
A Fortran Multiple-Precision Arithmetic

RICHARD P. BRENT
Australian National University

Package

A collection of ANSI Standard Fortran subroutines for performing multiple-precision floating-
point arithmetic and evaluating elementary and special functions is described. The subrou-
tines are machine independent and the precision is arbitrary, subject to storage limitations.
The design of the package is discussed, some of the algomthms are described, and test results
are given.

Key Words and Phrases' arithmetic, multiple precision, extended precision, floating point,
elementary function evaluation, Euler's constant, gamma function, polyalgorithm, software
package, Fortran, machine-independent software, special function evaluation, Bessel func-
tions, exponential integral, logarithmic integral, Bernoulli numbers, zeta function, portable
software
CR Categories: 3 15, 4.49, 5.11, 5 12, 5 15, 5 19, 5 25
The Algorithm: MP, A Fortran Multlple-Preclsmn Arithmetic Package. ACM Tra~s. Math.
Software ~, 1 (March 1978), 71-81.

1. INTRODUCTION

SIP is a collection of Fortran subroutines for performing multiple-precision floating-
point arithmetic. The package is almost completely machine independent, and the
consequent loss of efficiency is not excessive. 5 IP works with t-digit normalized
floating-point numbers with baseb, where t >__ 2, b > 2, and 8b 2 - 1 is representable
as a single-precision integer. The base and number of digits may be varied dy-
namically.

Several multiple-precision arithmetic packages are available [1, 4, 7, 8, 18-20,
26-28, 34-36, 38, 40, 45, 47, 49, 51], but SIP appears to be the only one which
does not suffer from at least one of the following disadvantages: machine depend-
ence, use of fixed-point rather than floating-point arithmetic, fixed or bounded
precision, no routines for elementary and special functions (ln, exp, sin, Bessel
functions, etc.) or constants Or, 7, etc.).

SIP is designed for floating-point calculations. In some applications it is es-
sential that all operations should be performed exactly, using multiple-precision
integers or rational numbers. For these applications, a package which uses a linked-

General permission to make fair use in teaching or research of all or part of this material is
granted to individual readers and to nonprofit libraries acting for them provided that ACM's
copyright notice is given and that reference is made to the publication, to its date of issue,
and to the fact that reprinting privileges were granted by permission of the Association for
Computing Machinery. To otherwise reprint a figure, table, other substantial excerpt, or the
entire work requires specific permission as does republication, or systematic or multiple re-
production
Author's address: Computer Centre, Australian National University, Box 4, Canberra, ACT
2600, Australia.
O 1978 ACM 0098-3500/78/0300-0057 $00 75

ACM Transactions on Mathematmal Software, Vol. 4, No 1, March 1978, Pages 57-70

58 • Richard P. Brent

list representation of variable-length multiple-precision integers is preferable to
MP. The MP subroutines are intended for applications such as checking the ac-
curacy of floating-point library routines or generating accurate constants to be
used in such routines. See, for example, [43-45].

Since MP is machine independent it is necessarily inefficient at a low level.
However, we have attempted to make it efficient at a high level by implementing
good algorithms. Some of the algorithms are described in Section 6, and test results
are given in Section 7. We chose Fortran because it is widely available and relatively
efficient, although a language such as Algol 68 has some obvious advantages [45].

2. DESIGN OF THE PACKAGE

A t-digit floating-point number is represented in an integer array of dimension at
least t ~- 2. The first word is used for the sign (0, ~-1, or - 1) , the second word
for the exponent, and the third to (t -J- 2)th words for the normalized (base b)
fraction. Such a number is called an "mp number" below. Zero is represented by
a zero sign, with words 2 to t W 2 undefined. The exponent lies in [- m , m], where
m is set by the user, with the restriction that 4m is representable as a single-pre-
cision integer. If the result of an operation underflows (i.e. the exponent is less than
- m) , it is set to zero, but overflow (exponent greater than m) is treated as a fatal
error.

The assumption that 8b 2 -1 is representable as an integer makes it easy to per-
form multiplication of mp numbers using single-precision integer arithmetic, but
is rather wasteful of space. Without this assumption much time would be spent in
packing and unpacking the digits of mp numbers, and it seems that time is more
important than space in most applications. Routines for packing mp numbers into
integer arrays of dimension [½(t n u 2)], and for unpacking such "compressed"
numbers, are provided for use when space is critical, for example, when large
arrays of multiple-precision numbers need to be stored. MP could be modified to
work with compressed numbers, but execution times would be increased by about
50 percent because of the increased complexity of the lower level routines. The
problem could easily be overcome if Fortran supported operations on double-
length integers.

Arithmetic operations on mp numbers are performed by subroutine calls. Thus,
instead of Z = X ~ Y we need to write CALL MPADD (X, Y, Z). A precompiler
in the style of [27] or [52] could generate the appropriate subroutine calls. 1 Suffi-
cient working space for the MP routines must be declared in COMMON in the
main program. The parameters b, t, etc., are also transmitted to the MP routines
in COMMON.

