to multiplication.
Most of these results are well known [8, 9].

Sections 4 and 5 are concerned with the “operations” of evaluating exponentials, logarithms,
and the standard trigonometric and hyperbolic functions (sin, artan, cosh, and so on). It turns
out that most of (and probably all) these operations are linearly equivalent so long as certain
restrictions are imposed.

Section 6 deals with the relationship between the four equivalence classes established in Sections
2 to 5, and several upper bounds on the complexity of operations in these classes are given.
The best known constants relating operations which are linearly equivalent to multiplication are
given in Section 7.

Finally, in Section 8, we compare the efficiencies of various methods for solving nonlinear equa-
tions using variable-length multiple-precision arithmetic. The relative efficiencies are different
from those for the corresponding fixed-precision methods, and some of the conclusions may be
rather surprising. The results of Sections 4 to 8 are mainly new.

In the analysis below, c1, c2, . . . denote certain positive constants which do not need to be
specified further. The notation f ∼ g means that lim

n→∞
f(n)/g(n) = 1, and f = O(g) means that
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|f(n)| ≤ Kg(n) for some constant K and all sufficiently large n. Finally, the abbreviation “mp”
stands for “variable-length multiple-precision”.

2 Addition and linearly equivalent operations

Let A denote the operation of multiple-precision addition. Any reasonable implementation of
floating-point addition, using at least one guard digit to avoid the possible occurrence of large
relative errors, gives

tn(A) ≤ c1n . (2.1)

Conversely, from the assumptions stated in Section 1, it is clear that

tn(A) ≥ c2n . (2.2)

Hence, the complexity of multiple-precision addition is easily established. (For the operations
discussed in Sections 3 and 5 the results are less trivial, in fact the conjectured lower bounds
corresponding to (2.2) have not been proved rigorously.)

It is easy to see that bounds like (2.1) and (2.2) hold for multiple-precision subtraction, and
multiplication or division of a multiple-precision number by a single-precision number (or even
by any rational number with bounded numerator and denominator). Hence, all these operations
are linearly equivalent to addition.

3 Multiplication and linearly equivalent operations

Let D, I,M,R and S denote the multiple-precision operations of division, taking reciprocals,
multiplication, extraction of square roots and forming squares, respectively. In this section, we
show that all these operations are linearly equivalent. The proofs are straightforward, but the
result is surprising, as it seems intuitively obvious that taking a square root is inherently “more
difficult” than forming a square, and similarly for division versus multiplication. (Some bounds
on the relative difficulty of these operations are given in Section 7.)

Lemma 3.1
M >

= S >
=A . (3.1)

Proof. Clearly
tn(M) ≥ tn(S) ≥ c3n , (3.2)

so the result follows from (2.1).

Sharp upper bounds on tn(M) are not needed in this section, so we defer them until Section 6.
Lemmas 3.2 and 3.3, although weak, are sufficient for our present purposes.

Lemma 3.2 For all positive n,

t2n(M) ≤ c4tn(M) . (3.3)

Proof. First assume that n is divisible by 3, and consider operations on the n-bit fractions
only. If we can multiply n-bit numbers with relative error 2−nc0 then we can multiply n/3-bit
numbers exactly (assuming 2n/3 > 2c0). Thus, a 2n-bit fraction x may be split up into

x = λa+ λ2b+ . . .+ λ6f , (3.4)

where λ = 2−n/3 and a, b, . . . , f are integers in
[
0, 2n/3

)
, and the product of two such 2n-bit

fractions may be formed exactly with 36 exact multiplications of n/3-bit numbers and some
additions. Thus

3



t2n(M) ≤ 36tn(M) + c5t2n(A) , (3.5)

and the result follows from Lemma 3.1. Trivial modifications to the above proof suffice, if n is
not divisible by 3.

Lemma 3.3 For some constant c6 < 1,

tn(M) ≤ c6t8n(M) (3.6)

for all sufficiently large n.

Proof. If a, b, c and d are integers in [0, 2n), the identity

(a+ λb)(c+ λd) = ac+ λ(bc+ ad) + λ2bd , (3.7)

with λ = 23n, may be used to obtain the products ac and bd from one 8n-bit product. Thus

2tn(M) ≤ t8n(M) + c7 . (3.8)

The result (with c6 = 3/4) follows if n is sufficiently large that t8n(M) ≥ 2c7. (We have assumed
that the time required for one n-bit multiplication is half the time required for two independent
n-bit multiplications, but much weaker assumptions would be sufficient.)

The following lemma will be used to estimate the work required for multiple-precision divisions
and square roots.

Lemma 3.4 Given α ∈ (0, 1), there is a constant c8 such that, for any integers n0, . . . , np
satisfying

1 ≤ nj ≤ αjn (3.9)

for j = 0, 1, . . . , p, we have
p∑
j=0

tnj (M) ≤ c8tn(M) . (3.10)

Proof. Let k be large enough that

αk ≤ 1/8 . (3.11)

From (3.9) and (3.11),

tnjk
(M) ≤ αj6tn(M) (3.12)

for j = 0, 1, . . . , bp/kc, provided njk is sufficiently large for Lemma 3.3 to be applicable. Thus,
p∑
j=0

tnj (M) ≤ ktn(M)
(
1 + c6 + c26 + . . .

)
+ c7 , (3.13)

where the term c7 allows for those tnj (M) for which Lemma 3.3 is not applicable. If

c8 = k/ (1− c6) + c7 , (3.14)

the result follows from (3.13).

The following lemma shows that multiple-precision multiplication is linearly equivalent to squar-
ing. This result is essentially due to Floyd [9].
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Lemma 3.5
M ≡ S . (3.15)

Proof. Since squaring is a special case of multiplication,

M >
= S . (3.16)

Conversely, we may use the identity

4λab = (a+ λb)2 − (a− λb)2 , (3.17)

where λ is a power of 2 chosen so that

1
2 ≤ |λb/a| ≤ 2 (3.18)

(unless a = 0 or b = 0). This scaling is necessary to avoid excessive cancellation in (3.17).
(A detailed discussion of a similar situation is given in Brent [5].) From (3.17),

tn(M) ≤ 2tn(S) + 3tn(A) + c9, (3.19)

so M <
= S follows from Lemma 3.1.

The next two lemmas show that multiple-precision multiplication is linearly equivalent to taking
reciprocals and to division. The idea of the proof of Lemma 3.6 is to use a Newton iteration
involving only multiplications and additions to approximate 1/a. Computational work is saved
by starting with low precision and approximately doubling the precision at each iteration. The
basic idea is well-known and has even been implemented in hardware.

The possibility of saving work by increasing the precision at each iteration is examined more
closely in Sections 7 and 8.

Lemma 3.6
I <

=D <
=M . (3.20)

Proof. Consider the iteration

xj+1 = xj (2− axj) (3.21)

obtained by applying Newton’s method to the equation x−1 − a = 0. If

xj = (1− εj) a−1 , (3.22)

then substitution in (3.21) shows that

εj+1 = ε2j , (3.23)

so the order of convergence is two. A single-precision computation is sufficient to give an initial
approximation such that |ε0| ≤ 1

2 , and it follows from (3.23) that

|εj | ≤ 2−2
j

(3.24)

for all j ≥ 0.

