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THE COMPLEXITY OF MULTIPLE-FRECISION - et oo

ARITHMETIC ' : - -

Richard P. Brent

g

Computer Ceatre, Australt

National University

In studying the complexity of iterative processes it is ususlly assumed that the

arithmetic operations of addition, sultliplication, and division can b, .t

performed In certain constant timea. This sssumption is Invalld if the praecision . %

required increases as the computation proceeds. We give upper and lower bounds on the
numbet of single-precision operations required to perform vapious multiple-precision i
operations, and deduce some interesting consequences concerning the relative

efficiancies of methods for solving nonlinear sguations using variable-length

maitiple-precision arithmetic.

1. Introduction ) . L

Traub [28] defines analytic computational cemplexity to be the owﬂaﬁwwm% ..mu.._.oané of
analytlc or continuous processes. Apart from some work by Schultz [24] on differential
equations, mest recent results have concerned [terative mathods for the solution of nonlinear
equat jops or systems of eguations., See, for example, Brent [1, 3, 61, uuna,n.,..mm:omn_mn and
Wolfe [7]1, Kkung [Ll4, 15], Kung and Traub [16-18), Paterson {21], Rissanen [22], Treub [28-321

and Mozniakowski [35, 36].
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The authors just cited make the (usually implicit) assunption that arithmetic is performed

with a fixed precision throughout a given computation. This ls prebably true for most

Supposa, though, that we are concerned with an b

X of

; ¥ oor ¢ w 1o

computations programmed in Foptran or Algol 60 .

iterative process for approximating an irrational number ¢ mmon_ example, 2

the iterative precess should {theoretically) generate a sequence nh.w of

arbitrary accuracy. 5

On a computing machine .

real numbers, such that & =2 lim Ep s provided ne rounding errors ocour.

e

each z; han to be approximated by a finite-precision machine-representabje number m.n.. » and

¢ = lim m..m can only hold if the precision increases indefinitely as i + = ., In practice, only
L+=

a Finlte number af members of the sequence ﬁmmu w11l ever be gensrated, but if an sccurate

approximation to § i required it may be possible to save a large amount of computational work

by using variabie precision throughout the cemputation. This 1s i1ikely to become easier to

program as new tanguages (and possibly hardware), which allow the precislion of floating-point

numbers to be varied dynamically, are developed.

In wmonwon 7 we discuss the effect of using variable precision when soiving nonlipear

G ot fc
momon.m uo.:ﬁ an. we nObuqu the cowplexity of the basic multiple-precision

S

me._mﬂ mosm.
3

m."..;vaml.n oumﬂm»hoau. r.n assume that a atandard floating-point number representation is used,

with a bloary m.h.mnnwos om n U.m,nm. (Similar results apply for any fixed base, for example,

10 .) He are intersstaed in the case where 5 Is much greater than the wordlength of the

machine, 80 the fraction occupies several words. For simplicity, we assume thatr the exponent
field has a fixed length and that numbers remain in the asllowable range, sc problems of exponent
overflow and underflow may be neglasted. Hote that our assumptions ruls out exotic aumber
representationa (for example, logarithmic {i] or modular [33, 34] reprasentations} in which it im
poasible to perform some {but probably not all) of the basic operations faster than with the
standard dnvamwmﬂ.ﬂmﬁwon. To rule out “table-lookup" methods, we assume that a random-access

memory of bounded size and & bounded number of sequential tape units are avaflable. {Formally,

our results apply to mltitape Turing machines.)

In Sections 2 to & we lgnore "constant' factors, that Is, factors which are bounded as
n + =, Although the constant factors are of practical importance, they depend on the computer
and implementation as well as on details of the analysls. Certain machine-Independent constants

are gstudied in Sectiona 7 and 8. .

If B isa Eﬁﬂuuzivﬂmnmuhoa operation, with operands and result represented as above
)

(that is, "precision n * numbers), then w:ﬁmu denotes the worsf-case time required to perform



178

i ot L et

8§ , obtaining the result with a relative error at uﬁin 2 » t:an_n g is indepeandent of #n .

e s b s femedn ot

We assume that the computation s performed on a mon.hnw auasga ::omm single~-precision

instructlons have certain constant axscutfon times. .25 mowwo:msm nwmp:h».mo: ‘follows that in

Hoperoft [11]. - -

DEFINITION 1.1. B is linearly redwoible to C (written B % £ ), if i.au.a .:“ B waa»nmsu
conatant X such that

anmmu = hﬁnnh.u (1.1

. TR

for all sufficiently large n . 8 is linearly equivalent to € {written B E( ) 1f B s ¢

ay ot .

and £5 8,

In Section 2 we consider the complexity of multiple-precision addition and some linearly

equivalent operations. Then, in Section 3, we show that muttiple-precision a?»whca ao:ﬁ:nwnmou

of sguares or square roots, and a few other operations are linearly ne..wc?._.as.n no ﬂﬁn&ﬁ.hnwd»o:.

Most of these results are well known [8, 9].

Sections 4 and 5 are concerned with the 'operations” of evaluating Eﬁo:au.nu?._.u. logarithms,

ot mE -t

and the standard tirgopometric and hyperbolic wﬁ.nnhoau Am?. muénu. no»:. -and s8¢ on)., It eﬁ.nu

'y + VET L T s R
out that most of {(and probably all) these operations are w»:@ﬁ.&. un_._mﬁ-wczn 8O “_.o:m hu omn.nur..

EON SN

restrictions are imposed.

Section & deals with the relationship between the four equivalence classes established in' -

Sections 2 to 5, and several upper bowumds on the complexity of operations In these'classen are

given. Tha best known constants relating operations which are lipearily equivalent to -

multiplication are given in Section 7. . R T

Finally, in Section #, we compare the e#fficiencies of various methods mou. solving :u:.,_.»samu.

NN

equatlons uslng variable-length multiple-precislon nduﬁ.ﬁﬁﬁ»n. the dauwwuﬁ. omm»nwnsn»am mu,a

ol

Bay be rather surprising. The results of Sections 4% to 8 are n_mwnu.u« oW .

o . N s
e I B TS FL O AR

«+.  denote nndnamu positive ngaa_ﬂ:nu ::hnr do not nunu to

SRR . v

En the analysis below, e Gy

be specifled Further. The notatlon f~ g means that lim fn}/gln) = ) .hat__g £, = §{g), means

5 e

that |fin}| = Kg(n) Ffor some constant X and all suficiently large n . "Finmlly, the

abbreviation ‘mp" standa for "variable-length multiple-precision’.

ir

2. Additfon and linearly equivalent operations

Let A denote the operation of multiple-precision addition. Any reasonable implementation
of fleating-peint additlon, using at least one guard digit to avold the possible occurrence of

large relative errors, gives

<
nuoi Zon . {2.1)
Convaraely, from the assumptions stated in Section I, it is clear that
F
w:t_u zog . {2.2)

Hence, the complexity of multiple-precision addition is easily established. [For the cperations
discussed in Sections 3 and § the results are less trivial, in fact the conjectured lower bounds

corresponding to (2.2) have not been proved rigorously.}

It is easy to sea that bounds like {2.1) and (2.2} hold for multiple-precision subtraction,
and muitiplication or division of a multiple-precision nmumber by a single-precision number {or
sven by any ratlional number with bounded numerator and denominator). Hence, all these operation:

are Linearly equivalent to addition.

3. Multipiication and linearly equivalent operations

Let p, Iy M+ # and 5 denote the multiple-precision operations of division, taking
reciprocals, multiplication, extraction of square roots and forming squarss, respectively. In
this asction, we show that all thede operations are linsarly aquivalent. The proofa are
stralghtforward, but the result is surprising, ae it seems intuitively obvious that taking a
square root Ie inherantly "more difficult" than forming a square, and similarly for division *
versus multiplication. (Some bounds on the relative difficulty of these operations sre given in

Section 7.)
LEMWA  3.1.
Mz Sec4d . (3.1)
Proof. Clearly

// ¢, (1)

= »:?3 = o, (3.2)

80 the result follows from (2.1).
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i

Sharp upper bounds on w;:: are not nesdad,in this section; e we un.mon ‘thep umtil Ssctien

6. Lemmag 3.2 and 3.3, although weak, are sufficlent for our present vﬁuwn_au.,.; '

LB 3.2, Por all positive n ,

T mmreE e TYEL

£, M) 5 0 E (M) . . (3.3)

Proof. First assume that » is divisible by 3 , and consider operations on the n-bit

[, B e
fractions only. If we can miltiply n-bit nusbers with relative error u.d:uo then we ca

multiply #/3-bit numbers exactly Tnm_h-mnn uxxm » uqo u. Thus, & 2n-bit fraction « -may be

split wp lnto

Hupu+»uw+.:+»m%.