3. CAPABILITIES OF MP

The present version of SiP contains 101 subroutines and four main programs.
The capabilities of the subroutines include the following:

(1) conversion of integer, real, and double-precision numbers to multiple-
precision format, and vice versa;

A p r e c o m p i l e r u s i n g a n e x t e n s i o n of M O R T R A N 2 h a s b e e n w r i t t e n a n d is c u r r e n t l y b e i n g
t e s t e d .

ACM Transactions on Mathematical Software, Vol. 4, No. 1, March 1978

A Fortran Multiple-Precision Arithmetic Package • 59

(2) multiplication and division of mp numbers by small integers;
(3) addition, subtraction, multiplication, and division of mp numbers.
(4) powers and roots of mp numbers,
(5) elementary functions of mp numbers (log, exp, sin, tan, arcsin, arctan,

sinh, eosh, tanh),
(6) some special functions and constants (Bernoulli numbers, Bessel functions

of the first kind, error and complementary error functions, exponential
and logarithmic integrals, Dawson's integral, gamma function, ~r, % ~'(~),
etc.);

(7) fixed and floating-point decimal output and free-field decimal input of mp

numbers;
(8) integer and fractional parts of mp numbers;
(9) routines for error handling, testing, and debugging;

(10) miscellaneous: comparison of mp numbers, storing, packing and unpacking
mp numbers, etc.

The four main programs are designed for testing purposes and are described in
Sections 7 and 8.

The list of special functions could obviously be extended. In fact, it would be
useful to have arbitrary-precision subroutines for all the commonly used special
functions. We invite others to contribute such subroutines.

4. DEPARTURES FROM ANSI FORTRAN

We have attempted to use ANSI Standard Fortran [3] as far as possible. The only
known violation of the standard is that arrays used as arguments of MP sub-
routines (or in COMMON) are declared with dimension 1 in the subroutines, e.g.

SUBROUTINE A (X, Y)
INTEGER X(1), Y(1)

It is assumed that X, Y, etc., are declared with sufficiently large dimension (usually
at least t + 2) in the main program, and that the compiler does not check whether
array bounds as declared in the example shown above are violated. The reason for
this deviation from the standard is that it makes it possible to increase the precision
of a computation merely by changing the main program--the MP routines do not
need to be changed or recompiled.

To conform to the standard, it would be necessary to pass the dimensions of
the arrays X, Y, etc., as extra arguments, e.g.

SUBROUTINE A (X, Y, M, N)
INTEGER X(M), Y(N)

However, this would increase both the space and time required by the MP routines,
and the nonstandard usage is accepted by most Fortran compilers (see Section 7).

5. ERROR HANDLING

There is no way that the MP routines can ensure that arrays used as arguments
have been declared with sufficiently large dimensions in the main program. Thus
overwriting may occur, with unpredictable results, if the user is careless. However,
MP attempts to detect errors and makes it easy for the user to avoid them. For

A C M T r a n s a c t m n s on M a t h e m a t i c a l So f tware , Vol . 4, No 1, M a r c h 1978

~ ~ ~ ;-~ . %

60 • Richard P. Brent

example, there is a subroutine MPSET (LUNIT, IDECPL, ITMAX2, 5~AXDR)
which provides a convenient way for the user to set the base, the number of digits,
and other necessary parameters in COMMON before calling any other MP routines.
Here LUNIT is a logical unit to be used for subsequent error messages from MP
routines, and IDECPL is the "equivalent" number of floating decimal places
desired by the user. MPSET determines the largest machine-representable integer
of the form 2 ~ - 1, sets m = 2 k-2 - 1, and sets b and t to the optimal legal values
such that

(t - 1)logl0b >__ IDECPL.

The arguments ITMAX2 and MAXDR should equal the dimensions of arrays to
be used for MP numbers and for working space, respectively. MPSET checks that
t + 2 < ITS~AX2, and informs the user if ITMAX2 is too small. MAXDR is
saved in COMMON, and if the user subsequently calls a routine which needs more
space, he is informed of this.

The MP routines check for various error conditions. For example, if an integer
which should be positive becomes negative, then it is probable that integer overflow
has occurred because b is too large, and an informative message is printed. If the
sign of an mp number is not 0 or ~1 , or a digit is not in the range 0, 1 , . . . , b - l ,
overwriting has probably occurred, and the user is informed. Routines such as
5IPSIN and MPPI convert their result to (single precision) real and check that it
is reasonable, and routin, s which use Newton's method check that the iteration
is converging as it should.

If an 5~P routine is about to generate a multiple-precision result X whose ex-
ponent lies outside the allowable range, then MPUNFL(X) or MPOVFL(X) is
called. At present MPUNFL sets X to zero and returns, while MPOVFL prints
an error message, but these actions could easily be modified. For example, it might
be desirable to terminate execution after a certain number of multiple-precision
underflows, since these are probably caused by a programming error if the allow-
able exponent range is large.

To make the SiP routines as intelligible and easy to modify as possible, we have
followed most of the suggestions of Kernighan and Plauger [30].

