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Abstract. The integral of the title equals the mean distance m, from the origin of a point uniformly
distributed over the k-dimensional unit hypercube I*. Closed form expressions are given for k = 1,2and
3, while for general k, m, ~ (k/3)'/2. Using interalia methods from geometry, Cauchy-Schwarz in-
equalities and Taylor series expansions, several inequalities and an asymptotic series for m, are estab-
lished. The Taylor series method also yields a slowly convergent infinite series for m, and can be applied
to more general problems including the mean distance between two points independently distributed at
random in I*.

1. Introduction. This note arises from wanting an expression for the mean
distance from the origin,

k 1/2 1 1

(1.1) m, = E(z X,Z) = f f (x2 + - + xPHY2dxy - dxy
i=1 0 0

of a point (X, ---, X,) uniformly distributed in the unit hypercube I* in R*

(see, for example, Anderssen and Bloomfield (1975)). We were not able to find any

reference to the evaluation of m, for which we have found the following closed

form expressions for k = 1,2 and 3 by the method of our concluding section:

ml = .5,

2 1
m2=§f (1 +r2)V2dr = 2172 + log (1 + 21/2)}/3,
0

(1.2) s
my = ij‘ [{1 + sec? 6}** — 1]d6
0

= 3'2/4 + log {(1 + 3'2)/21%} — n/24.

In the sequel, we start by outlining some simple limits and inequalities for m,
and detail a method for computing m, exactly, giving numerical results in Table 1
for k < 10. An asymptotic series for m, is given which adequately supplements
Table 1. This series is illustrated together with asymptotically tight upper and
lower bounds.

The method used for these more detailed results stems from Taylor series
and, as such, it is one of the few explicit studies of finding the expectation of a
random variable Y from the moments of the random variable X underlying the
definition of Y as some function Y = f(X). The method can be applied immediately
to studying certain other fractional moments of X? + --- 4+ X7, or to studying,
for example, the mean distance M, between two points distributed uniformly and
independently in the unit hypercube: from the geometric probability viewpoint,
this latter problem is a natural companion to finding m,.

* Received by the editors June 13, 1974.

1 Computer Centre, Australian National University, Canberra, A.C.T. Australia.
I Statistics Department, Australian National University, Canberra, A.C.T. Australia.

22



A TAYLOR SERIES METHOD 23

TABLE 1

k my M,

1 5 .33333
2 76519572 52141
3 96059196 .66167
4 1.12189962 77766
5 1.26240664 .87853
6 1.38857409 .96895
7 1.50408610 1.05159
8 1.61127356 1.12817
9 1.71172160 1.19985
10 1.80656663 1.26748

2. Simple results concerning m,. Throughout, X, - - -, X, will denote random

variables (r.v.’s) that are independently and identically distributed (i.i.d.) like the
r.v. X which has mean u = EX and variance 6> = var X. Define

21 Yi=X{+--+Xi Y%z0.

In this section, assume X to have the rectangular distribution on (0, 1),
so that u = 4, > = {5 and EX? = §. Then m; = EY,.
LemMmA 1.

(k/4)1? < my < (k/3)V2.

Proof. The Cauchy-Schwarz inequality proves that EY, < (EY})'?
= (k/3)!/2. For the other inequality, write D, = Y, and D, = (Y*_, (1 — X,)*)'/?
for the distances of (X ;, - - -, X,) from the origin and from the vertex of the hyper-
cube opposite the origin, respectively. Then D, and D, are r.v.’s that have the same
distribution, and D, + D; = k!/? by the triangular inequality; hence, m;, = ED,
= k'2)2.

Observe that the Cauchy—Schwarz inequality can be applied to Dy, + D,
for which ED3D? = k/30 + k(k — 1)/9. Then

2m, < (2ED% + 2ED,D,)'?* < (2k/3 + 2(ED%D?)'/?)!/?,
whence the upper bound, (tighter than in Lemma 1), in the next lemma.
LemMA 2.
m < (k/3)V2[{1 + (1 — 7/10k)"2}/2]1/2.