whers A = m..:\w and @, b, ..., f ars integers in m..o, ua\J s and the product of.two’such
Mm-bit fractions may be formed exactly with 36 exact multiplications of *n/3-bit sumbers and

sone additions. Thus oL P

(M) 2 362 () + o t, (A) ’ o (3.5}

: e e Ly 3
and the result follows from Lemma 3.%1. Trivia) modifleations to the ovoqumm_ndom auffice, if n
1

is not divisibla by 3 . . . IS TR T
ot T

LEMA 3.3, PFor some constant e_ < 1,

6

t ) S at, () CoeED S e w1 (306)

for all aufficiently large n . . I T

Proof. If a, b, e snd d are integers in ?. uau y the identity

(atAbMevhd) = ao + A(bosad) + 32bd | _ (an

with A = 27 , may be used to obtain the products go and bd from one Bu-bit product. Thus

wo__:S s »muc_: tay . {3.8)

The rasult {with e @ 3/u ) follows if »n is sufflciently large that nman_s = 20, . (We have

issumed that the time required for one na-bit multiplication is half the time required for twa

independant n-bit multiplications, but much weaker aggumpticns would be sufficlent.}

The foilowing lemma will be used to estimate the work required for multiple-precision

divisfons and aquare roots.

LEMA 3.4, Given o € (0, 1) , therse ig a conatant 2y such that, for any integars

Mos sees :ﬂ satisfying
l=n, = ﬂh.: (3.2
d
Jor J=0,1, .cv, b, we have
W t (M) s ot (M) . (3.10
P g
Proof, Let X be large epough that
1. (3.11
From {3,9) and (3.11),
b 0 2 At o (122

for J =0, 1, vesy Lp/RY , provided a.q.r is sufficiently large for Lemma 3.3 to be applicable,

Thus,
2
M n: M) = wua:&T + ag + og t W + o . {3.11)
J=0 4
where the term 2y allows for those ﬁ: (M} for which Lemma 3.3 is not applicable, If
F)
ap = kf(2-e ) + 7, (3.14}

the result follows from (3,13),

The following lemma shows that multiple-precision multiplication is linearly equivalent to

squaring. This result Is essentially due to Floyd {93.
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LEMMA 3.5, . o

Mzs. B ¢ B 1)

Proof. Since squaring is a special casa of multiplication,

L . (3.16)
Conversely, we may use the identity
Whab = (atib)? - (a-ab)? | (2.7 !
where A is a pawer of 2 chosen so that . e
¥ s |Abla) s 2 (3.18)

funless @ = 0 or t =6 ). This scating is necessary to avoid exceasive cancellation in

. e [
(3.17). (A detafled discussion of a similar situsation is given {n Brent {51.} Frrom (3.17),

£ (M) % 28 (S) ¥ 3t () + e, (3.19)

~o M& 5 foliows from Lemma 3.1.
.
fatd

The next two lemmas show that multiple-precisich’ Eﬁmvwmﬁ.ﬁ.oa is linearly equivalent to

- g

taking reciprocals and to division. The idea of the proof of Lamme 3.6 is to use a Newton

iteration involving only muitiplications and additions to approximate 1/a : u.._noﬁv__numhowap vork

18 gaved by starting with low precision and approximately doubling the precision at each -

iteration. The basic idea is well-known and has even bsen implamanted in hardwars.

The possibility of saving work by increasing the precision at each iteration is examined

ore closely in Sections 7 and 8. .

LEMMA 3.6, .

Ispaw, {3.20)

Proof. Consider th- iteration cT

LI u.mmu..nau.u

skained by applying NHewton's method to the aquation h...“_. ..Dua.nm . 4

- f1oe 1a=
z; = (L-eg)a™ {3.22)

then substitution in {3,21) shows that

(3,27

gso the order of convergence im two, A single-precision computaticn is sufficient to give an

initial approximation such that fe | = & , and it follows from (3.23) that

-2 (3.2

for 2l F2 0.

In deriving (3.24) we have assumed that (3,21) is satisfied exactly, but a result like

(3.24) holds so long as the right hand side of (3,21) is evaluated using a precision of at leas:

mh...u bits, Thus, an »n-bit approximation to nnu ¢an be obtained by performing :amu:,_
2 3 _.Ho_wm: 1-1 .
Itevations of (3,22} with precision at least 2, 27, 27, ..., 2 ., n at each iteratior
From Lemma 3.8 (with o 2 § }, this gives
¢ (M} . (3.2¢
5,0 = et (M)
Sincs b/fa = b{i/a) , it foliows that
{3.2¢
wzcuu = nwwwaﬁs »

g0 D&M . Since I 35D is trivial, the proof is complete.

From ab = a/{l/b) it is clear that M & P . The proof that M & T is not quite so

cbvicus, and uses the equivalence of multiplication and squaring (Lemma 3.5),

LEMMA 3.7.

MsT. (3.27
Proof. We may apply the ldentity
202" = A O - (1)) (3.2¢

to obtaln an approximation to nu » using oniy the operations of taking reciprocals, addition (-

subtraction) and multiplication by powers of two, If a # 0 , choose X to be a power of two

such that
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m|=\unp < |ag| < uwn:\m , Tt s e g ng)

\nd evaluate the right hand side of (3.28), using precision n . This gives an approximation to

22 with precision [Inf3l , se

(3.30)
Srura1 3 Iy

Mdiere the subseripts denote tie precision. Thus, the result follows from Lammas 3.2 and 3.5,

To conciude this section we consider the complexity of multiple-precision aquare roots.

“esults like Lemmas 3.8 and 3.! actually hold if H.w is replaced by & for eny flxed rational

£ 0 or i {we have already shown this for p = -1 ). , .

LEMHA 3.8

MaR. (3.3L)
Proof. The preot is similar to that of Lemma 3.7, using the approximation

V2 hea-(e2a)?] te at .

LEMMA 3.9,

Rs¥. ) *(3.32)
Proof. The proof is similar to that of Lemma 3.6, using Newton's iteration

(3.33)

g0 ® Alz; v n\uuu '

X .
with precision increasing at cach iteration, te approximate a° , >Hﬁnn5nnwcj.~,w.. it is .m..ouubupm

tu avoid multiple-precision division by using the iteration

u...u H.T:.ﬁn&\w Hw.w_:

¥ ¥

t0 evaluate a .

~¥ L

to approximate a , and then use a° = g.a

The results of Lemmas 3.5 to 3.9 may be summarized in the following:

THEOREM 3,7,

{3.35)

T

[

4. Some regularity conditions

Before discussing the complexity of multiple-precision evaluation of exponentiala,
trigonometric functions, ete,, we need some definitions. Thrvughout this section, let ¢{x) be
a resl-valued function which is positive and memotonic increasing for all sufficientiy large

positive gz .

BEFINITION 4.1. ¢ ¢ ew iff, for all a € (0, i) , For some pesitive X |, for all

sufficiently large z and all Tgr veey Ty satisfying
lsa, <oe {4.1
for 7 =0, viuy Jd , we have
J
5 oéfx,) < ketz) . (8.2
FECE

b€ au iff, for some o, 8 ¢ (0, 1) and all sufficlently large =z ,

$lor} = Bglx) o (4,3)

b €0y iff, for some pusitive Ky Ky and p , there is a monotonic increasing function iV

such that
kyPulz) = o) = k2P yla) (a,u}

for all sufficiently large = .

Hote the gimilarity between the definition of GH and the statement of Lemma 3,4, In

Section §, we need to assume that the time ¢{n) required to perform certain operaticns with
precision n satlafies {4.2), The following lenmas make this agsumption highly plausible.

Lemna 4.1 shows that the “for al: o " in the definition of ew may be replaced by 'for some

a .

LEMMA 4.1, If, for some a € {0, 1} and some positive K, for all sufficiently large =

and all @, ouey x; satisfying (4.1), we have (4.2), than ¢ ¢ ¢

Q L

Proof, Take any o) and u, in (8, 1} , and suppose that (4,1) with a replaced by a
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mplies (4.2) with & replaced by L Let - m, ke a peaitive integer such that nﬂ 5a, . If

n,%) holds with a replaced by Qw for a sequence ﬁ.\nc. ..nu.. ey a._L . .nris {4.1) also holds

Lot weprepnd

ith o replaced by o, for each of the m aubsequences ) e .