6. SOME ALGORITHMS USED IN MP

6.1 Addition

This is straightforward, and is performed much as described in Knuth [32]. We use
R*-rounding [15, 33] after postnormalization, with four guard digits.

6.2 Multiplication

The classical O(t ~) method is used because it seems difficult to implement faster
algorithms [29, 32, 46] in a machine-independent manner in Fortran. Also, the
faster algorithms would actually be slower for small t. The subroutine MPMUL
could be modified without affecting the other routines in MP. We denote the time
required for t-digit multiplication by M(t) , so M(t) is of order t 2 with our imple-
mentation of multiplication, but M(t) -- O(t.log(t)loglog(t)) is theoretically
attainable. 5~[ultiplication (or division) of an mp number by a single-precision
integer is an important special case which requires time 0 (t).

ACM Transact ions on Mathematical Software, Vol. 4, No. 1, March 1978

A Fortran Multiple-Precision Arithmetic Package • 61

6.3 Reciprocals, Square Roots, Etc.

I t is well known that , if x is a positive number and n is a positive integer, then
y = x -~/" may be computed by Newton's method without using any divisions
except by n. The iteration is

n y~+l = y~ q- yj(1 -- xy~)/~.

. l IPROOT implements this iteration, starting with a small value of t and approxi-
mately doubling it at each step, as described in [14, 17]. Thus the time required
by ~[PROOT is O(M(t)). M P R E C implements the special case n = 1. Division
and square roots require one additional multiplication after the computation of

--1 X--I/2, x or respectively, so they also require time O(M(t)).
Numbers of the form (i/3) p/q, where z,j, p, and q are small integers, often occur

in multiple-precision calculations. 5 'IPQPWR uses 5~[PROOT to compute such
numbers efficiently.

6.4 exp(x)

: \ iPEXP1 evaluates exp(x) - 1 for small] x] by an algorithm described in [17].
The idea is to use the power series for exp(x) - 1 if] x I is sufficiently small, and
otherwise to use the relation

exp(x) - 1 = [exp(x/2) - 1] [exp(x/2) + 1]

to reduce Ix I. The time required is O(tl/2M(t)). -l'Iethods which require t ime
O(log(t)M(t)) are known [11, 14], but turn out to be slower for small and moderate
t.

5 I P E X P uses the identi ty exp(x) = e ~ exp(f) , where n is the integer par t of x,
and f = x - ~, to evaluate exp(x) (using 5~IPEXP1 to evaluate exp(f) and the
well-known series for e or e-l). The hyperbolic functions are easily evaluated using
5.IPEXP (or sometimes M P E X P 1 to avoid cancellation).

6.5 In(x)

5~[PLNS evaluates ln(1 + x) for small [x I by Newton's method, using MPEXP1 .
Thus the t ime required is O(t~t2M(t)). Asymptotically faster methods are known
[14], but are practically useful only if t is very large. ~ P L N G S implements one
such method (useful mainly for testing purposes).

~ [PLN evaluates ln(z) by first obtaining a rough approximation y, evaluating
exp(y) accurately using ~JIPEXP, and then evaluating ln(x/exp(y)) accurately
using MPLNS.

~ P L N I computes ln(n) for small integer n and is faster than h IPLN. M P L N I
calls ~IPL235, which uses well-known series for ln(16/15) , ln(25/24) , and
]n(81/80) to compute ln(m), where m is an integer of the form 2~3~5 ~. M P L N I
chooses such an m close to n and then uses a series for ln(n/m) to obtain ln(n) .
MPL235 and M P L N I require t ime O(t2).

6.6 sin(x) and tan(x)

The function sin(x) is evaluated from the Taylor series if I x I ~ 1, so the time re-
quired is O(tM(t)/log(t)). This could be reduced to O(tl/2M(t)) or even

ACM Transac tmns on Mathematical Software, Vol. 4, No 1, March 1978

62 • Richard P. Brent

O(log(t)M(t)) , as described in [11, 14, 17], but the simpler algorithm is faster for
small t. If [x [>__ 1, various identities are used to reduce [x [.

The function tan(x) is evaluated from the identity tan(x) = sin(x)
[1 - sin2(x)] -v2 if I x [< 1r/4 and from similar identities if I x] >__ ~r/4.

6.7 arctan(x) and arcsin(x)

MPATAN evaluates arctan(x) from the Taylor series if J x I < ½, so the time re-
quired is O(tM(t)) . (This could be reduced for large t, as for sin(x).) If 1 x t >- ½,
the identity arctan(x) = 2arctan{x/[1 + (1 d- x2)V2]} is used to reduce Ix I.
The asymptotically faster method described in [11] has been implemented for test-
ing purposes, but is not included in the MP package, as it is competitive with
MPATAN only for very large t.

MPASIN evaluates arcsin(x) from the identity arcsin(x) = arctan{x[1 - x2] -1]2}
i f l x l < 1.

