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1. INTRODUCTION 

SIP is a collection of Fortran subroutines for performing multiple-precision floating- 
point arithmetic. The package is almost completely machine independent, and the 
consequent loss of efficiency is not excessive. 5 IP  works with t-digit normalized 
floating-point numbers with baseb, where t >__ 2, b > 2, and 8b 2 -  1 is representable 
as a single-precision integer. The base and number of digits may be varied dy- 
namically. 

Several multiple-precision arithmetic packages are available [1, 4, 7, 8, 18-20, 
26-28, 34-36, 38, 40, 45, 47, 49, 51], but  SIP appears to be the only one which 
does not suffer from at least one of the following disadvantages: machine depend- 
ence, use of fixed-point rather than floating-point arithmetic, fixed or bounded 
precision, no routines for elementary and special functions (ln, exp, sin, Bessel 
functions, etc.) or constants Or, 7, etc.). 

SIP is designed for floating-point calculations. In some applications it is es- 
sential that  all operations should be performed exactly, using multiple-precision 
integers or rational numbers. For these applications, a package which uses a linked- 
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list representation of variable-length multiple-precision integers is preferable to 
MP. The MP subroutines are intended for applications such as checking the ac- 
curacy of floating-point library routines or generating accurate constants to be 
used in such routines. See, for example, [43-45]. 

Since MP is machine independent it is necessarily inefficient at a low level. 
However, we have attempted to make it efficient at a high level by implementing 
good algorithms. Some of the algorithms are described in Section 6, and test results 
are given in Section 7. We chose Fortran because it is widely available and relatively 
efficient, although a language such as Algol 68 has some obvious advantages [45]. 

2. DESIGN OF THE PACKAGE 

A t-digit floating-point number is represented in an integer array of dimension at 
least t ~- 2. The first word is used for the sign (0, ~-1, or - 1 ) ,  the second word 
for the exponent, and the third to (t -J- 2)th words for the normalized (base b) 
fraction. Such a number is called an "mp number" below. Zero is represented by 
a zero sign, with words 2 to t W 2 undefined. The exponent lies in [ - m ,  m], where 
m is set by the user, with the restriction that 4m is representable as a single-pre- 
cision integer. If the result of an operation underflows (i.e. the exponent is less than 
- m ) ,  it is set to zero, but  overflow (exponent greater than m) is treated as a fatal 
error. 

The assumption that 8b 2 -1  is representable as an integer makes it easy to per- 
form multiplication of mp numbers using single-precision integer arithmetic, but  
is rather wasteful of space. Without this assumption much time would be spent in 
packing and unpacking the digits of mp numbers, and it seems that time is more 
important than space in most applications. Routines for packing mp numbers into 
integer arrays of dimension [½(t n u 2)], and for unpacking such "compressed" 
numbers, are provided for use when space is critical, for example, when large 
arrays of multiple-precision numbers need to be stored. MP could be modified to 
work with compressed numbers, but execution times would be increased by about 
50 percent because of the increased complexity of the lower level routines. The 
problem could easily be overcome if Fortran supported operations on double- 
length integers. 

Arithmetic operations on mp numbers are performed by subroutine calls. Thus, 
instead of Z = X ~ Y we need to write CALL MPADD (X, Y, Z). A precompiler 
in the style of [27] or [52] could generate the appropriate subroutine calls. 1 Suffi- 
cient working space for the MP routines must be declared in COMMON in the 
main program. The parameters b, t, etc., are also transmitted to the MP routines 
in COMMON. 

3. CAPABILITIES OF MP 

The present version of SiP contains 101 subroutines and four main programs. 
The capabilities of the subroutines include the following: 

(1) conversion of integer, real, and double-precision numbers to multiple- 
precision format, and vice versa; 

A p r e c o m p i l e r  u s i n g  a n  e x t e n s i o n  of M O R T R A N 2  h a s  b e e n  w r i t t e n  a n d  is c u r r e n t l y  b e i n g  
t e s t e d .  
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(2) multiplication and division of mp numbers by small integers; 
(3) addition, subtraction, multiplication, and division of mp numbers. 
(4) powers and roots of mp numbers, 
(5) elementary functions of mp numbers (log, exp, sin, tan, arcsin, arctan, 

sinh, eosh, tanh), 
(6) some special functions and constants (Bernoulli numbers, Bessel functions 

of the first kind, error and complementary error functions, exponential 
and logarithmic integrals, Dawson's integral, gamma function, ~r, % ~'(~), 
etc.); 

(7) fixed and floating-point decimal output and free-field decimal input of mp 

numbers; 
(8) integer and fractional parts of mp numbers; 
(9) routines for error handling, testing, and debugging; 

(10) miscellaneous: comparison of mp numbers, storing, packing and unpacking 
mp numbers, etc. 

