Volume 11, number 1

ON THE AREA OF BINARY TREE LAYOUTS *

R.P. BRENT

INFORMATION PROCESSING LETTERS

29 August 1980

Department of Computer Science, Australian National University, Canberra, A.C.T. 2600, Australia

H.T. KUNG

Department of Computer Science, Carnegie—Mellon University, Pittsburgh, PA 15213, U.S.A.

Received 27 September 1979; revised version received 11 April 1980

Chip area, area complexity, tree, layout, lower bound

1. Introduction

The binary tree is an important interconnection
pattern for chip layouts (see, e.g., [1,3,4,6]). Suppose
that nodes are separated by at least unit distance and
that a wire has unit width. Then the usual layout of a
complete binary tree of n leaves illustrated in Fig. 1(a)
takes order n log n area. In contrast, the ‘H’ layout
illustrated in Fig. 1(b) takes only order n area [5].

Note that the ‘H’ layout has only O(n'”) leaves on
the boundary. For current LSI technology, 1/O ports
(or pins) of a chip are typically all on the boundary of
the chip. Thus, the ‘H’ layout enjoys a small area at
the expense of a small number of possible I/O ports.
We asked ourselves the question of whether or not one
can design a complete tree layout of O(n) area and
with all the leaves on the boundary. This note shows
that it is not possible. More precisely, we show that if
the boundary of the chip is a convex curve and leaves
on the boundary are separated by unit distance, then
order n log n area is necessary just for accommodating
all the wires. The convexity assumption is not restric-
tive, since almost all existing chips do have convex
boundaries for packaging reasons.
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2. The layout model

We consider nodes to be points of negligible area
which must be separated by at least one unit distance
in the usual Euclidean metric. A wire is a line joining
two nodes together with all points within half a unit
distance from any point on the line. [t is readily seen
that if two nodes are separated by a distance d, then
any wire joining them must occupy area at least d.

3. Total wire area

Let A(n) be the minimum total wire area needed
for laying out a complete binary tree of n leaves, and
A'(n) the minimum total wire area needed for laying
out a complete binary tree of n leaves, not counting
area taken by wires that correspond to edges on one
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Fig. 2.

designated path from the root to a leaf (one such path
is marked by ~~ in Fig. 2(a)).

We shall derive lower bounds on A(n) for any chip
layout. For simplicity we assume that n is a power of
2. This is not a significant restriction, for if n = 2K,
then A(n) = A(25).

3.1. The degenerate case

To see the basic idea in our lower bound proof,
consider first the degenerate case when all the n leaves
of the tree are on some straight line segment of the
boundary of the chip. We show that in this case, for n
apower of 2,nz=2,

A(n) = 2A'(3n) +4n (1)
and
A'(n) = A(3n) + A'(3n). (2)

In any such layout, we claim that there are two leaf
nodes P and Q that are at least ]§n apart and that are in
different subtrees of the root, Let P be the leaf node
that is closest to one of the ends of the line segment
that contains all the leaves. Choose Q to be the leaf
node in the subtree of the root not containing P that
is farthest from P. Then P and Q are separated by at
least %n — 1 leaves on the line segment, and thus the
wire connecting P and Q in the layout has area at least
3n. This wire corresponds to a path in the tree, passing
through the root (see Fig. 2(b)). Edges not on the path
are all contained in the two subtrees, and the total
length of wire needed for laying out these edges is
bounded below by 2A'(3n) (by the definition of A").
Inequality (1) therefore follows.
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To establish (2) we use Fig. 2(a). The result follows
by noting that the total wire area for laying out the
whole tree is at least that for laying out the two sub-
trees. Using (1) and (2) together with A(2) = 2 and
A'(2) = 1, we can show that for k >0,

A(2¥) = A'(2%) = Lkak.
Thus when n is a power of 2,
A(n) = ]E“ logn.

(Assume throughout that logarithms are to base 2.)
Note that the above result is derived without using
the assumption that the chip boundary is convex. The
proof holds whether the leaves of the left and right
subtrees in Fig. 2(a) and 2(b) are interleaved or not
in the layout.

3.2. The general case

We now consider the general case when the n leaves
are not necessarily on a straight line segment of the
chip boundary. Since the chip is bounded by a convex
curve, it can be circumscribed by a triangle whose area
is at most twice the chip area (see, for example, [2]).
Inside the triangle we can extend wires on the bound-
ary of the chip outwards so that all leaves are now on
the boundary of the triangle and they do not overlap.
Note that if a straight line segment of the boundary
contains k leaves, then (because the leaves are separ-
ated by unit distance) it has length at least k. Using
this fact, we claim that we can choose leaf nodes P and
Q, one from each subtree of the root, such that the
distance between P and Q is at least {n. Let P be any
leaf on the boundary of the triangle. Imagine that
starting from P we walk along the boundary in two
directions, one clockwise and one counter clockwise
(see Fig. 3). The walk in each direction terminates as
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Fig. 3.

soon as it passes ;'111 leaves of the subtree of the root
that does not contain P. At least one of the walking

paths includes no more than one corner of the triangle.

On this path one can define two closed intervals, one
before and one after the corner, so that they are the
smallest intervals containing all the n leaves of the
subtree of the root that does not contain P. (The sec-
ond interval may be empty if the path contains no
corner.) Let the intervals be [a, b] and [c, d], with
lengths x and vy, respectively (see Fig. 3). Then the
maximum distance D between P and any of the points
b, ¢, and d satisfies

D> max(x + 1, 3y).

This implies that D 2 {5n, since x + 1 +y = n. Thus
if we choose Q to be one of the points b, ¢, and d,
that is farthest from P, then Q has distance at least
1lfn from P and does not belong to the subtree of the
root containing P. Therefore, corresponding to (1) and
(2), for the triangle with extended wires we have:

A(n) = 2A'(Gn) + n

and

A'(n) = A(%n) + A'(én] ,

which imply that

A(n) = fznlogn, (3)

assuming as before that n is a power of 2.
4, The chip area

Assume that a chip consists of ¢ 2 1 layers, so at
most ¢ wires can overlap at any point. Then by (3) the
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circumscribed triangle has area at least (n log n)/36¢
and thus the chip has area at least (n log n)/72¢c, when
n is power of 2. If n is not a power of 2 the result
holds with a slightly smaller constant. This, together
with the upper bound achieved by the usual layout
illustrated in Fig. 1(a), implies that

Theorem 1. For laying out a complete binary tree with
n leaves on a chip, if all leaves are on the boundary of
the chip, separated by unit distance, and the boundary
is convex, then the minimum area required is of order
exactly nlog n.

Similar proofs and results hold for general t-ary
trees for t 2 2. Under the same assumptions one can
show that the total chip area of a complete t-ary tree
layout is bounded below by {(t — 1)*/[12ct(t + 1) X
logt] } nlogn.
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