6.8 Evaluation of ~r

MPPI uses Machin's well-known identity ~/4 = 4 arctan (1/5) -- arctan (1/239),
where arctan(1/5) and arctan(1/239) are obtained from the Taylor series (not
using MPATAN). Thus the time required is O(t~).

5~IPPIGL uses the Gauss-Legendre algorithm [11, 14, 42], which requires time
O(log(t)M(t)) . Since our implementation of MPMUL has M(t) of order t ~,
MPPIGL is always slower than MPPI, but it would be faster (for large t) if an
algorithm faster than O({/log(t)) were used in MPMUL. Subroutine MPPIGL
may be used to test MPPI and also, indirectly, MPSQRT and MPDIV.

6.9 Evaluation of "y

Euler's constant ~ = 0.5772. . . is usually defined by

" r = ,+~lim(~,-, 1 / i - l n (n)) .

We may use this definition to evaluate % estimating the remainder after a finite
n by the asymptotic Euler-Maclaurin series; see, for example, [31]. However, this
method requires the Bernoulli numbers which appear as coefficients in the Euler-
Maclaurin series, and the number of Bernoulli numbers required increases with
t if we demand reasonable efficiency (e.g. time polynomial in t). Thus MPEUL
uses a method which does not require any Bernoulli numbers. We outline the
method here because similar ideas may be used for other multiple-precision calcu-
lations, for example, in the computation of F(x) (see Section 6.10).

The method was suggested (though not used) by Sweeney [48] and depends on
the identity

.y = S(n) - R(n) - ln(n),
where

n k (_ l) k-1
S (n) = 25

k-1 kt k '

R(n) = f / e x p (- - u) du e x p (- n) 2 kt
u ~ n +-o (- n) + '

ACI~I Transactions on Mathematical Software, Vol 4, No 1, March 1978.

A Fortran Multiple-Precislon Arithmetic Package • 63

and n is chosen sufficiently large. Using Stirling's approximation, we have

R(n) exp(--n)~=2~ k! O(e-~),

and
I tanl X)k--1
S(n) -- ~_, nk(-- = O(e-2~),

where a = 4 .3191 . . . is the positive root of a + 2 = a In a. Thus, to obtain
with error O(b-t), we need to take n ~ ½t In(b), and the number of operations is
O(t2). This could be reduced to O(log2(t)M(t)) by grouping the terms in the above
series in pairs, etc. (as for the computation of e in [17],) but this is not worthwhile
unless t is large and a fast multiplication algorithm is used.

When evaluating the series for S(n) , the largest term (in absolute value) cor-
responds to/~ = n - 2, and n~-2/[(n - 2)!(n - 2)] < exp(n). Thus to compen-
sate for cancellation when summing the series it is sufficient to work with approxi-
mately 3t/2 digits. When summing the asymptotic series for R (n), only t/2 floating-
point digits are necessary.

6.10 Evaluation of F(x)

I f 0 <: x <: l w e h a v e

f0 n r(x) = ¢-1e-~' du + O(e-")

(- - 1)kn k+~
= k-0 ~ OiT-F x-~.k! + O(e-~)"

The series can be summed in much the same way as the series S(n) above. This
avoids the need for Bernoulli numbers, which are required if the asymptotic series
for In(F(3 + x)) is used. Taking n ~ t . ln(b), it is necessary to work with ap-
proximately 2t digits to compensate for cancellation. This could be reduced to 3t/2
digits if the remainder were approximated by an asymptotic series, as in the com-
putation of % with n ~-~ ½t.ln(b).

The summation of the above series may be performed more rapidly if x is a ra-
tional number, for then a multiple-precision division is not required to evaluate
each term. MPGAMQ implements this method to evaluate F(p/q) for small in-
tegers p and q. The argument is reduced to (0, 1) using well-known identities, and
the special eases q = 1 and q = 2 are dealt with separately.

M P L N G M evaluates ln(F(x)) using Stirling's approximation. The number of
terms used in the asymptotic series for the remainder is not fixed, but depends on
the precision required. Thus a variable number of Bernoulli numbers have to be
generated using M P B E R N (see Section 6.11). Actually, l n (F (j + x)) is com-
puted, where j is an integer chosen to approximately minimize the total computa-
tion time, and then ln(F(x)) is d~duced using the well-known recurrence formula.
The time required is 0 (t~).

5{PGAM evaluates F(x) using MPGAMQ if x is a suitable rational number,
or M P L N G M and M P E X P otherwise (combined with the reflection formula if x

ACM Transactlons on Mathematical Soft.are, VoL 4, No. 1, March 1978

64 • Richard P. Brent

is negative). The time and space required in the worst case are considerably greater
than for MPGAMQ.

