
BIT 20 (1980), 176-184

AN IMPROVED

MONTE CARLO FACTORIZATION ALGORITHM

RICHARD P. BRENT

Abstract .

Pollard's Monte Carlo factorization algorithm usually finds a factor of a composite
integer N in O (N 1t4) arithmetic operations. The algorithm is based on a cycle-finding
algorithm of Floyd. We describe a cycle-finding algorithm which is about 36 percent faster
than Floyd's (on the average), and apply it to give a Monte Carlo factorization algorithm
which is similar to Pollard's but about 24 percent faster.

1. Introduction.

Let S = {0, 1, 2 , N - 1}, where N is a (large) integer. P seudorandom numbers
are often generated by an iteration of the form

(1.1) xi+ 1 = f (x i) ,

where f : S ~ S is some easily-computable function, and x o ~ S is given [3]. Since
S is finite, there exist m > 0 and n > 1 such that

(1.2) xm+ . = x m ,

and from (1.1) it follows that

(1.3) xi+ . = x i for all i > m .

The minimal such n and m are called the per iod and the l eng th o f the nonper iod ic

s e g m e n t of the sequence (xi).

Knuth [3] gives a simple and elegant algorithm, attr ibuted to Floyd, for finding

a multiple of the period n, using only a small constant amount of storage. The idea
of Floyd's algori thm is to find j < m + n such that

(1.4) X2j = X j .

The algori thm is:

x : = Xo; y : = x o ; j : = 0;
repeat j : = j + l ; x : = f (x) ; y : = f(f(y))

until x = y .

Received December 14, 1979.

AN IMPROVED MONTE CARLO FACTORIZATION ALGORITHM 177

On termination x = x j, y = x2j, and (1.4) holds, so j is a multiple of n. (The period n
may now be found by generating x j+ l ,x j+2 , . . , until x j+ ,=xj , or by more
sophisticated algorithms which use the prime factorization of j).

Knuth [3] and Pollard [7] analysed the average behaviour of Floyd's
algorithm under the following assumptions:

AI: Each of the N u functions f: S ~ S occurs with equal probability N -N.
A2: N is large enough that a continuous approximation is valid.
A3: The work is measured by the number of evaluations (and, sometimes, the

number of comparisons) - overheads are ignored.

In Section 2 we describe a family of cycle-finding algorithms which may be
faster than Floyd's. The worst case is analysed in Section 3, and the average case
(under assumptions A1-A3) in Section 4. The optimal algorithm in our family is
about 36 percent faster than Floyd's (on the average).

Pollard [7] gave an ingenious Monte Carlo factorization algorithm based on
Floyd's cycle-finding algorithm. In Section 5 we describe how Pollard's algorithm
may be modified to use our cycle-finding algorithms instead of Floyd's, and the
algorithms are compared in Section 6. With an improvement described in Section
7, the best new factorization algorithm is about 24 percent faster than Pollard's
(on the average). The results of some empirical comparisons of the two algorithms
are given in Section 8.

Recently Sedgewick and Szymanski [11] have given another family of cycle-
finding algorithms. Their algorithms, like Gosper's [1], improve on Floyd's and
ours at the expense of using more memory. Unfortunately, it does not seem to be
possible to use the Sedgewick-Szymanski or Gosper algorithms to speed up
Pollard-like factorization algorithms.

There has recently been much interest in factorization algorithms because of
their application to cryptography [2, 10]. Pollard-like algorithms require time
O (p~) on average, where p is the smallest prime factor of the composite number N.
The best general approach to factorization of large integers N may be to apply a
Pollard-like algorithm to find all prime factors Pi of moderate size (say Pi < 1012)
with high probability, and then apply more sophisticated algorithms [3, 5, 6, 8, 12]
to the quotient N/I-IP~ if it can not be shown to be prime by well-known methods
[4,6,9,13].

2. A family of cycle-finding algorithms.

Let Q > 1 be a free parameter. The cycle-finding algorithm B o is:

Choose u from a uniform distribution on [0, 1);

y := x0; r := Qu; k := O; done := false;
repeatx := y ; j := k; r := f fxr;

repeat k := k + l ; y := f(y); done := (x=y)
until done or (k > r)

until done; n := k - j .

BtT20--12

178 RICHARD P. BRENT

It is easy to show that B o terminates with n set to the period of (x~). The choice of
a (pseudo-) random u e [0, 1) is not essential: it merely makes the average-case
analysis of Section 4 tractable. In practice we usually take u = 0 and Q=2: see
Section 4.

The algorithm B 2 was originally developed to find the period of the pseudo-
random number generator supplied (in ROM) with a popular programmable
calculator. This generator was claimed in [15] to be linear congruential with
period 199017. Table 2.1 gives the values of n (found by Algorithm B2) and m
(found by the obvious algorithm once n is known) for various starting values x o. It
is clear from the table that the actual generator is quite different from the one
described in [15].

