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1. Introduction

The chip complexity of a computation is concerned with
the chip area, A, and the time, T, required to perform the
computation when implemented on a chip. An area-time
product AT®, for a > 0, is used as a complexity measure. A
particular value of &, which is chosen by the user, reflects the
relative importance between A and T. This paper derives
lower and upper bounds on the area-time complexity for chips
that
computation which is intended to approximate current and
anticipated LSI or VLSI technology.

implement binary arithmetic, assuming a model of

In Section 2 we describe our computational model and basic
assumptions, Section 3 establishes for any n-bit multiplication
chip a generat lower bound

ATZ® = Onl*®) (.n

which is valid for all @ ¢ [0,1]. The case & = | was established
independently using a more restrictive model than ours, by
[Abelson and Andreae 80] (see also ([Savage and Swamy 78]).
In Section 4 we sketch a design for n-bit multiplication that
gives

AT2® o O(n1*® gl+2® f) (1.2)

for all @ 2 0. Thus the exponent 1 + & of n in (1.1) and (1.2)
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is tight for @ ¢ [0,1]). The chip complexity of binary addition is
studied in Section 5. We show that for any | € w < n, n-bit
numbers can be added in time O(n/w +lg w), using area
Olw lg w + 1), if the
available w at a time.

input bits from each operand are
In Section 6 we compare the chip
complexity for binary multiplication and addition; we conclude

that multiplication is harder than addition, for ail complexity
measures AT2% o > 0.

The results of this paper mainly draw on two papers by the
authors ([Brent and Kung 79a, Brent and Kung 79b]).

2. The Computational Model and Basic
Assumptions

We assume the existence of circuit elements or “"gates”
which compute a logical function of two inputs in constant time
and occupy at least a constant minimum area, Gates are
connected by wires which have constant minimum width
(equivalently, the wires must be separated by at least some
minimal spacing). Our measure of the cost of a design is the
area rather than the number of gates required. This is an
important difference between our model and earlier models of
[Winograd 65], [Brent 70] and others.
discussion of models similar to ours,

79, Leiserson 80)

For motivation and
see [Thompson

For proving the results of this paper, various subsets of the
following assumptions Af through A8 are used. Comments and

justification are given following the statement of each

assumption.

Al. The computation is performed in a convex planar
region R of area A.

Because of heat-dissipation, packing and testing
requirements, a two-dimensional planar model is
reasonable. The convexity assumption is not
restrictive in the sense that almost all existing
chips or useful modular designs do have convex



A2.

A3,

A4,

A5,

A6.

boundaries for packaging or modularity reasons.
(The convexity assumption can be removed for
part of Theorem 3.1 below by using a different
proof.)

Wires have minimal width A > 0.

A is assumed constant, but in applications of our
results it will of course depend on the technology.
We also assume R has width at least A\ in every
direction.

At most ¥ 2 2 wires can overlap (or intersect) at
any point in R,

A chip may consist of ¥ layers. Wire crossings
through different layers are allowed. In fact,
transistors are typically formed by cross-overs of
wires. Since v 2 2, the graph of wires (edges)
and gates (nodes) need not be planar in a
graph-theoretic sense.

1/0 ports each contain a A x A square and thus

have area at least p2AZ An 1/0 port can be
multiplexed to handle more than one input or
output variable.

If Ris a complete chip, p will be large compared
to AZ If R is only part of a chip and 1O is to

other regions on the chip, p could be of order A2,
We do not require each input (or output) variable
to appear in a distinct input {or output) port, as
required in [Thompson 79] So 1/O port may be
multiplexed as they often are in practice.

A bit requires minimal time 7 >0 to propagate
along a wire or to transmit through an 1/0 port.
The time for one gate computation and an
arbitrary fan-out of the result is included in 7.

