SIAM J. NUMER. ANAL.
Vol. 14, No. 6, December 1977

SOLVING TRIANGULAR SYSTEMS ON A PARALLEL COMPUTER*
AHMED H. SAMEHt aAND RICHARD P. BRENT}

Abstract. In this paper we present alternative formulations of the algorithms of Chen and Kuck
[IEEE Trans. Computers (1975)]. We also give a detailed error analysis, showing that if X is the
computed solution of the triangular system Lx =f, then it satisfies the equation (L +8L)% = f where
I8L||= O(n? log n)ex*(L)|L|. Here k(L) is the condition number of L, || - || denotes the co-norm, and &
is the unit roundoff.

1. Introduction. Chen and Kuck [3], Heller [4], Borodin and Munro [1],
and Orcutt [9] have all shown that, given O(n>) processors, a triangular system of
n equations Lx = f may be solved in O(log’ n) steps." Chen and Kuck [3], and
Orcutt [9], also showed that if L is a banded lower triangular matrix of bandwidth
(m+1), i.e., its elements A;; = 0 for i —j >m,” then the time required for solving
Lx = fis O(log m log n) using O(m*n) processors. Hyafil and Kung [6] discussed
the same problems for a limited number of processors. Kogge [7] analyzed the
numerical stability of a parallel program for solving banded lower triangular
systems with m =2.

In this paper we present two algorithms, expressed in matrix notation, for
solving the system Lx = f for both the dense and banded cases, and establish
bounds on the time and number of required processors. With the exception of
Chen and Kuck [3], none of the above references computed the actual number of
processors required. For example, we can show that the algorithm discussed by
Heller [4] requires §n> + O(n?) processors for the dense case compared to Chen
and Kuck’s result, and ours, of agsn’ + O(n?). Also, using our new formulation we
show that for the banded case only 3m’n+ O(mn) processors are necessary
compared to Chen and Kuck’s result of 3m°n + O (mn). Our main result, however,
is an error analysis of the dense case. We show that if X is the computed solution
then (L +68L,)% = f, where 8L, is bounded by, ||5L, || = a(n)ex*(L)||L|. Here, || - ||
stands for the ©-norm, a(n)= O(n’logn), ¢ is the unit roundoff, k(L) is the
condition number of L, and we assume that terms of O(&?) are negligible. This
bound can be very large compared to that of the sequential algorithm,
Wilkinson [10], where ||6L || = nel|L].

Our machine assumptions are as follows:

(i) any number of processors can be used at any time (but we will give
bounds on this number),

(ii) each processor can perform any of the four arithmetic operations in one
time step, and

(iii) there are no memory or data alignment penalties.

* Received by the editors November 14, 1975, and in final revised form November 9, 1976. This
work was supported by the National Science Foundation under Grants USNSF DCR73-07980 A02
and MCS-7521758.

1 Department of Computer Science and the Center for Advanced Computation, University of
Illinois, Urbana, Illinois 61801

{ Computer Centre, The Australian National University, Canberra, Australia.

! Throughout this paper log » =/log, 1), and time is measured in steps.

2 Without loss of generality, we assume n =2*, m =2".

1101

1102 AHMED H. SAMEH AND RICHARD P. BRENT

Even though assumptions (i) and (iii) may be unrealistic, we believe that the
algorithms presented here will be influential in creating parallel algorithms for
specific realizable computers.

Throughout the paper we adopt the notational conventions of
Householder [5]. So, except for dimensions and indices, lower case Greek letters
represent scalars, lower case italic letters represent column vectors, and upper
case Greek or italic letters represent matrices.

2. Algorithm I The inverse of L=[A;] can be expressed as,
Householder [5],

(2.1) L '=MM,_, M
where
-1 W
1
ith col.
2.2 M; = 1
@2) v 1/As
_AH-l,i/Aii 1
L =i/ Aii 1_
and the solution x is given by
(23) X =M,,M,,_1 s le

Evaluating the product (M, - - - MM, f) in parallel requires u =log n stages.
Let M”=M, f@=Ff, and s =2'. Then at each stage (j + 1) we evaluate matrices
MV =MD M3 for j=0,1,---,u—~2and i=1,2,---,n/(25)—1, and the
vector)‘(’+1)=M‘1’)f(’) for j=0,1,---, u—1. This process is shown in Fig. 1 for
n=_8.