Hu.:. HJ- ...u. ﬁ&h. 83.:.— ..-wu cany HHHTH» HNan.,_.- ...w : . Ctiie

o (4,2} hoids with X replaced by kv = :ﬁ& . . CLLb WD

Ay

Lemmas 4.2 and 4.3 show that ¢ € ¢, or ¢ € 4 “is a sufficient condition for ' ¢ € ¢

1 .
ne proof -f Lemma 4.2 Is similar to that of Lemma 3.4 (uaing Lemma 4.1}, so 1s omittad,
LEMMA 4.2,
LA T (5.5}
LEMHA 4.3,
em = ow,‘. i = T T B . 1 n@ ¥ Y(Y4,6)

First suppose that ¢ € &, , 80 {4.4) holds for some function ¢ and soms pesitive

LK, and p . Choose a € (D, i) such that B = of X,/K, €1 . For all ‘sifflédently *1irga

slaz) s Kl Pytan) s K FPplz) = TM%RFTE = B§(x) 4.7

using {%.4} and the monctonicity of ¢ H- so ¢ € on .
. . crieiy we, sar
Conversely, suppose that ¢ € &, , so (8.3} holds for 2ll sufficiently large & (say
Loawtsw e

»> ¢ ) and some a, B € {0, 1) . Choose p small enough that B = o, 80

.o
L.N-D .

$lax) = oPdla) CS ot (4.8)

$lx)  is positive for sufficlently large z , we may assume that

wlx) = sup  lydspF (4,9)
HDMQMF. . S e LA

for #xx, . Thus, Y(z) is monotonic increasing and

vz 2 ¢l /P, (4. 1s

1]
#la) = X, 4z (4.1

>
for T E

By repeated spplication of (4.8) we have, for k z 0 ,
i 2 9?»&\?»&_@ (u.1s

provided nrn.. Z %, « Thus, from (4.9),

Plx) = sup ﬁ@v\wb {u.13
orgy<x
. < ¢(x)/{axIP (4,14
for z 2 .......o...n . Thus,
${x) 2 wpnnﬁi (4,15

and, In view of (4,12}, ¢ ¢ e, .

5, Linear equivalence of varfous elementary functions

In this saction, we copsider the multiple-precision "operations' of evaluating certain
mpmsma.nmn...... functions {log, exp, sin, artan, etc). First we prove three theorems which apply
under fairly general conditions, Theorem 6.1 is a generalization of Lemmas 3.7 and 3.8, and
gives a simple condition under which the evaluation of flx) is at least as difficult as a

multiplication (in the sense of Definition 1.1).

NOTATION. IF f is a real-valued function defined on some finite interval [z, b}, tne
operation of evaluating f{z} to (relative) precision # for x € [a, b] Is denoted by

(n)

mmn.w

“_CJ « If there is no risk of confusion, we write aimply hmn.vwﬁb or E{f) . We sote-

: : (m) .
times write w:CJ for nzmm.n%uw « EC%7[a, b1 is the class of functions with Lipschitz
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continucus m-th  derivatives on [a, b] . We always assume that b > a .

THEOREM 5.1, 1f 7 € 2c'®(a, b] and there ie a poins %, € {a, B) suah that
H:T.ou £ 0, then
Bz M. (5.1)

Proof. For all sufficiently small h , we have (from (2, Lemma 3.21}
M "y
Flzyth) + flag-h) - 2flz,) = #'F {z) + 2tz , . (5.2)

where

3
[E{E T wa_ 1% . (5.3)

Let ¢ = ™ Tow # 0 . Three evaluations of f and some additions may be used to approximate
:

2

xh If K is of order 23 , the resulting approximation to oh° has relative

. using (5,2},

error of order mg:\.u . Proceeding as in the proof of Lemma 3.5, we cee that alx evaluations of

f and some additions may be used to approximats eay to preclsion n/3 , for.any x and y .
L

Applying this result, with & replaced by the stored conptant o 2 s and ¥ replaced by the

omputed ozy , shows that 12 evsluations of f give nmonnwna.smu ® 2y to precision n/3 ,

The result now follows from Lemma 3,2, . ) .
REMARK, If f"(x) is not constant on [a, B] , the point T, may be chosen so that

‘i?aw is rational, so {(5.2) may be used to approximate ru , and the result follows more

~asily {as in the proof of Lemma 3.7).

Theorem 5.2 gives conditions under whick the multiple-precision evaluation of the inverse

function g = %7: of a function f lIs lipearly reducible te the evaluation of f. H.E.E
‘nverse function satisfles g[f{x)} = z .} The condition © f [a, b] could be dropped, if we

nly required the computation of g with an absolute {rather than relative) srror of order

i

THEOREM 5.2, If o f (a, ), Ferc™a, b1, ) #0 on [a, b1 & Z2 M, ad.

w:CJ € ew N o To(5.4)

titen
Blg} s B(f) , (5.4

where g = .w?t and ¢, 18 as in Definition 4.1.

Proof, Since f'(x) is continuous and nonzere on {a, bl , there is no loss of generality

in assuming that

fHz) 2 e3> 0 {5.8)

on [a, ] . Thus, g(y) exists on [o, d] = [f€a), f{b)] . Also, since 9 f {a, b1 , we have

st = e >0 {5.7)

on [a, d] .

To estimate g(y) we may solve ylx) = & by a discrete version of Newton's method, where

Pax) = flz) -y . {5.8)
Consider the iteration
R e?.mu\:u. . (5,9}
where
, = thl)- .
My (v % .L eﬁﬂu:\rk » (5.10)
and the noam.:nn.n.m.ou of _._u. and Hq.ﬁ, is performed with precision :.“.. =nr , giving computed
-n./2
values w.m and wh+w respectively, If mh. is of order 2 ¢ , then
" ,i.m\m
?g.;e.ﬁu.i =2 Cic s (5.11)
and it is easy to show that
2 J.n\u -n,
mm.u.+wum€.: < npm_.w_q.umﬁt: + 2 mw.,...lm&;_n: + 2 Lnum . (5,12}

Since a sufficiently good starting approximation 2, ™ay be found using single-precision

{or at most bounded-precision) computation, {5.12) ensures that
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i
z 3 2 (5.13)
_Hu+wnﬁam_: = nHm_H.u...nQ: »
provided
% ‘yu )
/2
_mm...mé: z2 ¢ (5.14)
Hence, we may approximately double the precision at each iteration, and (5.13} guarantees
. . _ ,nf2
Lonvergence uf order two, A final iteration with ."nu. = 2 will be sufficient to give
: g {5.15)
..su.;-mnm_: =2 oy
Since £(f) ¢ 't , the result follows from (5.4}, (5.7), (5,15}, and Lemma 3.5.
(1} ’ b3 - .w?.wv
THEOREM 5.3. If o | la, b}, feiLc " 'la, b1, flz}f'le) #0 on {fa, s g= s
B(fy e, Elgleif, fr: 3 ew , and »;:: € ep s then Dt ere -
ELf) = E(g) . (5.16)

’ i : Similari;
Proof. 3ince nzﬁb € ¢, Theoren 5.2 applied to f gives E(g) 3 E(f} . ariy,

(-1}

applying Thecrem $,2 to f gives E(f) & B(g) , sv the result follows.

We are now ready to deduce the linear equivalence of mp evaluation of various elementary

. assuming that ¢ {f.] € au. . In view of Lemmas 4,2 and 4.3, this asaumption is
* nvi

functions h.m

very plausible,

COROLLARY 6,1, If c<a<hb, e<d, 1fTfa,dd, mﬂﬁ?.ﬂﬁon; €¢, and

«aﬂmmn.&wﬂmxﬂvu 3 9— . then

. = {5.17)
WHD.UHC.ONV H m.ha.&mnox.bw .

titd,
Proof, From Theorem 5.1, mﬁn.E:omv & M and mmu.muﬂmxﬁu 2 M. b.ﬁ,uou .,nra mmb: CT)

1/axplx) (5.18)

#

exp{-z}

and

opliz) = [expla))? t (5.19)

(for sultable rational X ) may be used to show that hmn.munmxvu = mmn_‘.k.mﬁnxvv for any

e’ <d', FKence, the result follows from Theorem 5.3.
Proof, If I € fa, bl » then Theorem 5.2 shows that

() (n)

m._na.mu_ﬁnxcu s Mmmuwu

{log) , (5.2

. and a proof like that of Theorem 5.2 shows that

(n} (2m) R
.m.mn.w“_:owu H m.mn.&uﬁmxﬁv B {5.%
50 the conclusion of Corollary 1 follows, if
() - ofm) .
mmu.&nmxﬂ - m.nn.muﬁmue_ ' (5.2

Although (5.22) is plausible, no proof of it is known. (The corresponding resulr for

multiplication is given in Lemma 3.2.)

