
An AUGMENT Interface for Brent's Multiple
Precision Arithmetic Package

RICHARD P. BRENT

Australian National University

JUDITH A. HOOPER
University of Wisconsin-Madison

and

J. MICHAEL YOHE
University of Wisconsin-Eau Claire

The procedure requuced to interface Brent 's multiple premsmn package MP with the AUGMENT
precompfler for Fortran is described A method of using the multiple preclsmn arithmetm package m
conjunctmn with AUGMENT is discussed.

Key Words and Phrases anthmetm, multiple precision, extended preclsmn, floating point, portable
software, software package, precompfler interface, AUGMENT interface
CR Categories: 4.49, 5.11, 5.12

1. INTRODUCTION

The purpose of this paper is to demonstrate the ease with which a well-designed
nonstandard arithmetic package may be interfaced with the AUGMENT precom-
piler for Fortran [6, 7]. We outline an interface and user instructions to enable
one to use the Fortran multiple precision arithmetic package MP [1-4] in
conjunction with AUGMENT. This makes the use of MP far more natural and
convenient than its use without AUGMENT. With the aid of AUGMENT, the
user declares multiple precision variables as type MULTIPLE, and then, for the
most part, simply writes the program as though MULTIPLE were a standard
Fortran data type.

2. WRITING THE INTERFACE

We assume that the reader is familiar with the AUGMENT precompiler, at least
to the extent of knowing what is meant by such terms as supporting package and
description deck. This degree of familiarity may be obtained by consulting [6].

Permmsion to copy without fee all or part of this material is granted provided that the copras are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publicahon and its date appear, and notice is gqven that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to repubhsh, reqmres a fee and/or specific
permission
This research was supported by the U.S. Army under Contract DAAG29-75-C-0024.
Authors' addresses R P Brent, Department of Computer Science, Austrahan National University,
Canberra ACT 2600, Australia; J A. Hooper, Mathematics Research Center, University of Wisconsin-
Machson, Madison, WI 53706, J.M. Yohe, Academic Computing Services, University of Wisconsm-
Eau Claire, Eau Claire, WI 54701.
© 1980 0098-3500/80/0600-0146 $00.75

ACM Transactlon~ on Mathematical Software, Vol. 6, No. 2, June 1980, Pages 146-149

AUGMENT Interface for Brent's MP Arithmetic Package 147

The supporting package to be interfaced with AUGMENT is the Fortran
multiple precision arithmetic package described in [1]. This is a collection of
portable subroutines which performs not only basic arithmetic operations in
multiple precision, but also all of the ANSI standard mathematical functions and
many nonstandard ones. The precision of the package is governed by the user at
run time and may be changed during the course of a computation.

In interfacing this or any package with AUGMENT, we must specify the
amount of storage to be allocated to each variable. This will place an upper limit
on the operating precision of the multiple precision arithmetic package, although
nothing prevents one from using a lower precision in computations. Increasing
the precision beyond that provided in this standard interface is not difficult.

The first step in interfacing the package was to prepare the AUGMENT
description deck. Fortunately, most of the multiple precision routines were in the
form of subroutines, with the numbers of arguments expected by AUGMENT
(and in the order expected); nearly all of the manipulations required for a
complete package were already provided (in the form assumed by AUGMENT),
and all of the subroutines in the package bore the prefix MP in their names. This
made preparation of the interface extremely straightforward.

To prepare the description deck, we simply went down the list of routines in
the multiple precision arithmetic package, associating them when possible with
standard Fortran operations and functions. When such a natural association was
not possible, we assigned function names (usually obtained by dropping the prefix
MP from the routine name). The description of each routine was coded as per
the instructions in [7]. In only a few cases were we unable to do this: most of the
input/output routines and error checking routines could not be interfaced with
AUGMENT {they must be called explicitly), and the routines which provide
constants needed special attention, as described below. Routines which did not
conform to the usual expectations of AUGMENT, such as the routine to add the
quotient of two integers to a multiple precision number, were simply described as
functions.

The routines used to generate constants posed a problem: AUGMENT assumes
that routines will have at least one argument in addition to the result, and these
routines did not. We therefore decided to write a new routine which "converts"
the Hollerith name of the desired constant to the value of the constant. Once this
routine was written, it seemed logical to include the capability of run-time
conversion of Hollerith strings representing numeric constants.

We also wrote six trivial logical functions to allow AUGMENT to deal with the
six logical operators in the context of multiple precision variables and some other
routines to allow the user to inspect and modify the base, number of digits, sign,
exponent, and digits of multiple precision numbers without needing to know the
details of the implementation of the package. Finally, we added some input/
output routines which are simpler to use with the AUGMENT interface than
those originally included in the multiple precision arithmetic package. All of these
routines were extremely straightforward to write and required a total of about
120 executable statements. A listing is given in [5, Appendix C].