Each matrix M{" is of the form,

I 0 o0
(2.4) MP=10 LP o
0 Sl(j) f?)

where (" is a lower triangular matrix of order s, I{” and I are identity matrices
of orders ¢{” = is—1 and r{” = (n + 1)— (i + 1)s, respectively. Clearly, LO=1/A;

and SEO)= (_l/Aii)(Ai+1,i, Aiv2iy* ", An,i)t' Let

(2.5) S = [[‘f:))]

SOLVING TRIANGULAR SYSTEMS 1103

STAGE O

STAGE 1

STAGE 2

STAGE 3

FiG.1.

where, UY disa square matrix of order s. Thus,

A LY 0
2.6 LU= [S 2 N
29 L9089 L9
and
2.7) STV =8P UR+ VP, 9411,

In Fig. 2 we show the shapes of M3}, M(zj,-)+1, and M{*V. Furthermore, if

= (g4, g5, g¥)" where the vectors gt and g% are of orders s—1 and s,

respectively, then the three subvectors constituting fy *D are given by
fitD =gl

fItD = Pgd,

FiD = §0g 4 g

where the first two constitute the first 2s — 1 elements of the solution vector x.

2.8)

,rI(J)-(nm—(m)s

F1G.2.

1 1 1
1 1 1
1 . 1) .
D 2 .
* 1
. — PR P
D
' ~
()
= Lzl
(NIl P
I O R 2 (O
N 1
r\ () 1) N
2l §|'1U3' su) .
M 20 .
2i \
j+1)
M
J
S=2
qi(J) =is-1

1104 AHMED H. SAMEH AND RICHARD P. BRENT

Under our machine assumptions, we can form each matrix M; in (2.2) in 2
steps, one division and one subtraction, using (n — i + 1) processors (the number of
nonzero elements in the ith column). Hence, forming all the matrices M,
i=1,2,---,n, requires 2 steps with Z, 1(n=i+1)=n(n+1)/2 processors.
Similarly, the products L, U, S, U, LS, and §{7g%” in (2.6)~(2.8) can
be evaluated simultaneously in 1+logs=(1+]) steps the time required for
evaluating the inner product of two vectors of order s. The sums (S PaUP+ V)
and (§{’g5”+ g¥”)in (2.7) and the last of (2.8) are evaluated in one additional step.
Therefore, the time required for each stage (j + 1)is 79+ = (2+j). Consequently,
the total time required for solving the system is given by,

-1
2.9) =3+ 3 V=34 pu(n+3)/2
j=0
where we added one further step for the product M, f*’,

Obtaining the corresponding number of required processors, however, is
slightly more complicated than establishing the time bound (2. 9) First, we
establish the number of processors required in formmg MUY = M. MY, Here,
we form the products LU and $$%,UY? simultaneously. Forming each
column of L., UY? involves s inner products of s pairs of vectors of orders
1,2, -, s. Thus, each column requires Y 11 kK = s(s +1)/2 processors, and the
product L., U(z’) requires s(s+1)/2 processors. In the meantime, S¥%;UY’
involves sr3?,; inner products of vectors of order s. Therefore, the number of

processors required for this product is s*r$2.; = s’r*". Hence, the matrix pro-
ducts in (2.6) and (2.7) require
(2.10) 1s%(s+ 1) +s2r9* P =32n +3)s*—3(4i +3)s>

processors. After the above products are formed, we obtain the sum (S, US? +

). This requires sr% processors, or

(2.11) 7'=(n+1)s—-2(i+1)s*

processors. Recalling that s =2/, one can easily verify that for j=0,1,-- -, u—2
and i=1,2,---,n/(2s)—1, the number of processors required for evaluating
MU*D is given by

(2.12) 7D =max {n', 7"} =

Similarly, we can show that evaluating fU*" requires

(2.13) 7P =32n+3)s -
processors. Consequently, each stage (j+1)forj=0,1, -, u—2, requires
G _ MEOT Gy _
(2.14) T = Y w¢ —i(5n+12)s*+i(n*+7n +6)s
k=0

and the whole algorithm requires,

7 = max [max {79}, n(n+ 1)/2]

0=sj=p—-2

SOLVING TRIANGULAR SYSTEMS 1105
processors. For n =16 the maximum is achieved for s = n/8, yielding

n/15 ,
2.15) - 64(16n +11n+12)
or m =n>/68+ O(n?) processors. For n =256, w =n’/64.

Hence, we have established the following theorem.