6.11 Bernoulli Numbers

For many multiple-precision computations it is necessary to estimate a remainder
using the Euler-Maclaurin formula [2]. To obtain n terms in the asymptotic series
for the remainder, we need to know the Bernoulli numbers B2, B i , . . . , B2,.
5 IPBERN generates C 1 , . . . , Cn first, where Ck = B~k/(2k) !, using the recurrence

Ck-1 Ck-2 C1 2 k - 1 ,
2Ck(1 -- 4 -k) -k ~ + 4 . ~ -{- " '" ~- (2k -- 2)!4 k-1 - (2k)!4 k"

The relative error in the computed Ck is O(k2bl-t).
Note tha t we avoid the well-known recurrence [31]

Ck Ck-1 C1 k - ½

1-[. + ~ -t- " " + (2/c -- 1)! - (2]c -~ 1)!

because it is numerically unstable: using it in the forward direction would give a
relative error O(4kb i-t) in the computed Ck. (This might be unimportant if the
terms in the asymptotic series decreased fast enough.) The time required by
M P B E R N is O(n2t + n M (t)).

6.12 Exponential and Logarithmic Integrals

MPEI computes

ei (x) = (e~'/u) du, x # O,

and 5~PLI computes

h (x) = fo ~ du - e i (l n (x)) x > O, x = 1,
ln(u) ' -

where both integrals are Cauchy principal value integrals. M P E I uses the asymp-
totic series if I x] > t . ln(b), and otherwise uses the power series

e i (x) = "y + ln lxJ + kTk"
k--I

I f x is negative there is some cancellation in summing the power series, so the work-
ing precision is increased to compensate for this. In the worst case, when x =
- t . l n (b) , approximately 3t digits have to be used, and the time required
is O (t M (t)).

6.13 Error Function

M P E R F computes the error function erf(x) = (2/7r lj2) f~ e x p (- u 2) du, and
M P E R F C computes the complementary error function erfc(x) = 1 -- erf(x).
The methods used are similar to those described for the exponential integral (Sec-
tion 6.12). If Ix[is sufficiently large, the asymptotic series is used; otherwise
the power series for exp(x 2) f : e x p (- u 2) du is used. With this series there is no
cancellation, so it is not necessary to increase the working precision in MPERF.

ACM Tran~actmns on Mathematical Software, Vol 4, No 1, March 1978

A Fortran Multiple-Precision Arithmetic Package • 6.5

I t is, however, necessary to increase the working precision in 5~[PERFC if x is
positive but not large enough for the asymptotic series to be used.

6.14 Bessel Functions

5IPBESJ computes the Bessel function J~ (x) for integer p and multiple precision
x. If x is sufficiently large, Hankel's asymptotic expansion is used [2, sect. 9.2.5];
otherwise, either the power series [2, sect. 9.1.10] or the backward recurrence
method [22] is used, depending upon how much cancellation occurs with the power
series. The time required is O(tM(t)).

7. TEST RESULTS

5Iost testing has been done using Fortran V on a U]~ivac 1108. Gross errors may
be detected by comparing results of multiple-precision calculations with the re-
sults of the corresponding calculations performed in single or double precision.
5lany internal consistency checks are possible. For example, we should have (x2) 1/2
=]x I, sin(arcsin(x)) = x, etc. 5IPREC, MPROOT, 5~IPSQRT, 5~IPDIV,
MPQPWR, 5~[PSIN, MPASIN, 5~IPTAN, MPATAN, MPCOSH, etc., were
checked in this way for several different choices of b and t (e.g. b = 10 and t = 16).
Because MPLNS uses Newton's method and 5~PEXP1, a check tha t the com-
puted value of ln(exp(x)) is close to x does not necessarily imply that M P L N is
correct. However, MPLN was tested by comparison with 5 IPLNI and ~ P L N G S ,
and then I\~IPEXP was checked using h'[PLN. MPATAN was checked using an
implementation of the method described in [11], MPPI was checked using M P P I G L
as well as published values of ~r, and MPEUL was checked using published values
of ~ [31, 48]. The testing of M P E U L actually revealed an error in the most accurate
published value of ~, [5, 6]. 5/IPGA54Q was checked using published values [21] as
well as various identities. MPGASI and M P L N G M were tested using MPGAMQ
and various identities. MPEI , 5,IPERF, 5IPERFC, and MPBESJ were tested for
sufficiently large arguments by using both the asymptotic series and the power
series methods. 5~IPBESJ was also tested for small arguments by using both the
power series and the backward recurrence methods.

All routines have been tested with several different choices of b and t. Our aim
was not to provide routines which always give t correctly rounded digits; there is
no need for this because t may easily be increased if necessary. Generally the error
is bounded by a few units in the (t - 1)th digit for moderate arguments and
sensible choices of b and t. There are some exceptions, e.g. sin(x) for x near 7r.
However, in all cases the computed value y off(x) satisfies y = (1 -b El)f (x(1 q- e2)),
where el and e2 are perturbations of order b ~-~. If the user wishes to be confident
of the accuracy of his results, he should compare them with single- or double-
precision results to detect gross errors and then use at least two different values
of t (and/or b) to estimate the accuracy of the multiple-precision results.