COROLLARY 5.2,

Elainh) = F(cosh) £ E(tanh) I H(arsinh) = E{arcosh} = E(artanh) = Elexp} = E(log) (5,23

on any nontrivigl olosed {ntervals on whioh the regpective fimotions are bounded ond nonaere,

assuming t, (ainh) € ou. sto,

COROLLARY 5.3.
E(gin) = E(cos) = E(tan) = Elarain) = B{arcos} = Elartan) (5,24

on any nontrivial closed intervels on whioch the respactive functions are boinded and nenadro,

asauming t,(sin) € %, ete

REMARKS. The proofs of Corollaries 5.2 and 5.3 are similar to that of Corcllary 5.1 (using
Well-known ldentities), so are omltted, Since exp(ix) = cos{x) + £ sinf{z) , it is plausible
that E{exp) & E{ain) , but we have not proved this, HHn is just conceivable that the evaluation
of exp(a) for complex » is not linearlv reducible to tha svaluatlon of exp{x) For real

€.



6. Upper and lower bounds

-~ s
In this section we give some upper and lower bounds on ﬂ.xgu. wnﬁtu- wanaxmg and

nmnm:i . Since the muitipiicative constants are not specified, the bounds spply equally well to

the operations which are linearly eguivalent to addition, multiplication, etc. (see Sections 2 to

%), The lower bounds are trivial: naﬁw& z e, b M) xo,t {4)2a,n (from (2,2), Lemma 3.1

v

ind Theorem 5.1). The upper bounds are more interesting,

UPPEP BOUNDS ON & (M)

L

the obvious algorithm for multiplication of multiple-precision numbers gives

2
t (M) zo,n", {6.1)
‘ut this is not the best possible upper bound., Karatsuba and Ofman [12] showed that
1.58... . .
t, () = 0,0m . AR (6.2)

«here  1.58 ... = log,3 ., The idea of the proof Ia that, to compute R

(atabNothd) = ao + Madtba) + 3°bd , (6.3)

PR .u.,.;i.;..» e

shera X ks a suitable poewer of two, we compute the three products mo®ag. my = bd , and

i

Ty {ath)}{e+d} , and use the identity
ad + ba = my ~ ?wiu“_ . : _. .. (6.4)

hus, 2n-bit integers can be multipiled with three multiplications of {(at most) ~{n+l)-bit

ntegers, some multiplications by powers of two, and slx additions of {at most) ln-bit integers.

hmie ebservation leads to a recurrence relation from which (6.2) follows,

PEES TR RUSE

Hore compiicated identities like (6.4} may be used to reduce the expovent in:{8.23.:v: -
-zertly Schonhage and Strassen [23] showed that the exponent can be taken arbitvarily elose to

Liity.  Their method gives the best known upper bound

t (M) 2e,n loegi{n)liog log{n) , {6.5})

nd uses an algorithm related to the fast Fourler transform to compute certain convolutions. Fox

a description of this and earlier methods see Xnuth [13 {revised}). Knuth conjecturesa that (6.

15 optimal, though the term log log(n} is rather dubious, {1t may be omitted if a machine wi-

random-access memory of size m?vu for gome Fixed positive p is ngﬁa.w From results of

Morgenstern [19] and Cook and Aandevaa £8], it s extremely probable that

1im ﬁaﬁs\n LR

P * (6.4

which implies that ¥ § 4 , but more work remains to be done to establish this rigorously,
UPPER BOWNDS ON nx.?x..& AND t (sin)

To evaluate explx) to precisfon # from the power zerias

explaz) = ¥ (ex¥ypr
L]

P (6,7
it is sufficient to take ayqn/logln)  terms, so
nunoxm; = ummw:ﬁtuz.\wom?u . (6,8}
Theoram 6.1 shows that the bound {6,8) may be reduced by a factor of order :,w\pomﬁ:u .
THEGREM 6,1.
t (axp) = o, n¥e (i
nlaxp) < 0, 07 (5.9)
and
& (ain) = o n¥e ()
n Sagnt (M) . (6.10)
Proof. To establish (6.9), we use the identity
explz) = (explz/a))?
wplz explz/i)) {6.11)

with A= 29 | whera q = _,.aw.“ « If [a, b] 1is the domaln of z , and o = wax{jal, 16|} , then

» -gr
[{z/n) 70t} = 2 . (6.12}

if r is lapge shough that



Lub

o =t =+ {6,18)

- S e wEeE WE o

it

= fn/q1 terms In the power series for uxm?..;v

.nc. qua\ an

fence, it Is sufficient to take r
Sl T -
exp(x/A} 1s close to

[

ibsolute errcr of order 2 in the approximation to exp(z/i) . Since

imity, the reiative error will alsc be of order 2" for large n . From {6,11), ¢ squarings

may be used to compute exp{x) once expl{z/A) 1s known.

¥ . ,
The method just described gives explz) to precision n ~n" , for the: relative error in

d
exp{z/A} is amplified by the factor A . This may be avoided by taking r = fnfgl+ 1, an
PR EER FI T i

elther working with precision =n + :* . or evaluating

r
expl]=/Al) - 1 nump AT (8.1%)

and then using the fdentity

(e)® - L= 2 ¢ € B (6.15)

to svaluate expl]z|) - 1 without appreciahle losa of algnificant figures. Thus, {6.9) follows

(using Lerma 3.2 if necessaryl).
The proaf of (6.10} is similar, using be identity

sin(z) » £2 sin(z/2) (L-an?(z/2))¥ | {5.16)

4 times to reduce the computation of ainfz} to that of ainlz/A)} (recall Lemma 3.9).

REMARKS 1f x is a rational number with small numerator and denominator, tha time

reguired to sum r terms in the power series for expla/A) is 0O{m) , and the time required

o . ] ,._
for q squarings is QF._;.:;: . Thus, choosing » = ;waesu ] and g = [n/r] "m:au total

e P lae B Tioot
time QTT Q&J . It is also possible to evaluate exp(z) in this time for general x , by
n

using a form of preconditioning to reduce the nusber of multiplications required to evaluate the

power series for exp{z/i) .

A NUMERICAL EXAMPLE

o calculate ¢

=

The following example illustrates the ideas of Theorem 6.1. m:wvoun?sﬂ .:mnd t

te 30 decimal places. The obvious method ia to usa the approximation

anﬁwomﬁu:upen?om?u: (see knuth {13

of an Iateger & , i,e. we know the digfts d

for all sufficiently large n ,

237 15 used.) We describe how the binary representation
0 (Mtn)log(m)

ins
28
8 o M 1/dt
o (6.17)
3¢
(since 291 & 8.8 x 10 }. tn the other hand,
10 286
@ ﬁ T L
f50 712507 {6.18)

also gives the desired ace B X + Thus, the cozputation o
uracy Hﬂhdnm 111256 ™ 4,8 10 u h T f 18
]

inverse factorials a8y be saved at tha expanse of g 8quarings

Similar) the computation of te 10 dac ce T bvio thod
Y » | imal places b he obvioua meth requires th
y { ]

a8
un of about 205,030 inverse factorials, but the approximation

1819 N.ﬂwnc
8 o H 1 y

.H.mo. 71278267

! {6.19)

requird
quiring only 18268 terms and 1820 squarings, ia aufficlently accurate,

BASE CONVERSION

Schonhage has ghown that conversion from bin to decimal i
ag: m Ary acinal or vice versa may be done in tioe

s 8K, W4, 14 (revised)]), We describe hia wethod here

as a similar idea i used below to improve Theorem 6.1

ot B> 1 be a xXe ag . 8 = 10 and suppose we know tha base i} res
L fixed base {e 8. 3, pp bas mMep entati
ntation

or teen dy o, vhere 0xd, <8 and

Suppose t ~bi
2 4 ppose that n-bit binary nutbers can he multiplied exactly in time M(n)

2M4(n) =5 M) .
6.20)

(This im certainly true If the Schénhage-Strassen mathod [13
.

of & may be found in time

» Where n iz sufficientl
y large for x to be re
presantable as an  n-bit pumbe
Ee

{toe. 228",
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3

Withaut changing the result, we may suppose & = 2 for some posltive integer % . Let the
& &/2
time for conversion to binary and cowputation of B pe ¢{k)} . Thus, we can compute §
t/Z-1 i . ) Py TLL At -
and convert the numbers x, = ¥ m.nw and =z, = W m‘mm to binary in time Zclk-1) ,
g £l i

and then z = x * mn...uuw and g% = mwﬁ.uwn may be computed in time 2M{n/2) + 0(n) . Thus

Clk) = 20(k=1) + 2W(n/2) + On) , v ogwiand oF o0 (8.20)

30

Gir et

clk) < 2M(ns2) + Ualn/4) + Bin/8) + oo + 0n.logCn))"
. L % 23]

o{Mn)1og(n}}

A

{using ﬁm.wn;.