THEOREM 2.1. The triangular system of equations Lx = f, where L is a lower
triangular matrix of order n, can be solved in v =%log? n +3 log n +3 steps using no
more than m=(15/1024)n>+ O(n?) processors. O

LEMMA 2.2 Let L be defined as in Theorem 2.1. Then L™" can be obtained in
the same time required for solving the system Lx =f, using no more than
(21n>+60n?)/128 processors. 0

Proof. The time bound is trivially established by Theorem 2.1. However, the
maximum number of processors used occurs at s = n/4, rather than n/8, yielding
the above number of processors. In fact, we can show that for 4 right-hand sides,
h = n, the maximum number of processors is given by

BRNRINEILE WINEL
(2.16) T=Trg" +(3)" +(8 n

Processors.
The number of operations (number of nodes in the computational graph), in
the above parallel algorithm can be computed to be

2.17) w =%n>+0(n?).

Now, a lemma in Brent [2] states that, if we have 7 < processors then the time
required for solving the triangular system is given by

(2.18) f=r+(0—1)/#
If #=n’/a, then

(2.19) F=r+F0(1+9)
where 8 <9/n. For n =256

(2.20) #=7+0.100.

Thus, as long as o = O(log” n), # remains O(log n).

3. Algorithm II. In this section we present an algorithm that requires the
same time as Algorithm I but roughly twice the number of processors. The
advantage of this algorithm is that it can be adapted to band systems. Let
L®=DIL and f(o)EDf where D =diag (A11,A%3, " *, A). We form matrices
DY, (j=0,1,---, u—1), such that if

(3.1) LUTD=pDOr® and f(i+1)=D(j)f(]')

1106 AHMED H. SAMEH AND RICHARD P. BRENT

then L =T and x = f*. Each matrix L is of the form

I
Ggl) Is
(3.2) L?=| G} G¥? I

Gstl/)s,l Gft'/)s,Z' o Gslj/)s,n/s—l Is
. N T ‘
where s =2/, and G’ = A,;/A;. Therefore, (D) =diag (LY, LY, ---, L)),
where

. I
LP= [>]
(211'?21'—1 IS

Thus, for stage (j+1) we have,

i I G(Zi')—l 2k—1 Gglz)—l 2k
3.3 G§’+1)=[.][o1 =1,]
3-3) = ee®n 6D GO

fori, k+1=2,3,---,n/(2s), and

(3.4) f‘-"*”=[;][2-'?“]
' ' —G%hio LIS
for i=1,2,---,n/(2s). We can simultaneously evaluate the products

Ggi?Zi—lG(Zii)—l,Zk—la Ggi?Zi—lG(Zji)—llk, and Ggi?ﬁ—lfé?ﬂ in 7'=1+logs=(1+j)
steps using 2s°> processors for the first two products and s> processors for the last
one for a total of 7' = s*(2s + 1) processors. Performing the subtraction of the two
pairs of matrices in (3.3) and the pair of vectors in (3.4) requires 7" = 1 step using
" =s(2s + 1)< 7' processors. Since we have n(n —2s)/(8s) matrices G{ ™, and
n/(2s) vectors f*P, then each stage j+1 requires 7V =7'+7"=(2+/) steps
using a0tV =4sn?—3s%n +3sn processors. Forming L®and @ requires one step
using n(n +1)/2 processors. Hence, the total time for solving the linear system
Lx =fis given by

(3.5) T=1+:i: Q@+))=1+u(u+3)/2

using 7 = max [maxos;=,-1{7 "}, n(n +1)/2]. For n = 16 the maximum occurs
at s = n/4, yielding

n® n?
. =—+—
(3.6) =373
processors. Now we introduce the following theorem for solving banded lower
triangular systems.

THEOREM 3.1. Let L be a banded lower triangular matrix of order n and
bandwidth (m +1), (A =0 for i —k > m). Then the system Lx = f can be solved in
r=2+logm) logn—3(log’> m+logm)+3 steps using no more than m=
3m*n+ O(mn) processors. O

SOLVING TRIANGULAR SYSTEMS 1107

Proof. The matrix L and the vector f can be written in the form

L1 fl

R, L, f2

(37) L= R2 L3 , f= f3
Rn/m—l Ln/m f"/m

where L; and R; are m Xm lower triangular and upper triangular matrices,
respectively. Premultiplying both sides of Lx = f by the matrix D = diag [L;'], we
obtain the system L@x = f© where

I,
G 1,
(3.8) L®= G I
tho/)m—l Im
and
(3.9) LifP=f,

LG, fl=[Ri-, fi], i=2,3,---,n/m.