Since dimensions are limited by the minimal
wire-width A and minimal gate area, a minimal
propagation time is reasonable. We do not need
to assume that the propagation time increases
with the length of the wire. With the {small) sizes
of chips we now have or anticipate for the future,
the propagation time, which is the time needed to
charge or discharge a wire, is limited by the wire
capacitance rather than the velocity of light. A
longer wire will generally have a larger
capacitance, and thus require a larger driver to
maintain constant propagation time, but the driver
area need not exceed a fixed percentage of the
wire area, so can be ignored if \ is increased
slightly; see [Mead and Conway 80). Although it
would be reasonable to assume bounded fanout,
we do not need this assumption for proving lower
bounds. When proving upper bounds, we do
assume bounded fanout.

The times and locations at which input and output
bits are available are tixed and independent of
the values of the input bits.

When proving upper bounds in Sections 1 and 5,
we further assume that if a and a, are any two
bits in an operand such that 3, is more significant
than a, then a, is not input (or ourput) to the chip
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before a, but they are allowed to be input (or
ourput) to the chip in parallel. This assumption
holds for all the arithmetic circuits that the
authors know.

A7. Storage for one bit of information takes area at
least 8 > 0.

B is typicaily several times larger than A2
A8. Each input bit is available only once.
There is no free memory outside R. If the same

input bit is required at different times, it must be
stored within R, taking area at least § (see A7).

3. Lower Bound Results for Multiplication

Let p = p, .. p; be the 2n-bit product of n-bit integers
a=a ..aandb=b ..b,

3.1 Lower bounds for shifting circuits

When b = 2J, p is a shifted j bits to the left.

multiplier circuit must also be a shifting circuit capable of
performing j-bit shifts for all 0 < j < n-{.

Thus, any

Theorem 3.1: Under assumptions Al to A6 of Section 2,
any chip that is capable of pertorming the shifts as described
above must satisfy

AT2 2 K;n?, (3.1

AT 2 K,Ln (3.2)
where

Ky = 2[A7(9 - 45V /v, (3.3)

Ky = AT(9 - 45Y2)/(my),
and L is the perimeter of the chip.

Before proving Theorem 3.1, we need two Lemmas,

Lemma 3.1: For any convex planar figure with area A,
perimeter L, diameter D, and chord of length C perpendicular
to a chord whose length is the diameter D,

A 2 CD/2, (3.49)
and
Az CL/2m. (35)
Proof: The results follow from well-known inequalities for
convex figures. For a proof (and a definition of "diameter"
etc.) see, for example, [Yaglom and Boltyanskii 61} L]
Lemma 3.2:
min ggrey max(2r, (1-r)2/8) = 2(9 - 451/2),
Proof: It is easy to verify that the minimum occurs when

16r = (1-r)2 and the only root of this equation in [0,1] is
r=9- 4512 n



Proof of Theorem 3.1: Consider any chip that can perform
j-bit shifts for all 0 sjsn-1. By assumption Al, the chip
forms a convex region R. Let D be the diameter of R, and Y a
chord of length D.

Let S = {pypmys = Py} 2nd let M be the maximum number of
elements of S sharing or multiplexing one output port of the
chip. By assumption A4, an 1/Q port has area at least p 2 A2,
We represent each 1/0 port by an infinitesimal point on the
port. Based on these representives of 1/0 ports, we partition
the chip by a chord X perpendicular to Y as follows. The
chord X divides S into two subsets S, and S, such that
representives of the output ports for elements of S, lie on
one side of X and those for elements of S, lie on the other
side of X. (Since representives of 1/0O ports are of infinitesimal
size, we can assume that by an infinitesimal perturbation from
the perpendicular to Y, X does not intersect any of them.) By
“sliding™ the intersection of X and Y along Y, we can arrange
that

s} < Ltn + M2l (36)
for i=1 and 2. For notational convenience, we use d to
denote L(n + My/2l. When the j-bit shift is performed, p,,
takes the value -of a, For d si s n, the ith row in Table 3-1
indicates the pys that take the value of a, under j-bit shifts for
alt n-i s j sn-1.

a\i1 0 1 n-d - n2 n-1

8y ; Pn """ Patd-2 Putda

CES I Pasd-1  Pord
i
i

4 : P, Pyn-3 Pyn-2
]

a, E Py Pn+1 Pyn-2 Pan-1
]

Table 3-1: The dependence of the ps on the a’s
under various shifts.