The proof that conversion from base 2 to base 8 may be done in time (6.22) is aimilar,

and once we can convert integers it is easy to convert floating-point numbers. BE b T

RO, ARey

COMPUTATEON OF ¢ ANE 7

Ve may regard @ - ? = 1/20 + 1/31 + ... :u8 glven Ly a mixed-base’ fractiomd 0.1, ,. 0,

where the base is 2, 3, ... . Hence, it is posgible to evaluate ¢ to wminwm.wu«.uz.m,, ?”_.E,wsw a,.

alight modification of the above base-conversion method, in time O{M(n)log(m)} ¢ .1 \. .

similarly, artan{l/j) may bs computed to praciston n in time _.o??ﬁonnﬂxz + for any

small integer #§ % 2 , and then 7 may bs computed from wall-known identitiesa such asn- >

w = l6artan(1/5) - dartan(1/239) . e e e (6.23}

The methods just described are asymptotically faster than the o?»w methods customarily -
used in multiple-precision calculations of & and W (sam, for example, Shanka and Wrench [25,

26]}. it would be interesting to know how large n has to be bafore the asysptotically faster

methods ave actuaily faster. A proof that even faster methods are tmposaible wduld be -of great

iy

interest, for it would imply the transcendence of & and # .

IHPROVED UPPER BOUNDS ON w:nme AND n:nuwuu

The folliowing lemma uses an idea similar to that describad above for bass converaion and

B e N

computation of g ,

LEM¥A 5.1,
If p and q are positive intagere aush thar nm £q =2, then
may be aomputed to precision »n in tims uﬁ,ﬁaupcn?: n . e
Proof. the approximation
. k
explp/q) o} Emw_w..
fo (6.2u
is sufficiently accurate if k is chosen so that
k+l
(p/q) - (prg)*
ey = 7 < )
+1}1 - *
H%l (6.25
2
Since p* xgq , (6.25) glives faw\m = 2" | g0 certainly
»Ew = 2
{6.26)

Zw_unm- a method 1like that dascribed above for the Computation of may be used and {§.26
e Y ¥ +26)

ensures that the hﬂ.naﬂan.m in intermediate cotiputations do not grow too fast
p .

From Lej
mma 6.1 1t is easy to deduce Thearem 6.2, which in an

large n . Mprovement of Theorem 6.1 for

Th
e methods used in the proof of Theorem 6.1 apd the fol

faster than that towing remarks are however,

of Th
aorem 6.2 for amall and moderate values of p

THED!
REM 6.2, IF M(n) aatisfies {6.20) then
t e} = o Mn)logZ(n) (6.27)
and

t,(ain) s 0, M(n)logi(n) . (6

+28)
Proof, Witho
ut affecting the result (6.27) we may assume th k
- at # = 2° for some positive

{ 8 2! O pl iTieg P €5 a
umption s )+] £:7 he proo s DUt i3 no sen )
This as 1 1if ] £, but not tiai,

fraction z € [0, 1) , we srite Given an n-pic

k
x= 7 potg
izo ¢ L7 (6.29)
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i i-1 R A RIS
<here g = 22 and 0= p; < 2 for £ =0, }, vssy K. By Lerma 6.1, aé?ﬁ&t can be
roeputed, to sufficient precision, in time O[M(n}log(nm)) , so : B

k
= {py/a;) (6.30)
explz) = [T explp;/a; |
=0 s Lt

‘an be computed in time Qm.p::;womn:vu J . Thin eatablishes (6,27), and the proof of (6,28} is

simllar,

CORCLLARY 6.1.

t(exp) 5 o, n{logtn)) 810 logtm) (6.31)
md .
£, (sin) = uum:?ou?: 310g togln) . (6.92)
Proof, This is immediate from the bownd (6.5) and Theorem 6,2, !
- 15 eyt
COROLLARY 6.2,
e L a Lot
t (5, . Af) = o, n{iog(n)) *log togln) , . ..
nfa,bl kL ow

hapre .

iz} = loglxd, explx), sin(x), cos{z), tan(x), sinh(x}, o
cogh{z), tanh{x), srnin{z}, artan{x), arsinh(z) , ¢ta,,

md [a, b] fg any finite interval on which f{e) de& boundad. .

Proof. This follows from (6.5}, Corollaries 5.1 (and the note following), 5.2, 6.1, and

‘eonma ¥.2.

. -
7. Best constants for gperations equivalent to muttiplication

REEA

In this section, we consider in wore detall the relationship between the »p .cperations D,

. M, H and 5 defined in Section 3. It ia convenlent to conaider also the cperation § of

orming fnverse square roots T...n.. ¥+ hlw v. From theorem 3.1, 1f we can perform any one of

hese operations {say T ) to precision n in time uaCG » then the time n...pE..n.sn to hmn.u.mnuﬂ

14

any of the other operations to precision n is at most & constant multiple of «::J .

CEFINITION 7.1. Cgy is the minimal constant such that, for all positive £ and all

sufficiently large n , the operation Y can be performed (to precision n ) In tims

ﬁnﬁ;,m::ﬁs if ¥ can be performed in time t {F} , where X, ¥ =D, 7, M, QR or 5.

The following Inegualities are immediate congaquences of Definfition 7.1:

Crylyz ® Cxy (7.13
and
CrpCre * Cpp * 1+ (1.2
ASSUMPTIONS

To enable us to give moderate upper bounds on the constanta C ., it is necessary to make

Xy
the following plausible assumption mnoﬁvmnﬁ (4.3), nm.mn& throughout this sectioh: For all

positive o and € , and all sufficiently large n ,

nnu.:.v 3 3+m§aﬁw... {7.3}

for Y =D, I, ¥, Q, R and 5. Ws also assume (6.6).

Table 7.1 gives the beat known upper bounds on the constants n.kk . Space does not permit a

detailed proof of all these upper bounds, but the main ideas of the proof are sketched below,

TABLE 7.1. Upper Bounds On «..E‘

L=p I o q R 5

Y=pn 1.0 1.0 2,0 3.0 2.0 2.0
I 7.0 1.0 6.0 15,0 4.0 3.0

M 4.0 1.¢ 1.0 4.5 5.5 1.0

q 10.0 4,0 6,0 L.¢ 5.0 3.0

R 7.5 6.0 6.0 3.0 1,0 3.0

g 7.5 5.5 2.0 7.0 9.0 1,0

IM

Use the Newton iteration
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K, (7.4)

X,

ier T % T hﬁ?ﬂmub

TR I

to approximate 1/a using wultiplications. At the last iteration it ia :amaaanu.m to compute
as; to precision n , but x; ?Hm:& only to (rstative) precision n/2 , "Since the order of °

e - ¥ . % N :

convergence Is 2 , the assumptions {7.3) (with o = ¥ ) and (6.6} give -

Chy= Qe+ ¥ ke )=3) " S X
n.bt. < 4.5
Use the third-order iteration
Tpay T E - wu.Hnm;mnMg {7.6)
where .
- 5 S ¥ miopats "
€ =az; - 1 . {7.7}

@it

W s BEIRETNDE SN £ 1 BT RS BT

to approximate a¥ . At the last iteration it Is necessary to compute” naw to pracisicn’ n ,’

2

N i n el
[ to precision /3 , and umﬁmm e

: L to uu.nnwuhou_—. /3 ., Thua

Cw=@edehHardsdeas=t. (1.8

Note that this hound is sharper than the bound C,, < 5 which may be obtalned from the second-

order iteration

Epy T Ey - ke, . (7.9}

Use Newton's iteration ;

2, = ¥z o+ aizy) : {7.10)

¥ k ‘

to appruximate g .,

This folleows from (3.19) and our assumptions, [N R T

Use the third-order iteration
L., FxT, - H.T.anm_ {7.11-
£+l € 2 O S
where
£, = ax. - 1 {7.1»
to approximate 1l/ag .

Cre = 7
s =

Use the third-order iteration (7.8)

51

From the proof of Lemma 3.7,

naxuamv < nzﬁuv + 0{n) £7.13)

The result follows from the assumption {7.3) with o = 3 . {This is the firat time we have used
(7,3) with « > % . The assumption is plausible In view of the Schonhage-Strassen bound (6.5).)

Upper bounds on n_mn and n..m.m follew similarly,

h..ﬁ.. =6
This foliows from (7.1) and our bounds on Cyg and L0 . Similarly for the bounds on
n?ﬁ. n.ga and h.m.H f
Qbm =3
Use the identity
1
a¥. M_Nﬂ;uw;nnstﬁ v o\, (7.14)
where A is a power of 2 such that
2 o pa s 2B (7.15)
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glven in [387.