The four main programs are designed for testing purposes and are described in 
Sections 7 and 8. 

The list of special functions could obviously be extended. In fact, it would be 
useful to have arbitrary-precision subroutines for all the commonly used special 
functions. We invite others to contribute such subroutines. 

4. DEPARTURES FROM ANSI FORTRAN 

We have attempted to use ANSI Standard Fortran [3] as far as possible. The only 
known violation of the standard is that arrays used as arguments of MP sub- 
routines (or in COMMON) are declared with dimension 1 in the subroutines, e.g. 

SUBROUTINE A (X, Y) 
INTEGER X(1), Y(1) 

It  is assumed that X, Y, etc., are declared with sufficiently large dimension (usually 
at least t + 2) in the main program, and that the compiler does not check whether 
array bounds as declared in the example shown above are violated. The reason for 
this deviation from the standard is that it makes it possible to increase the precision 
of a computation merely by changing the main program--the MP routines do not 
need to be changed or recompiled. 

To conform to the standard, it would be necessary to pass the dimensions of 
the arrays X, Y, etc., as extra arguments, e.g. 

SUBROUTINE A (X, Y, M, N) 
INTEGER X(M), Y(N) 

However, this would increase both the space and time required by the MP routines, 
and the nonstandard usage is accepted by most Fortran compilers (see Section 7). 

5. ERROR HANDLING 

There is no way that the MP routines can ensure that arrays used as arguments 
have been declared with sufficiently large dimensions in the main program. Thus 
overwriting may occur, with unpredictable results, if the user is careless. However, 
MP attempts to detect errors and makes it easy for the user to avoid them. For 
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example, there is a subroutine MPSET (LUNIT, IDECPL, ITMAX2, 5~AXDR) 
which provides a convenient way for the user to set the base, the number of digits, 
and other necessary parameters in COMMON before calling any other MP routines. 
Here LUNIT is a logical unit to be used for subsequent error messages from MP 
routines, and IDECPL is the "equivalent" number of floating decimal places 
desired by the user. MPSET determines the largest machine-representable integer 
of the form 2 ~ - 1, sets m = 2 k-2 - 1, and sets b and t to the optimal legal values 
such that 

(t - 1)logl0b >__ IDECPL. 

The arguments ITMAX2 and MAXDR should equal the dimensions of arrays to 
be used for MP numbers and for working space, respectively. MPSET checks that  
t + 2 < ITS~AX2, and informs the user if ITMAX2 is too small. MAXDR is 
saved in COMMON, and if the user subsequently calls a routine which needs more 
space, he is informed of this. 

The MP routines check for various error conditions. For example, if an integer 
which should be positive becomes negative, then it is probable that integer overflow 
has occurred because b is too large, and an informative message is printed. If the 
sign of an mp number is not 0 or ~1 ,  or a digit is not in the range 0, 1 , . . . ,  b - l ,  
overwriting has probably occurred, and the user is informed. Routines such as 
5IPSIN and MPPI convert their result to (single precision) real and check that it 
is reasonable, and routin, s which use Newton's method check that the iteration 
is converging as it should. 

If an 5~P routine is about to generate a multiple-precision result X whose ex- 
ponent lies outside the allowable range, then MPUNFL(X) or MPOVFL(X) is 
called. At present MPUNFL sets X to zero and returns, while MPOVFL prints 
an error message, but these actions could easily be modified. For example, it might 
be desirable to terminate execution after a certain number of multiple-precision 
underflows, since these are probably caused by a programming error if the allow- 
able exponent range is large. 