The main program TEST uses MP to evaluate the 33 constants given to 40
decimal places in [32, appendix B]. TEST calls 5~PSET to set the base and number
of digits to give the equivalent of at least 42 decimal places. Thus b and t depend
on the wordlength of the machine. For example, on a Univac 1108 or PDP 10 with

ACM Transac tmns on Mathemat ica l Software, Vol 4, No 1, March 1978

6 6 • Richard P. Brent

Table I. Runs of TEST Program

Effective Approximate
wordlength execution Space

Machine Compiler (bits) time (seconds) (1024 words) (17)

PDP 11/45 (1) Fortran(2) 16 115.2 24
IBM 360/50 Fortran G (3) 32 31.5 21
IBM 360/50 Fortran H (4) 32 22.6 18
IBM 360/91 Fortran H (5) 32 1.63 21
IBM 370/168 Fortran H (6) 32 1.24 21
PDP 10 (7) F40 (8) 36 14.1 10 (1°)
PDP 10 (7) F10 (9) 36 11.0 10 (1°)
Univac 1 1 0 8 Fortran V (11) 36 4.42 17
Univac 1100/42 Fortran V (12) 36 3.39 12 (13)
Univac 1100/42 Ascii Fortran ('4) 36 3.28 13 (13)
Cyber 76 Fortran 4.2 (15) 48 (16) 0.43 6

(1) No floating-point hardware, 28K words memory
(3) Fortran V004A,/ER,/ON,/SU under DOS.
(3) Fortran IV G (level 19) under OS/]VIFT.
(4) Fortran H (level 20.1), opt = 2, under OS/MFT.
(5) Fortran H extended (level 2.1), opt = 2, under OS/MVT release 21 8
(6) Fortran H extended (level 2 1), opt = 2, under OS/VS2 release 1 6.
(7) KA 10 processor.
(s) F40 V27(360)
(9) Fortran V.4A(317),/KA,/NOOPT (Caution: /OPT does not work)

(107 Low segment only. High segment 7K words.
(ll) Fortran V (FOR SE1D) under Exec 8 (level 31).
(is) Fortran V (FOR 00T3), 1110 = opt, under Exec 8 (level 32R2A).
(13) Excluding common banks
(147 Ascii Fortran (FTN 6R1), XZ, under Exec 8 (level 32R2B).
(15) Fortran 4 2(~-383), opt = 1, under Scope 2.1 (level 185).
(le) Actual wordlength, 60 bits, but effective wordlength for integer arithmetic only 48 bits.

Simdarly, on Burroughs B6700 the effective wordlength is only 37 bits (and MPSET re-
quires a trivial modification).

(177 Excluding buffers, device drivers, and other system reqmrements.

a 36-bit word, b = 65536, t = 10, and the precision is sufficient to give correct ly
rounded 40D results. T E S T calculates ~(3) f rom the rap id ly converging series of
Gosper [23] :

5 ~ (- 1)k(k!) 2
= (k 4

The other cons tan t s each require only a few calls to M P rout ines for their compu-
ta t ion .

T E S T has been r u n successfully on var ious machines wi th several different word-
lengths. Deta i l s are given in Tab le I.

The p rogram T E S T V is a sl ight modif ica t ion of T E S T to allow var iable precision,
For checking purposes, 1000D results are avai lable [12]. Tab le I I shows how the
execut ion t ime depends on the precision required. 2

2 Some of the results were checked using the package of Wyatt et al. [50]. MP was slgmficantly
faster: the ratio of execution times ranged from 1.49 (for 20-place accuracy) to 10.1 (for 200-
place accuracy).

ACM Transactions on Mathematical Software, Vol 4, No 1, March 1978

A Fortran Multiple-Precision Arithmetic Package

Table II. Execution Times of TESTV
Program on Univac 1108

Decimal places
requested in call Executmn time

to MPSET (seconds)

1 0.8
10 1.6
20 2.4
30 3.4
40 4.4
50 5.9
60 7.0
80 10.3

100 14.0
200 42.1
400 161.5

1000 1065.6

67

The program TEST2 tests the M P routines more thoroughly than does TEST.
I t computes the constants given in [24, appendix C] and various other constants
to 40 significant figures. On a Univac 1108, working with two extra decimal places
(i.e. I D E C P L = 42 in the call to M P S E T) , the results are accurate to within
half a unit of the fortieth place. Correct 40S results are given in the comments in
the program. As for TEST, it is easy to increase the precision of TEST2 if required.
TEST2 has been run on several different machines.

Knu th ' s computat ion of the continued fraction for ~/has been verified and ex-
tended using MP. Details will be published separately [10], bu t it is worth noting
tha t only 38 seconds of Ul108 t ime were needed to compute and verify the 372
quotients given by K n u t h [31].

M P has also been used successfully to verify the orders of certain root-finding
methods and to determine their asymptot ic error constants [16].

8. AN EXAMPLE

The main program, E X A M P L E , given in [9, 13], is intended to give a simple
example of the use of MP. I t computes 7r and exp(r(163)I/2/3) and prints them
to 100 decimM places. The correct output is

7r = 3.14159265358979.. . 1170680

and

exp0r(163)l/2/3) = 640320.00000000060486 . . . 6477590.