Note that in the table all the p's belong to S, which is divided

into two parts by the chord X. By (3.6), in the ith row of the
table there are at most d of the p's for which the

representives of the output ports lie on the same side of X as
the representative of the input port for a, Consequently, in
the ith row there are at least i-d of the p.’s for which the

representative of the output ports do not lie on the same side

of X as the representive of the input port for a. For all rows
in the table, there are a total of at Ileast

dsisn i -~ 2 (n - M)?/8 such ps. This implies that one of
the n columns in the table, say, the jth column, must have at
least (n - M)?/8n such p;s. In other words, if

192

[wf{i I ie{d, d+1, .., n} and the representative of

the input port for a, does not lie on the same

side of X as that of the output port for p,,’},
then

2 (n - M?Z8n.

For i¢l, the input port for a, or the output port for Pij May
intersect the chord X, although their represeniatives do not.
Define

U= | il, and the chord X intersects the input
port for a or the output port for Piej OF both}.

Then

-1 = {i | ic{d, d+{, .., n}, and the input port for
a, and the output port for Pisj do not intersect
X and they lie on different sides of X}.

Consider the computation of the j-bit shift. Note that the j-bit
shift, which maps a, to P for i=1,.,n, is an identity
mapping. Hence, before the shift is complete, at least Il—l'l bits
of information about a, icl-I', must cross X for computing Pisj
for icI-I', and at least |I bits of information about a, icI', must
input to or output from some 1/0 ports intersecting with X for
computing p,,, for iel. Suppose that the chord X is of length
C. Then by assumptions A2, A3 and A4, at most ¥C/A wires or
1/O ports cross X. Thus, by assumption A5, the time T to
perform the j-bit shift must satisfy the inequality:
WC/AXT/T) 2 |i-1] + |1

=1

2 (n - M)?/8n,
or

T 2 AT/vCin(1-r)4/8

where r = M/n.

(3.7)
Since M outputs come through one output

port, assumption AS gives

T2 M7 = 7nr. (3.8)
Suppose M <n. Then at least one wire or one 1/O port
crosses X, and assumptions A2 and A4 give

czA\ @9
By assumption A3, v 2 2. Combining this with (3.8) and (3.9)

gives

T 2 Tnr = (2C7/2C)nr 2 (AT/¥C)n2r (3.10)
From (3.7) and (3.10) it follows by Lemma 3.2 that

T 2 (2K, /Cn, (3.11)
where

Ko = AT(9 - 4512y,
so by (3.4),

ATZ 2 (CD/2X2Ky/C)¥n? 2 2K2n?, (3.12)

since D 2 C. Suppose that M =n. Then r = |. Since there is

at least one output port, assumption A4 gives A > P2 A2, 50
by (3.8)



AT 2 (ATn)? > 2K3n2. (3.13)
Result (3.1) follows from (3.12) and (3.13). Result (3.2) follows

in a similar way. If M<n, the combining (3.11) with (3.5)
gives

AT 2 (CL/27X2Ky/CIn = K,Ln. (3.14)
Suppose that M = n. Since by assumption A2, R has width at
least X in every direction, we can choose a chord that is of
length C 2 A and is perpendicular to Y. By (3.5) and (3.8) with
r =1, we have

AT 2 (CL/2mKTn),
which gives

AT 2 KjLn,
[ ]

Since any circuit that performs integer multiplications must
also be able to perform shifts, (3.1) and (3.2) hold for any
n-bit multiplication chip.

Result (3.2) can sometimes give useful lower bounds which
are based on the [/O characteristics of a multiplication or

shifting chip. If at one time the chip inputs or outputs a total
of z bits along its boundary, then by assumptions A3 and A4

L2zA/v and (3.2) gives AT 2K, Az/vn. Thus for any
multiplication scheme that accepts, say ©Un1’?) input bits
simultaneously along the chip boundary, we know immediately
that AT = $2(n%?) (cf. the multiplication scheme in Section 4),

Result (3.1) (with a smaller constant for K,) could have been
established by a proof paralle! to that used by Thompson [79]
for the discrete Fourier transform problem. In fact, using his
result that relates the area of a graph to its minimum bisection
width, one can derive (3.1) without the convexity assumption
in Al
incorporates geometric properties of the chip boundary in the

lower bound proof.