To make the SiP routines as intelligible and easy to modify as possible, we have 
followed most of the suggestions of Kernighan and Plauger [30]. 

6. SOME ALGORITHMS USED IN MP 

6.1 Addition 

This is straightforward, and is performed much as described in Knuth [32]. We use 
R*-rounding [15, 33] after postnormalization, with four guard digits. 

6.2 Multiplication 

The classical O(t ~) method is used because it seems difficult to implement faster 
algorithms [29, 32, 46] in a machine-independent manner in Fortran. Also, the 
faster algorithms would actually be slower for small t. The subroutine MPMUL 
could be modified without affecting the other routines in MP. We denote the time 
required for t-digit multiplication by M(t) ,  so M(t)  is of order t 2 with our imple- 
mentation of multiplication, but M(t)  -- O(t.log(t)loglog(t)) is theoretically 
attainable. 5~[ultiplication (or division) of an mp number by a single-precision 
integer is an important special case which requires time 0 (t). 
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6.3 Reciprocals, Square Roots, Etc. 

I t  is well known that ,  if x is a positive number and n is a positive integer, then 
y = x -~/" may be computed by Newton's method without using any divisions 
except by n. The iteration is 

n y~+l = y~ q- yj(1 -- xy~ )/~. 

. l IPROOT implements this iteration, starting with a small value of t and approxi- 
mately doubling it at each step, as described in [14, 17]. Thus the time required 
by ~[PROOT is O(M(t)). M P R E C  implements the special case n = 1. Division 
and square roots require one additional multiplication after the computation of 

--1 X--I/2, x or respectively, so they also require time O(M(t) ). 
Numbers of the form (i/3) p/q, where z,j, p, and q are small integers, often occur 

in multiple-precision calculations. 5 'IPQPWR uses 5~[PROOT to compute such 
numbers efficiently. 

6.4 exp(x) 

: \ iPEXP1 evaluates exp(x) - 1 for small ] x] by an algorithm described in [17]. 
The idea is to use the power series for exp(x) - 1 if ] x I is sufficiently small, and 
otherwise to use the relation 

exp(x) - 1 = [exp(x/2) - 1] [exp(x/2) + 1] 

to reduce Ix I. The time required is O(tl/2M(t)). -l'Iethods which require t ime 
O(log(t)M(t) ) are known [11, 14], but  turn out to be slower for small and moderate 
t. 

5 I P E X P  uses the identi ty exp(x) = e ~ exp(f) ,  where n is the integer par t  of x, 
and f = x - ~, to evaluate exp(x)  (using 5~IPEXP1 to evaluate exp(f)  and the 
well-known series for e or e-l). The hyperbolic functions are easily evaluated using 
5.IPEXP (or sometimes M P E X P 1  to avoid cancellation). 

6.5 In(x) 

5~[PLNS evaluates ln(1 + x) for small [ x I by  Newton's method, using MPEXP1 .  
Thus the t ime required is O(t~t2M(t)). Asymptotically faster methods are known 
[14], but  are practically useful only if t is very large. ~ P L N G S  implements one 
such method (useful mainly for testing purposes). 

~ [PLN evaluates ln(z)  by first obtaining a rough approximation y, evaluating 
exp(y) accurately using ~JIPEXP, and then evaluating ln(x/exp(y)) accurately 
using MPLNS.  

~ P L N I  computes ln(n)  for small integer n and is faster than h IPLN.  M P L N I  
calls ~IPL235, which uses well-known series for ln(16/15) ,  ln(25/24) ,  and 
]n(81/80) to compute ln(m),  where m is an integer of the form 2~3~5 ~. M P L N I  
chooses such an m close to n and then uses a series for ln(n/m) to obtain ln(n) .  
MPL235 and M P L N I  require t ime O(t2). 

6.6 sin(x) and tan(x) 

The function sin(x) is evaluated from the Taylor  series if I x I ~ 1, so the time re- 
quired is O(tM(t)/log(t)). This could be reduced to O(tl/2M(t)) or even 
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O(log( t )M(t) ) ,  as described in [11, 14, 17], but the simpler algorithm is faster for 
small t. If [ x [ >__ 1, various identities are used to reduce [ x [. 