In deriving (3.24) we have assumed that (3.21) is satisfied exactly, but a result like (3.24) holds
so long as the right hand side of (3.21) is evaluated using a precision of at least 2j+1 bits. Thus,
an n-bit approximation to a−1 can be obtained by performing dlog2 ne iterations of (3.22) with
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precision at least 2, 22, 23, . . . , 2dlog2 ne−1, n at each iteration. From Lemma 3.4 (with α = 1
2),

this gives

tn(I) ≤ c10tn(M) . (3.25)

Since b/a = b(1/a), it follows that

tn(D) ≤ c11tn(M) , (3.26)

so D <
=M . Since I <

=D is trivial, the proof is complete.

From ab = a/(1/b) it is clear that M <
=D. The proof that M <

= I is not quite so obvious, and
uses the equivalences of multiplication and squaring (Lemma 3.5).

Lemma 3.7
M <

= I . (3.27)

Proof. We may apply the identity

a2(1− λa)−1 = λ−2
[
(1− λa)−1 − (1 + λa)

]
(3.28)

to obtain an approximation to a2, using only the operation of taking reciprocals, addition (or
subtraction) and multiplication by powers of two. If a 6= 0, choose λ to be a power of two such
that

2−n/3−1 < |λa| < 21−n/3 , (3.29)

and evaluate the right hand side of (3.28), using precision n. This gives an approximation to a2

with precision dn/3e, so

Sdn/3e
<
= In , (3.30)

where the subscripts denote the precision. Thus, the result follows from Lemmas 3.2 and 3.5.

To conclude this section we consider the complexity of multiple-precision square roots. Results
like Lemmas 3.8 and 3.9 actually hold if x

1
2 is replaced by xp for any fixed rational p 6= 0 or 1

(we have already shown this for p = −1).

Lemma 3.8
M <

=R . (3.31)

Proof. The proof is similar to that of Lemma 3.7, using the approximation

2λ−2
[
1 + λa− (1 + 2λa)

1
2

]
to a2.

Lemma 3.9
R <

=M . (3.32)

Proof. The proof is similar to that of Lemma 3.6, using Newton’s iteration

xj+1 = 1
2 (xj + a/xj) , (3.33)

with precision increasing at each iteration, to approximate
√
a. Alternatively, it is possible to

avoid multiple-precision division by using the iteration
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xj+1 = xj
(
3− ax2j

)
/2 (3.34)

to approximate a−
1
2 , and then use

√
a = a.a−

1
2 to evaluate

√
a.

The results of Lemmas 3.5 to 3.9 may be summarized in the following:

Theorem 3.1
D ≡ I ≡M ≡ R ≡ S . (3.35)

4 Some regularity conditions

Before discussing the complexity of multiple-precision evaluation of exponentials, trigonometric
functions, etc., we need some definitions. Throughout this section, let φ(x) be a real-valued
function which is positive and monotonic increasing for all sufficiently large positive x.

Definition 4.1 φ ∈ Φ1 iff, for all α ∈ (0, 1), for some positive K, for all sufficiently large x and
all x0, . . . , xJ satisfying

1 ≤ xj ≤ αjx (4.1)

for j = 0, . . . , J , we have

J∑
j=0

φ(xj) ≤ Kφ(x) . (4.2)

φ ∈ Φ2 iff, for some α, β ∈ (0, 1) and all sufficiently large x,

φ(αx) ≤ βφ(x) . (4.3)

φ ∈ Φ3 iff, for some positive K1,K2 and p, there is a monotonic increasing function ψ such that

K1x
pψ(x) ≤ φ(x) ≤ K2x

pψ(x) (4.4)

for all sufficiently large x.

Note the similarity between the definition of Φ1 and the statement of Lemma 3.4. In Section 5,
we need to assume that the time φ(n) required to perform certain operations with precision n
satisfies (4.2). The following lemmas make this assumption highly plausible. Lemma 4.1 shows
that “for all α” in the definition of Φ1 may be replaced by “for some α”.

Lemma 4.1 If, for some α ∈ (0, 1) and some positive K, for all sufficiently large x and all
x0, . . . , xJ satisfying (4.1), we have (4.2), then φ ∈ Φ1.

Proof. Take any α1 and α2 in (0, 1), and suppose that (4.1) with α replaced by α2 implies (4.2)
with K replaced by K2. Let m be a positive integer such that αm1 ≤ α2. If (4.1) holds with α
replaced by α1 for a sequence (x0, x1, . . . , xJ), then (4.1) also holds with α replaced by α2 for
each of the m subsequences

(x0, xm, . . .), (x1, xm+1, . . .), . . . , (xm−1, x2m−1, . . .) ,

so (4.2) holds with K replaced by K1 = mK2.

Lemmas 4.2 and 4.3 show that φ ∈ Φ2 or φ ∈ Φ3 is a sufficient condition for φ ∈ Φ1. The proof
of Lemma 4.2 is similar to that of Lemma 3.4 (using Lemma 4.1), so is omitted.
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Lemma 4.2
Φ2 ⊆ Φ1 . (4.5)

Lemma 4.3
Φ2 = Φ3 . (4.6)

Proof. First suppose that φ ∈ Φ3, so (4.4) holds for some function ψ and some positive K1,K2

and p. Choose α ∈ (0, 1) such that β = αpK2/K1 < 1. For all sufficiently large x, we have

φ(αx) ≤ K2α
pxpψ(αx) ≤ K2α

pxpψ(x) ≤ (K2α
p/K1)φ(x) ≤ βφ(x) (4.7)

(using (4.4) and the monotonicity of ψ), so φ ∈ Φ2.

Conversely, suppose that φ ∈ Φ2, so (4.3) holds for all sufficiently large x (say x ≥ x0 > 0) and
some α, β ∈ (0, 1). Choose p small enough that β ≤ αp, so

φ(αx) ≤ αpφ(x) (4.8)

for x ≥ x0. Since φ(x) is positive for sufficiently large x, we may assume that φ(x0) > 0. Let
K1 = αp,K2 = 1, and

ψ(x) = sup
x0≤y≤x

φ(y)/yp (4.9)

for x ≥ x0. Thus, ψ(x) is monotonic increasing and

ψ(x) ≥ φ(x)/xp (4.10)

so

φ(x) ≤ K2x
pψ(x) (4.11)

for x ≥ x0.

By repeated application of (4.8) we have, for k ≥ 0,

φ(x)/xp ≥ φ(αkx)/(αkx)p (4.12)

provided αkx ≥ x0. Thus, from (4.9),

ψ(x) = sup
αx≤y≤x

φ(y)/yp (4.13)

≤ φ(x)/(αx)p (4.14)

for x ≥ x0/α. Thus,

φ(x) ≥ K1x
pψ(x) (4.15)

and, in view of (4.11), φ ∈ Φ2.
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5 Linear equivalence of various elementary functions

In this section, we consider the multiple-precision “operations” of evaluating certain elementary
functions (log, exp, sin, artan, etc). First we prove three theorems which apply under fairly
general conditions. Theorem 5.1 is a generalization of Lemmas 3.7 and 3.8, and gives a simple
condition under which the evaluation of f(x) is at least as difficult as a multiplication (in the
sense of Definition 1.1).

NOTATION. If f is a real-valued function defined on some finite interval [a, b], the operation

of evaluating f(x) to (relative) precision n for x ∈ [a, b] is denoted by E
(n)
[a,b](f). If there is no

risk of confusion, we write simply E[a,b](f) or E(f). We sometimes write tn(f) for tn (E(f)).

LC(m)[a, b] is the class of functions with Lipschitz continuous m-th derivatives on [a, b]. We
always assume that b > a.

