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ABSTRACT

The problem of performing multiplication of n-bit numbers on a chip is considered. Let A
denote the chip area and T the time required to perform multiplication. By using a model of
computation which is a realistic approximation to current and anticipated LSI or VLSI technol-

ogy, it is shown that
(&) (7) =
Ao/ \To/) —

for all a € [0, 1], where Ay and T are positive constants which depend on the technology but
are independent of n. The exponent 1 + « is the best possible. A consequence of this result
is that binary multiplication is “harder” than binary addition. More precisely, if (AT2%)ys(n)
and (AT?*) 4(n) denote the minimum area-time complexity for n-bit binary multiplication and
addition, respectively, then

Q(nt=®) for 0 <a<1/2
=< Q(n*/log**n) for1/2<a<1

Q(n/log?*n)  fora>1

= Q(n'/?) for all & > 0.

(AT**)pr(n)
(AT?) 4(n)
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COMMENTS

Only the Abstract is given here. The full paper appeared as [3]. Similar results for the case
a = 1 were obtained independently by Abelson and Andreae [1] (using a more restrictive model
than ours). A preliminary version, which contains some additional material on upper bounds,
appeared as [2]. For an extension of the results to problems with only a 1-bit output, see [4].
Let

p(N)={ij |0<i< N, 0<j< N}

be the number of distinct products of nonnegative integers each less than N. As pointed out in
the Corrigendum to [3], our conjecture [3, page 528] that

_ p(N)logylog N
N N? N
is false. In fact, it follows from a result of P4l Erdds [5] that

N2
Ny=——
/’L( ) (log N)C+O(1) Y

1

where
c=1-—(14+1nln2)/In2 ~ 0.086.
Fortunately, none of the results of [3] depend on the conjecture.
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