The function tan(x) is evaluated from the identity tan(x) = sin(x) 
[ 1  - sin2(x)] -v2 if I x [ < 1r/4 and from similar identities if I x ] >__ ~r/4. 

6.7 arctan(x) and arcsin(x) 

MPATAN evaluates arctan(x) from the Taylor series if J x I < ½, so the time re- 
quired is O(tM(t ) ) .  (This could be reduced for large t, as for sin(x).) If 1 x t >- ½, 
the identity arctan(x) = 2arctan{x/[1 + (1 d- x2)V2]} is used to reduce Ix I. 
The asymptotically faster method described in [11] has been implemented for test- 
ing purposes, but is not included in the MP package, as it is competitive with 
MPATAN only for very large t. 

MPASIN evaluates arcsin(x) from the identity arcsin(x) = arctan{x[1 - x2] -1]2} 
i f l x l  < 1. 

6.8 Evaluation of ~r 

MPPI uses Machin's well-known identity ~/4 = 4 arctan (1/5) -- arctan (1/239), 
where arctan(1/5) and arctan(1/239) are obtained from the Taylor series (not 
using MPATAN). Thus the time required is O(t~). 

5~IPPIGL uses the Gauss-Legendre algorithm [11, 14, 42], which requires time 
O(log( t )M(t) ) .  Since our implementation of MPMUL has M(t )  of order t ~, 
MPPIGL is always slower than MPPI, but it would be faster (for large t) if an 
algorithm faster than O({/log(t)) were used in MPMUL. Subroutine MPPIGL 
may be used to test MPPI and also, indirectly, MPSQRT and MPDIV. 

6.9 Evaluation of "y 

Euler's constant ~ = 0.5772. . .  is usually defined by 

" r =  ,+~lim(~,-, 1 / i -  l n (n ) ) .  

We may use this definition to evaluate % estimating the remainder after a finite 
n by the asymptotic Euler-Maclaurin series; see, for example, [31]. However, this 
method requires the Bernoulli numbers which appear as coefficients in the Euler- 
Maclaurin series, and the number of Bernoulli numbers required increases with 
t if we demand reasonable efficiency (e.g. time polynomial in t). Thus MPEUL 
uses a method which does not require any Bernoulli numbers. We outline the 
method here because similar ideas may be used for other multiple-precision calcu- 
lations, for example, in the computation of F(x) (see Section 6.10). 

The method was suggested (though not used) by Sweeney [48] and depends on 
the identity 

.y = S(n)  - R(n)  - ln(n), 
where 

n k ( _ l )  k-1 
S (n )  = 25 

k-1 kt k ' 

R(n)  = f / e x p ( - - u )  du e x p ( - n )  2 kt 
u ~ n +-o ( - n ) + '  
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and n is chosen sufficiently large. Using Stirling's approximation, we have 

R(n)  exp(--n)~=2~ k! O(e-~),  

and 
I tanl X)k--1 
S(n)  -- ~_, nk(-- = O(e-2~), 

where a = 4 .3191 . . .  is the positive root of a + 2 = a In a. Thus, to obtain 
with error O(b-t), we need to take n ~ ½t In(b), and the number of operations is 
O(t2). This could be reduced to O(log2(t)M(t) ) by grouping the terms in the above 
series in pairs, etc. (as for the computation of e in [17],) but this is not worthwhile 
unless t is large and a fast multiplication algorithm is used. 

When evaluating the series for S(n) ,  the largest term (in absolute value) cor- 
responds to/~ = n - 2, and n~-2/[(n - 2)!(n - 2)] < exp(n).  Thus to compen- 
sate for cancellation when summing the series it  is sufficient to work with approxi- 
mately 3t/2 digits. When summing the asymptotic series for R (n), only t/2 floating- 
point digits are necessary. 

6.10 Evaluation of F(x) 

I f 0  <: x <: l w e h a v e  

f0 n r(x) = ¢-1e-~' du + O(e-")  

( - -  1)kn k+~ 
= k-0 ~ OiT-F x-~.k! + O(e-~)" 

The series can be summed in much the same way as the series S(n)  above. This 
avoids the need for Bernoulli numbers, which are required if the asymptotic series 
for In(F(3 + x)) is used. Taking n ~ t . ln(b),  it is necessary to work with ap- 
proximately 2t digits to compensate for cancellation. This could be reduced to 3t/2 
digits if the remainder were approximated by an asymptotic series, as in the com- 
putation of % with n ~-~ ½t.ln(b). 