Theorem 5.1 If f ∈ LC(2)[a, b] and there is a point x0 ∈ (a, b) such that f ′′(x0) 6= 0, then

E(f) ≥M . (5.1)

Proof. For all sufficiently small h, we have (from [2, Lemma 3.2])

f(x0 + h) + f(x0 − h)− 2f(x0) = h2f ′′(x0) +R(x) , (5.2)

where

|R(x)| ≤ c12|h|3 . (5.3)

Let c = f ′′(x0) 6= 0. Three evaluations of f and some additions may be used to approximate ch2,
using (5.2). If h is of order 2−n/3, the resulting approximation to ch2 has relative error of order
2−n/3. Proceeding as in the proof of Lemma 3.5, we see that six evaluations of f and some ad-
ditions may be used to approximate cxy to precision n/3, for any x and y. Applying this result,
with x replaced by the stored constant c−2, and y replaced by the computed cxy, shows that 12
evaluations of f give c

(
c−2

)
(cxy) = xy to precision n/3. The result now follows from Lemma 3.2.

REMARK. If f ′′(x) is not constant on [a, b], the point x0 may be chosen so that f ′′(x) is
rational, so (5.2) may be used to approximate h2, and the result follows more easily (as in the
proof of Lemma 3.7).

Theorem 5.2 gives conditions under which the multiple-precision evaluation of the inverse func-
tion g = f (−1) of a function f is linearly reducible to the evaluation of f . (The inverse function
satisfies g (f(x)) = x.) The condition 0 6∈ [a, b] could be dropped, if we only required the com-
putation of g with an absolute (rather than relative) error of order 2−n.

Theorem 5.2 If 0 6∈ [a, b], f ∈ LC(1)[a, b], f ′(x) 6= 0 on [a, b], E(f) >
=M , and

tn(f) ∈ Φ1 , (5.4)

then

E(g) <
=E(f) , (5.5)

where g = f (−1) and Φ1 is as in Definition 4.1.

Proof. Since f ′(x) is continuous and nonzero on [a, b], there is no loss of generality in assuming
that

f ′(x) ≥ c13 > 0 (5.6)
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on [a, b]. Thus, g(y) exists on [c, d] = [f(a), f(b)]. Also, since 0 6= [a, b], we have

|g(y)| ≥ c14 > 0 (5.7)

on [c, d].

To estimate g(y) we may solve ψ(x) = 0 by a discrete version of Newton’s method, where

ψ(x) = f(x)− y . (5.8)

Consider the iteration

xj+1 = xj − ψ(xj)/µj , (5.9)

where

µj = (ψ(xj + hj)− ψ(xj)) /hj , (5.10)

and the computation of µj and xj+1 is performed with precision nj ≤ n, giving computed values
µ̂j and x̂j+1 respectively. If hj is of order 2−nj/2, then

|µ̂j − ψ′(x̂j)| ≤ 2−nj/2c15 , (5.11)

and it is easy to show that

|x̂j+1 − g(y)| ≤ |x̂j − g(y)|2 c16 + 2−nj/2 |x̂j − g(y)| c17 + 2−nj c18 . (5.12)

Since a sufficiently good starting approximation x0 may be found using single-precision (or at
most bounded-precision) computation, (5.12) ensures that

|x̂j+1 − g(y)| ≤ |x̂j − g(y)|2 c19 , (5.13)

provided

|x̂j − g(y)| ≥ 2−nj/2 . (5.14)

Hence, we may approximately double the precision at each iteration, and (5.13) guarantees
convergence of order two. A final iteration with hj = 2−n/2 will be sufficient to give

|x̂j+1 − g(y)| ≤ 2−nc20 . (5.15)

Since E(f) ≥M , the result follows from (5.4), (5.7), (5.15), and Lemma 3.6.

Theorem 5.3 If 0 6∈ [a, b], f ∈ LC(1)[a, b], f(x)f ′(x) 6= 0 on [a, b], g = f (−1), E(f) >
=M ,

E(g) >
=M , tn(f) ∈ Φ1, and tn(g) ∈ Φ1, then

E(f) ≡ E(g) . (5.16)

Proof. Since tn(f) ∈ Φ1, Theorem 5.2 applied to f gives E(g) <
=E(f). Similarly, applying

Theorem 5.2 to f (−1) gives E(f) <
=E(g), so the result follows.

We are now ready to deduce the linear equivalence of mp evaluation of various elementary func-
tions fi, assuming that tn(fi) ∈ Φ1. In view of Lemmas 4.2 and 4.3, this assumption is very
plausible.

Corollary 5.1 If 0 < a < b, c < d, 1 6∈ [a, b], tn
(
E[a,b](log)

)
∈ Φ1, and tn

(
E[c,d](exp)

)
∈ Φ1,

then

E[a,b](log) ≡ E[c,d](exp) . (5.17)

10



Proof. From Theorem 5.1, E[a,b](log) >
=M and E[c,d](exp) >

=M . Also, the identities

exp(−x) = 1/ exp(x) (5.18)
and

exp(λx) = (exp(x))λ (5.19)

(for suitable rational λ) may be used to show that E[c,d](exp) ≡ E[c′,d′](exp) for any c′ < d′.
Hence, the result follows from Theorem 5.3.

REMARK. If 1 ∈ [a, b], then Theorem 5.2 shows that

E
(n)
[c,d](exp) <

=E
(n)
[a,b](log) , (5.20)

and a proof like that of Theorem 5.2 shows that

E
(n)
[a,b](log) <

=E
(2n)
[c,d] (exp) , (5.21)

so the conclusion of Corollary 5.1 follows, if

E
(2n)
[c,d] (exp) ≡ E(n)

[c,d](exp) . (5.22)

Although (5.22) is plausible, no proof of it is known. (The corresponding result for multiplica-
tion is given in Lemma 3.2.)

Corollary 5.2

E(sinh) ≡ E(cosh) ≡ E(tanh) ≡ E(arsinh)

≡ E(arcosh) ≡ E(artanh) ≡ E(exp) ≡ E(log)
(5.23)

on any nontrivial closed intervals on which the respective functions are bounded and nonzero,
assuming tn(sinh) ∈ Φ1 etc.

Corollary 5.3

E(sin) ≡ E(cos) ≡ E(tan) ≡ E(arsin) ≡ E(arcos) ≡ E(artan) (5.24)

on any nontrivial closed intervals on which the respective functions are bounded and nonzero,
assuming tn(sin) ∈ Φ1 etc.

REMARKS. The proofs of Corollaries 5.2 and 5.3 are similar to that of Corollary 5.1 (using
well-known identities), so are omitted. Since exp(ix) = cos(x) + i sin(x), it is plausible that
E(exp) ≡ E(sin), but we have not proved this. (It is just conceivable that the evaluation of
exp(x) for complex x is not linearly reducible to the evaluation of exp(x) for real x.)

6 Upper and lower bounds

In this section we give some upper and lower bounds on tn(A), tn(M), tn(exp) and tn(sin). Since
the multiplicative constants are not specified, the bounds apply equally well to the operations
which are linearly equivalent to addition, multiplication, etc. (see Sections 2 to 5). The lower
bounds are trivial: tn

(exp
sin

)
≥ c21tn(M) ≥ c22tn(A) ≥ c23n (from (2.2), Lemma 3.1 and Theorem

5.1). The upper bounds are more interesting.