The method used to derive the lower bound in Lemma 1 can be used to tighten
that inequality to yield (for example) Lemma 3.
LEMMA 3.

ko (k
mez 27k Yy ( .)(k + 3))12/3.
j=0\J

Proof. Divide I* into 2* equal hypercubes, and consider the hypercube
containing (X, ---, Xy). (X, -+, X)) is uniformly distributed within this
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hypercube, so its mean distance from any vertex is m,/2. The vertex of the hyper-
cube furthest from the origin is at distance d; = (k + 3j)*/?/2forsomej =0, -- -, k,

k
and there are ( ) hypercubes having this distance d;. Then by the triangular
J

inequality,

v

k
mz27%y (k) {(k + 3j)Y%/2°= my/2},
j=o\J
from which the asserted inequality follows.
Asymptotically, this lower bound ~(5k/18)'/2.
The method can be generalized by dividing I* into p* equal hypercubes for
some larger integer p, leading to a (p — 1)-fold summation involving a multi-

k

nomial coefficient in place of | |. This gives a bound that is asymptotically
J

(k/3)*{(p + %)/(p + 1)}*/2. The method can also yield upper bounds, but none

of them is asymptotically tight as are the upper bounds in Lemmas 1 and 2.
Another lower bound,

22 m 2z 27 i (k,)(k + 8)1/2/4,
j=o\J

can be proved via the fact that the median of a triangle is shorter than the average
length of the two adjacent sides, and hence that the mean distance from the origin
of a point uniformly distributed at random over a set which excludes the origin
and possesses a center distant d. from the origin, is at least as large as d¢. This
lower bound ~(5k/16)"/2 for large k, and it is always tighter than that of Lemma 3.
It is illustrated in Table 2.

TABLE 2
Errors (Myppc0x — my) in approximations to my,

Asymptotic
k (upto k™3) (22) 453 45)y,3
1 —.02802 0 —.08745 .01646
2 —.00268 —.01636 —.02512 .00612
3 —.00042 —.02451 —.01685 .00289
4 —.0,68 —.03041 —.01085 00157
5 —.052 —.03535 —.00727 00095
6 059 03971 —.00510 00061
7 059 —.04367 —.00373 00042
8 058 —.04731 —.00281 00030
9 056 —.05070 —.00218 .00023
10 054 —.05389 —.00173 .00018
15 0512 —.06765 —.00069 0,64
20 0g4 —.07908 —.00035 0,31
large 018k~772 —.018k!/2 —.72k =512 055k~ 512

Observe that the methods underlying both (2.2) and Lemma 3 amount to
approximating quadratures.
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Yet another lower bound on m, is obtained by finding the mean distance
from the origin of a point uniformly distributed in the orthant of unit volume of
a hypersphere in R*. This leads to

(2.3) m, = (2/n'){T(1 + k/2)} %1 + k™1,

but since the right-hand side here ~ {k/(ne/2)}'/* = (k/4.27)*/?, this bound can be
of use only for small values of k. In fact, it is sharper than the bounds of Lemma 1
for k < 45, of Lemma 3 for k < 9, and of (2.2) only for k = 2.

Regarding X, X,, --- as an infinite sequence of i.i.d.r.v.’s, we have the next
lemma.

LEMMA 4. 0 < 3Y/k < 3 and 3YZ/k — 1 (k — o0) with probability one.

Proof. The boundedness of 3Y,/k is obvious, and the convergence follows
from the strong law of large numbers applied to the sample mean (X2 + ---
+ X3k of iid.r.v.’s.

It follows from Lemma 4 that

(24 m/(k/3)V* -1, k- o0.

3. Exact results for m,. Lemma 4 and (2.4) suggest writing
(3.1) my, = (k/3)'2E(1 + Z)'?,

where Z, = {Y*_, (X? — 1/3}/{k/3}, for which EZ, =0, and —1 < Z, £2.
A direct Taylor series expansion of (1 + z)'/? is of course valid only for || < 1,
so taking expectations in such an expression cannot be justified (and, indeed,
it does not yield any exact result), though it will be seen in § 4 that it yields asymp-
totic formulae for m,.