Table 2.1. Period (n) and length o f non-periodic segment (m) for a pseudo-random

number gencrator.

x o n m

2
13
18
45

156
608

1728

11160
1897
467
406

1204
717
490

1095
908
626

6683
5137
774

12

3. Worst-case analysis.

In this section we consider the worst-case for Floyd's algorithm and Algorithm
BQ, Q ~ 2. We make assumption A3, and measure work in units o f f evaluations.

Floyd's algorithm terminates with

~m if m -= 0 (mod n) and m > 0
(3.1) J = (m + n - (m m o d n) otherwise,

where m mod n = m - n[m/n], and the number of f evaluations is Wr = 3j. Thus,

(3.2) 3 max (m, n) ~ W F < 3(m + n) .

Suppose the outer repeat loop of algorithm B o is executed s > 1 times. Then on
termination j > m,

(3.3)

and

(3.4)

if s = l , ,
J = ro "+0s-I] i f ' s > l ,

k = j + n < [e"+Sl.

(3.5)

Since

(3.6)

AN IMPROVED MONTE CARLO FACTORIZATION ALGORITHM

Let g be the smallest integer such that g> 1 and

O u+g-1 ~ max m, 0--1,/"

[Q"+~t-[Ou+~-I 1 _-> Ou+~-Ou+~-l-1 ~ n ,

we see that s__<L Thus,

(n+X']
(3.7) J < 0max m, b--Z~_l/,

and the number of function evaluations is

W e = k < Ümax m, + n . (3.8t

If 2 < Q < 3, (3.8) gives

(3.9)

179

4. Expected behaviour of algorithm BQ.
In this section we analyse the expected behaviour of the cycle-finding

algorithms described above, making assumptions A1-A3. We write # = m / N ~,
v = n/N ½, z = ju + v, # '= #/z, and v'= v/z. The expected values of # and v are

(4.1) E(#) = E(v) = (7r/8) ~ ,

and the joint probability density function of # and v is

(4.2) ~o(p,v) = e -/~'+v)~/2 (#>0, v>0) .

These results follow from the discussion in Knuth [31.
Let w F = We/N ~ and wQ = WQ/N ~, where Wv and VVQ are respectively the number

of f evaluations required by Floyd's algorithm and by algorithm BQ. From (3.1)
and (4.1) we have, as in Knuth [31,

(4.3) E(we) = (rr/2) 5/2 ~ 3.0924.

This may be compared with the "optimal" value of E(z)= (rc/2) ½, which is
approached (at the expense of memory requirements) by the algorithms of
Sedgewick and Szymanski [111.

WQ < 3 (r e+n)+2 ,

which is almost the same as the bound (3.2) for Floyd's algorithm.
If Q = 2 and u = 0, we have, by (3.2) and a slight modification of the argument

leading to (3.8),

(3.10) We ~ 2max (m,n)+n < W e .

Thus, in this case BQ is never slower than Floyd's algorithm.

180 RICHARD P. BRENT

For algorithm B e we have

(4.4) wQ = Q"' max ~, + v,

where u' is uniformly distributed in [0, 1). (To prove this, follow the derivation of
(3.7) above.) It is essential to note that u', # and v are independently distributed.
Thus, from (4.4), we have

// ['X"~ V'
(4.5) E(we) = e(e"')E(z)E~max~l/, ~_ i))+ e(v) .

From (4.2), #' and v' are uniformly distributed on [0, 1), so (4.5) gives

(4.6) E(wQ) = (n/8) ~ (Q2-Q+I)

From (4.6) with ~ = 2, we have

(4.7) E (w 2) = (n/8)~(3/ln4+ 1) ~ 1.9828.

This is within 3 percent of the minimum value

(4.8) rain E(wQ) ~ 1.9260
Q > I

which is attained when Q ~2.4771 satisfies

(4.9) (Q2 _ 1) In ~ = Q2 _ Q + 1.

Thus, we simplify implementation of the algorithm and lose little in efficiency by
choosing ~ = 2. This choice is also suggested by the worst-case analysis of Section

.

From (4.3)and (4.7),

(3+21n2)
(4.10) E(w2)/E(wF) - rt21n 2 ~- 0.6412 ,

SO B 2 is significantly faster, on average, than Floyd's algorithm. The variance
V(w2) is smaller too:

(4.11) V(w2) = 13/ln 1 6 + 2 / 3 - n (3 / l n 4 + 1)2/8 ~ 1.4241

and

(4.12) V(WF) = 2~Z2--~zs/32--6((3) ~ 2.9638.