Our proof, above, represents a new approach that

We feel that the extra convexity
assumption we make is not restrictive, since most existing
chips do have convex boundaries for packaging reasons.
Furthermore, we note that the convexity assumption is needed
for establishing results such as (3.2) that relate AT to
perimeter L.In [Brent and Kung 79c}, under a similar
convexity assumption, tight lower bounds on the minimum area
required to layout complete binary (or t-ary) trees are
obtained.

An interesting coroflary of Theorem 3.1 is that lower
bounds in (3.1) and (3.2) hold for chips that perform floating
point additions, for which shifts are needed to equalize
exponents. This explains why the area-time requirements for
floating point addition are much higher than those for integer
{Charles
Leiserson at CMU first pointed out to one of the authors the
application of Theorem 3.1 to floating point addition.)

addition, as observed in practical implementation.

193

3.2 A lower bound on the area for multiplier circuits

In Theorem 3.1 we gave lower bounds on ATZ and AT for
shifting circuits. Now, using different techniques, we give a

lower bound on A for multiplier circuits.
Theorem 3.2: Under assumptions A4, and A6 to A8, any
n-bit multiplication must satisfy

Az Agn,
where

Ay = (5/6)Bp/(B+p)}

Let & ={ij|0si<n, 0<j<n}be the set of all integers

(3.15)

which can be written as a product of two factors, each less
than n; and let u(n)-l@nl be the cardinality of §. For

example, §, = {0, 1, 2, 3, 4, 6, 9} and u(4) = 7. Before proving
Theorem 3.2, we need lower bounds on g(n) and a related
function,

8n) = lig (2™ + 1-nl/n. (3.16)

Lemma 3.3:
#(n) 2 a(n),

where o(n) = zi(Pn-l i and Py,_y is the set of prime numbers
smaller than n.

Proof: The numbers pj are distinct if 2 <p <n, p prime,
and 1 SjSp. Thus, the result follows from the definition ot

#in). [ ]

Lemma 3.4: For all n 2 4,

#u(n) 2 n2/(2 In n).

Proof: Using a slight modification of Theorem 1 and
equation (4.13) of [Rosser and Schoenfeld 62), we can show
that for all n 2 348,

a(n) > n2/(2 In n).
Thus, the result for n 2 348 follows from Lemma 3.3
4 < n < 347, the result may be verified by a straightforward

For

computation. ]
Lemma 3.5: If &n) is defined by (3.16), then for all n 2 1,
§(n) 2 5/6.
Proof: From Lemma 3.4
&n) 2 In - 1gtn In 2)I/n, (3.17)

and it is easy to verify that the right side of (3.17) is at least

5/6 for all n 2 18. (There is equality for n = 18 and n = 24)
For 1 s n < 17, direct computation shows that &n) 2 9/10. W



We conjecture that

limp_y00 [(4(n) Ig Ig M)/n?] = 1,
and

§n) 2 9/10
for all n2 1. Empirical data that support this conjecture are
presented in [Brent and Kung 79b].

Proof of Theorem 3.2:

If n =1 there is at least one output port, so A 2 p, and the
result holds. Hence, suppose that n 2 2.

Consider the state of the computation just before the last
input bit(s) are accepted. Let m be the number of input bits
still to be accepted,so 1 sm < 2n.

It is easy to show that there are some inputs a and b such
that the output bits p,,, .., p, are not determined by the 2n-m

input bits already accepted. Thus, by assumption A6, at most
n-1 bits, p,_y, - Py, have been output.