Instead, we write for any fixed finite k = 1,2, -- - and any a > 0,

(3-2) Yo = @)'?(1 + ()",

k
(33 L, E{ S (o 1X? — 1)}/k.
i=1
Then —1 <, <a ! — 1,s0 forall a = %, the binomial expansion of (1 + {,)'/?

yields a power series that is uniformly absolutely convergent in {, (see around
(4.1)). By taking expectations we thus obtain Lemma 5.
LEMMA 5. For o = 1,

r=0

(3.4) m, = k)2 Y (j)EC

To compute the expectations used in (3.4), recall that {, is the mean of the
sum of k i.i.d. bounded r.v.s,

(o= Ca,k =8/k=U,+ -+ + Uk,

say, so writing u; = EU{, we have

r

(3-5) Elher = (r.)Eié,_:c’{k/(k + D} uyk + 1)

j=0
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Integration by parts yields the reduction formula forr = 1,2, - - -,

u, = E{(X} — a)/a}" = J: (™ *x% — 1)y dx

= {(a_l - l)' - zrur—l}/(zr + l)a

while u, = 1. Note that while the function kK"E(}, ,/r! = ES;/r! leads to a convolu-
tion free of a multiplier (cf. (3.5)), the slow convergence of (3.4) (see below) neces-
sitates the use of a large number of terms in (3.4) which if computed otherwise
than as above can lead to errors from overflow and underflow.

An alternative approach giving ES} in terms of k and EUY (s=1,---,7r)
is also possible, but the formulae become very complex as r and k increase: the
coeflicients for r = 2(1)12 can be found in Table 1.1.r of David et al. (1966).

For o = 1, the equation

a~1-1
(36) Bl= | wht)du,

-1
where fi(-) is the probability density function of {,,, can be used to study the
moment further. First, f,(u) has its density concentrated around p = a~1/3 — 1
by the central limit theorem. Next, it can be shown that for —1 < u < (ak)™! — 1,
fi(u) equals

k(okm/4)¥2(1 + w)*=212/{21(1 + k/2)}.

So for given (large) r, the contribution to E{} , from the density near — 1 increases
with increasing « and decreases with increasing k. On these grounds, then, we may
anticipate that (3.4) is best when o is least (o = 3) and worst for small k: this was
in fact found to be the case when using (3.4) with « = 1, 4,4 (for this last value
the series diverges, obviously!), and k = 2(1)10. It should be noted that since for

k = 2, f(u)is continuous and uniformly bounded within(—1,&~* — 1),(3.6) shows
1

that E(,, is about O(r™'), and since (2) = O(r~3/?), convergence of the series
r

in (3.4) is ultimately about that of ) r~5/2.

The entries for m, in Table 1 were computed by summing the series at (3.4)
via (3.5) using about 190 terms, working to 11 digits, and extrapolating from the
sum to n terms = my(n) ~ my(o0) + an”3/2 + bn~ %2 where necessary.

4. Asymptotic bounds for m,. The argument below may partly obscure the
simple intuitive idea underlying the method, namely, that we should bound the
function (1 + z)!/? over the range of z-values of interest by a polynomial of smallish
degree, and then get bounds in m, by estimating E(1 + Z,)!/2. Approximations
to EY = Ef(X) via Taylor series expansions of f about the mean u = EX are
familiar (see, e.g, Anscombe (1948), Kendall and Stuart (1963, p. 232)): precise
arguments are not so common.