5. Pollard-like faetorization algorithms.

Pollard [7] suggested applying Floyd's algorithm with f(x) a suitable
polynomial rood N (e.g. f (x)=x 2-1 (mod N)), and replacing the termination
condition "until x =y" by "until GCD(ix-y[, N) > 1". (Here GCD(M, N) denotes

AN IMPROVED MONTE CARLO FACTORIZATION A L G O R I T H M 181

the greatest common divisor of M and N.) Let G = GCD(Ix- yj, N) on termination
of this algorithm. If G = N (i.e. x =y) no useful result is obtained, and we have to
try different x0 and /o r f Usually, though, the algorithm terminates with 1 < G < N,
and then G is a nontrivial divisor of N. The algorithm can be applied to N/G and
(with different x0 and/or f) to G, if further factors are required.

Let p be the smallest prime factor of N, and xi = xi mod p. Because f is a
polynomial, the sequence (~i) satisfies

(5.1) ~2i + 1 = f(~q) (mod p),

and is eventually periodic with rn+n~p. When j > 0 satisfies ~2j=~j then
GCD([x2j-xiI, N)~p, so Pollard's algorithm terminates after at most j<p
iterations.

It is plausible to assume that f (mod p) behaves like a "random" function and
that, from (4.3), the expected value of j is about (rc/2)5/2p ½. Empirical results
suggest that this is true, except for certain "special" f(e.g, f(x)= x 2 or f(x)= x 2 - 2:
see Pollard [7]); in what follows we shall make this assumption. Since p < N ~, the
expected number of f evaluations required by Pollard's algorithm is O(N¼).

Instead of modifying Floyd's algorithm, we could equally well modify
algorithm BQ by changing the statement "done := (x=y)" to "done := (GCD
(Ix-yl, N)> 1)". From the results of Section 4, we might expect this algorithm
(PQ) with Q = 2 to be faster than Pollard's orig!nal algorithm (PF).

The best-known algorithm for finding GCDs is the Euclidean algorithm [3],
which takes O(logN) times as long as one multiplication modN. Pollard [7]
showed that most of the GCD computations in algorithm Pr could be dispensed
with, and a similar trick is applicable to algorithm Pe. The idea is simple: if PF or
PQ computes GCD(z 1, N), GCD(z 2, N), . . . , then we compute

i

(5.2) q, =]~ zj (modN) ,
j = l

and only compute GCD(q~, N) when i is a multiple of m, where log N << m << N ~/4.
Since q~÷ ~ = q~ x z~÷ 1 (mod N), the work required for each GCD computation in
algorithm PF (or Pc) is effectively reduced to that for a multiplication mod N in
the modified algorithm P~ (or P~). The probability of the algorithm failing
because q~ = 0 increases, so it is best not to choose m too large. (This problem can
be minimised by backtracking to the state after the previous GCD computation
and setting m= 1: see algorithm P~ in Section 7.)

6. Comparison of algorithms P~ and P~.
Let p be the smallest prime factor of N, and for the sake of simplicity suppose

that Nip and its nontrivial factors (if any) are much larger than p. Assume that
f(x) has the form (x2+ c)mod N, and that the "random f " analysis of Section 4 is
valid. (We cannot justify this assumption theoretically for any c, but the results of

182 RICHARD P. BRENT

Section 8 justify it empirically for c=3.) As a unit of work we use one
multiplication mod N, and ignore the work required for other operations.

The results of Section 4 are applicable with one important modification: in
Section 4 the cost of statements such as "done := (x =y)" was ignored, but now
they must be counted as one multiplication (the same as one f evaluation). With
this change we get

(6.1)

and

(6.2)

E(M'F) = 4(n/2)5/2p~/3 ~ 4.1232p ~

E(M'2) = (n/2)a(3/ln 4 + 1)p ~ -~ 3.9655p ~ ,

where E(M'F) and E(M'2) are the expected number of multiplications rood N for
algorithms P): and P~, respectively. (Compare (4.3) and (4.7).) The result is
disappointing: P~ is only about 4 percent faster than P). We note that Pollard-
like methods based on the Sedgewick-Szymanski cycle-finding algorithms [11"1
are much slower than P), at least with a straight-forward implementation.

7. An improved factorization algorithm.

Algorithm P~ can be speeded up (on the average) by omitting terms (x r - Xk) in
the product (5.2) if k < 3r/2. A nontrivial factor of N contained in these terms must
also be contained in the terms with 3r/2 __< k < 2r, so the work required to include
the terms with k < 3r/2 is not worthwhile. An analysis similar to that of Section 4

gives

(7.1) E(M~) = (~t/32)~(4+(21n~-2~+3)/ln2)p ½ ~- 3.1225p ½ ,

where E(M~) is the expected number of multiplications mod N for this algorithm
(P~). (By changing the constants 2 and 3/2 slightly, this can be reduced to
3.1207p½.) Comparing (6.1) and (7.1), we see that a speedup of about 24 percent
has been achieved.