Suppose that s bits of information are stored in R at this
instant. Then we must have by assumption A8
n(zn) < 2m¢(n-1)+s’
or the circuit could not produce all u(2") possible outputs, and
would fail for certain inputs. Thus

m + s 2 [ig g(@M+1-nl = nb(n).
and, from Lemma 3.5,

m +s 2 5n/6. (3.18)
By assumption A7,
A2 Bs. (3.19)

Since a port can accept only one bit at a time, the last m bits
must be input through m different ports, so assumption A4

gives
Az pm. (3.20)

The result foilows easily from (3.18), (3.19) and (3.20). [ ]

3.3 General lower bounds for the chip complexity of
binary muitiplication

Theorems 3.1 and 3.2 are the extreme cases ¢ =1 and
o = 0 of the following result.
Theorem 3.3: Under assumptions Al to A8, any n-bit
multiplication chip must satisfy
(A/Ag) (T/TP% 2 nl*%, (3:21)
for all & € {0,1] Here A, is given by (3.15),
To - (KI/AO)UZ'

and K, is given by (3.3).
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Proof: From Theorem 3.1,

(AJA)) (T/To)? 2 n,
s0

(AJAY® (T/TF?% 2 n2%, (3.22)
From Theorem 3.2, since & ¢ [0,1),

(A/AV% 2 1™, (3.23)
Multiplying (3.22) and (3.23) gives the result. n

The following corollary of Theorem 3.3 seems worth stating
separately, for AT is often used as a complexity measure (see,
for example, [Mead and Rem 79)).

Corollary 3.1: Under assumptions Al to A8, any n-bit
muitiplication chip must satisfy

AT 2 K3n3/ 2
where

Ky = AgTy = (A2
4. Upper Bound Results for Multiplication

It is easy to design practical n-bit multipliers with area
A = 0(n) and time T = O(n), so

AT2% w O(n1*2%), (4.1)
For example, the "serial pipeline multipliers” typically used in
the implementation of digital filters and signal processors
achieve these area and time bounds (see, for example,
[Jackson et al. 68, Lyon 76]). In this section we sketch the
design of a multiplier with A=0(nlgn) and T = 0(n1/2 Ig n),
giving

AT2% w O(n1*® 1g1+2% p), (4.2
which is asymptotically better than (4.1). The design uses the
convolution Theorem to compute the product of two integers
in a complex way, and consequently its implementation

appears to be difficult. Nevertheless, the design is
theoretically interesting because it shows that the exponent

1 + & of n in Theorem 3.3 is tight. We do not know if there is
any practical design having AT2% = o(n}*2%) for a [0, 11
Straightforward implementations of "fast” algorithms, for
example, the Schonhage-Strassen algorithm [Schonhage and

Strassen 71}, or the "3-2 reduction” algorithm [Ofman
62, Wallace 64) seem to require area at least order n?.

In the remainder of this section we assume:
(a) n = k? is a perfect square, and
(b)a‘-bj-Oifj>n/2.

(If not, n may be increased sufficiently withoul atfecting the
asymptotic results) Let p be the smaliest prime of the form



nq+l,q21l, Fp the finite field of integers mod p. It is known
that Ig p = 0(lg n) (see [Linnik 44, Wagstaff 79)), and that Fp
has an n-th root of unity w (see [Bonneau 73]). Let w = u, so
w is a k-th root of unity. Note that in any circuit n is fixed, so
we are not concerned with the complexity of finding p, u, w

they will be encoded into the circuit. In particular, for
pr We assume that a 2rlog2 p]—bit

approximation to 1/p is encoded into the circuit.

etc:
facilitating arithmetic in F

In Steps 1-5 below, all arithmetic is done in Fp. In Steps
1-3 we compute the discrete Fourier transform a' of
(al, ey an) and b’ of (bl’ -y bn) over Fp, that is,

¢ n~1 i
A= zo:o 8,y U

for j=0,.,n-1, etc. In Step 4 we multiply the Fourier

transforms. In Step 5 we take the inverse transform, and in

Step 6 the final result is computed.
Step |

Let A, B, U, and W be k by k matrices with elements

Ay = a(i- 1)k

By = bi-1)k+jr

U‘ - u(i'l)(J'l)'
W, = wl-1X-1)

Perform k by k matrix multiplications to compute
A’ = WA and B' = W8,
using a “systolic array” of [Kung and Leiserson 791 ANl
computations are performed in Fp, so each processing element
of the systolic array needs to perform multiplication and
addition in Fp. Using a serial pipeline multiplier and a serial
adder, a multiplication and addition step in Fp requires no

more than area O(lg p) and time O(lg p). Thus, Step 1 can be
done with area O(n Ig n) and time 0(n!/2 Ig n).