Write (1 + z)'/*> as a Taylor series expansion with the Lagrange integral
expression for the remainder, namely,

n—1

1/2 _ (%) r (%) n J\1 n—1 -nt+1/2
IT+22=% ["|z+"]|2"| n(l —uw (1 + zu) du.
r n 0

r=0
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For positive even integers n, the remainder term here, which we write as
1

S N

)z"R,,(z), say, is of constant sign for all z > —1, so definingfor —1 < & <

&, m) = infﬂ R,(z),  C(& m) = sup R,(2),

<z= x<
an s - ¢ ;"
(2n)22"C2n(f, nz(1+2)" - r;O (r)z' 2 (2n)zznfzn(f,’1),
sz,
Putting ¢ = —1 and y = o~ ! — 1 for any a = %, we obtain more detail for a

proof of Lemma 5.
The nonnegativity and monotonic behavior of R,(z) enable the bounds just
given to be evaluated as c,(£, ) = R,(n), C,(&, ) = R(&). Putting z = Z, = {3,

a=1%,&= —1,n =2, we find on taking expectations that
% 2n—1 %
( )Ezf"Rzn(— 1) = m(3/k)'? — Y ( )EZZ
2n r=o0 \r
4.2)

1%

( 2" )E(Z,%")Rn(z).
n

For fixed n, the fact that « is so chosen that E{,,; = EZ, = 0 shows that

EZ? = O(k™") = EZ?" ', k- oo.

Similarly, since E|Z2"*!| < (E|Z¢"*2)'/?2 = O(k~"~1/?)), we obtain Lemma 6.
LEMMA 6. The series

4.3) nm=wﬁwzilﬂﬂﬁ+0&”ﬂ

is an asymptotic expansion (k — o) of my.
Let it be emphasized that for any « other than o = 4, the error in the analogue
of (4.3) for any given finite n is bounded away from 0 as k — co. Evaluation of (4.3)

leads to the asymptotic expansion

m, = (k/3)Y2(1 — 1/10k — 13/280k> — 101/2800k> — 37533/1232000k*)

44
“y +0(k™ ).

Computation reveals that using (4.4) with terms up to k™3 yields 6 correct digits
for k = 10 (some errors for this approximation are in Table 2), and with terms
up to k™4, one has 6 digits for k = 9 and 7 digits for k = 15.

Lemma 6 leaves open the question of closeness of fit of the asymptotic series.
While the second inequality in (4.2) yields an upper bound on m,, the following
lemma can be applied to give a lower bound on m,, better than that obtained from
the first inequality in (4.2).
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LEMMA 7. Let the function f have a (2n + 2) order derivative f*"*?(x) <0
for £ £ x < n, where £ < 0 < n, f?"*2 integrable on (¢,n). Then the function

2n-1
Sux;a,b)= Y (x/r)f0) + {x*/(2n)!}(a + bx),
r=0
where a and b are defined as the solution of
Sanésa, b)=f(&),  Siuln;a,b)=f(n),
satisfies
Sulx;a,b) = f(x), &=x=n,

with equality at &, n, and 0 (2n times).
Proof. Using the general form of the Taylor series expansion,

{f(x) = S24(x; a, b)}/{x*"/(2n)!}
= 2nJ‘1 (1 — w1 xu)du — a — bx
0

= A2n(x) .

By definition, A4,,(¢) = A,,(n) =0, and A4,,(0) is defined by continuity. Since
54(x) = 0(¢ £ x < ), the conclusion follows by a convexity argument.
We apply thelemmato (1 + Z,)'/?, with¢ = — 1, = 2,and obtain Lemma 8.
LemMa 8. Let A,,, B,, be the solution of

2n—1 %
2 ()(_1)'+Az"—an=o,
r=0

~

2n—1 (1
(2)2' + (Ay, + 2B,,)2%" = 3112,
.

Then

2n—1 (1
a7+ Bzt smii = 3 (*iz
r=0 \T
4.5) )
= (Az, + 2B,,)EZ}".
Computation of these lower and upper bounds for n = 1,2, 3 shows that,
except for the lower bounds with k = 1 and n = 2, 3, the bounds for n = 3 are
closer than for n = 2, which are closer than for n = 1, and that the upper bound
is much closer to m, than is the lower bound. The lower and upper bounds for
n = 3 are illustrated in Table 2 as (4.5), 3 and (4.5)y,3, respectively. For values of
k = 3, these bounds are better than any of those of § 2.