The summation of the above series may be performed more rapidly if x is a ra- 
tional number, for then a multiple-precision division is not required to evaluate 
each term. MPGAMQ implements this method to evaluate F(p/q) for small in- 
tegers p and q. The argument is reduced to (0, 1) using well-known identities, and 
the special eases q = 1 and q = 2 are dealt with separately. 

M P L N G M  evaluates ln(F(x) )  using Stirling's approximation. The number of 
terms used in the asymptotic series for the remainder is not fixed, but  depends on 
the precision required. Thus a variable number of Bernoulli numbers have to be 
generated using M P B E R N  (see Section 6.11). Actually, l n (F ( j  + x)) is com- 
puted, where j is an integer chosen to approximately minimize the total computa- 
tion time, and then ln(F(x) )  is d~duced using the well-known recurrence formula. 
The time required is 0 (t~). 

5{PGAM evaluates F(x) using MPGAMQ if x is a suitable rational number, 
or M P L N G M  and M P E X P  otherwise (combined with the reflection formula if x 
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is negative). The time and space required in the worst case are considerably greater 
than for MPGAMQ. 

6.11 Bernoulli Numbers 

For many multiple-precision computations it is necessary to estimate a remainder 
using the Euler-Maclaurin formula [2]. To obtain n terms in the asymptotic series 
for the remainder, we need to know the Bernoulli numbers B2, B i , . . . ,  B2,. 
5 IPBERN generates C 1 , . . . ,  Cn first, where Ck = B~k/(2k) !, using the recurrence 

Ck-1 Ck-2 C1 2 k -  1 , 
2Ck(1 -- 4 -k) -k ~ + 4 . ~  -{- " '"  ~- (2k -- 2)!4 k-1 - (2k)!4 k" 

The relative error in the computed Ck is O(k2bl-t).  
Note tha t  we avoid the well-known recurrence [31] 

Ck Ck-1 C1 k - ½ 

1-[. + ~ -t- " "  + (2/c -- 1)! - (2]c -~ 1)! 

because it is numerically unstable: using it in the forward direction would give a 
relative error O(4kb i-t) in the computed Ck. (This might be unimportant if the 
terms in the asymptotic series decreased fast enough.) The time required by 
M P B E R N  is O(n2t + n M ( t )  ). 

6.12 Exponential and Logarithmic Integrals 

MPEI  computes 

ei (x)  = (e~'/u) du, x # O, 

and 5~PLI computes 

h ( x )  = fo ~ du - e i ( l n ( x ) )  x > O, x = 1, 
ln(u) ' - 

where both integrals are Cauchy principal value integrals. M P E I  uses the asymp- 
totic series if I x ] > t . ln(b),  and otherwise uses the power series 

e i (x )  = "y + ln lxJ + kTk" 
k--I 

I f  x is negative there is some cancellation in summing the power series, so the work- 
ing precision is increased to compensate for this. In the worst case, when x = 
- t . l n ( b ) ,  approximately 3t digits have to be used, and the time required 
is O ( t M ( t )  ). 

6.13 Error Function 

M P E R F  computes the error function erf(x) = (2/7r lj2) f~ e x p ( - u  2) du, and 
M P E R F C  computes the complementary error function erfc(x) = 1 -- erf(x). 
The methods used are similar to those described for the exponential integral (Sec- 
tion 6.12). If Ix[  is sufficiently large, the asymptotic series is used; otherwise 
the power series for exp(x 2) f :  e x p ( - u  2) du is used. With this series there is no 
cancellation, so it is not necessary to increase the working precision in MPERF.  
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I t  is, however, necessary to increase the working precision in 5~[PERFC if x is 
positive but  not large enough for the asymptotic series to be used. 