Step 2

Compute A" = AoU and B" = BloU, where o denotes

componentwise multiplication.

Step 3

Compute A™ = A"W and B" = B"W using the same method
as for Step 1. It may be shown that A" and B™ contain the
Fourier transforms of (ay, .., a) and (bx' ~y by); in fact for
15i,jsk,

"
Ay 'au Dk
By = b(j-1)ksk
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Step 4

Compute C" = A"oB"".

Step 5

Compute C = WHU'0(C"W™) as in Steps 1-3. Here

LJ|'j = u~0-1Xj-1), The matrix C represents the inverse Fourier
transform of C". Define ¢s by

Cyj ™ C(i-1)ke+jr
Then by the convolution Theorem and our assumption (a)
above,

- a1b‘ + asz + forlsjsn

Thus,

Zu-l p2t = z -1 62"

Group the terms in the right hand side into n1/2 groups so that
the c’s in each row of the matrix C belong to one group. We

. ajbl

obtain

il plzl-l - Z < R2(FK, (4.3)

where
Kk
- 1
R z]=l c(a-i)k*jzj-
Given that the cs are outputs of the syslolic array that
computes the matrix C, all the R s can be formed in area

O(n ig n) and time O(r\‘/2 Ig n), using the upper bound result
regarding addition in Section 5. Thus the problem of
computing p,,, ., p; has been reduced to the probiem of
summing k = n1’2 terms in the right-hand side of Equation
(4.3). Hence, the final step in the computation is:

Step &

Compute p,, .., p; from the R’s. The ps can be computed,
n!’2 of them at a time, in area O(n Ig n) and time 0(n1/2 g n),

again using the result in Section 5.

This completes our outline of the multiplier with area

1/2 20 o
A =0(nlg n) and EITE -n.!.( ‘E)g(‘.r:m‘r g n), giving AT

O(n1*® |ghe2a ), m 1+2e of Ig n can certainly be
reduced by using probably a still more complicated design

than the one outlined above, but we do not know what its
minimal value is. For a > 1, a design based on the "3-2
reduction” algorithm seems to give AT?® = O(n? 1g® n) for some

8 > 0, which is a better upper bound than the one in (4.2).



5. Upper Bound Results for Addition

Let a2, -
with sum s s, ... 5. The usual method for addition computes
the s’s by

a, and bb __, .. b, be n-bit binary numbers

¢ =0,
c,=(an b)viaAac ) viba Cgh

s;»a,@b®c i~ 1, .40

Snet * Cp
where ® means the sum mod 2 and ¢, is the carry from bit

position i.

It is well-known that the c’s can be determined using the
following scheme:
=0
¢ =g VP Arc,
where

(5.1)

g=aAby
and
P=3®b,

for i = 1, 2, .., n.One can view the g; and p; as the carry

generate and carry propagate conditions at bit position i. The
relation (5.1) corresponds to the fact that the carry c; is either
generated by a; and b; or propagated from the previous carry

€j-1- Thisis illustrated in Figure 5-1.

(4 [
n i
R e 4 s & » @

i—l RO

1[5 ¢®

8,0P, gi,pi gl’pl

Figure 5~1: The carry chain.

In this section we present a regular and area-efficient layout
design for computing all the carries in parallel assuming that
the g's and p’s are given. Using this layout design for the
carry computation, one can design a parallel adder in a
straightforward way (see [Brent and Kung 79a)). The basis of
our method is the reduction of carry computation to a prefiz
computation, as described the
Although the same idea was used by [Ladner and Fischer 77},
their results are not directly applicable because they ignored

in following subsection,

fanout restrictions, and used the gate count rather than area
as a complexity measure.