After incorporating the back-tracking idea mentioned in Section 5, omitting the
random choice of u, and making sohae minor modifications which do not affect
the asymptotic analysis, our final factorization algorithm P~ is as follows:

y := xo; r :-~ 1; q := 1;
repeat x := y;

for i : = 1 t o r d o y : = f (y) ; k := 0;
repeat ys := y;

for i := 1 tomin (m , r - k) do
begin y := fly); q := q x l x - y l modN
end;

G := GCD(q,N); k := k + m
until (k>r)or (G>I) ; r := 2 x r

AN IMPROVED MONTE CARLO FACTORIZATION ALGORITHM 183

until G > 1 ;
i f G = N then

repeat ys := f(ys); G := GCD(Ix-ysI, N)
until G > 1 ;

if G=N then {failure} else {success}.

8. Empirical results.

We ran algorithms P~ and P~ for numbers N having least prime factor p, for all
odd primes p<108, and counted the number Mp of multiplications (modN)
required to find p. Table 8.1 gives the (predicted and actual) mean and (actual)
maximum of Mp/p ~. The maxima were attained at p = 99, 398,833 (for P~), and p
=48, 569, 393 (for P~). In all cases we took Xo = 0 , f (x) = x 2 + 3 rood N, and m= 1.

Table 8.1. Mean and maximum of MJp ½ for odd primes p< 108.

Algorithm Predicted mean Actual mean Maximum
P~ 4.123238 4.122795 20.3613
P~ 3.122502 3.122533 18.9972

The agreement between the predictions of Sections 6 and 7 and the actual
means of Mv/p ~ is satisfactory, and provides empirical justification for the
"random f " assumption. The empirical results for max (Mp/p ~) show that, if
algorithm P~ has not terminated after 189,972+4m multiplications modN,

then N has no prime factors less than 108. This compares favourably with the
method of trial division by the 5761, 455 primes less than 108 , even assuming they
are available [14]. Guy has conjectured that, for some constant K and all primes

P,

(8.1) Mp <= K(plnp) ½

but this appears difficult to prove: see I-8].

Acknowledgement .

The author thanks D. E. Knuth and J. M. Pollard for their stimulating
correspondence on the subject of this paper, B. P. Molinari and J. M. Robson for
their comments on a first draft, and the Australian National University for the
provision of computer time.

R E F E R E N C E S

1. M. Beeler, R. W. Gosper and R. Schroeppel, Hakmem, M.I.T. Artificial Intelligence Lab. Memo No.
239, Feb. 1972, item 132, pg. 64.

2. W. Diffie and M. Heltman, New directions in cryptography, IEEE Trans. Information Theory IT-22
(1976), 644-654.

3. D. E. Knuth, The Art of Computer Programming, vol. 2, Addison-Wesley, Reading, Mass., 1969.

184 RICHARD P. BRENT

4. G. L. Miller, Riemann's hypothesis and a test for primality, Proc. Seventh Annual ACM Symposium on
Theory of Computing, ACM, New York, 1975, 234-239.

5. M. A. Morrison and J. Brillhart, A method offactaring and the Ji~ctorization of FT, Math. Comp. 29
(1975), 183-208.

6. J. M. Pollard, Theorems onfactarization and primality testing, Proc. Camb. Phil. Soc. 76 (1974), 52L-
528.

7. J. M. Pollard, A Monte Carlo method for factorization, BIT 15 11975), 331-334. MR50~6992.
8. J. M. Pollard, Monte Carlo metho~lsfor index computation (modp), Math. Comp. 32 (1978), 918-924.

MR52513611.
9. M. Rabin, Prohabilistic algorithms, in Algorithms and Complexity (J. F. Traub, ed.), Academic Press,

New York, 1976, 31-40.
10. R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key

cryptosystems, Comm. ACM 21 (1978), 120-126.
1L R. Sedgewick and T. G. Szymanski, The complexity of finding periods, Proc. Eleventh Annual ACM

Symposium on Theory of Computing, ACM, New York, 1979, 74-80.
42. D. Shanks, Class number, a theory offactorization, and genera, Proc. Sympos. Pure Math., vol. 20,

Amer. Math. Soc., Providence, Rhode Island, 1970, 415-440. MR4794932.
13. R. Solovay and V. Strassen, A fast Monte-Carlo test Jbrprimality, SIAM J. Computing 6 (1977), 84-85.
14. M. C. Wunderlich and J. L. Selfridge, A design for a number theory package with an optimized trial

division routine, Comm. ACM 17 0974), 272-276.
15. Anonymous, ML-15, Random number generator, TI Programmable 58/59 Master Library, Texas

Instruments Inc., 1977, 52-54.

DEPARTMENT OF COMPUTER SCIENCE
AUSTRALIAN NATIONAL UNIVERSITY
CANBERRA, A.C.T.2600
AUSTRALIA