6.14 Bessel Functions 

5IPBESJ computes the Bessel function J~ (x) for integer p and multiple precision 
x. If x is sufficiently large, Hankel's asymptotic expansion is used [2, sect. 9.2.5]; 
otherwise, either the power series [2, sect. 9.1.10] or the backward recurrence 
method [22] is used, depending upon how much cancellation occurs with the power 
series. The time required is O(tM(t)). 

7. TEST RESULTS 

5Iost testing has been done using Fortran V on a U]~ivac 1108. Gross errors may 
be detected by comparing results of multiple-precision calculations with the re- 
sults of the corresponding calculations performed in single or double precision. 
5lany internal consistency checks are possible. For example, we should have (x2) 1/2 
= ]x I, sin(arcsin(x)) = x, etc. 5IPREC,  MPROOT, 5~IPSQRT, 5~IPDIV, 
MPQPWR, 5~[PSIN, MPASIN, 5~IPTAN, MPATAN, MPCOSH, etc., were 
checked in this way for several different choices of b and t (e.g. b = 10 and t = 16). 
Because MPLNS uses Newton's method and 5~PEXP1, a check tha t  the com- 
puted value of ln(exp(x)) is close to x does not necessarily imply that  M P L N  is 
correct. However, MPLN was tested by comparison with 5 IPLNI  and ~ P L N G S ,  
and then I\~IPEXP was checked using h'[PLN. MPATAN was checked using an 
implementation of the method described in [11], MPPI  was checked using M P P I G L  
as well as published values of ~r, and MPEUL was checked using published values 
of ~ [31, 48]. The testing of M P E U L  actually revealed an error in the most accurate 
published value of ~, [5, 6]. 5/IPGA54Q was checked using published values [21] as 
well as various identities. MPGASI and M P L N G M  were tested using MPGAMQ 
and various identities. MPEI ,  5,IPERF, 5IPERFC,  and MPBESJ were tested for 
sufficiently large arguments by using both the asymptotic series and the power 
series methods. 5~IPBESJ was also tested for small arguments by using both the 
power series and the backward recurrence methods. 

All routines have been tested with several different choices of b and t. Our aim 
was not to provide routines which always give t correctly rounded digits; there is 
no need for this because t may easily be increased if necessary. Generally the error 
is bounded by a few units in the (t - 1)th digit for moderate arguments and 
sensible choices of b and t. There are some exceptions, e.g. sin(x) for x near 7r. 
However, in all cases the computed value y off(x)  satisfies y = (1 -b El)f (x(1 q- e2) ), 
where el and e2 are perturbations of order b ~-~. If the user wishes to be confident 
of the accuracy of his results, he should compare them with single- or double- 
precision results to detect gross errors and then use at least two different values 
of t (and/or b) to estimate the accuracy of the multiple-precision results. 

The main program TEST uses MP to evaluate the 33 constants given to 40 
decimal places in [32, appendix B]. TEST calls 5~PSET to set the base and number 
of digits to give the equivalent of at least 42 decimal places. Thus b and t depend 
on the wordlength of the machine. For example, on a Univac 1108 or PDP 10 with 
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Table I. Runs of TEST Program 

Effective Approximate 
wordlength execution Space 

Machine Compiler (bits) time (seconds) (1024 words) (17) 

PDP 11/45 (1) Fortran(2) 16 115.2 24 
IBM 360/50 Fortran G (3) 32 31.5 21 
IBM 360/50 Fortran H (4) 32 22.6 18 
IBM 360/91 Fortran H (5) 32 1.63 21 
IBM 370/168 Fortran H (6) 32 1.24 21 
PDP 10 (7) F40 (8) 36 14.1 10 (1°) 
PDP 10 (7) F10 (9) 36 11.0 10 (1°) 
Univac 1 1 0 8  Fortran V (11) 36 4.42 17 
Univac 1100/42 Fortran V (12) 36 3.39 12 (13) 
Univac 1100/42 Ascii Fortran ('4) 36 3.28 13 (13) 
Cyber 76 Fortran 4.2 (15) 48 (16) 0.43 6 