From Theorem 2.1 and Lemma 2.2 we can show that solving the systems in (3.9)

requires 7@=3log’ m+3logm+3 steps, and by (2.16), using 7©@=

(21/128)m*n + O(mn) processors. . o

~ Now we follow Algorithm II and form the sequences L(_’ D=pPLD and
fitY=pPfDforj=0,1,---, log (n/m)—1. Each matrix L? is of the form,

I
GY 1,
(3.10) L?= GY I
Gsli/)r—l Ir

where r=2" - m. Therefore, D’ =diag [(L{")™"] (i=1,2, - - -, n/(2r)) in which

N I
3.11 LY ‘=[.]
G0 -G\ 1,

Hence, for the stage j+ 1, we have
0 G¥

j . n
(3.12) R P B
and
(3.13) fgf+1>=[Ri] i=1.2.... 1
-G¥), 2]i)—1+f(2,i) ’ T 2r

Observing that all except the last m columns of each matrix G are zero, then we

1108 AHM#D H. SAMEH AND RICHARD P. BRENT

can evaluate simultaneously G$%.,GY? and G, f‘z'?_l for all i, in 1+1log m steps
using 7' = %m (m+n—rm ? processors. Finally, we need one more subtraction to
evaluate 9D and GY*Y, for all i, using 7"='/m processors. Therefore,
rU*D=2+1og m steps and 7wV =max {n', 7"} = 3m(m + 1)n — rm? processors.
The total time is thus given by

log (n/m)) v
(3.14) r= 3y 7 =M(2+V)—§(V+1)+3

i=0 ‘

where u =logn and v =log m, with 7 = max; (=} processors. For m =n/2,
7 =79, otherwise

(3.15) r=a®P=im(m+1)n-m>

processors.

The algorithm of Theorem 3.1 requires w =m’nlog(n/(2m))+
O(mn log (n/(2m)) operations. Again, we can show that for #=m’n/oc<m
processors, the time required for the algorithm of Theorem 3.1 becomes
(Brent [2]),

n
1 T=7+ —
(3.16) T=7+20 log m

Hence, provided o = O(log m), 7 remains O(log m log n).

4. Error analysis. We present an error analysis of the algorithm in § 2. Let *
denote any of the four arithmetic operations; then a floating-point operation
satisfies,

fl(¢1%€2) = (£1%£:)(1 +6)
where |8| = ¢, ¢ is the unit roundoff
38'"" (rounded operations)
o {B ™" (chopped operations)

in which B is the radix of the machine and ¢ is the length of the fraction.

We introduce the following lemma for establishing a bound on the absolute
error of an inner product performed on a parallel computer. O(e %) terms are
neglected here and throughout this section.

LEMMA 4.1. Leta ={a;} and b ={B;} be two vectors of order n. Performing the
inner product a'b in (1+log n) steps, then we obtain

@4.1) |fl(a'b)—a'b|=(1+log n)e|al'|b]|
where |a| denotes the vector with elements |a;|,i=1,2,- -+, n.

Proof. The proof is rather simple. Let a‘=(ay, a2, -+, a,), and b'=
(B1, B2, * * , Bn). The multiplications y>=a;8;, i=1,2, -, n, are performed
simultaneously in one step. The extended addition);-; yfo) is obtained in
wu =log n steps. At eachstep (j+1),7=0,1, -+, u—1, we have

4.2) D=+ 48

SOLVING TRIANGULAR SYSTEMS 1109

fori=1,2,---, n/2 ie., 'y§i)=2ﬁ2=k1 v where'ky=1+(i—1)2" and ko = i2. I
7" =fl(y{"), then

43 F0= 30+ 0
where |6{”| = ¢|y”|. Furthermore,
@) FID = 5 L+ G0

where, |07 =¢ Zﬁi]‘“ [y in which k;=1+(@—1)2"*", and k,=i2"*'. Com-
bining (4.3) and (4.4), we have

4.5) 71 =a'b+06¢
with
(4.6) 16%)=(1+u)elal'b|

proving the lemma. Note that since the exact value of an inner product can be very
small, the computed inner product might have a very large relative error.