E X A M P L E also computes

exp0r(163) 1/2) = 262537412640768743.99999999999925007...

and prints it to 90 decimal places. See [25, 37, 39] for the reason these numbers are
interesting. E X A M P L E has been run successfully on the same machines and with
the same compilers as T E S T (see Section 7).

ACM Transac t ions on Mathematmal Software, Vol, 4, No. 1, March 1978.

6 8 • Richard P. Brent

ACKNOWLEDGMENTS

I would like to thank D. Bowers, J.T. Chmura, W.L. Edwards, C.A. Freyberg,
R.H. Gonter, R.J. Hurle, H. Kung, M.W. Ray, and M. Saunders for their as-
sistance in testing M P on various machines, and J.P. Abbott , J.R. Ehrman, M.
Ginsberg, W.M. Gentleman, and R. Spira for their useful comments. One of the
referees kindly ran h iP through the P F O R T verifier [41].

REFERENCES

1. ABERTH, O. A precise numerical analysis program. Comm. ACM 17, 9 (Sept. 1974), 509-513.
2. ABRAMOWITZ, M , AND STEGUN, I.A. Handbook of Mathematwal Functions. Nat. Bur. of

Standards, Washington, D.C., 1964.
3. American National Standard Fortran (ANSI X3.9-1966), Amer. Nat. Standards Inst.,

New York, 1966. See also Comm. ACM lg, 5 (May 1969), 289-294 and Comm. ACM 1~, 10
(Oct. 1971), 628-642.

4. BA~, R M., AN]) R~DLICH, M.G. Multiple-precision arithmetic and the exact calculation
of the 3-j, 6-j, and 9-3 symbols. Comm. ACM 7, 11 (Nov. 1964), 657-659.

5. BEYER, W.A., AND WATERMAN, m.s. Decimals and partial quotients of Euler's constant
and ln(2). Submitted to Math. Comput.

6. B~.r~.R, W.A., AND WATERMAN, M S. Error analysis of a computation of Euler's constant.
Math. Comput. 28 (April 1974), 599-604.

7. BLVM, B.I. An extended arithmetic package. Comm. ACM 8, (May 1965), 318-320.
8. BOGEN, R. MACSYMA Reference Manual, Vet 8. Mathlab. Group, Project MAC, M.I.T.,

Cambridge, Mass., 1975.
9. BRENT, R.P. Algorithm 524. MP, A Fortran multzple-precision arithmetic package.

ACM Trans. Math. Software ~, 1 (March 1978), 71-81.
10. BRENT, R P. Computation of the continued fraction for Euler's constant. Math. Compul.

81 (July 1977), 771-777.
11. BRENT, R.P. Fast multiple-precision evaluation of elementary functions, d. ACM 23, 2

(April 1976), 242-251.
12. BRENT, R.P. Knuth's constants to 1000 decimal and 1100 octal places. Tech. Rep. 47,

Comptr. Ctr., Australian National U., Canberra, Sept. 1975.
13. BRENT, R.P. MP users guide Tech Rep. 54, Comptr. Ctr., Australian National U.,

Canberra, Sept. 1976.
14. BRENT, R.P. Multiple-precision zero-finding methods and the complexity of elementary

function evaluation. In Analytic Computational Complexity, J.F. Traub, Ed., Academic
Press, New York, 1976, pp. 151-176.

15. BRENT, R.P. On the precision attainable with various floating-point number systems.
IEEE Trans. Comptrs. C-22 (June 1973), 601-607.

16. BR~.NT, R.P. Some high-order zero-finding methods using almost orthogonal polynomials.
J. Auslral Math. Soc. Series B, 19 (1975), 1-29.

17. BI~ENT, R.P. The complexity of multiple-precision arithmetic. In Complexity of Compu-
tational Problem Solving, R S. Anderssen and R.P. Brent, Eds., U. of Queensland Press,
Brisbane, 1976, pp. 126-165.

18. COLLINS, G E. PM, A system for polynomial manipulation. Comm. ACM 9, 8 (Aug. 1966),
578-589.

19. DECKER, T.J. A floating-point technique for extending the available precision. Numer.
Math. 18 (1971), 224-242.

20 EHRMAN, J.R. A multiple-precision floating-point arithmetic package for System/360.
Rep. CGTM 18, Stanford Linear Accelerator Ctr., Stanford, Calif., 1967.

21. GA~ANT, D. C., AND BYRD, P.F. High accuracy gamma function values for some rational
arguments. Math Comput. 2P (1968), 885-887

22. GAVTSCm, W Algorithm 236. Bessel functions of the first kind. Comm. ACM 7, 8 (Aug.
1964), 479-480.

ACM Transactmns on Mathematical Software, Vol 4, No. 1, March 1978.