UPPER BOUNDS ON tn(M)

The obvious algorithm for multiplication of multiple-precision numbers gives
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tn(M) ≤ c24n2 , (6.1)

but this is not the best possible upper bound. Karatsuba and Ofman [12] showed that

tn(M) ≤ c25n1.58... , (6.2)

where 1.58 . . . = log2 3. The idea of the proof is that, to compute

(a+ λb)(c+ λd) = ac+ λ(ad+ bc) + λ2bd , (6.3)

where λ is a suitable power of two, we compute the three products m1 = ac, m2 = bd, and
m3 = (a+ b)(c+ d), and use the identity

ad+ bc = m3 − (m1 +m2) . (6.4)

Thus, 2n-bit integers can be multiplied with three multiplications of (at most) (n+ 1)-bit inte-
gers, some multiplications by powers of two, and six additions of (at most) 4n-bit integers. This
observation leads to a recurrence relation from which (6.2) follows.

More complicated identities like (6.4) may be used to reduce the exponent in (6.2). Recently
Schönhage and Strassen [23] showed that the exponent can be taken arbitrarily close to unity.
Their method gives the best known upper bound

tn(M) ≤ c26n log(n) log log(n) , (6.5)

and uses an algorithm related to the fast Fourier transform to compute certain convolutions.
For a description of this and earlier methods see Knuth [13 (revised)]. Knuth conjectures that
(6.5) is optimal, though the term log log(n) is rather dubious. (It may be omitted if a machine
with random-access memory of size O(np) for some fixed positive p is assumed.) From results
of Morgenstern [19] and Cook and Aanderaa [8], it is extremely probable that

lim
n→∞

tn(M)/n =∞ , (6.6)

which implies that M 6≡ A, but more work remains to be done to establish this rigorously.

UPPER BOUNDS ON tn(exp) AND tn(sin)

To evaluate exp(x) to precision n from the power series

exp(±x) =
∞∑
j=0

(±x)j/j! , (6.7)

it is sufficient to take c27n/ log(n) terms, so

tn(exp) ≤ c28tn(M)n/ log(n) . (6.8)

Theorem 6.1 shows that the bound (6.8) may be reduced by a factor of order
√
n/ log(n).

Theorem 6.1
tn(exp) ≤ c29

√
n tn(M) (6.9)

and

tn(sin) ≤ c30
√
n tn(M) . (6.10)

12



Proof. To establish (6.9), we use the identity

exp(x) = (exp(x/λ))λ (6.11)

with λ = 2q, where q = bn
1
2 c. If [a, b] is the domain of x, and c = max(|a|, |b|), then

|(x/λ)r/r!| ≤ 2−qr , (6.12)

if r is large enough that

cr ≤ r! . (6.13)

Hence, it is sufficient to take r = dn/qe terms in the power series for exp(x/λ) to give an abso-
lute error of order 2−n in the approximation to exp(x/λ). Since exp(x/λ) is close to unity, the
relative error will also be of the order 2−n for large n. From (6.11), q squarings may be used to
compute exp(x) once exp(x/λ) is known.

The method just described gives exp(x) to precision n − n
1
2 , for the relative error in exp(x/λ)

is amplified by the factor λ. This may be avoided by taking r = dn/qe+ 1, and either working

with precision n+ n
1
2 , or evaluating

exp(|x/λ|)− 1 '
r∑
j=1

|x/λ|j/j! (6.14)

and then using the identity

(1 + ε)2 − 1 = 2ε+ ε2 (6.15)

to evaluate exp(|x|)−1 without appreciable loss of significant figures. Thus, (6.9) follows (using
Lemma 3.2 if necessary).

The proof of (6.10) is similar, using the identity

sin(x) = ±2 sin(x/2)
√

1− sin2(x/2) , (6.16)

q times to reduce the computation of sin(x) to that of sin(x/λ) (recall Lemma 3.9).

REMARKS. If x is a rational number with small numerator and denominator, the time re-
quired to sum r terms in the power series for exp(x/λ) is O(rn), and the time required for
q squarings is O (qtn(M)). Thus, choosing r = b

√
tn(M)c and q = dn/re gives total time

O
(
n
√
tn(M)

)
. It is also possible to evaluate exp(x) in this time for general x, by using a form

of preconditioning to reduce the number of multiplications required to evaluate the power series
for exp(x/λ).

A NUMERICAL EXAMPLE

The following example illustrates the ideas of Theorem 6.1. Suppose we wish to calculate e to
30 decimal places. The obvious method is to use the approximation

e '
28∑
j=0

1/j! (6.17)

(since 29! ' 8.8× 1030). On the other hand

e '

 10∑
j=0

1

j! 256j

256

(6.18)
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also gives the desired accuracy (since 11! 25610 ' 4.8 × 1031). Thus, the computation of 18
inverse factorials may be saved at the expense of 8 squarings.

Similarly, the computation of e to 106 decimal places by the obvious method requires the sum
of about 205,030 inverse factorials, but the approximation

e '

1819∑
j=0

1

j! 21820j

21820

, (6.19)

requiring only 1820 terms and 1820 squarings, is sufficiently accurate.

BASE CONVERSION

Schönhage has shown that conversion from binary to decimal or vice versa may be done in time

O
(
n (log(n))2 log (log(n))

)
(see Knuth [13, ex. 4.4.14 (revised)]). We describe his method here,

as a similar idea is used below to improve Theorem 6.1.

Let β > 1 be a fixed base (e.g. β = 10), and suppose we know the base β representation of an

integer x, i.e. we know the digits d0, . . . , dt−1, where 0 ≤ di < β and x =
t−1∑
0

diβ
i. Suppose that

n-bit binary numbers can be multiplied exactly in time M(n), where

2M(n) ≤M(2n) (6.20)

for all sufficiently large n. (This is certainly true if the Schönhage-Strassen method [13, 23] is
used.) We describe how the binary representation of x may be found in time O (M(n) log(n)),
where n is sufficiently large for x to be representable as an n-bit number (i.e. 2n ≥ βt).

Without changing the result, we may suppose t = 2k for some positive integer k. Let the time
for conversion to binary and computation of β2

k
be C(k). Thus, we can compute βt/2 and

convert the numbers x1 =

t/2−1∑
0

diβ
i and x2 =

t−1∑
t/2

diβ
i−t/2 to binary in time 2C(k− 1), and then

x = x1 + βt/2x2 and βt =
(
βt/2

)2
may be computed in time 2M(n/2) +O(n). Thus

C(k) ≤ 2C(k − 1) + 2M(n/2) +O(n) , (6.21)

so

C(k) ≤ 2M(n/2) + 4M(n/4) + 8M(n/8) + . . .+O(n log(n))

≤ O(M(n) log(n)) (6.22)

(using (6.20)).

The proof that conversion from base 3 to base β may be done in time (6.22) is similar, and once
we can convert integers it is easy to convert floating-point numbers.

COMPUTATION OF e AND π

We may regard e− 2 = 1/2! + 1/3! + . . . as given by a mixed-base fraction 0.111 . . ., where the
base is 2, 3, . . . Hence, it is possible to evaluate e to precision n, using a slight modification of
the above base-conversion method, in time O(M(n) log(n)).

Similarly, artan(1/j) may be computed to precision n in time O(M(n) log2(n)), for any small
integer j ≥ 2, and then π may be computed from well-known identities such as Machin’s
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π = 16 artan(1/5)− 4 artan(1/239) . (6.23)

The methods just described are asymptotically faster than the O(n2) methods customarily used
in multiple-precision calculations of e and π (see, for example, Shanks and Wrench [25, 26]). It
would be interesting to know how large n has to be before the asymptotically faster methods
are actually faster. A proof that even faster methods are impossible would be of great interest,
for it would imply the transcendence of e and π.

IMPROVED UPPER BOUNDS ON tn(exp) AND tn(sin)

The following lemma uses an idea similar to that described above for base conversion and com-
putation of e.