5.1 Reformulation of the Carry Chain Computation

We define an operator "o" as follows:
(P ol p)=@vipaghepap)

for any Boolean variables g, p, g’ and p’.
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Lemma 5.1: Let

(gp Pl) ifi=1,
(G, P) =<
P o (G, P Jif2sisn
Then

fori=1,2 ..,n

=G
Proof:

We prove the Lemma by induction on i. Since ¢, = 0, (5.1)
gives

¢ =g Vvip A0 =g =G,
so the result holds for i = 1. 1fi> 1 and ¢, ; = G_y, then

(G, P) = (g, p) 0 (G, Py)
= (g, P} o (c,, Py)
= (& V(P A cgh P A Py
Thus

G =gV (pAc,
and, from (5.1), we have

G=c¢

The result now follows by induction.

From the definition of the operator o, it is straightforward

to show that the operator is associative. Thus, by Lemma 5.1,

to compute ¢s it suffices to compute all the (G, P)'s, and

(G, P) = (g, p) 0 (8, Py} © - O gy, Py)

can be evaluated in any order from the given g's and p's.
(Intuitively, G, may be regarded as a "block carry generate®
condition, and P, as a "block carry propagate™ condition.)

5.2 A layout for the carry chain computation

Consider first the simpler problem of compuling the (G, P)

for i = n only. Since the operator "o" is associative, (G, P,)
can be computed in the order defined by a binary tree. This
is illustrated in Figure 5-2 for the case n = 16. In the figure,
each black processor performs the function defined by the
operator "o" and each white processor simply transmits data.

The white and black processors are depicted in Figure 5-3,
Note that for Figure 5-2 each processor is required to
produce only one of its two identical outputs, and the units of
time are such that one computation by a black processor and
propagation of the results takes unit time.

Consider now the general problem of computing the (G, P)
for all 1 i< n. This computation can be pérformed by using



the tree structure of Figure 5-2 once more, this time in the

We illustrate the computation, for the case

reverse order.

It is easy to check that, at time T = 7,

all the (G, P) are computed along the top boundary of the
network. As the final outputs, we only keep the G, which are

n = 16, in Figure 5-4,
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Figure.5-2: The computation of (G
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Figure 5-4: The computation of all the carries for n = 16,
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In deriving the layout of Figure 5-4 we used only one
distributive law. Thus, the layout could be used to evaluate

arithmetic expressions of the form

in)

9,v(p, A0

gout

goul = gin

R)ut

b
in

Pin A p

Q)ut

Pin

5.2)

Bn + PplBueg * Ppegl P3(B2 4 P8y .1}

(b)

(a)

where g, p; are numbers and the black processor in Figure

Note

in

and Poyt = PinPj
.. = p, = x of (5.2) is the polynomial

in

[4

5-3 now computes g, = gjn *+ Ping

that the case p, =

Figure 5-3: (a) The white processor, and (b) the black

+ glxml_

Bp * BpagX *+ o

processor

197



5.3 General upper bounds for the chip complexity of
binary addition

The tayout shown in Figure 5-4 implies that all the carries
in an n-bit addition can be computed in time O(lg n) and area
We show
that this result is a special case of Theorem 5.1 below.

O(n Ig n), and therefore so can the addition itself.

We define the width w or a parallel adder to be the number
of bits it accepts at one time from each operand. For the
parallel adder corresponding to the netwrok in Figure 5-4,
w=16. We have hitherto assumed that the width of a
network is equal to the number n of bits in each operand.
Here we consider the case w < n. We show that this case can
be handled efficiently using a pipeline scheme on a network
which is a modification of the one depicted in Figure 5-4.

For simplicity, assume that n is divisible by w.One can
partition an n-bit integer into n/w segments, each consisting
of w consecutive bits. To illustrate the idea, suppose that
w = 16. Then the carry chain computation corresponding to
each segment can be done on the network in Figure 5-4, and
the computations for all the segments can be pipelined,
starting from the least significant segment. The results coming
out from the top of the network are not the final solutions,

though.