5. Other applications: Mean distance between two points in 7*. Some of the
methods of the preceding sections readily carry over to the computation of
E(}, X?)' for certain other y. The binomial theorem method is simple to use, and
the appropriate (y # 3) analogues of the triangular and Cauchy-Schwarz
inequalities may be considered for further inequalities.
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Taking X = (X,,---, X )and Y = (Y}, ---, Y;) to be two points distributed
at random in I, it is also easy to see how the Taylor series methods of §§ 3 and 4
apply to finding

(5.1) EDyy = EX — Y| = M,.

Rather more work is needed for the analogues of Lemma 2 and the rest of Lemma 1.
Observe first that Dy, has the same distribution as Dy.,., where X', Y’ are deter-
mined from X, Y by means of

X' = (min(X,, ¥;), ---, min(X,, %)),
Y = (max (Xl, Yl), -+, max (Xk9 Yk))’

and that then Doy = (3. (X{®)'%, Dy.y', Dy:y = (3. (1 — Y})?) are three exchange-
able random variables. Since Doy + Dy.y- + Dy.; = k'/?, we obtain

(5.3) M, = k23

(this inequality is sharp for k = 1). Of course, the Cauchy—Schwarz inequality
gives

54 M, < (k/6)'/? = (ED%y)'?,

(5.2

and since
ED3,.D%., = k/90 + k(k — 1)/36 = (k/6)*(1 — 3/5k),

the analogue of Lemma 2, giving a bound sharper than (5.4), is
(5.5) M, < (K/6)[{1 + 2(1 — 3/5k)"/2}/3]2.

Explicitly, we can find
1 1

M, =13, M,= 4f dxf (1 = x)(1 — y)(x* + y*»)'2 dy
0 0

= {2Y% + 2)/5 + log (1 + 2'/?)}/3 = .521405433 - - .
Table 1 gives M, for k = 1(1)10.

6. Taylor series approximations. The work of §§ 3 and 4, in giving an example
of the computation of the mean EY = Ef(X) of a function of a r.v. X, shows that
while expansion of f(-) about u = EX may not be appropriate for giving EY
exactly, a workable approximation may nevertheless be still obtainable. When
some derivatives of f are of constant sign, such expansion about y may yield
bounds sharper than expanding about some other point. The approximation

EY ~ f(u) + o*f"(w) with Y = (Y X}, f(u) = u'’?,
yields
my = (k/3)"/*(1 — 1/10k)

which, having an error that is O(k~3/?), is asymptotically sharper than the upper
bound from (4.5) with n = 1, but not with n = 2.
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7. Further results concerning m,. There remains a method for computing m,
that does not have an analogue for M,. It depends on the fact that m, equals the
mean distance from the origin of a point distributed at random in a hyperpyramid

with vertex at the origin and base one of the faces of I* with (I, - - -, 1) as a vertex.
Then
(7.1) me=E(1+ X2+ -+ XZ2_ )Y/ + k™Y,

It is left as an exercise to verify that the following are the respective analogues of
Lemma 1, Lemma 2, and (2.2):

(7.2) m < {(k + 2)/3}12/1 + k7Y,
k™2 < (1 + k™ Ymy + my_,

7.3

(7.3) = (k/3)1/2{2 + k' 4+ 2(1 + 3/10k — 13/10k2)“2}1/2,
k=1 [k — 1

(74) mez 27 Y ( . )(15 + K+ 8)M2/4(1 + k7).
j=0 J

Of rather more importance is the relation

m2(k + 1)}12/k = E{l + kf QX2 - D/(k + 1)}”2

(1.5)

> f) {(k = Dtk + DIECs-
r=0

which, being an infinite series converging geometrically fast, is better than (3.4)
with a = .5, especially for smaller values of k. The entries for m, in Table 1 have
been verified by this method which required only 20 to 30 terms to give convergence
in the ninth digit.
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