At each stage j of the algorithm (j=1,2,---,u), where u =logn, we
perform inner products of vectors « and v the maximum order of which is (1 +27).
Performing each inner product in 1+log(1+2')=(j+2) steps, we have from
Lemma 4.1,

4.7 Ifl(u'v)—u'v|= (G +2)e|ul|v].

Without loss of generality, we assume that ||L||=1. If MP=fl(M) and fP=
fI(fP), then the algorithm of Theorem 2.1 is given by

~ (41 ~c ~s i+1 . n
M= MP MP+EIY, i=1,2,--- sy L,

FID = NEDFD 4 gG+D
forj=0,1,---,u—1, where E{*V s lower triangular and
BT = (+2)e | M3 IMEY),
eV V= (j+2)e M| |9,

Again, |M| denotes the matrix with elements |u| and an inequality in matrix or
vector form applies separately to corresponding elements on each side.

We introduce the following lemma in order to establish bounds on the norms
of E{/*" and ¢"*"

: .

4.8)

4.9)

LEMMA 4.2. Suppose L = [L” 0] with |L||= 1. Then
L21 L22
(4.10) ILZN=IL7M, and E7Y= |27
;o L11 0]
where L = [L21 1l

Proof. Since
L—l = [LIll 0]
—LnLaLil L3

1110 AHMED H. SAMEH AND RICHARD P. BRENT

then, it is clear that the first of (4.10) is satisfied. Also,
L
i -if))
Ly I 0 L

Lo 1) |sie =i
[B)

From the above lemma we see that

Consequently,

(4.11) IMP =27,

Also, from the fact that f = M{~Vf9D (2.1), and (2.3) we obtain
fP=M_ip - - MoMif = M3 - - - M2 MM x

Hence,

(4.12) IFN= LI el = el

Consequently, from (4.9)

IEY*= (G +2)(1+2DellL ™,

le " Pl= (7 +2)(1 +27)eIL 7] lx].

For a complete analysis we need to consider the structure of EY*". From
(2.4)-(2.7) we see that the first p;+1 = (2i +1)2’ — 1 rows of E¥*" are zero; hence
ME{*P = E{*Vfor | = p,,. Furthermore, the last (n — p;+,) columns of EY* P are
zero; thus EY*PM, = E{*V for 13 p;41. Let L(k,1)=M¢' Mzt --- M7, and
vii =2’ — 1. We verify that

(4.13)

(4.14) MP =LA, v JT+PP)L(, vy)

where

. i G+1)2i7s-1
(4.15) PP=Y% Y LA, %s+1.)EPLT' A, yis).

s=1 k=i2i"s

Unfortunately, however, we cannot take advantage of the above properties of
E{*Pto simplify the expression under the summation in (4.15). It is trivial to show
that (4.14) holds for j = 1. From (4.14) and the first of (4.8) we obtain

MU =LA, Yirrje)T+ PR+ PEDL A, vije1) +ES P+ O(62).
Using (4.15) we easily show that
PUV=PP+ PR+ L, ¥irr,js1)EV PLT (14 y0501) + O (7).
Neglecting terms of O(e?) we establish (4.14).

From the second equation in (4.8), we have

. - “ +1
(4.16) FoO = (MM - - MOMO)F+'Y L7125 n)e®
k=1

SOLVING TRIANGULAR SYSTEMS 1111

where L™'(2n, n)=1. Also, from (4.14)
MnM(lu)' .. M(ll)M(10)=L—1(I+P)

where P = Z}‘Jll PPisalower triangular matrix. If x is the computed solution then
(4.16) reduces to

4.17) f£-x=L""Pf+e
in which
un+1
(4.18) e=Y L7'(2% n)e®.
k=1

Let us define the constants a; and a; by
ay=4n’logn+O(nlogn),
, a,=3nlogn+0(n).
Thus, from (4.12)-(4.15) and Lemma 4.2 we have
4.19) L~ PAl= areIL Pl
lell = ezellL " llxl-
Hence, from (4.17)
(4.20) I = xll/llxll = axe L.
Premultiplying both sides of (4.17) by L, we obtain
4.21) Lx—f=Pf+Le.
From the fact that f = Lx, (4.9), (4.15), and (4.18), we have
@22) |Pf+Le|=|L]||x|
where L is a lower triangular matrix. Furthermore, from (4.13),
IL]|= arellL Y.

Hence, there exists a perturbation 6L such that

(4.23) (L+8L)E=f
where
(4.24) I8L|| = a1e|L 7.