(7.16) There are many well-known results on the efficlency of various methods for solving (8.1},
RY + 0{n} . )
w&a\mgv = »a:n ) : 8.g., Hindmarsh [10], Ostrowski [201, Traub [27] and tha veferences glven in Section 1, but the

results are only valid if arithmetic aparations (in particular the evaluation of flx}), f'ix}

{7.3). .
and the resuit foliows from etc.)} require certain constant timea. The examplas given below deamanstrate that different

s considerationa are velevant when muitiple-precision arithmetic of varying precision is used.
Cn, < 7.
DR -

For simplicity, we restrict attention to methods for finding a simple zero L of f by
Use the identity
evaluating f at various polnts. We assume that S has sufficiently many continuous

2,3, 5 (7.1
bla = Wmmnwwgw*smnw.,@wd +o(3s a7} derivatives in a neighbourhood of I s but the methods considered do not raqulre the evaluation

of these darivatives.

where X4 is a power of 2 such that (for b # 0 )

Since f(x} is necessapily small near L 4 it is not reasonable to assume that flx) can

2 < NHlK\m {7.18)

PRE BTN . be evaluated to within a small relative errop near L . In this section, an evaluation of !

"with precision # " means with an absolute error of order 2°° + We suppoge that such an

Thus evaluation requires time w(n) = n:?‘Ca& + Where

n n n . (7.19)
c(n} , B [
t \wﬁbu < £ {8) + 2¢_(R) + ”n 1

wlon) ~ oa%u(n) a.2)

th sult follows,
and the re for some conatant o > 1 and all positive ¢ . Singe a > 1 » the bound (6.5) and condition

{8.2) give
IR ~

-1 ?J.w , . {7.20} Lim ¢ (M)/uln) =0 , (8.2)
: yven

5o 80 We may ignore the time required for a fixed nunber of wultiplications and divisions per

(7.21) iteration, and merely consider the time required for function evaluations. Our results also

apply if a = 1, so long as (8,3) holds. ?.ou oxample, the evaluation of explz) by the

follows from
also follows from {7.20), and then the bound on qmo

The bound on n.mn method of Corollary 6.1 requires time win) ~ om.\.:?ownn: upon log(n) , which satisfies (8.2}

5, ?-J-w ) with @ = 1, and also satisfles (8.3).])

DEFINITION 8,1. If an mp  zero-finding method requires time tin} ~ Cladwln) to

ations -;
f some methods for nonlinear equ .
8, Comparison o np dpproximate [ # 0 with precision n s where w(n) and £ aps as shove, then C(a) is the

. >3 .
hi ction, we briefly consider methods for finding multiple-precision solutions o asymptotia oongtant of the method, (Not to be confused with the asymptotic error constant as
In this se ]

usually defined for fixed-precision methods [23,)
non-linear equations of the form y i ) .

{8.1)
flz} =0, (8.1 Given sevaral mp methods with variovs asymptotic constants, it is clear that the method
with minimal asymptotic constant Is the fastest {for sufficlently large #n ). The method which

itional results are
whers f(z)} can be evaluated for any x in some domain. Additicna




[ &1

is fastest may deperd on o , as the following examples show.

DISCRETE NEWTON mp METHORS

Consider iterative methoda of the form ! s

20, =5 - H=)Ve; (8,4)

where g; is a finite-difference approximatlion to ._...Hamu . IF m__h = ma.mlﬂ_ , wn wncmmwomasnb..

2
mgup.%ﬁauwmnﬁyﬂmnma:wn:nwnou.ﬁnng QTL .E._n
«

9" H.uﬁﬂm.._ + Qﬁnmu . . . (8,5)
then . O S

2
whm.:ln" = QTL ' O € 11}

so the wethod has order {at least) 2 .

The simplest method of estimating H.Aﬂ_ﬂw to sufficient accurscy la to use the cne-sided

difFerence

F Ha.nt.mu ~f Ta.u

g = %] s (8.7}

::2&:.mmcmonnuamm.gnnruuqﬁcaﬂwoﬁom Hﬁhmi.mu mbn ._*._..H.nu are performed with an
1 N -

e

2

H » Thus, to chtaln { to precision n by this methed . ?.u.u,..,:n nead two .
1

absclute error DT
evaluations of f to precision n (at the last iteration), preceded by:two evaluations to
precision nf2 , ete. {The same idea in used above, In the proof of Theorem 5.2.) . The time

required jg
t{n) ~ 2(n) + 2{n/2) + 2w(n/u) + .., . Co -{B,8)

Thus, from (8.2) and Definition 8.1, the asymptotic constant is

R TR S TS |

Cplad =201+ 2% 70 Yo L L L L e
1

Since

man.aﬁq.vm:. o
1

the time required to molve (8,1} to precision n Is only a small wuitiple of the time requi:

to evaluate f to the same precision. The same applies for the methods described bhelow,
Using (8.7) is not necessarily the best way to estimate H.Tmu . Let p be a fixed

positive integer, and consider estimating H.-HHL by evaluating f at the points

o~ w...o.___m._&m. z - Apﬁ\m‘_upum&. TR q\m._\-m . [The points need not he equally spaced s

long as thelr minimwn and maximum geparations are of order wm w Let g be the derivative

fat @y u of the Lagrange interpolating polynomlal agreeing with f at these points, Since

estimates %AHL with truncation error 0?& . We need rm of order mm% . Then, to ens:

that (B.5) helds, the function evaluations at the above points must be made with absolyte errc

QTM;\HW + Thus, to chtain ¢ to precisicn n by this method ?.uw we need one evaluation

Ff to precision n and p evaluations to precision n{lt1/p}/2 , preceded by one evaluation

precision n/2 and p to precision n{1+1/p) /% , etc. The asymptotic constant is

a
Cylps @) = T tp wmlww wlpl.ﬂ ). (8.
Lat
c, () = min c,lp, @) (8.}
¥ pe1,2,... * !

sb the Yoptimal mp discrete Newton method" has asymptotic constant n.%?i » From (8.11), th:

p which minimizes Cylp, a) also minimizes vpxn:‘;\ﬁu » 30 the minimum for o > 1 occurs a

p = le-1] or Ta-1T. In fact, p =1 1is optimal {f
1% a < log(2)/log{u/3) = 2,409y ,,, . {a.1

and p 2 2 is optimal ir

pom“ Hurc..wu

< . (8,1
tog(1p )

The result that mathod _....pU is more efficient than method ¥, if a > 28094 ... i

interesting, for ¥, vrequires one more function evaluation per iteration than ¥ and haa the
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samé order of convergence, The reasomn is that not all the function evaluations need to be as

accurate for methed 2w a5 for method t.._. . Several more sxamples whera methods with lower

srder and/or more Function evaluations per iteration are more efficient e gived Yelow.

B3

For future reference, we note that

1< n.annv =4, {8.15)
' . [T S L AR |
Cgll) = W . e {8.16):

- v g, IR

and

o) - Lo gz (8.17)
N . e L e
N ' LRl 1 o T pre

as a + @« -

A CLASS OF wmp SECANT METHODS

. o P T
It is well-known that the secant method is more efficient than the discrets Hewton method
. - . . b Ve gt ]
for solving nonlinear equations with fixed-preclsion arithmetic [2, 20) ., For mp methods the
comparison depends on the exponent a in (8.2). |
Let k be a fixed positive integer and Py the positive real root of
3ed
K+ 3
apuu.;,h. . {8,18)

L®

The iterative method 5 is defined by SR :
D TR ] wm e it PR T
x. -,
i ik ,_ .
z, nu.l.ﬁmﬂwﬂ , : TR ¢ B ) R
i+] i 1 qﬂutnha?x:

R R E P DS S
whare the function evaluations are performed to pufficient accuracy to ensure that the order of
corwvergence is at least pp . Thus, 5, is the usual secant method with order

145 - [ S B T
Py * 5 = 1,618 ... mm. .wu etc. are methods with lower orders Py 1. 4655 Jee 3
Py 1,3802 ... , ete, With Fixed-precision hw Is aiways preferable to .m.u. mw atc,, but this

is not always true if mp arithmetic is used.