Lemma 6.1 If p and q are positive integers such that p2 ≤ q ≤ 2n, then exp(p/q) may be
computed to precision n in time O(M(n) log(n)).

Proof. The approximation

exp(p/q) '
k∑
j=0

(p/q)j

j!
(6.24)

is sufficiently accurate if k is chosen so that

(p/q)k+1

(k + 1)!
≤ 2−n ≤ (p/q)k

k!
. (6.25)

Since p2 ≤ q, (6.25) gives k!qk/2 ≤ 2n, so certainly

k!qk ≤ 22n , (6.26)

Hence, a method like that described above for the computation of e may be used, and (6.26)
ensures that the integers in intermediate computations do not grow too fast.

From Lemma 6.1 it is easy to deduce Theorem 6.2, which is an improvement of Theorem 6.1 for
large n. The methods used in the proof of Theorem 6.1 and the following remarks are, however,
faster than that of Theorem 6.2 for small and moderate values of n.

Theorem 6.2 If M(n) satisfies (6.20) then

tn(exp) ≤ c32M(n) log2(n) (6.27)

and

tn(sin) ≤ c33M(n) log2(n) . (6.28)

Proof. Without affecting the result (6.27) we may assume that n = 2k for some positive
integer k. (This assumption simplifies the proof, but it is not essential.) Given an n-bit fraction
x ∈ [0, 1), we write

x =
k∑
i=0

pi/qi , (6.29)

where qi = 22
i

and 0 ≤ pi < 22
i−1

for i = 0, 1, . . . , k. By Lemma 6.1, exp(pi/qi) can be computed,
to sufficient precision, in time O(M(n) log(n)), so

15



exp(x) =
k∏
i=0

exp(pi/qi) (6.30)

can be computed in time O(M(n)(log(n))2). This establishes (6.27), and the proof of (6.28) is
similar.

Corollary 6.1
tn(exp) ≤ c34n(log(n))3 log log(n) (6.31)

and

tn(sin) ≤ c35n(log(n))3 log log(n) . (6.32)

Proof. This is immediate from the bound (6.5) and Theorem 6.2.

Corollary 6.2
tn(E[a,b](f)) ≤ c36n(log(n))3 log log(n) ,

where

f(x) = log(x), exp(x), sin(x), cos(x), tan(x), sinh(x),

cosh(x), tanh(x), arsin(x), artan(x), arsinh(x),

etc, and [a, b] is any finite interval on which f(x) is bounded.

Proof. This follows from (6.5), Corollaries 5.1 (and the note following), 5.2, 6.1, and Lemma 3.2.

7 Best constants for operations equivalent to multiplication

In this section, we consider in more detail the relationship between the mp operations D, I,M,R,
and S defined in Section 3. It is convenient to consider also the operation Q of forming inverse
square roots (i.e., y ← x−

1
2 ). From Theorem 3.1, if we can perform any one of these operations

(say Y ) to precision n in time tn(Y ), then the time required to perform any of the other opera-
tions to precision n is at most a constant multiple of tn(Y ).

Definition 7.1 CXY is the minimal constant such that, for all positive ε and all sufficiently
large n, the operation X can be performed (to precision n) in time (CXY + ε)tn(Y ) if Y can be
performed in time tn(Y ), where X,Y = D, I,M,Q,R or S.

The following inequalities are immediate consequences of Definition 7.1:

CXY CY Z ≥ CXZ (7.1)
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and

CXY CY X ≥ CXX = 1 . (7.2)

ASSUMPTIONS

To enable us to give moderate upper bounds on the constants CXY , it is necessary to make the
following plausible assumption (compare (4.3), (6.20)) throughout this section: for all positive
α and ε, and all sufficiently large n,

tαn(Y ) ≤ (α+ ε)tn(Y ) (7.3)

for Y = D, I,M,Q,R and S. We also assume (6.6).

Table 7.1 gives the best known upper bounds on the constants CXY . Space does not permit a
detailed proof of all these upper bounds, but the main ideas of the proof are sketched below.

TABLE 7.1 Upper bounds on CXY

X = D I M Q R S

Y = D 1.0 1.0 2.0 3.0 2.0 2.0
I 7.0 1.0 6.0 15.0 14.0 3.0
M 4.0 3.0 1.0 4.5 5.5 1.0
Q 10.0 4.0 6.0 1.0 5.0 3.0
R 7.5 6.0 6.0 3.0 1.0 3.0
S 7.5 5.5 2.0 7.0 9.0 1.0

CIM ≤ 3

Use the Newton iteration

xi+1 = xi − xi(axi − 1) (7.4)

to approximate 1/a using multiplications. At the last iteration it is necessary to compute axi
to precision n, but xi(axi − 1) only to (relative) precision n/2. Since the order of convergence
is 2, the assumptions (7.3) (with α = 1

2) and (6.6) give

CIM ≤ (1 + 1
2)(1 + 1

2 + 1
4 + . . .) = 3 . (7.5)

CQM ≤ 4.5

Use the third-order iteration

xi+1 = xi − 1
2xi

(
εi − 3

4ε
2
i

)
(7.6)

where

εi = ax2i − 1 (7.7)

to approximate a−
1
2 . At the last iteration it is necessary to compute ax2i to precision n, ε2i to

precision n/3, and xi
(
εi − 3

4ε
2
i

)
to precision 2n/3. Thus

CQM ≤ (2 + 1
3 + 2

3)(1 + 1
3 + 1

9 + . . .) = 9
2 . (7.8)

Note that this bound is sharper than the bound CQM ≤ 5 which may be obtained from the
second-order iteration
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xi+1 = xi − 1
2xiεi . (7.9)

CRD ≤ 2

Use Newton’s iteration

xi+1 = 1
2(xi + a/xi) (7.10)

to approximate
√
a.

CMS ≤ 2

This follows from (3.19) and our assumptions.

CIS ≤ 5.5

Use the third-order iteration

xi+1 = xi − xi
(
εi − ε2i

)
(7.11)

where

εi = axi − 1 (7.12)

to approximate 1/a.

CQS ≤ 7

Use the third-order iteration (7.6).

CSI ≤ 3

From the proof of Lemma 3.7,

tn/3(S) ≤ tn(I) +O(n) . (7.13)

The result follows from the assumption (7.3) with α = 3. (This is the first time we have used
(7.3) with α > 1. The assumption is plausible in view of the Schönhage-Strassen bound (6.5).)
Upper bounds on CSQ and CSR follow similarly.

CMI ≤ 6

This follows from (7.1) and our bounds on CMS and CSI . Similarly for the bounds on CMQ,
CMR and CRI .

CQR ≤ 3

Use the identity

a−
1
2 =

1

λ

(√
a+ λ−

√
a− λ

)
+O

(
λ2/a5/2

)
, (7.14)

where λ is a power of 2 such that

2−n/3−1 ≤ λ/a ≤ 21−n/3 . (7.15)
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Thus

t2n/3(Q) ≤ 2tn(R) +O(n) , (7.16)

and the result follows from (7.3).

CDR ≤ 7.5

Use the identity

b/a =
1

λ

(√
a2 + λb−

√
a2 − λb

)
+O

(
λ2b3/a5

)
, (7.17)

where λ is a power of 2 such that (for b 6= 0)

2−n/3−1 ≤ λb/a2 ≤ 21−n/3 . (7.18)

Thus

t2n/3(D) ≤ tn(S) + 2tn(R) +O(n) , (7.19)

and the result follows.