A Fortran Multiple-Precision Arithmetic Package • 69

23. GOSPER, R.W Acceleration of series. Memo 304, AI Lab , M.I.T., Cambridge, Mass.,
March 1974.

24. HART, J.F., ET AL. Computer Approx~matwns. Wiley, New York, 1968.
25. I-IERMITE, C. Oeuvres de Charles Hermzte, Vol. 2. Gauthier-ViUars, Paris, 1908, pp. 38-82.
26. HILL, I D. Algorithm 34, Procedures for the basic arithmetical operations in multiple-

length working. Computer J 11 (Aug. 1968), 232-235.
27. HULL, T.E., AND HOrBAUER, J J. Language facilities for multiple-precision floating-point

computation. Dept. Comptr. Sci , U. of Toronto, Toronto, Ont., 1974.
28. JONES, H.S.P. Algorithm 72. Multiple integer arithmetic procedures in Algol. Computer J.

I5 (1972), 281-282.
29. •ARATSUBA, A., AND OFMAN, Y. Multiplication of multidigit numbers on automata.

Dokl. Akad. Nauk SSSR 146 (1962), 293-394 (m Russian).
30. KERNIGHAN, B.W , AND PLAUGER, P.J. The Elements of Programming Style. McGraw-Hill,

New York, 1974.
31. KNUTH, D.E. Euler's constant to 1271 places. Math. Comput. 1.6 (1962), 275-281.
32. KNVTH, D.E. The Art of Computer Programming, Vol 2" Seminumerical Algorithms Addi-

son Wesley, Reading, Mass , 1969
33 KUKI, H , AND ConY, W.J. A statistical study of the accuracy of floating-point number

systems Comm. ACM 16, 4 (Aprxl 1973), 223-230.
34. LAWSON, C L Basic Q-precision arithmetic subroutines including input and output.

Tech Memo 170, Jet Propulsion Lab., Pasadena, Cahf, Oct. 1967.
35. LAWSON, C.L. Q-precision subroutines for the elementary functmns and aids for testing

single-precision and double-precision function subroutines. Tech. Memo 188, Jet Propul-
sion Lab , Pasadena, Calif., April 1968.

36. LAWSON, C L Summary of Q-precision subroutines as revised in October 1968. Tech
Memo 211, Jet Propulsaon Lab , Pasadena, Calif., Jan 1969.

37 LEHMER, D.H. Tables to many places of decimals. Math. Tables Aids Comput. 1 (1943),
30-31 (now Math Comput.).

38. MAXIMON, L.C Fortran programs for arbitrary precision arithmetic. Rep. 10563, Nat.
Bur. of Standards, Washington, D.C., April 1971.

39. RAMANUJAN, S Collected Papers of Srinwasa Ramanu3an Cambridge U. Press, Cam-
bridge, 1927, pp 23-39.

40. REID, C E , AND KNOBLE, H D. A multiple precision arithmetic package for the IBM
360/370 systems. SHARE Program Library, March 1974.

41. RYDER, B.G The PFORT verffier Software--Practice and Experience ~ (1974), 359-377
42 SALAMIS, E. Computation of ~r using arithmetic-geometrm mean. Math. Comput. 80 (July

1976), 565-570.
43 SCHONFELDER, J.L. The production of special function routines for a nmlti-machine h-

brary. Software--Practice and Expemence 6 (lC~7~), 71-82.
44. SCHONFELDER, J L The testing of mathematical function software in a multi-machine

enwronment. Tech. Rep. 107, Basser Dept Comptr. Scl., U. of Sydney, Sydney, Austraha,
Nov. 1975.

45 SCHONFELDER, J.L., AND THOMASON, J.T. Applicatmns support by direct language ex-
t ens ion-an arbitrary precision arithmetic facility m Algol 68 Computer Ctr., U. of B~rm-
mgham, Birmingham, 1975.

46. SCHONHAGE, A , AND STRASSEN, V Sehnelle Multiplikation grosser Zahlen. Computing 7
(1971), 281-292.

47. SPIRA, R. Fortran multiple precision, Pt. l, 2. Dept. of Math., Michigan State U., East
Lansing, Mmh, 1973.

48. SWEENEY, D.W. On the computation of Euler's constant. Math. Comput. 17 (1963), 170-178.
49. TIENAR[, M., AND SUOKONAUTIO, V A set of procedures making real arithmetic of un-

limited accuracy possible within Algol 60. BIT 6 (1966), 322-338.
50. WYATT, W.W., LOZIEI~, D.W., ANn ORSER, D.J. A portable extended precision arithmetic

package and hbrary with Fortran precompiler. Nat Bur. of Standards, Washington, D C ,
1975; Trans. Math Software 2, 3 (Sept. 1976), 209-231.

ACM Transactions on Mathematical Software, Vol. 4, No. 1, March 1978

7 0 • Richard P. Brent

51. CRARY, F.D. Multiple precision arithmetic design with an implementation on the Univac
1108. Tech. Summary Rep. 1123, Mathematics Research Center, U. of Wisconsin, Madison,
Wis., 1971.

52 CRARY, F.D. The Augment precompiler, Pt. I--User information. Tech. Summary Rep.
1469, Mathematics Research Center, U of Wisconsin, Madison, Wis. 1974 (revised April
1976)

Received July 1975; revised October 1975, March 1976, and October 1976

ACM Transactlons on Mathematical Software, Vol 4, No I, March 1978