Suppose § and Kk fixed, &> 0 small, and write € = ”a,_..:x.,n_ and p=p, -6 Since

the order of convergence I3 at least p , We have

Tl
he following lemmas show that the optimal sacant method is § if
u. L]

if oo o4,5243 L., ,
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k
lzg-tl = 0(F ), {8.20)
k+1
I T C A (8,21}
_H._us.um|w_ = Me) , {8.22}
and
%
(=,)] = ofF ) (8.23)

or @ approximate avaluation of e rig ;3 (8,19} glve order p # absalute e
H th i ti thi ight de of (8,19} to gi » th ut rror

ktl
in the evaluati
uation of %mnmu must be E..mm. u » and the relative error in the evaluation of
(Flz)-rlz, 1)/ (= Friph
ﬂ..u m ._...»3 T..._, H.mnku must ba cﬁmh. 4 u » 80 the absolute error in the evaluation of

ktl k
Fl= wust ba 0 Pt
Amrww e ﬁnv __ + From (7.18), for & aufficiently amall,

.ur.:. _ wx 1
P £8.24)

sc the evaluation of [ to
precision n b 't
y method .m_x requires evaluations of f to precision

1 2

2 k-
n, n/] vee ket

Dy nip°, g T, Wl T, w:\vwi, » ete. Thus, the asymptotic constant {s
Colk, a) = 1 e {1-k}a -

s PR I e yag e

. wumkaﬂ+ﬁm ..Q“.Z,JD

p @ * (8,25)

where (after letting 6+ 0 ) p = p;, satlsfies (B.18)

We naturally chouse % to
minimize n..w.ﬁn. a} , giving the “optimal mp 8ecant method" with

asymptotic conatant

m..m?b = nin n..m?. a) .

k=1,2,... (8.26)

o < 4.5243 ,,, , and &5
2



158
LEMMA B.1.
(k, 1) = 3+ k. (8.27)
Colks L1 = 34 1y -1y
Proof. FEasy from (8,18} and {8,25),
LEMMA B.2Z.
(3-s9%if k=1,
Cglk, @) = 1 (8.28)
wn if kz 2,
ae o+, R .
Proof. Frow (8.25),
~ka ~{k+1))® . ‘
cylk, a) - qumn ~p ?» {a.29)
as a»® . IF k2 2 then, from (8,18},
AT SR T T R PRI (8.30)
- " : - s
10
1 ekt e o

@w,vwﬁr .

Thus, the rasult for k > 2 follows fro

(8.79), for uku ca-s¥,

LEMMA 8.3,
Cgll, @) if l=a=a, .
c.la) = . (8,32}
5 mS. a) if a= a4y s o .
whare 9, = u.S243 ., {8 the root of
(s oy} = C52s vy} - L (8.32)
Proof. The details of the proof are omitted, but we note that the result follows from

Lemrgs 8.1 and B.2 for smalil and large valuss of o .
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From (8.25), h..m.ﬁr. a} is a monotonie decreasing functicn of o y 80 the same ia true of

Cgla) . Thus, from Lemmas 8.1, 8.2 and 8.3,

1<cya) 3, {8,34)
Cgl1) = a, €8.35)

and *
Cgta) - 1~ p3% = (0.5823 ...)° {e.36)

as O+ = . Comparing these results with {6.15) to (8.17), we see that the oprimal mp
secant method is more efficient than the optimal mp discrete Newton method for smakk & , but

less efficient for large o . (The changeover oceurs at a = 8,7i43 .., ,)
AN mp  METHOR USING INVERSE QUADRATIC INTERPOLATION

For fixed-preacision arithmetic the method of inverse quadratic interpolation [2] is alightly

more efficient than the secant method, for it has aorder mo = 1.8392 ... > 1,6180 .., , and

raquires the same number {(one) of function evaluations per iteration. Ffor mp arithmetic, it
turns out that inverse mrhmum.nhn interpolation (@) is always more efficient than the zecant

method .m..._. ,» but 1% i lems efficient than the secant method hm s 8f a > 5,0571 ... .

Since the analysis is similar to that for method .w.w dbove, the details are omitted. The

order Py is the positive real root of

Hmuu..v..n._...nw. (8.37)

For brevity, we write o = H\mn # 00,5036 .., ,

To esvaluate § to vn.m.nwnwon n by method ¢ requlres evaluations of f to precision n,

2 .
(z-040%)s , and Q&anuan,éomwz for j=0,1,2, ... . Hencs, the asymptotic conatant ig

_ Cofay = 1+ T...q).quwn + ?é..nﬁfuamup\ (1-6%)

1+ (1000} ¢ (30%)% (10" {6.38)

from (8.31). Corresponding to the results (B8.15) to {8.17) and (8.34) to (8.36), we have that



nnnnv is wonotonlc decreasing, .. . T
1< cyla) = anﬂ: a wmq-nq..auw = 2,8085 ... , (8.29)

and

£lad « 1~ (1-o+a?)® = (0.7520 ...)° (8.40)

as g +w . Methed § is more efficient than the optimal mp secant methed If

o6 < 35,0571 ... , and more efficient than the optimal mp discrete Newton method if

a < 7,1349 ... . MWe do not knew any mp method which im more afficlient than method G for o

T R
3

close to } .,
OTHER mz  METHODS USING INVERSE INTERPOLATION

Since inverse quadratic interpolation ia more efficient than linear interpolation {at least
for a clese to 1 ), it is natural to ask if inverse cubic or higher degree interpolation is

sven more efficient., Suppose &k < <1 , and consider an inverae hﬂnauﬁopuﬂ»ou‘ mathod Ht with

order 1/ . In particular, consider the method Ht which uses inverse interpolation at

¥ I ot

Toy i 0y seuy X to generate =, , where k is sufficiently large, and the function
iv i1 £k i+l . Pt wwmeadore oboga

are sufficliently accurate, to ensure that the order ia at least

f

evaluations at PR
a Fi T ik

1/u , and, in general, ne more than L1/p , . m.;a Humiting cate H.w is the method which uses

inverse interpclation through all previous points hog p.». revy T to generate hm+.~ .w
<o A LT

By an analysis similar to those above, 1t may be shown that the asymptotic constant of

wathod &: is

. T a
e ln, a) = .Nmo 5?: ' (8.41)
where nc:: = 1 and . C e o ,
a;{u) = amxT.u...mE. Hiuhﬁéﬁ-i??-i (8,42)

for j =1, 2, ... . Space does not allow a preof of {6.41), but related results are given in

[20, Appendix H]. We note the easily verified special cases Lt e o o

r

m*l
ﬁ i Qu z h..m.C;- 3 (8.

and

H3)

n,«..,n. [-3 ﬁn?: . (B.4n)

The method with naximal erder (gea [7]} ia H.w s with asymptotic constant

Crt¥ a) = mwu» @2y (8.45)

The “optimal mp Inverse interpolatory method" iz the method I, with w{a) chosen to
Y]

minimize QHQ._. @) , so its asymptotic consatant s

Crla) = min n.Hc._. a) ., {8,486}

Faucl

The following lemmsa shows that the optimal cheice 18 y =g » corresponding to the inverse

quadratic methed ¢ discussed above, if o = 4.6056 .,, .,

LEWA 8.4, If Cp(a) = Cp(ulw), o) then

Wa) =9 = 0.5436 .., if 1=a =4 6056 PN {8.47)
wa) fe a monotonio deereasing fimetion of o, and
Iim plo) = ¥ .
o {8,48)
From (8.39),
a
n.~$. a) » 1~ (2) (8.49)

ai 4+ =, g0 Lemma 8,4 shows that the optimal inverse interpolatory method is more

afficient than methods m.u. and @ (as expected)}, but less efficient than method _.m.m or the

optimal discrete Wewton methed, for large a . In faot h.Hﬁnu < Cgla) for 1 =a < 50608

A LOWER BOWND FOR G(a)

The following theorem shows that Cla) = 1 for all useful mp methods., The results above

(s.g. (7.17)) show that the constant 1" here ls best passible, as methods with (o) + 1 as



bz

a + % are possible. The minimal value of C{a) for any finite a is an open guestion,

; TABLE 8.1, Asymptotic tonatants for various mp pethods . .o
THEOREM B.1. Ifan mp method ie well-definad and converges to a sero of tha fnctions . ~