CIR ≤ 6

a−1 = (a2)−
1
2 , (7.20)

so

CIR ≤ CSR + CQR ≤ 6 . (7.21)

The bound on CIQ also follows from (7.20), and then the bound on CRQ follows from

a
1
2 =

(
a−1

)− 1
2 .

8 Comparison of some mp methods for nonlinear equations

In this section, we briefly consider methods for finding multiple-precision solutions of non-linear
equations of the form

f(x) = 0, (8.1)

where f(x) can be evaluated for any x in some domain. Additional results are given in [38].

There are many well-known results on the efficiency of various methods for solving (8.1), e.g.,
Hindmarsh [10], Ostrowski [20], Traub [27] and the references given in Section 1, but the results
are only valid if arithmetic operations (in particular the evaluation of f(x), f ′(x) etc.) require
certain constant times. The examples given below demonstrate that different considerations are
relevant when multiple-precision arithmetic of varying precision is used.

For simplicity, we restrict attention to methods for finding a simple zero ζ of f by evaluating
f at various points. We assume that f has sufficiently many continuous derivatives in a neigh-
bourhood of ζ, but the methods considered do not require the evaluation of these derivatives.

Since f(x) is necessarily small near ζ, it is not reasonable to assume that f(x) can be evaluated
to within a small relative error near ζ. In this section, an evaluation of f “with precision n”
means with an absolute error of order 2−n. We suppose that such an evaluation requires time
w(n) = tn(E(f)), where

w(cn) ∼ cαw(n) (8.2)
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for some constant α > 1 and all positive c. Since α > 1, the bound (6.5) and condition (8.2)
give

lim
n→∞

tn(M)/w(n) = 0 , (8.3)

so we may ignore the time required for a fixed number of multiplications and divisions per iter-
ation, and merely consider the time required for function evaluations. Our results also apply if
α = 1, so long as (8.3) holds. (For example, the evaluation of exp(x) by the method of Corollary
6.1 requires time w(n) ∼ c37n(log(n))3 log log(n), which satisfies (8.2) with α = 1, and also
satisfies (8.3).)

Definition 8.1 If an mp zero-finding method requires time t(n) ∼ C(α)w(n) to approximate
ζ 6= 0 with precision n, where w(n) and ζ are as above, then C(α) is the asymptotic constant
of the method. (Not to be confused with the asymptotic error constant as usually defined for
fixed-precision methods [2].)

Given several mp methods with various asymptotic constants, it is clear that the method with
minimal asymptotic constant is the fastest (for sufficiently large n). The method which is fastest
may depend on α, as the following examples show.

DISCRETE NEWTON mp METHODS

Consider iterative methods of the form

xi+1 = xi − f(xi)/gi , (8.4)

where gi is a finite-difference approximation to f ′(xi). If εi = |xi − ζ| is sufficiently small, f(xi)
is evaluated with absolute error O

(
ε2i
)
, and

gi = f ′(xi) +O(εi) , (8.5)

then

|xi+1 − ζ| = O
(
ε2i

)
, (8.6)

so the method has order (at least) 2.

The simplest method of estimating f ′(xi) to sufficient accuracy is to use the one-sided difference

gi =
f(xi + hi)− f(xi)

hi
, (8.7)

where hi is of order εi, and the evaluation of f(xi+hi) and f(xi) are performed with an absolute
error O

(
ε2i
)
. Thus, to obtain ζ to precision n by this method (N1), we need two evaluations of

f to precision n (at the last iteration), preceded by two evaluations to precision n/2, etc. (The
same idea is used above, in the proof of Theorem 5.2.) The time required is

t(n) ∼ 2w(n) + 2w(n/2) + 2w(n/4) + . . . . (8.8)

Thus, from (8.2) and Definition 8.1, the asymptotic constant is

CN1(α) = 2(1 + 2−α + 2−2α + . . .) = 2/(1− 2−α) . (8.9)

Since

2 < CN1(α) ≤ 4 , (8.10)

the time required to solve (8.1) to precision n is only a small multiple of the time required to
evaluate f to the same precision. The same applies for the methods described below.
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Using (8.7) is not necessarily the best way to estimate f ′(xi). Let p be a fixed positive integer,
and consider estimating f ′(xi) by evaluating f at the points

xi − bp/2chi, xi − (bp/2c − 1)hi, . . . , xi + dp/2ehi .

(The points need not be equally spaced so long as their minimum and maximum separations are
of order hi.) Let gi be the derivative (at xi) of the Lagrange interpolating polynomial agreeing
with f at these points. Since estimates f ′(xi) with truncation error O (hpi ), we need hi of order

ε
1/p
i . Then, to ensure that (8.5) holds, the function evaluations at the above points must be

made with absolute error O
(
ε
1+1/p
i

)
. Thus to obtain ζ to precision n by this method (Np) we

need one evaluation f to precision n and p evaluations to precision n(1 + 1/p)/2, preceded by
one evaluation precision n/2 and p to precision n(1 + 1/p)/4, etc. The asymptotic constant is

CN (p, α) =

(
1 + p

(
p+ 1

2p

)α)/
(1− 2−α) . (8.11)

Let

CN (α) = min
p=1,2,...

CN (p, α) , (8.12)

so the “optimal mp discrete Newton method” has asymptotic constant CN (α). From (8.11), the
p which minimizes CN (p, α) also minimizes p1/α(1 + 1/p), so the minimum for α > 1 occurs at
p = bα− 1c or dα− 1e. In fact, p = 1 is optimal if

1 ≤ α < log(2)/ log(4/3) = 2.4094 . . . , (8.13)

and p ≥ 2 is optimal if

log(1− p−1)
log(1− p−2)

< α <
log(1 + p−1)

log(1 + 1/(p(p+ 2)))
. (8.14)

The result that method N2 is more efficient than method N1 if α > 2.4094 . . . is interesting,
for N2 requires one more function evaluation per iteration than N1, and has the same order
of convergence. The reason is that not all the function evaluations need to be as accurate for
method N2 as for method N1. We give below several more examples where methods with lower
order and/or more function evaluations per iteration are more efficient than methods with higher
order and/or less function evaluations per iteration.

For future reference, we note that

1 < CN (α) ≤ 4 , (8.15)

CN (1) = 4 , (8.16)

and

CN (α)− 1 ∼ eα2−α (8.17)

as α→∞.

A CLASS OF mp SECANT METHODS

It is well-known that the secant method is more efficient that the discrete Newton method
for solving nonlinear equations with fixed-precision arithmetic [2, 20]. For mp methods the
comparison depends on the exponent α in (8.2).
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Let k be a fixed positive integer and pk the positive real root of

xk+1 = 1 + xk . (8.18)

The iterative method Sk is defined by

xi+1 = xi − f(xi)

(
xi − xi−k

f(xi)− f(xi−k)

)
, (8.19)

where the function evaluations are performed to sufficient accuracy to ensure that the order

of convergence is at least pk. Thus, S1 is the usual secant method with order p1 = 1+
√
5

2 =
1.618 . . . ;S2, S3 etc. are methods with lower orders p2 = 1.4655 . . . , p3 = 1.3802 . . ., etc. With
fixed-precision S1 is always preferable to S2, S3 etc., but this is not always true if mp arithmetic
is used.