The entire interface was written in less than half a day; the most time-
consuming task was revising the documentation for the multiple precision pack-

ACM Transact ions on Mathematmal Software, Vol 6, No 2, June 1980

148 R.P. Brent, J. A. Hooper, and J. M Yohe

age! The new MP routines have been tested on Univac 1100, IBM 370, CDC
Cyber 76, and DEC-10 machines.

3. USE OF THE PACKAGE VIA AUGMENT

As explained in [5], the use of a nonstandard arithmetic package via AUGMENT
is extremely simple. The majority of the package modules are invoked automat-
ically by AUGMENT, the exceptions being mainly the input/output and error
handling routines.

To use the package via AUGMENT, the user declares all multiple precision
variables using statements of the form

MULTIPLE X, Y(10), Z

o r

IMPLICIT MULTIPLE (A - H, O - Z)

(AUGMENT accepts type declarations via IMPLICIT statements, whether or
not the Fortran compiler does; this is convenient when converting a program to
multiple precision.) The majority of the program is then written just as though
MULTIPLE were a standard Fortran data type.

The interface allows the use of all ANSI standard operators and functions with
variables of type MULTIPLE as well as REAL, e.g., +, - , * , / , * *, SIN, ATAN,
etc. Some additional functions and environment parameters are provided, e.g.,
the error function, Bessel functions, machine precision, etc.

Constants may be introduced into the program by statements of the following
types:

PI -- 'PI'
X = '.15'

The dollar sign on the second Hollerith literal is a sentinel to let the Hollerith-
unpacking routine know when it has reached the end of the literal. The Hollerith-
unpacking routine depends on the number of characters per word and is not
portable but should be easy to adapt for most machines.

The user must set the various parameters for the package, as explained in [1]
and [3]. Care must be exercised to ensure that the dimensions of the multiple
precision variables communicated to the package are no greater than those used
by AUGMENT in assigning space to the variables. One way of setting these
parameters to default values is to include the statement

INITIALIZE MP

after the type declarations in the user's main program. This causes AUGMENT
to generate a call on the routine MPINIT, which then sets the parameters to
values fixed in the MPINIT subroutine. This is a bit of a cludge, but it works,
provided the default values are what one really wants. Other ways of setting the
package parameters are described in [3] and [5].

Once the program has been written, the following run stream will invoke

ACM Transac t ions on Mathematmal Software, Vol 6, No 2, June 1980

AUGMENT Interface for Brent's MP Arithmetic Package 149

AUGMENT and cause the translated program to be written on a Fortran logical
unit:

(invoke AUGMENT)
(Description Deck)
* BEGIN
(Source Program)
* END

The resulting program would then be compiled just like any other Fortran
program, linked with the multiple precision library routines, and executed.

A complete list of the operations and functions available in the multiple
precision arithmetic package, together with the manner in which they are invoked
via AUGMENT, is given in [5, Appendix A]. An example program illustrating
the use of the AUGMENT interface may be found in [3, Sec. 4.3].

4. CONCLUSION

We have demonstrated the method of interfacing a supporting package with the
AUGMENT precompiler in the most convincing way possible: by actually doing
it. Since the package is now much easier to use, the relatively small amount of
work required to program the AUGMENT interface was well worthwhile.

A revised version of the multiple precision arithmetic package, incorporating
the AUGMENT interface routines and description deck (but not AUGMENT),
is available from the first author.

REFERENCES

1 BRENT, R P A Fortran multiple-precision arithmetic package. A C M Trans. Math. Softw. 4, 1
(March 1978), 57-70.

2. BRENT, R.P Algorithm 524. MP, a Fortran multiple-precmion arithmetic package. A C M Trans
Math Softw 4, 1 (March 1978), 71-81.

3. BRENT, R.P. MP users guide. Tech Rep. 54, Computer Center, Australian National Umv.,
Canberra, Australia, Sept. 1976 (revised July 1978).

4. BRENT, R.P. Remark on algorithm 524. MP, a Fortran multiple-precision arithmetic package.
A C M Trans. Math. Softw. 5, 4 (Dec 1979), 518-519.

5. BRENT, R.P., HOOPER, J .A, AND YOHE, J.M. An AUGMENT interface for Brent's multiple
premslon arithmetic package Tech. Summary Rep. 1868, Mathematics Res. Cent., Univ. Wiscon-
sin-Madison, Madison, Wis, Aug. 1978.

6. CRARY, F D. A versatile precompfler for nonstandard arithmetics. A C M Trans. Math. Softw. 5,
2 {June 1979), 204-217.

7. CRARY, F.D. The AUGMENT precompiler I: User information. Tech Summary Rep. 1469,
Mathematms Res. Cent., Univ. Wisconsin-Madison, Madison, Wis., Dec. 1974 (revised April
1976)

Received December 1978, revised July 1979; accepted July 1979

ACM Transactions on Mathematmal Software, Vol 6, No 2, June 1980