Results corresponding to the ith feast significant
segment

(i>1) have to be modified by applying
To

facilitate this modification, we superimpose another tree

(G-pyws P(gyw? ©On the right using the operator o.

structure on the top half of the network, as shown in Figure
5-5. Using this additional tree, the contents of the "square®
processor (denoted by "[1") are broadcast to ali the leaves,
which are black processors. The square processor, shown in

is an accumulator which initially has value

Figure 5-6
f), and successively has values

(g, P) = (O,

(g, p) = (G(i-l)w’ P(l-l)w) fori=2,3 ...
particular (G(u-x)w' P(l-x)w) reaches the leaves, it is combined

At the time when a

with the results just coming out from the old network there.
By this pipeline scheme, we have the following result:

Theorem 5.1: Let 1 < w s n. Then all the carries in an n-bit
addition can be computed in time proportional to (n/w) + log w
and in area proportional to wlog w + 1, and so can the
addition.

When w =1, the method outlined
essentially the usual serial carry-chain computation.

in this section is

T=6

T=4
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N

J network as in Figure 5-#

This is the same left-most processor at level T=4 of the

Figure 5-5: The additional tree structure to be superimposed
on the top half of the network in Figure 5-4.

) (gout ’ pout)

(@out*Pout
8out = Bin ¥ oy, ? g)

%_j(é,{:) Pout ~ Pin " P

(&:8) = (8,0 1Poue)
{delayed]

(gin’pin)

Figure 5-6: The "sauare" processor that accumulates
(Gii-1ywr Pli-1)w)

From Theorem 5.1, we have the following

Corollary 5.1: The area-time product for n-bit addition is
O(n lg w + w lg2 w + 1), which is O(n Ig? n) when w =n, and

O(n 1g n) when w = n/lg n, and O(n) when w is a constant.

One can similarly obtain an upper bound on AT¥ for any
@ 20, and for each & one can choose a w to minimize the

upper bound.



6. Concluding Remarks

Let MULT,4(n) and ADD,,(n) be the area-lime complexity

AT for n-bit integer multiplication and addition, respectively,
Note that the serial adder gives ADD,y(n) = 0(n?%), and that

for a>1 MULT 5, (n) = §(n?) since

A(T/T)?% > A(T/T)? 2 K\(n/T)%. These together with Theorems
3.3 and 5.1 establish the following result:

Theorem 6.1: Under assumptions Al to A8 of Section 2,

UnI"%) for O<esi/2,
MULT,{n)/ADD,,{n) =<SUn%/lg?% n) for |/2<asl,
n/1g?% n) for a1,

Thus for any a 2 0, the area-time product for multiplication is
asymptotically larger than that for addition. We can say that
multiplication is harder than addition as far as the area-time
complexity is concerned.

For binary division, it is easy to deduce a lower bound of
the same form as (3.21), using the method of [Brent 76), and
an upper bound AT2% = O(n!*® 1g1*2% 1) iing  Newton’s
method.

Computer arithmetic is a subject that has received intensive

study in the past (see, for example, [Tung 72, Garner
76, Savage 76, Kuck 78]). Much attention has been paid to the
tradeoff between time and the number of gates, but until
recently littie attention has been paid to the problem of
connecting the gates in an economical and regular way to
minimize chip area and design costs. We hope that the results
of this paper should help in formalizing thic new research
direction of computer and

arithmetic, in understanding

area-time tradeoffs in the designing process.

In Section 3, we derived lower bounds on AT?%, a([0,1], for
binary muitiplication. Similar lower bounds on ATZ have been
obtained for computation of the discrete Fourier transform by
[Thompson 73], and for that of matrix muitiplication by
[Savage 79]). It seems that area-time complexily is, in general,
a useful measure for establishing the complexity hierarchy of
many classes of problems, because it captures important
attributes of a computation such as time and space, as well as
communication. One should expect that more results along this
line will be obtained in the near future.
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