Suppose i and k fixed, δ > 0 small, and write ε = |xi−k − ζ| and p = pk − δ. Since the order of
convergence is at least p, we have

|xi − ζ| = O
(
εp

k
)
, (8.20)

|xi+1 − ζ| = O
(
εp

k+1
)
, (8.21)

|xi − xi−k| = O(ε) , (8.22)

and

|f(xi)| = O
(
εp

k
)
. (8.23)

For the approximate evaluation of the right side of (8.19) to give order p, the absolute error in

the evaluation of f(xi) must be O
(
εp

k+1
)
, and the relative error in the evaluation of (f(xi) −

f(xi−k))/(xi − xi−k) must be O
(
εp

k+1−pk
)
, so the absolute error in the evaluation of f(xi−k)

must be O
(
εp

k+1−pk+1
)
. From (7.18), for δ sufficiently small,

pk+1 − pk + 1 > p , (8.24)

so the evaluation of ζ to precision n by method Sk requires evaluations of f to precision
n, n/p, n/p2, . . . , n/pk−1, 2n/pk+1, 2n/pk+2, etc. Thus, the asymptotic constant is

CS(k, α) = 1 + p−α + . . .+ p(1−k)α + (2p−(k+1))α(1 + p−α + . . .)

=
1− p−kα + (2p−(k+1))α

1− p−α
, (8.25)

where (after letting δ → 0) p = pk satisfies (8.18).

We naturally choose k to minimize CS(k, α), giving the “optimal mp secant method” with
asymptotic constant

CS(α) = min
k=1,2,...

CS(k, α) . (8.26)

The following lemmas show that the optimal secant method is S1 if α < 4.5243 . . ., and S2 if
α > 4.5243 . . .

Lemma 8.1
CS(k, 1) = 3 + pkk − pk . (8.27)
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Proof. Easy from (8.18) and (8.25).

Lemma 8.2

CS(k, α)− 1 ∼
{

(3−
√

5)α if k = 1 ,

p−αk if k ≥ 2 ,
(8.28)

as α→∞.

Proof. From (8.25),

CS(k, α)− 1 ∼ p−αk − p
−kα
k +

(
2p
−(k+1)
k

)α
(8.29)

as α→∞. If k ≥ 2 then, from (8.18),

pkk = p−1k + pk−1k ≥ p−1k + pk > 2 , (8.30)

so

p−1k > 2p
−(k+1)
k . (8.31)

Thus, the result for k ≥ 2 follows from (8.29). The result for k = 1 also follows from (8.29), for
2p−21 = 3−

√
5.

Lemma 8.3

CS(α) =

{
CS(1, α) if 1 ≤ α ≤ α0 ,

CS(2, α) if α ≥ α0 ,
(8.32)

where α0 = 4.5243 . . . is the root of

CS(1, α0) = CS(2, α0) . (8.33)

Proof. The details of the proof are omitted, but we note that the result follows from Lemmas
8.1 and 8.2 for (respectively) small and large values of α.

From (8.25), CS(k, α) is a monotonic decreasing function of α, so the same is true of CS(α).
Thus, from Lemmas 8.1, 8.2 and 8.3,

1 < CS(α) ≤ 3 , (8.34)

CS(1) = 3 , (8.35)

and

CS(α)− 1 ∼ p−α2 = (0.6823 . . .)α (8.36)

as α → ∞. Comparing these results with (8.15) to (8.17), we see that the optional mp secant
method is more efficient than the optimal mp discrete Newton method for small α, but less
efficient for large α. (The changeover occurs at α = 8.7143 . . .)

AN mp METHOD USING INVERSE QUADRATIC INTERPOLATION

For fixed-precision arithmetic the method of inverse quadratic interpolation [2] is slightly more
efficient than the secant method, for it has order PQ = 1.8392 . . . > 1.6180 . . ., and requires the
same number (one) of function evaluations per iteration. For mp arithmetic, it turns out that
inverse quadratic interpolation (Q) is always more efficient than the secant method S1, but it is
less efficient than the secant method S2 if α > 5.0571 . . .
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Since the analysis is similar to that for method S1 above, the details are omitted. The order pQ
is the positive real root of

x3 = 1 + x+ x2 . (8.37)

For brevity, we write σ = 1/pQ = 0.5436 . . .

To evaluate ζ to precision n by method Q requires evaluations of f to precision n, (1−σ+σ2)n,
and σj(1− σ − σ2 + 2σ3)n for j = 0, 1, 2, . . . Hence, the asymptotic constant is

CQ(α) = 1 + (1− σ + σ2)α + (1− σ − σ2 + 2σ3)α/(1− σα)

= 1 + (1− σ + σ2)α + (3σ3)α/(1− σα) (8.38)

from (8.31). Corresponding to the results (8.15) to (8.17) and (8.34) to (8.36), we have that
CQ(α) is monotonic decreasing,

1 < CQ(α) ≤ CQ(1) = 1
2(7− 2σ − σ2) = 2.8085 . . . , (8.39)

and

CQ(α)− 1 ∼ (1− σ + σ2)α = (0.7519 . . .)α (8.40)

as α → ∞. Method Q is more efficient than the optimal mp secant method if α < 5.0571 . . .,
and more efficient than the optimal mp discrete Newton method if α < 7.1349 . . . We do not
know any mp method which is more efficient than method Q for α close to 1.

OTHER mp METHODS USING INVERSE INTERPOLATION

Since inverse quadratic interpolation is more efficient than linear interpolation (at least for α
close to 1), it is natural to ask if inverse cubic or higher degree interpolation is even more ef-
ficient. Suppose 1

2 ≤ µ < 1, and consider an inverse interpolation method Iµ with order 1/µ.
In particular, consider the method Iµ which uses inverse interpolation at xi, xi−1, . . . , xi−k to
generate xi+1, where k is sufficiently large, and the function evaluations at xi, . . . , xi−k are suffi-
ciently accurate to ensure that the order is at least 1/µ and, in general, no more than 1/µ. (The
limiting case I1/2 is the method which uses inverse interpolation through all previous points
x0, x1, . . . , xi to generate xi+1.)

By an analysis similar to those above, it may be shown that the asymptotic constant of method
Iµ is

CI(µ, α) =
∞∑
j=0

(sj(µ))α , (8.41)

where s0(µ) = 1 and

sj(µ) = max
[
µsj−1(µ), 1 + jµj+1 − µ(1− µj)/(1− µ)

]
(8.42)

for j = 1, 2, . . . Space does not allow a proof of (8.41), but related results are given in [20,
Appendix H]. We note the easily verified special cases

CI

(√
5− 1

2
, α

)
= CS(1, α) (8.43)

and

CI(σ, α) = CQ(α) . (8.44)
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The method with maximal order (see [7]) is I1/2, with asymptotic constant

CI(
1
2 , α) =

∞∑
j=2

(j21−j)α . (8.45)

The “optimal mp inverse interpolatory method” is the method Iµ with µ(α) chosen to minimize
CI(µ, α), so its symptotic constant is

CI(α) = min
1
2
≤µ≤1

CI(µ, α) . (8.46)

The following lemma shows that the optimal choice is µ = σ, corresponding to the inverse
quadratic method Q discussed above, if α ≤ 4.6056 . . .

Lemma 8.4 If CI(α) = CI(µ(α), α) then

µ(α) = σ = 0.5436 . . . if 1 ≤ α ≤ 4.6056 . . . , (8.47)

µ(α) is a monotonic decreasing function of α, and

limα→∞ µ(α) = 1
2 . (8.48)

From (8.39),

CI(
1
2 , α)− 1 ∼

(
3
4

)α
(8.49)

as α → ∞, so Lemma 8.4 shows that the optimal inverse interpolatory is more efficient than
methods S1 and Q (as expected), but less efficient than method S2 or the optimal discrete New-
ton method, for large α. In fact CI(α) < CS(α) for 1 ≤ α < 5.0608 . . .