(1) No floating-point hardware, 28K words memory 
(3) Fortran V004A,/ER,/ON,/SU under DOS. 
(3) Fortran IV G (level 19) under OS/]VIFT. 
(4) Fortran H (level 20.1), opt = 2, under OS/MFT. 
(5) Fortran H extended (level 2.1), opt = 2, under OS/MVT release 21 8 
(6) Fortran H extended (level 2 1), opt = 2, under OS/VS2 release 1 6. 
(7) KA 10 processor. 
(s) F40 V27(360) 
(9) Fortran V.4A(317),/KA,/NOOPT (Caution: /OPT does not work ) 

(107 Low segment only. High segment 7K words. 
(ll) Fortran V (FOR SE1D) under Exec 8 (level 31). 
(is) Fortran V (FOR 00T3), 1110 = opt, under Exec 8 (level 32R2A). 
(13) Excluding common banks 
(147 Ascii Fortran (FTN 6R1), XZ, under Exec 8 (level 32R2B). 
(15) Fortran 4 2(~-383), opt = 1, under Scope 2.1 (level 185). 
(le) Actual wordlength, 60 bits, but effective wordlength for integer arithmetic only 48 bits. 

Simdarly, on Burroughs B6700 the effective wordlength is only 37 bits (and MPSET re- 
quires a trivial modification). 

(177 Excluding buffers, device drivers, and other system reqmrements. 

a 36-bit  word, b = 65536, t = 10, and  the  precision is sufficient to give correct ly 
rounded  40D results.  T E S T  calculates ~(3) f rom the  rap id ly  converging  series of 
Gosper  [23] : 

5 ~ ( -  1)k(k!) 2 
= (k 4 

The  other  cons tan t s  each require  only  a few calls to M P  rout ines  for their  compu-  
ta t ion .  

T E S T  has been  r u n  successfully on var ious  machines  wi th  several different word- 
lengths.  Deta i l s  are given in  Tab le  I. 

The  p rogram T E S T V  is a sl ight modif ica t ion of T E S T  to allow var iable  precision, 
For  checking purposes,  1000D results  are avai lable  [12]. Tab le  I I  shows how the  
execut ion t ime  depends  on the  precision required.  2 

2 Some of the results were checked using the package of Wyatt et al. [50]. MP was slgmficantly 
faster: the ratio of execution times ranged from 1.49 (for 20-place accuracy) to 10.1 (for 200- 
place accuracy). 
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Table II. Execution Times of TESTV 
Program on Univac 1108 

Decimal places 
requested in call Executmn time 

to MPSET (seconds) 

1 0.8 
10 1.6 
20 2.4 
30 3.4 
40 4.4 
50 5.9 
60 7.0 
80 10.3 

100 14.0 
200 42.1 
400 161.5 

1000 1065.6 

67 

The program TEST2  tests the M P  routines more thoroughly than  does TEST.  
I t  computes the constants given in [24, appendix C] and various other constants 
to 40 significant figures. On a Univac 1108, working with two extra decimal places 
(i.e. I D E C P L  = 42 in the call to M P S E T ) ,  the results are accurate to within 
half a unit  of the fortieth place. Correct 40S results are given in the comments  in 
the program. As for TEST,  it is easy to increase the precision of TEST2  if required. 
TEST2  has been run on several different machines. 

Knu th ' s  computat ion of the continued fraction for ~/has been verified and ex- 
tended using MP.  Details will be published separately [10], bu t  it  is worth noting 
tha t  only 38 seconds of Ul108 t ime were needed to compute and verify the 372 
quotients given by  K n u t h  [31]. 

M P  has also been used successfully to verify the orders of certain root-finding 
methods and to determine their asymptot ic  error constants [16]. 

8. AN EXAMPLE 

The main program, E X A M P L E ,  given in [9, 13], is intended to give a simple 
example of the use of MP.  I t  computes 7r and exp(r(163)I/2/3)  and prints them 
to 100 decimM places. The  correct output  is 

7r = 3.14159265358979.. .  1170680 

and 

exp0r(163)l/2/3) = 640320.00000000060486 . . .  6477590. 

E X A M P L E  also computes 

exp0r(163) 1/2) = 262537412640768743.99999999999925007... 

and prints it to 90 decimal places. See [25, 37, 39] for the reason these numbers are 
interesting. E X A M P L E  has been run successfully on the same machines and with 
the same compilers as T E S T  (see Section 7). 
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