£ = -y md £ = .thQu - %, where z and y are restricted to nonerpty o eyle) £ 1, o) €42, m} noanv c la) itk ey
doexring D and B, » and P is goma invertible mapping of U onto 2, such that & {B(F}) " T4
1.0 4,0000 3.0000 36823 2.8085 2. 8085 3.0060
satisfies {8.2), then the asymptotio acnatant of the method eatiafies Cla) = L . Ll 3.7483 2.8093 3.4256 3,6484 2.8484 2.8193
o : 1.5 - 3,0038 - 02,2087 2,721 - - 2,3108 - 2.2108 2.3218 - . .
Proof. 1f Clo} <1 then, by solving fi{z) = 0 , we can evaluate w?t@; {for y in ’ 2.0 2.6667 i.9u43 2.2209 1.8954 1, 8954 1,983 .
3,0 2,1071 1.5836 1,6935 1. 5586 1.5588 1,5856
v, ) in time less than t {E(F}) , for all sufflclently large n , Applying the same argupent to © U 4lpt 1.p988 1,3988 l.u2u8 1.3789 1.3789 1,3899 *
o)y {e) (=1} ‘5.0 1.L4260 1.2860 1.2694 1.2677 1. 2678 1.2718
Lyly) , we can evaluate Fo= (#77Y) in time lesa than m:mm.mm. )} . Hence, for large n 6.0 1.2529 1.2105 11741 1.1836 1.1930 1.1948
we have om0 1469 1.1573 1.2137 11820 11410 1,148
8.0 1.0838 1,1185 1.0748 1.1051 1.1039 1.1041
(-1} 9.0 1.0471 1.0898 1.0u9% 1.0782 1.0770 10771 -
B0 < £, BETT)) < g R, (8.50) 10.0 1.0362 1.0682 1.0328 1.0584 1.0573 1.0573
15.0 1.0022 1.0176 1.0043 1.0139 1.0134 1.0134
a contradiction. Hence, Cla) z 1 . . . _ 20,6 ° 1.0001 1.0046 1.0006 1.0033 1.0032 1.0032

FRR

CONJECTURE B.1. For all mp methods (using only fmwotion evaluations) which ave vell-

KOTE ADDED IN PROGP. Theorem 6.2 and its corollaries may be improved by a factor leg(n) ,

defined and convargent for soms reasonable olass o, tiona with af jo: .
rgent fi ! funa rple Borod, . as described in [37] and [383. - . DR A
[, LU SR A - .ﬂa AR A
P 4 ek w1 ST . Lo il
ctey z 1/7{(1-27% . . (8.51) 4 L -
. B [T e N ’ o L S o ’ . TR
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f LM

: equations. In Complexi of Computayr Computationg {edited by R.E. Miller and J.W.
1. optimal inverse interpolation, if 1 % a = 5.0608 .., (equivalent to inverss q i w o~
Thatcher). Plenum Press, New York, 1972, 61-71. . .

quadratfc interpclation, if 1 £ a % 4,6056 ...} 3 . - -
: {2] Brent, R.P. Algorithms for Minimination without Derivatives. Prentice-Hall, Englewood

< e mre -

2. optimal secant method (method §, ), If 5.0608 ... < a = B.7143 ,., ; Cliffs, New Jarsey, 1973.

{3] Brent, R.,P, Some afficient slgorithms for solving systems of nonlinear equations. SIAN .

3. optimal discrete Newton, If B.7143 .., < a . :
Numer., Anal. 10, 327~3uu4, 1973,

For practical purposes, the inverse guadratic interpolation method is to bs recommended, for {43 Brent, R.P. On the precision attainabla with various floating-point number systess, IELf

it §s easy to program, and its asymptotic constant n.nﬁﬂv is always within 3.2% of the least ’ Prana. Comp, (-22, 601-607, 1973.

5] Brent, R.P. Eyror analysis of algorithms for matrix multiplication and triangular
constant for the methods above., Numerical values of the asymptotic constants, for various valuss 53 » ¥ & Fe)

; : d's fdentity. MNwmer. Math. 16, 145-156, 1970,
26 @, are given tc 4P in Table 8.1, The smallest constant for each a« 4is italicized. decomposition using Winograd's identity ’ *

£6] Brent, R.P.. Computer solution of nonlinear eguations. Academic Press (to appear).

{7] Brent, R.P., Winograd, S, and Wolfe, P. Optimal [terative processes for rootfinding.

Numer, Math, 20, arri3ul, 1973,




164

{8}

f10]

[111

[12]

[13]

[in]}

[15]

[16]

[17}

(18]

[19])

"1

f21]

{23}

[24]

Cook, 5.A. and Aanderaa, 5.0. On the minimum complexity of functions. Trans. Amar, Math,

Snc. 142, 291-31u, 1989,

Fioyd, R.H. Unpublished notes.

i

SIAM J. Numar, Anal. 9,

e - f

Hindmarsh, A.C. Jptimality in a class of reotfinding algovithms.

205-214, 1972

Hopcroft, J.E. Complexity of computer computations. In Information Processing 74. North-

Holland, Amsterdam, 1974, 620-526. R
i ta (Russian),
Karatsuba, A. and Ofman, Y. Hultiplication of multidigit nurbers Q._W:nc?u ﬂ

Dokl. Akad. Mawk S5SSR 145, 293-294, 1962, I
gnuth, B.L. The Art of Computer Programring, Vol. 1I, Semimawsrical Algorithme. Addison

Wesley, Reading, Massachusetts, 1969. Errata and addenda: Report CS 184, Computer Sci.

Department, Stanford University, 1970, .
Kung, M,T. The computational complexity of algebraic numbers, SIAN J. Mumar. Anal. (to

appear}.

Kung, H.7. A bound on the multiplicative efficiency of iteration. ,.w. Computer & Syatem

Sctences 7, 33u-342, 1973, e

Kung, H.7. and Traub, J.F. Optiwmal order of cne-point and B:Pnh—wowmﬁ. .mnou.mnwo:.. Jo ACH

21, 643651, 1974, S

Kung, H.T. and Trauh, J.F. Computational complexity of one-point and multipoint iteration,
, H.T. , d.

In Complezity of Real Computation {edited by R. Karp). Amer. Math. Soc,, New York, 1973.

Kung, H.T. and Traub, J.T. Optimal order and efficiency for iterations with two

evaluations, Teck. Report, Dupartment of Computer Science, nuusapwosxnﬂ.o: University,

1973,

Morgenstern, J. The linear complexity of computation. J. ACM 20, 505-308 {1973},

Y

Ostrowski, A.H. Solution of Equations in Euclidean and Banach Spaces. Academic wimw. Rew
N B C A T

York, 1973, L - - . ) ,u
Paterson, M.5. FEfficient iterations for algehraic numbers. In n.aaﬂstﬂnwt of Computer

Corputationz (edited by R.E. Miller and J.W. Thatcher}. Plenum Press, Mew York, 1372,
(S IRIC I .

L1-%2, .
Rissanen, J. On optimum root-finding algorithms., J. Math, Anal. hﬁ__u.mmom. 36, 220-225,

1971, .

Schivhage, A. and Strassen, V. Sthnelle Multiplikation grosser Zahlen.

orputing 7,

28i-232, 1971, .
Schulte, H.H. The computational complexity of elliptic partial differential equations, In

Corplexity of Computer Computations (edited by R.E. Miller and J.¥. Thatcher). Plenunm

Press, Mew York, 1972, 71-43,

g it % e - S e e

[25] S$hanks, D. and Wrench, J.W, (Calculatlon of = te 100,000 declmals, Mazh, Comp,

76~99, 1952,

{26] Shanke, D, and Wrench, J.W, Calculation of & to 100,000 decimals, Math. Comp,

679-680, 1959,

[27] Trawb, J.F, Iterative Methods for the Solution of BEquaticona. Prentice-Hall, Engiew

Cliffs, New Jarsey, 1964,

[28] Traub, J.F. Computational complexity of iterative processes,

SIAM J. Computing 1,
167-179, 1972,

£291 fTrawb, J.F, Numerical mathematics and computer science. Comm, ACM ¥5, 537-541, 197

£30] fTrauwb, J.F, Optimal Iterative Processes: theorems and conjectures. In Information

Prooassing 71, North-Holland, Amsterdam, 1972, 1273-1277,

{311 Traw, J.F. Theory of optimal algerithms; in Software for Mumerical Mathematice

(edited by D,J. Evans). Academic Presa, 1§74,

{322 Traws, J,F, gn Introduction to some current research in numerical camputational

complexity, Tech, Report, Department of Computer Science, Carnegie~Melion University,

1973,

{331 Winograd, 5. on the time required to perform addition. J, Aoy 12, 277-285, 1985,

{34] Winograd, S. On the time required to perform multipiicacion, J, Acw 14, 793802, 19¢

£ "Fas] Wozniakowski, H.
Aadagite 1w,
: squations. SIAM J. Mumer, dnal, 12, 121-135, 2475,

Generalized information and maximal order of iteration for ocperator

fas] Wozniakowski, H. Maximal stationary iterative methods for the solution of operator

(4. -8quations, SIAM J. Numer. Anal, TV, 93u-gug, 1974,

[3973 Brent, R.P. Fast miltipte-pracisfion evaluation of elsmentary functions, J. ACM {to

appaar).

Brent, R.P, Multiple-precision zera-finding methods and the
I

mmmu.‘ complexity of elementary

R funetion evaluation; in Analytic Computational Complexity (edited by J.F. Traup}.

#6L S Academic Presa, Wew York, 1975,