A LOWER BOUND FOR C(α)

The following theorem shows that C(α) ≥ 1 for all useful mp methods. The results above
(e.g. (7.17)) show that the constant “1” here is best possible, as methods with C(α) → 1 as
α→∞ are possible. The minimal value of C(α) for any finite α is an open question.

Theorem 8.1 If an mp method is well-defined and converges to a zero of the functions f1(x) =
F (x)− y and f2(y) = F (−1)(y)− x, where x and y are restricted to nonempty domains Dx and
Dy, and F is some invertible mapping of Dx onto Dy such that tn(E(F )) satisfies (8.2), then
the asymptotic constant of the method satisfies C(α) ≥ 1.

Proof. If C(α) < 1 then, by solving f1(x) = 0, we can evaluate F (−1)(y) (for y in Dy) in time
less than tn(E(F )), for all sufficiently large n. Applying the same argument to f2(y), we can
evaluate F = (F (−1))(−1) in time less than tn(E(F (−1))). Hence, for large n we have

tn(E(F )) < tn(E(F (−1))) < tn(E(F )) , (8.50)

a contradiction. Hence, C(α) ≥ 1.

Conjecture 8.1 For all mp methods (using only function evaluations) which are well-defined
and convergent for some reasonable class of functions with simple zeros,

C(α) ≥ 1/(1− 2−α) . (8.51)
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SUMMARY OF mp ZERO-FINDING METHODS

Of the methods described in this section, the most efficient are:

1. optimal inverse interpolation, if 1 ≤ α ≤ 5.0608 . . . (equivalent to inverse quadratic inter-
polation, if 1 ≤ α ≤ 4.6056 . . .) ;

2. optimal secant method (method S2), if 5.0608 . . . < α ≤ 8.7143 . . . ;

3. optimal discrete Newton, if 8.7143 . . . < α.

For practical purposes, the inverse quadratic interpolation method is to be recommended, for
it is easy to program, and its asymptotic CQ(α) is always within 3.2% of the least constant for
the methods above. Numerical values of the asymptotic constants, for various values of α, are
given to 4D in Table 8.1. The smallest constant for each α is italicized.

TABLE 8.1 Aysmptotic constants for various mp methods

α CN (α) CS(1, α) CS(2, α) CQ(α) CI(α) CI(
1
2 , α)

1.0 4.0000 3.0000 3.6823 2.8085 2.8085 3.0000
1.1 3.7489 2.8093 3.4256 2.6484 2.6484 2.8193
1.5 3.0938 2.2987 2.7241 2.2108 2.2108 2.3219
2.0 2.6667 1.9443 2.2209 1.8954 1.8954 1.9630
3.0 2.1071 1.5836 1.6935 1.5586 1.5586 1.5856
4.0 1.6988 1.3988 1.4248 1.3789 1.3789 1.3898
5.0 1.4260 1.2860 1.2694 1.2677 1.2676 1.2718
6.0 1.2529 1.2105 1.1741 1.1936 1.1930 1.1946
7.0 1.1469 1.1573 1.1137 1.1420 1.1410 1.1416
8.0 1.0838 1.1185 1.0748 1.1051 1.1039 1.1041
9.0 1.0471 1.0898 1.0495 1.0782 1.0770 1.0771

10.0 1.0262 1.0682 1.0328 1.0584 1.0573 1.0573
15.0 1.0012 1.0176 1.0043 1.0139 1.0134 1.0134
20.0 1.0001 1.0046 1.0006 1.0033 1.0032 1.0032

NOTE ADDED IN PROOF. Theorem 6.2 and its corollaries may be improved by a factor
log(n), as described in [37] and [38].
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Postscript (September 1999)

Historical Notes

This paper was retyped (with minor corrections) in LATEX during August 1999. It is available
electronically from http://maths-people.anu.edu.au/~brent/pub/pub032.html.

The related paper Brent [38] is available electronically from http://maths-people.anu.edu.

au/~brent/pub/pub028.html

The paper Kung [14] appeared in SIAM J. Numer. Anal. 12 (1975), 89–96.

Sharper Results

Some of the constants given in Table 7.1 can be improved, e.g. CDM , CRM , CDS , CRS . One
source of improvement is given in a report by Karp and Markstein2.

For example, consider CDM . We want to compute an n-bit approximation to b/a. If xi → 1/a
as in (7.4) and we define yi = bxi, then yi → b/a. Also, if xi satisfies the recurrence (7.4), then
yi satisfies

yi+1 = yi − xi(ayi − b) . (7.4′)

Note that (7.4’) is self-correcting because of the computation of the residual ayi − b. Suppose
xi has (relative) precision n/2. If we approximate yi = bxi using an n

2 -bit multiplication,
compute the residual ayi − b using an n-bit multiplication, then its product with xi using an
n
2 -bit multiplication, we can apply (7.4’) to obtain yi+1 with relative precision n. Assuming xi
is obtained in time ∼ 3M(n/2) ∼ 3

2M(n) (see (7.5)), the time to obtain yi+1 is ∼ 7
2M(n), i.e.

CDM ≤ 3.5, which is sharper than the bound CDM ≤ 4.0 given in Table 7.1.

Similarly, we can obtain CRM ≤ 4.25, which is sharper than the bound CRM ≤ 5.5 given in
Table 7.1. If xi → a−1/2 and yi = axi →

√
a, we compute a precision n/2 approximation xi in

time ∼ 9
2M(n/2) as in Section 7, then apply a final second-order iteration for

yi+1 = yi − xi(y2i − a)/2 (7.9′)

(derived by multiplying (7.9) by a and using (7.7)) to obtain a precision n approximation yi+1

to
√
a.

As a corollary, the time required for an arithmetic-geometric mean iteration [37,38] is reduced
from ∼6.5M(n) to ∼5.25M(n).

The Definition of n-bit Multiplication

Our tn(M) (see Sections 1–3) is essentially the time required to compute the most significant n
bits in the product of two n-bit numbers. In Brent [38], tn(M) is written as M(n). A related
but subtly different function is M∗(n), defined as the time required to compute the full 2n-bit
product of n-bit numbers3. Paul Zimmermann4 observed that smaller constants can sometimes

2Alan H. Karp and Peter Markstein, High Precision Division and Square Root, HP Labs Report 93-93-42
(R.1), June 1993, Revised October 1994. Available electronically from http://www.hpl.hp.com/techreports/

93/HPL-93-42.html
3In Brent [37] we (confusingly) used the notation M(n) for M∗(n).
4Personal communication, 1999.
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be obtained in row Y = M of Table 7.1 if we use M∗(n) instead of M(n). (We denote these
constants by CXM∗ to avoid confusion with the CXM of Table 7.1.) For example, CDM∗ < 3.5
and CRM∗ < 4.25.

It is an open question whether

M(n) ∼M∗(n) as n→∞ ;

with the best available multiplication algorithms (those based on the FFT) this is true5.

Final Comments

Daniel Bernstein6 observed that the time required to compute n-bit square roots can be reduced
further if the model of computation is relaxed so that redundant FFTs can be eliminated. Similar
remarks apply to division, exponentiation etc (and to operations on power series).

In conclusion, 25 years after the paper was written (in 1974), improvements can still be found,
and the last word is yet to be written!

5Similar remarks apply if we consider computing the product of two polynomials of degree n−1, and ask either
for the first n terms in the product or the complete product. Although the first computation is faster (by a factor
of about two) if the classical order n2 algorithms are used, it is not significantly faster if FFT-based algorithms
are used.

6Personal communication, 1999.
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