If we remove the assumption that |L|| =1, then (4.24) becomes
(4.25) l8Ll|=arex*(L)IL]

in which « (L) is the condition number of L, and (4.20) becomes
(4.26) 1% = x[l/llxl| = aren*@ L.

The presence of k(L) and (L) in (4.25) and (4.26) certainly tarnishes the
error bounds. We have simulated Algorithm I and performed many numerical

1112 AHMED H. SAMEH AND RICHARD P. BRENT

experiments on an IBM 360 Model 75 in long-precision (machine precision =
2.22x107'%). In most of the cases tested, both the sequential and parallel
solutions produced relative errors of the same magnitude; thls in spite of the fact
that for some of these test cases x (L) was of the order 10'®. Thus, in general we
consider the error bounds (4.25) and (4.26) rather pessimistic. It is not difficult,
however, to find examples where the parallel solution is inferior to the sequential
one.
Consider the system,

1 & 1

1.07 1 & | 207
1.02 1.10 1 & | 312
P —(a+8) B 1] | & —4.00017

where @ =0.993x 10", B =-0.34 % 1073, and & = 4.0. The condition number of
this matrix is O(10°®). The exact solution of this system is &, =¢;=¢;=1, and
£:,=0.00017. Both the sequential and parallel algorithms obtain &;, &, and & to
full accuracy. While the sequential algorithm obtained £, correctly, the parallel
algorithm obtained for £, the value —0.0039. Another example is provided by the
banded lower triangular matrix Lj,, of order 32, with elements: A; =1, Ai1,; =
—4, Ais2: =1, and zero elsewhere. For a certain right-hand side, we know the
exact solution to 12 significant digits. In Table 1 we compare the number of
correct digits in some of the components of the sequential and parallel solutions

) and £.7, respectlvely It may be of interest to note that k(Ls)=O(10°),
k(Lg)= O(10%), k(L1s) = O(10°), and k (L32) = O(10'°).

Moreover, we compute a number, wp/s, Which compares the effects of
rounding errors upon the parallel and sequential algorithms; see Miller [8] For
several systems Lx = f we are able to obtain values of wp/s of the order 10*. This
means that the parallel algorithm may produce a solution which cannot be
computed by the sequential algorithm except with much larger rounding errors.

Finally, in view of the above, it seems to be advisable when implementing
Algorithm I to have means for floating-point accumulation of inner-products
using a double length accumulator; see Wilkinson [10]. This will have a favorable
practical effect on stabilizing the algorithm and reducing the error bounds.

TABLE 1
of correct digits # of correct digits
i in &° in ¢;°
4 12 12
8 12 12
16 11 7
28 4 1

32 3 0

SOLVING TRIANGULAR SYSTEMS 1113

Acknowledgment. We thank the referees for their comments and careful
reading of the manuscript. We wish also to thank Mr. John Larson for performing
the numerical experiments.

REFERENCES

[1] A. BORODIN AND I. MUNRO, Computational Complexity of Algebraic and Numeric Problems,

American Elsevier, New York, 1975.
-[2] R.P. BRENT, The parallel evaluation of general arithmetic expressions, J. Assoc. Comput. Mach.,

21 (1974), pp. 201-206.

[3] S. C. CHEN AND D. J. KUCK, Time and parallel processor bounds for linear recurrence systems,
IEEE Trans. Computers, C-24 (1975), pp. 701-717.

[4] D. HELLER, On the efficient computation of recurrence relations, Institute for Computer Applica-
tions in Science and Engineering Rep. (ICASE), NASA Langley Res. Center, Hampton, VA.
June 1974.

[S] A. S. HOUSEHOLDER, The Theory of Matrices in Numerical Analysis, Blaisdell, New York,
1964.

[6] L. HYAFIL AND H. KUNG, Parallel algorithms for solving triangular linear systems with small
parallelism, CDS Rep., Carnegie-Mellon University, Pittsburgh, December 1974.

[7] P.M.KOGGE, The numerical stability of parallel algorithms for solving recurrence problems, Tech.
Rep. 315, Digital Systems Lab., Stanford Electronics Labs., Stanford, California, 1972.

[8] W. MILLER, Roundoff analysis by direct comparison of two algorithms, this Journal, 13 (1976),
pp. 382-392.

[9] S.E. ORCUTT, Parallel solution methods for triangular linear systems of equations, Tech. Rep. 77,
Digital Systems Lab., Stanford Electronics Labs., Stanford, California, 1974.

[10] J. H. WILKINSON, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood Cliffs, NJ,

1963.

